EP1192007B1 - Microchip matrix device for duplicating and characterizing nucleic acids - Google Patents

Microchip matrix device for duplicating and characterizing nucleic acids Download PDF

Info

Publication number
EP1192007B1
EP1192007B1 EP00952983A EP00952983A EP1192007B1 EP 1192007 B1 EP1192007 B1 EP 1192007B1 EP 00952983 A EP00952983 A EP 00952983A EP 00952983 A EP00952983 A EP 00952983A EP 1192007 B1 EP1192007 B1 EP 1192007B1
Authority
EP
European Patent Office
Prior art keywords
chip
chamber
nucleic acids
sample
optically transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00952983A
Other languages
German (de)
French (fr)
Other versions
EP1192007A1 (en
Inventor
Ralf Ehricht
Thomas Ellinger
Jens Tuchscherer
Eugen Ermantraut
Siegfried Poser
Torsten Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clondiag Chip Technologies GmbH
Original Assignee
Clondiag Chip Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clondiag Chip Technologies GmbH filed Critical Clondiag Chip Technologies GmbH
Publication of EP1192007A1 publication Critical patent/EP1192007A1/en
Application granted granted Critical
Publication of EP1192007B1 publication Critical patent/EP1192007B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]

Definitions

  • the invention relates to a device for reproduction and Characterization of nucleic acids.
  • DNA deoxyribonucleic acid
  • PCR polymerase chain reaction
  • This routine two-stage duplication enables an enormously large number of identical molecules to be produced from a few starting nucleic acid molecules, but has the disadvantage that it is very laborious and time-consuming, has a low sample throughput (the number of processed nucleic acids in a unit of time) and therefore very much is expensive.
  • the one-step duplication by PCR is relatively fast, enables a high sample throughput in small batch volumes due to miniaturized processes and is not so labor intensive due to automation. Characterization of nucleic acids by duplication alone is not possible. Rather, after duplication, it is necessary to use analysis methods, such as nucleic acid sequence determinations or electrophoretic analyzes of the PCR products or their enzymatically produced individual fragments, to characterize the PCR products.
  • thermocyclers for carrying out the PCR.
  • 5,856,174 discloses a system with which it is possible to pump sample liquids back and forth between, for example, three miniaturized chambers.
  • the PCR is carried out in one chamber of this system, a workup reaction is carried out in the next and the reaction products are detected in the third, for example with a DNA chip.
  • the PCR chamber is a standard tube, as described in the literature (S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A. Siebert; Chip elements for fast thermocycling, Sensors and Actuators A, 1997: 62, 672-67).
  • the genetic characterizations e.g. for identification and Taxonomic classification of microorganisms is currently taking place based on DNA-DNA hybridization studies, rRNA gene sequence comparison (e.g. by means of the 16S or 23S rRNA gene segments) after sequencing these sections and using Restriction fragment length polymorphism (RFLP) studies or PCR tests using specific primers gel electrophoretic separation and detection of restriction or PCR products (T. A. Brown, 1996, genetic engineering for beginners, Spectrum Academic Publishing House Heidelberg, Berlin Oxford).
  • RFLP Restriction fragment length polymorphism
  • the known RFLP studies are based on an individual-specific distribution of restriction endonuclease interfaces, which relates to DNA sequence differences in the area of genomic DNA, which has a high degree of homology to a labeled DNA probe used for hybridization (TA Brown, 1996, Genotechnologie für beginnerers, Spectrum Academic Publishing House Heidelberg, Berlin Oxford).
  • the RFLP examination which is used, for example, in HLA diagnostics (human leukocyte antigen) in immunology prior to transplantation or transfusion (cf.
  • Gene probes are single-stranded nucleic acid molecules of a known nucleotide base sequence with an optimal length of 100 to 300 bases, which specifically lead to a double-stranded nucleic acid pairing with single-stranded nucleic acid sections, e.g. a gene, and mostly with a non-radioactive or radioactive reporter element (marker), e.g.
  • a radionucleotide dye which serve the detection of the gene probes.
  • hybridization a distinction is made between the hybridization of probes with isolated single-stranded nucleic acid (DNA or RNA) and the so-called in situ hybridization (on-site hybridization in tissues, cells, cell nuclei and chromosomes), in which the gene probe spreads to one in the cell (Single-stranded) nucleic acid (DNA or RNA) couples (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, in situ hybridization, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford). With this in situ hybridization it is particularly important that the target sequence and the tissue morphology are preserved and that the preserved tissue is permeable to the probe and the detection reagents.
  • in situ hybridization it is particularly important that the target sequence and the tissue morphology are preserved and that the preserved tissue is permeable to the probe and the detection reagents.
  • Essential for the hybridization is the presence of single-stranded nucleic acid target and nucleic acid probe molecules, which usually occurs through heat denaturation, as well as the selected optimal stringency (setting of the parameters: temperature, ionic strength, concentration of helix-destabilizing molecules), which ensures that only probes with almost perfectly complementary ones (corresponding) sequences remain paired with the target sequence (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, in situ hybridization, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
  • Classic applications of probe technology that enable the identification of unknown organisms or the detection of certain organisms in a mixture of organisms are, for example, phylogenetic studies or the detection of germs in medical diagnostics.
  • rRNA ribosomal RNA
  • rDNA ribosomal RNA
  • the rDNA contains flanking sequence sections that are highly conserved within the respective organism kingdom. Primer sequences directed against these sections can be used for species-independent amplification of the rDNA (G. Van Camp, S. Chapelle, R. De Wachter; Amplification and Sequencing of Variable Regions in Bacterial 23S Ribosomal RNA Genes with conserved Primer Sequences.
  • McCabe Bacterial species identification after DNA amplification with a universal Pprimer pair. Mol. Genet. Metab, 1999; 66: 205-211) describe a method in which rDNA is amplified from clinical bacterial isolates lysed on filter spots by using universal primers and then identified by hybridization with specific probes. This process is sensitive; however, the number of species to be detected is also relatively narrow.
  • Oyarzabal and co-workers Oyarzabal and co-workers (OA Oyarzabal, IV Wesley, KM Harmon, L. Schroeder-Tucker, JM Barbaree, LH Lauerman, S.
  • the invention has for its object a device for Specify the duplication and characterization of nucleic acids, which has an almost simultaneous duplication and characterization allows a high sample throughput, and thus the disadvantages of Bypasses state of the art.
  • the task is characterized by the distinctive features of the first Claim resolved. Advantageous refinements are due to the subordinate claims recorded.
  • the essence of the invention is that the device spatially combines the PCR and the parallel hybridization against chip-bound nucleic acid in a temperature and flow controllable cell (chamber).
  • the inside of the chamber has a chip that generates a capillary gap between the chamber bottom and the detection surface of the chip, which receives the sample liquid, the sample liquid being mixed by an induced electroosmotic flow.
  • the chamber around the capillary gap and the chip advantageously forms a gas reservoir through which a gas reservoir leads to the capillary gap, which separates an inlet from an outlet, so that the samples can be injected via the inlet, due to the capillary forces from the inlet into the capillary gap arrive and can be removed from it via the outlet.
  • the capillary gap When the capillary gap is filled, an air gap is generated as a ring around the chip stored in the chamber and the capillary gap (which serves as a sample reservoir) due to surface tension effects, so that the chip and the capillary gap are thermally insulated from the chamber body, which leads to the fact that the Samples in the chamber gap can be quickly heated and cooled by heating and cooling elements, which, together with temperature sensors and electrodes, are placed on a chamber support that holds the chamber and is in heat-conducting contact with it over the chamber floor. Because the capillary gap serves as a sample reservoir, the evaporation rate of the sample liquid is greatly reduced even at temperatures near the boiling point of the sample liquid, since the sample can only evaporate over the edge of the capillary gap.
  • the capillary gap (the sample reservoir) is the location of the nucleic acid amplification in the sample liquid by PCR with specific primers and the genetic characterization of the sample.
  • the labeled PCR products are fished out of the sample liquid by the immobilized specific probes, which are bound on the nucleic acid chip.
  • the chamber and the chip are optically transparent and, due to their design, enable the on-line detection of the marking signal of the PCR products bound to the probes.
  • the device according to the invention has the advantage over the previously used methods that a maximum genetic typing using specific probes can be automated in a minimal diagnosis time with minimal sample volumes and is possible with a high sample throughput in a temperature and flow controllable cell, with PCR being used to highlight the diagnosis relevant gene structures against a sequence background and the almost simultaneous, parallel hybridization of the PCR products against the chip-bound nucleic acid results in a specific detection.
  • the device according to the invention finds e.g. for the simultaneous Detection of various microbial pathogens (e.g. based on 16S or 23S rRNA analysis), the screening for Resistance of individual pathogenic microorganisms or a genomic typing of diagnostically relevant allele structures of Eukaryotic cells use, the parallel recognition by the chip with its different, for the different Target sequences specific probes is made possible.
  • various microbial pathogens e.g. based on 16S or 23S rRNA analysis
  • Characterization of nucleic acids consists of a chamber body 1 and a chamber carrier 5.
  • the chamber body 1 is provided with a bearing surface 4, via which it is sealingly connected to the chamber carrier 5, so that a sample chamber 3 is formed.
  • This sample chamber 3 consists of a gas reservoir 6 and a capillary gap 7 and is provided with at least one inlet 81 and at least one outlet 82.
  • the inlet 81 and the outlet 82 lead into the sample chamber 3 and are spaced apart by an intermediate gas reservoir nose 9 of the gas reservoir 6.
  • This chip 2 which carries detection surfaces 12 in the form of spots 13, is held in the chamber body 1 in such a way that the detection surfaces 12 in the form of spots 13 face the surface of the chamber carrier 5 and through the edge 42 of the chamber body 1 from the chamber carrier 5 are positioned evenly spaced so that the chip 2 and the chamber carrier 5, as shown in FIG. 2, generate the capillary gap 7, which serves as a sample reservoir.
  • This capillary gap 7 receives the sample liquid 19.
  • the chamber body 1 consists, for example, of optically transparent plastic or glass, the sample chamber 3, which represents a space for filling the sample liquid 19, by milling, and the inlet 81 and the outlet 82, which are routes for the sample liquid, by drilling into the Chamber body 1 can be introduced.
  • the nucleic acid chip 2 consists of an optically transparent support, the material of which can be, for example, silicon or glass, and of nucleic acid molecules of a specific sequence (for example probes) immobilized on this support.
  • the sample chamber 3 comprises the gas reservoir 6 and the capillary gap 7, gas and air bubbles collecting in the gas reservoir 6 when filling the sample liquid 19 due to surface tension effects, so that the chip 2 and the capillary gap 7 are thermally insulated from the chamber body 1.
  • the capillary gap 7, which forms the sample reservoir (for example with a volume of 1.8 ⁇ l), ensures that the detection surface 12 is completely wetted with the sample liquid 19.
  • the inlet 81 and the outlet 82 serve to direct the sample liquid 19, which enables filling and emptying of the sample chamber 3, and thus also filling and emptying of the capillary gap 7 as a result of the acting capillary forces.
  • the inlet 81 and the outlet 82 which can for example run side by side as shown in FIG. 1, are spatially separated from one another by a gas reservoir 9, so that the sample liquid 19 is prevented from flowing from the inlet 81 to the outlet 82 without entering the Capillary gap 7 to arrive.
  • the chamber support 5, which is optically transparent and has good thermal conductivity, is made, for example, of glass and, as shown in FIGS.
  • the chamber body 1 can be provided with the means for applying temperature 17 and the miniaturized temperature sensors 16 and the electrodes of the quadropole 18.
  • the temperature sensors 16 can be designed, for example, as nickel-chrome thick-film resistance temperature sensors.
  • the length of the temperature sensor 16 is, for example, in the case that the chamber support 1 has an area of 8 x 8 mm and the chip 2 has an area of 3 x 3 mm or less, 10.4 mm and the width of the temperature sensor 16 in this example 50 ⁇ m, so that the resistance at 20 ° C is 4 kOhm and the temperature coefficient TK R at 0 ° C is 1500 ppm.
  • the temperature sensors 16 can also be designed as optically transparent thin layers.
  • the means for applying temperature 17 can, for example, be designed as a nickel-chrome thick-film resistance heater.
  • the means for applying temperature 17 have a length of 2.6 mm and a width of eight individual webs, each 50 ⁇ m wide, so that the resistance at 20 ° C. is 300 ohms.
  • the means for applying temperature 17 can also be designed as optically transparent thin layers.
  • the quadrupole 18 can be designed, for example, as gold-titanium electrodes. In the dimensions of the previous example, these electrodes have a length of 2.2 mm and a width of 0.5 mm.
  • the quadropole serves to induce an electroosmotic flow, which leads to the mixing of the sample liquid 19 in the sample chamber 1.
  • the quadruple 18 can also be designed as an optically transparent thin layer.
  • Fig. 2 shows the chamber body 1, which over the bearing surface 4 with the chamber support 5 is in rigid, non-detachable connection.
  • This Connection can be made, for example, by gluing.
  • the capillary gap 7 which serves as a sample reservoir, which Due to its capillary action it is able to extract sample liquid from the Record sample chamber 3.
  • the inlet 81 and the outlet 82 lead in the gas reservoir 6 of the sample chamber 3, so that through the inlet 81st Sample liquid 19 via the gas reservoir 6 into the capillary gap 7 can be filled and discharged via the outlet 82.
  • the chip 2 is like the chamber support 1 made of optically transparent or transparent Material such as Glass, so a conical opening in the Chamber body 1, the continuous cone forming a viewing cone Recess 11, optical and photometric evaluations, such as. Fluorescence measurements from which the detection surface 12 are possible.
  • Fig. 3 shows the inlet 81 and the outlet 82 and the Recess 11 through which the detection surface 12 with spots 13 of the Chips 2 are optically accessible. This visual accessibility enables the above optical and photometric evaluations of the Signals emanating from the detection surface 12, which are not in the example shown fluorescence signals.
  • the means for applying temperature 17 consist of eight individual microstructured in parallel Resistance heating lines 171 through which the under the chamber body 1st located chamber support 5 and with it the filled Sample liquid 19 in the capillary gap 7 is homogeneously enicable.
  • the Resistance line 171 of the means for applying temperature 17, those with a different, definable temperature can be acted upon have dimensions such that the above optical Accessibility of the detection surfaces 12 of the chip 2 is ensured.
  • the temperature sensor 16 is around the detection surface 12 of the chip 2 is mounted, so that said optical accessibility of the detection surface 12 is ensured.
  • the Temperatucleler 16 are by a not shown in the figure Passivation layer electrically opposite subsequent elements of the Device 20 and opposite the sample liquid 19 electrically isolated.
  • Fig. 7 shows the positioning of the temperature sensor 16 on the Chamber body 1 facing surface side of the chamber support 5, which is also the surface side of the chamber support 5 with the chip 2 held by the chamber body 1 has the capillary gap 7 generated.
  • Fig. 8 shows one on the, not shown in detail Passivation layer of the temperature sensor 16 applied Quadrupole 18 including assigned conductor tracks 1518 and Pads 1418.
  • Quadrupole 18 is electrically conductive Contact with the sample liquid 19 so that the alternating Applying a voltage of +1 V to two electrodes 181 of the Quadrupole 18 an inducible by the electroosmotic flow Swirling in the capillary gap 7 filled with sample liquid 19 can be caused.
  • Another pair of electrodes 181 of quadrupole 181 put under tension, so change Turbulence conditions. By constantly alternating the pairs electrodes 181, which are energized, are made effective mixing of the sample liquid 19.
  • the applied Low voltage of only one volt prevents the Sample liquid 19 in the capillary gap 7 electrochemical Changes are subject to and gas bubbles form, for example.
  • the Quadrupole 18 is designed, as shown in this figure, that the optical accessibility of the detection surface 12 ensures is.
  • the quadrupole 18 can also be an optically transparent one Thin layer.
  • FIG. 9 shows the positioning of the quadrupole 18 on the surface side of the chamber carrier 5 facing the chamber body 1.
  • FIGS. 10a and b schematically show the sample liquid 19 stored in the capillary gap 7 between the chamber body 1 and the chamber carrier 5. Due to the size of the gas reservoir 6, driven by the minimization of the interfacial energy, any air bubbles, not shown in detail, can be discharged from the capillary gap 7 into the gas reservoir 6 of the sample chamber 3. This forms an air ring around the sample liquid 19, which thermally insulates it and the chip 2 from the chamber body 1, so that the sample liquid 19 can be quickly heated and cooled in the capillary gap 7 with low energy consumption.
  • the evaporation rate of the sample liquid 19 is greatly reduced even at temperatures near the boiling point, since the sample liquid 19 can only evaporate over the edge of the capillary gap 7.
  • the need for sample liquid 19 is low (in the .mu.l range) sample reservoir 7, since the capillary gap 7 forms only a small volume, which means that the required sample volumes are very small.
  • the heating and cooling rates customary for microthermal cyclers described by Posner and others can be achieved (S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A.
  • FIG. 11 shows the installation of the device 20 for the duplication and characterization of nucleic acids in an analysis system 200.
  • the analysis system 200 consists of a temperature controller 21, a mixing control 22, electrical lines 23, 24, 33, 34, a total inlet 25, a waste container 26 , a conditioner 27, valves / pumps 28, storage containers 29, connecting hoses 30, a conditioner control 31, an automatic control 32, a control computer 35, a computer bus 36 and an automatic pipetting device 37.
  • the device 20 is directly connected via the inlet 81 and the outlet 82 , Conditioner 27 and the waste vessel 26 and via the electrical lines 23 and 24 directly to the temperature controller 21 and the mixing control 22 in connection, the temperature controller being coupled to the temperature sensors 16 and the means for applying temperature 17 and the mixing control to the Quatrupol 18.
  • the sample liquid 19 can be pipetted into the total inlet 25 via the automatic pipetting device 37 from microplates not shown in detail.
  • the sample liquid 19 can be conducted through the connecting hoses 30 into the conditioner 27, the conditioner 27 being used for processing the sample liquid 19 (for example pH adjustment and Filter out interfering substances).
  • the buffer liquids and reaction solutions for this workup can be supplied from the storage containers 29, which are in a liquid-conducting connection with the conditioner 29.
  • the automatic pipetting device 37 and the conditioner 29 are connected to the conditioner control 31 and the machine control 32 via the electrical lines 33 and serve to control and regulate them.
  • the sample liquid 19 can be tempered and mixed in the area of the capillary gap 7 by means of the temperature controller 21 and the mixing control 22.
  • the capillary gap 7 is therefore the site of the amplification and characterization of a nucleic acid, in the example the target DNA.
  • Figures 12a to c show an example of an embodiment of the device 20 that the chamber body 1 has a length and width of 8 mm and a height of 3 mm, the gas reservoir length and width of 5.4 mm and a height of 0.5 to 0.8 mm, the chamber support 5 has a thickness of 0.9 mm, the recess 11 on its side facing the chip 2 has a diameter of 2.8 mm and the inlet 81 and the outlet 82 have a diameter of 0.5 mm have, the inlet 81 and the outlet 82, and the recess 11 with respect to the chamber support 5 have an inclination of 70.
  • the device 20 shows the optical beam path through a further embodiment of the device 20, in which the support surface 4 is detachably and sealingly connected to the chamber support 5 via an additional sealing surface 43, for the dark field fluorescence image of the detection surface 12 chips 2.
  • the excitation light is directed by the dark field mirror 38 onto the detection surface 12 along the excitation light beam path 39.
  • the fluorescent light emanating from the detection surface 12 is directed along the detection light beam path 40 onto a microscope objective 41.
  • the distance between the dark field mirror 38 and the detection surface 12 is approximately 4.6 mm and the distance between the detection surface 12 and the microscope objective 41 is approximately 22.0 mm.
  • the optical readout of the interaction signal between the target DNA 50 shown in FIG. 14 and the probe DNA 56, 57, 58, 59 on the surface of the chip 2 can take place online due to the construction of the device 20.
  • the chip 2 is held in the chamber body 1 in such a way that it can be irradiated by light in a wide solid angle, so that the hybridization can be tracked online or in situ by means of the marked probes 56, 57, 58, 59, for example fluorescence measurements.
  • the arrangement and size of the temperature sensor 16 and the quadrupole 19 is designed in such a way that the beam path for the online detection or the subsequent in situ detection is not disturbed and the detection of the interactions on the spots 13 by all forms of optical detection or spectroscopy (for example, photometry, differential photometry, confocal fluorescence measurement, dark field fluorescence measurement, transmitted light fluorescence measurement, incident light fluorescence measurement, etc.) can be evaluated, whereby the label 60 and measurement method must be coordinated.
  • optical detection or spectroscopy For example, photometry, differential photometry, confocal fluorescence measurement, dark field fluorescence measurement, transmitted light fluorescence measurement, incident light fluorescence measurement, etc.
  • Fig. 14 shows the schematic representation of the chip 2, which bears the primers 54 (A) and 53 (B '), these showing the specific sequence region of the target DNA 50, ie the sequences A, X, S1, X, B and B ', X, S1', X, A '.
  • sequences A and B or A 'and B' define the region of the target DNA 50, which is identical for all species, or of the single-stranded AB target DNA 51 and A'B 'target DNS 52
  • the primers 53 and 54 carry, for example, a fluorescent label 60 which can be incorporated into the secondary amplification products 61 and 62 by the amplification process, as a result of which the hybridization to the probes 56 and 57 can be detected during amplification by fluorescence measurement, so that the decision is made possible whether the target DNA 50 has the sequence S1 or S1 'and / or the sequence S2 or S2' between the sequence areas A and B or A 'and B'. Since the probe sequences can be specific for a particular species, for example, this method can be used to provide evidence of the presence of a particular species in a sample.
  • Figure 15 shows the schematic representation of the secondary and tertiary Amplification products 61, 62 and 63, which are generated by the device 20
  • the amount of secondary amplification product 61 and 62 is from the second reaction cycle within the Capillary gap 7 almost doubled with each cycle, so that the Concentration of secondary amplification product after a few Cycles sufficient to attach to probes 56, 57 attached to spots 13 are immobilized to hybridize, extending the Probes 56, 57 complementary to the secondary amplification product 61, 62 takes place.
  • This tertiary amplification product 63 out Probes 56, 57 and secondary amplification product 61, 62 can, for example. via a label 60, which is coupled to the primers 53, 54 used, be detected by means of fluorescence detection.
  • the chip 2 of the device 20 is a DNA chip in this example and serves, during or after the DNA amplification, for the detection of the amplification products and possibly also for the provision of solid phase coupled DNA primers (Figs. 14 and 15).
  • a sequence S1 which is specific for a species for example Escherichia coli
  • the thermal amplification process for example PCR
  • immobilization of the corresponding probes on chip 2 can be used to identify all species, strains and Detect diseases in parallel with only one thermal amplification reaction in the device 20.
  • the range of applications can be expanded by using several pairs of primers 53, 54.
  • the fluorescence detection of the tertiary amplification products 63 is carried out by means of fluorescent labeling 60 of the primers 53, 54.
  • Other types of labeling such as intercalators, radioisotopes, FRET systems, fluorescence-labeled nucleotides, etc., are not thereby excluded.
  • the molecular biological process taking place in the device 20 will be described below with reference to FIGS. 14 and 15.
  • the target DNA 50 originating from a biological sample is added to the sample reservoir (the capillary gap) 7 together with primers 53, 54, which can be labeled 60.
  • the spots 13 of the chip 2 on the detection surface 12 carry, via spacers 55, probe DNA with sequences S1, S1 ', S2, S2' etc., which are characterized in that they can be complementary to those in the target DNA 50 occur.
  • the target DNA contains 50 sequences that are complementary to probes 56 and 57. Each sequence S1, S1 'and S2, S2', etc.
  • the probes (56, 57, 58, 59) was chosen in such a way that it is specific for a specific problem. If, for example, certain pathogens are to be detected by means of the device 20, S1 and S1 'are specific for the Bacillus cereus pathogen , S2 and S2' for the Campylobacter jejuni pathogen etc. If there is only the Bacillus cereus pathogen in a stool sample, so After the sample has been properly processed, there will be a target DNA 50 in the sample liquid which only contains the sequences S1 and S1 '. In order to make them detectably hybridize on the detection surface 12, the number of copies of target DNA 50 must generally be increased significantly.
  • a noise-suppressing, specific DNA amplification method is therefore carried out in the sample reservoir (capillary gap) 7.
  • two primers 53, 54 with sequences A and B ', which are the same for all pathogens, are selected, which frame all possible pathogen-specific probe sequences (S1, S2, S3 ...) (as in Fig. 14) Sequences S1 and S1 'are framed by sequences A and B').
  • the target DNA 50 is denatured at approx. 90 ° C
  • the primers 53, 54 aneal at approx. 65 ° C at B or A 'and it becomes a primer at approx.
  • a second application example describes a parallel detection of bacterial pathogens in stool samples:
  • the chip 2 of the device 20 is a DNA chip and serves for the parallel detection of several bacterial pathogens in human or animal stool samples.
  • the total DNA from each stool sample is isolated using standard techniques (eg using the Qiagen kit provided for this).
  • the DNA is taken up in a volume of a standardized, optionally commercially available buffer system suitable for use in the device 20, in which a PCR amplification can be carried out.
  • this contains at least one thermostable polymerase, an optionally isomolar mixture of the four natural deoxynucleotide triphosphates, a divalent salt, optionally components to increase the effectiveness of the PCR, and building blocks for labeling the PCR products (e.g. fluorescence-biotin or similarly labeled deoxynucleotide triphosphates ).
  • a chip 2 is used, on the surface of which oligonucleotide probes 56, 57, 58, 59 are immobilized, which are complementary to one or more variable regions of the 16S rRNA genes and / or the 23S rRNA genes and / or the internal genes Ranges between 16S and 23S rRNA genes of different organisms to be detected are.
  • the probes 56, 57, 58, 59 are directed, for example, against one or more of the corresponding sequences from Aeromonas spec.
  • the oligonucleotide probes 56, 57, 58, 59 are arranged in spots 13, so that each individual spot 13 contains a multiplicity of oligonucleotide probes (for example the probe 56) of the same sequence.
  • the probes 56, 57, 58, 59 are immobilized either at their 3 'end or at the 5' end or at an internal position, the 3 'end of the probes 56, 57, 58, 59 possibly blocking, for example by amination is so that it can not serve as a substrate for DNA polymerases.
  • each of the probes has a high sequence specificity for the organism to be detected and on the other hand there are motifs in the genomes of the germs at a short distance from the binding site of the specific probes all or for groups of the organisms to be detected have the same sequence.
  • universal primers 53, 54 are directed, which are suitable for PCR amplification of a sequence section, which contains the binding site of the probes immobilized on chip 2, in all organisms to be detected.
  • This Primers 53, 54 are added to the DNA isolated from the stool sample and taken up in the amplification solution (sample liquid 19).
  • the primer 53, 54 which specifies the synthesis of the strand which contains the sequence complementary to the sample immobilized on the chip 2 during the subsequent PCR amplification, can be added as a labeled component.
  • the amplification mixture is filled into the device 20 provided with a chip 2 as described.
  • the solution in the device 20 is subjected to a cyclic temperature regime, so that the target DNA 50 is amplified according to a typical PCR mechanism and, if necessary, simultaneously labeled.
  • there is a hybridization step in which the target sequences amplified with the universal primers 53, 54 hybridize with the specific probes 56, 57, 58, 59 immobilized on the chip 2.
  • a rinsing step follows in which DNA molecules which are not linked to the chip and are bound non-specifically are removed. Subsequently, the marking remaining on the chip 2 is detected. Organisms present in the stool sample are identified by marking the sample spots 13 specific to them on the chip 2.
  • sample liquids 19 for example, from stool samples or tissue a large number of processing steps are required. It cells have to be broken down, proteins, lipids and solids are separated and the DNA is worked up and cleaned. The enzymes, primers and necessary for the use of the device other substances must also be in the sample liquid 19 are fed. These steps can be done by installing the Device 20 for the duplication and characterization of Nucleic acids in the analysis system 200 that i.a. from pumps and Valves 28 that move and control the liquids, from filters and Reaction chambers (conditioner 27) in which the individual Process steps are carried out sequentially and from Storage containers 29, which supply the chemicals required for this, exists (shown in Fig. 11), automatically and continuously.
  • the Device 20 for the duplication and characterization of Nucleic acids in the analysis system 200 that i.a. from pumps and Valves 28 that move and control the liquids, from filters and Reaction chambers (conditioner 27) in which the individual Process steps are carried out sequentially and from Storage containers 29, which supply the chemicals required for this, exists (show
  • the samples are not made from one by a pipetting robot 37 Standard delivery system shown in detail in the Total inlet 25 filled for conditioning.
  • the through that Analysis system 200 processed samples pass through inlet 81 in the device 20, so that a duplication and Automated characterization of sample nucleic acids can be carried out.
  • the whole process is done by one Control computer 35 monitors the over a computer bus 36 with electronic controllers and control devices 21, 22, 31, 32 is connected.

Abstract

The aim of the invention is to provide a device for duplicating and characterizing nucleic acids almost simultaneously and with a high sample throughput rate. The device consists of a chamber body with a recess whose edge sealingly holds an optically transparent chip. Said chip holds nucleic acids in individual spots on a detection surface. The chamber body is placed on an optically transparent chamber support with a bearing surface, in such a way that a capillary gap, which can be filled with a liquid sample, is formed between the detection surface of the chip facing towards the chamber support and said chamber support. The chamber body is provided with an inlet and an outlet, which are spatially separate from each other, and has a space, which laterally encompasses the chip and which has a gas reservoir. The chamber support is provided with heating elements.

Description

Die Erfindung betrifft eine Vorrichtung zur Vervielfältigung und Charakterisierung von Nukleinsäuren.The invention relates to a device for reproduction and Characterization of nucleic acids.

Seit Jahrzehnten ist bekannt, daß die Amplifikation (Vervielfältigung) von Desoxyribonukleinsäure (DNS), den Molekülen, die das Genom (die Erbinformation) von Organismen verschlüsseln, in vivo (in der Zelle) durch Transkription erfolgt und in vitro (außerhalb der Zelle) durch die Methode der Polymerasekettenreaktion (PCR) betrieben werden kann.
Es ist mittlerweile Labor-Standard, Nukleinsäuren durch die PCR zu vervielfältigen, die PCR-Produkte zu klonieren (in ein Trägermolekül einzubauen und in einen Mikroorganismus einzuführen), die klonierten PCR-Produkte in Mikroorganismen zu amplifizieren und die amplifizierten PCR-Produkte zu isolieren (Sambrook, J; Fritsch, E. F. and Maniatis, T., 1989, Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor, N.Y., Cold Spring Habor Laboratory). Diese routinemäßige zweistufige Vervielfältigung ermöglicht, aus einigen wenigen Ausgangsnukleinsäuremolekülen eine enorm große Anzahl gleicher Moleküle zu erzeugen, hat jedoch den Nachteil, daß sie sehr arbeits- und zeitaufwendig ist, einen geringen Probendurchsatz (die Zahl der bearbeiteten Nukleinsäuren in einer Zeiteinheit) aufweist und somit sehr kostenintensiv ist.
Die einstufige Vervielfältigung durch PCR hingegen ist verhältnismäßig schnell, ermöglicht durch miniaturisierte Verfahren einen hohen Probendurchsatz in geringen Ansatzvolumina und ist durch Automatisierung nicht so arbeitsintensiv.
Eine Charakterisierung von Nukleinsäuren durch eine alleinige Vervielfältigung ist nicht möglich. Vielmehr ist es notwendig, nach der Vervielfältigung Analysenmethoden, wie Nukleinsäuresequenzbestimmungen oder elektrophoretische Untersuchungen der PCR-Produkte bzw. deren enzymatisch hergestellten Einzelfragmente, zur Charakterisierung der PCR-Produkte einzusetzen.
It has been known for decades that the amplification (replication) of deoxyribonucleic acid (DNA), the molecules that encode the genome (genetic information) of organisms, takes place in vivo (in the cell) by transcription and in vitro (outside the cell) by the method of polymerase chain reaction (PCR) can be operated.
It has now become the laboratory standard to amplify nucleic acids by PCR, to clone the PCR products (to insert them into a carrier molecule and to insert them into a microorganism), to amplify the cloned PCR products in microorganisms and to isolate the amplified PCR products ( Sambrook, J; Fritsch, EF and Maniatis, T., 1989, Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor, NY, Cold Spring Habor Laboratory). This routine two-stage duplication enables an enormously large number of identical molecules to be produced from a few starting nucleic acid molecules, but has the disadvantage that it is very laborious and time-consuming, has a low sample throughput (the number of processed nucleic acids in a unit of time) and therefore very much is expensive.
The one-step duplication by PCR, on the other hand, is relatively fast, enables a high sample throughput in small batch volumes due to miniaturized processes and is not so labor intensive due to automation.
Characterization of nucleic acids by duplication alone is not possible. Rather, after duplication, it is necessary to use analysis methods, such as nucleic acid sequence determinations or electrophoretic analyzes of the PCR products or their enzymatically produced individual fragments, to characterize the PCR products.

Aus den Schriften US 5,716,842; DE 195 19 015 A1; WO 94/05414; US 5,587,128; US 5,498,392; WO 91/16966; WO 92/13967; F 90 09894 sowie den Publikationen von S. Poser, T. Schulz, U. Dillner, V. Baier, J. M. Köhler, D. Schimkat, G. Mayer, A. Siebert (Chip elementes for fast thermocycling, Sensors and Actuators A, 1997: 62 672-675) undM. U. Kopp, A. J. de Mello, A. Manz (Chemical amplification: Continuous-flow PCR on a chip, Science, 1998: 280 1046-1048) sind verschiedene miniaturisierbare oder miniaturisierte Verfahren und Geräte (Thermocycler) zur Durchführung der PCR bekannt.
In DE 195 19 015 A1; WO 94/05414; US 5,587,128; US 5,498,392 und der Publikation von S. Poser, T. Schulz, U. Dillner, V. Baier, J. M. Köhler, D. Schimkat, G. Mayer, A. Siebert (Chip elementes for fast thermocycling, Sensors and Actuators A, 1997: 62 672-675) sind Thermocycler beschrieben, die aus gedeckelten Kammern bestehen, welche die Proben aufnehmen.
Die in den Schriften US 5,716,842; DE 195 19 015 A1, WO 91/ 16966; WO 92/13967; F 90 09894 und der Publikation M. U. Kopp, A. J. de Mello, A. Manz (Chemical amplification: Continuous-flow PCR on a chip, Science, 1998: 280 1046-1048) vorgestellten miniaturisierbaren oder miniaturisierten Thermocycler funktionieren nach dem Prinzip, daß bei ihnen die Probenflüssigkeit kontinuierlich über drei Temperaturzonen gepumpt wird.
Der Nachteil aller o.g Lösungen ist, daß bei der Online Detektion nur die Information, ob Nukleinsäure amplifiziert wurde und ggf. wieviel Nukleinsäure amplifiziert wurde, erhalten werden kann. Eine weitergehende Charakterisierung der Amplifikationsprodukte ist nicht möglich.
In der US-PS 5,856,174 wird ein System offenbart, mit dem es möglich ist Probenflüssigkeiten zwischen z.B. drei miniaturisierten Kammern hin und her zu pumpen. In einer Kammer dieses Systems erfolgt die PCR, in der nächsten wird eine Aufarbeitungsreaktion durchgeführt und in der dritten werden die Reaktionsprodukte, z.B. mit einem DNS-Chip, detektiert. Bei der PCR-Kammer handelt es sich um ein Standardgefäß, wie es hinlänglich in der Literatur beschrieben ist (S. Poser, T. Schulz, U. Dillner, V. Baier, J.M. Köhler, D. Schimkat, G. Mayer, A. Siebert; Chip elementes for fast thermocycling, Sensors and Actuators A ,1997: 62, 672-67). Der Nachteil dieses Systems besteht darin, daß ein kompliziertes, störanfälliges und steuerungstechnisch aufwendiges System einer druckgetrieben Fluidik aufgebaut werden muß, um die Probenflüssigkeit von der PCR- in die Detektionskammer zu fördern. Außerdem führt die Trennung von Amplifikation und Detektion zu einer Verlängerung der Gesamtanalysezeit.
From the documents US 5,716,842; DE 195 19 015 A1; WO 94/05414; US 5,587,128; US 5,498,392; WO 91/16966; WO 92/13967; F 90 09894 and the publications by S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A. Siebert (Chip elements for fast thermocycling, Sensors and Actuators A, 1997 : 62 672-675) and M. U. Kopp, AJ de Mello, A. Manz (Chemical amplification: Continuous-flow PCR on a chip, Science, 1998: 280 1046-1048), various miniaturizable or miniaturized methods and devices (thermocyclers) for carrying out the PCR are known.
In DE 195 19 015 A1; WO 94/05414; US 5,587,128; US 5,498,392 and the publication by S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A. Siebert (Chip elements for fast thermocycling, Sensors and Actuators A, 1997: 62 672-675) thermal cyclers are described which consist of capped chambers which hold the samples.
The in US 5,716,842; DE 195 19 015 A1, WO 91/16966; WO 92/13967; F 90 09894 and the publication MU Kopp, AJ de Mello, A. Manz (Chemical amplification: Continuous-flow PCR on a chip, Science, 1998: 280 1046-1048) presented miniaturizable or miniaturized thermocyclers work on the principle that with them the sample liquid is pumped continuously across three temperature zones.
The disadvantage of all the above-mentioned solutions is that only the information as to whether nucleic acid has been amplified and, if necessary, how much nucleic acid has been amplified can be obtained in the online detection. A further characterization of the amplification products is not possible.
US Pat. No. 5,856,174 discloses a system with which it is possible to pump sample liquids back and forth between, for example, three miniaturized chambers. The PCR is carried out in one chamber of this system, a workup reaction is carried out in the next and the reaction products are detected in the third, for example with a DNA chip. The PCR chamber is a standard tube, as described in the literature (S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A. Siebert; Chip elements for fast thermocycling, Sensors and Actuators A, 1997: 62, 672-67). The disadvantage of this system is that a complicated, fault-prone and control-technically complex system of a pressure-driven fluidics has to be set up in order to convey the sample liquid from the PCR chamber into the detection chamber. In addition, the separation of amplification and detection leads to an increase in the total analysis time.

Die genetischen Charakterisierungen, bspw. zur Identifikation und taxonomischen Einordnung von Mikroorganismen, erfolgen derzeit anhand von DNA-DNA-Hybridisierungsstudien, rRNA-Gensequenzvergleichen (bspw. vermittels der 16S- oder 23S rRNA- Genabschnitte) nach erfolgter Sequenzierung dieser Abschnitte sowie anhand von Restriktionsfragmentlängenpolymorphismusuntersuchungen (RFLP) oder PCR-Untersuchungen mit spezifischen Primern vermittels gelelektrophoretischer Trennung und Detektion der Restriktions- oder PCR-Produkte (T. A. Brown, 1996, Gentechnologie für Einsteiger, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).The genetic characterizations, e.g. for identification and Taxonomic classification of microorganisms is currently taking place based on DNA-DNA hybridization studies, rRNA gene sequence comparison (e.g. by means of the 16S or 23S rRNA gene segments) after sequencing these sections and using Restriction fragment length polymorphism (RFLP) studies or PCR tests using specific primers gel electrophoretic separation and detection of restriction or PCR products (T. A. Brown, 1996, genetic engineering for beginners, Spectrum Academic Publishing House Heidelberg, Berlin Oxford).

Die bekannten RFLP-Untersuchungen basieren auf einer individuenspezifischen Verteilung von Restriktionsendonuklease-Schnittstellen, die sich auf DNS-Sequenzunterschiede im Bereich genomischer DNS bezieht, welche eine hochgradige Homologie zu einer für die Hybridisierung eingesetzte markierte DNS-Sonde besitzt (T. A. Brown, 1996, Gentechnologie für Einsteiger, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Die RFLP-Untersuchung, die bspw. bei der HLA-Diagnostik (Humanes Leukozyten Antigen) in der Immunologie im Vorfeld von Transplantationen oder Transfusionen Verwendung findet (vgl. Cesbron A., Moreau P., Milpied N., Muller JY., Harousseau JL., Bignon JD., "Influence of HLA-DP mismatches on primary MLR responses in unrelated HLA-A, B, DR, DQ, Dw identical pairs in allogeneic bone marrow transplantation" Bone Marrow Transplant 1990, Nov 6:5, 337-40 oder Martell RW., Oudshoom M., May RM., du Toit ED., "Restriction fragment length polymorphism of HLA-DRw53 detected in South African blacks and individuals of mixed ancestry" Hum. Immunol. 1989, Dec 26:4, 237-44), umfaßt die Isolierung genomischer DNS, die Restriktionsendonuklease-Spaltung der DNS, eine Auftrennung der DNS-Fragmente, ein Transfer und eine Immobilisierung der DNS-Fragmente, die Präparation und Markierung der Hybridisierungssonden, die Hybridisierung, die Detektion sowie die Korrelation und Interpretation. Der Nachteil dieser bisher nicht automatisierbaren Untersuchung ist, daß eine solche Analyse sehr arbeits- und zeitaufwendig ist (sie umfaßt 5 bis 10 Arbeitstage) und einen geringen Probendurchsatz aufweist (eine Arbeitskraft typisiert lediglich bis zu 50 Proben parallel).so daß sie sehr kostenintensiv ist.
The known RFLP studies are based on an individual-specific distribution of restriction endonuclease interfaces, which relates to DNA sequence differences in the area of genomic DNA, which has a high degree of homology to a labeled DNA probe used for hybridization (TA Brown, 1996, Genotechnologie für Beginners, Spectrum Academic Publishing House Heidelberg, Berlin Oxford).
The RFLP examination, which is used, for example, in HLA diagnostics (human leukocyte antigen) in immunology prior to transplantation or transfusion (cf. Cesbron A., Moreau P., Milpied N., Muller JY., Harousseau JL ., Bignon JD., "Influence of HLA-DP mismatches on primary MLR responses in unrelated HLA-A, B, DR, DQ, Dw identical pairs in allogeneic bone marrow transplantation" Bone Marrow Transplant 1990, Nov 6: 5, 337- 40 or Martell RW., Oudshoom M., May RM., Du Toit ED., "Restriction fragment length polymorphism of HLA-DRw53 detected in South African blacks and individuals of mixed ancestry" Hum. Immunol. 1989, Dec 26: 4, 237-44), comprises the isolation of genomic DNA, the restriction endonuclease cleavage of the DNA, a separation of the DNA fragments, a transfer and immobilization of the DNA fragments, the preparation and labeling of the hybridization probes, the hybridization, the detection and the correlation and interpretation. The disadvantage of this previously non-automatable examination is that such an analysis is very labor-intensive and time-consuming (it takes 5 to 10 working days) and has a low sample throughput (a worker only typed up to 50 samples in parallel), so that it is very cost-intensive ,

Die Charakterisierung von Genomabschnitten, die anhand von DNS-Molekülen bzw. Ribonukleinsäuremolekülen (RNS-Molekülen) durch Hybridisation mit spezifischen Gensonden erfolgen kann (Leitch, A. R., Schwarzacher, T., Jackson, D. und Leitch I. J., 1994, In situ-Hybridisierung, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford), wird seit mehreren Jahren routinemäßig durchgeführt. Gensonden sind einsträngige Nukleinsäuremoleküle bekannter Nukleotidbasensequenz von optimaler Länge von 100 bis 300 Basen, die spezifisch mit einsträngigen Nukleinsäureabschnitten, bspw. eines Gens, zu einer doppelsträngigen Nukleinsäurepaarung führen und meist mit einem nichtradioaktiven oder radioaktiven Reporterelement (Marker), bspw. einem Fluoreszensfarbstoff oder Radionukleotiden, versehen sind, welche der Detektion der Gensonden dienen. Man unterscheidet doppelsträngige DNS-Sonden, einzelsträngige RNA-Sonden, maßgeschneiderte synthetische Oligonukleotidsonden mit 10 bis 50 Basen Länge, Genom-Sonden und durch PCR hergestellte DNA-Sonden (Leitch, A. R., Schwarzacher, T., Jackson, D. und Leitch I. J., 1994, In situ-Hybridisierung, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Bei der Hybridisierung unterscheidet man die Hybridisierung von Sonden mit isolierter einsträngiger Nukleinsäure (DNS oder RNS) und die s.g. in situ-Hybridisierung (vor Ort-Hybridisierung in Geweben, Zellen, Zellkernen und Chromosomen), bei der die Gensonde in der Zelle an eine gespreitete (einsträngige) Nukleinsäure (DNS oder RNS) koppelt (Leitch, A. R., Schwarzacher, T., Jackson, D. und Leitch I. J., 1994, In situ-Hybridisierung, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford). Bei dieser in situ-Hybridisierung ist besonders bedeutsam, daß die Zielsequenz und die Gewebemorphologie erhalten bleibt und daß das konservierte Gewebe für die Sonde und die Nachweisreagenzien permeabel ist. Diese Permeabilität ist nicht immer vorhanden, was einen Nachteil dieser Methode darstellt.
Die Hybridisierung von Sonden mit isolierten und gespreiteten Chromosomen, die ebenfalls als in situ-Hybridisierung bezeichnet wird, umgeht den Nachteil der Permeabilitätsbarriere, da die Chromosomen für die Sonden frei zugänglich, bspw. auf einem Träger fixiert, vorliegen. (T. A. Brown, 1996, Gentechnologie für Einsteiger, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Essentiell für die Hybridisierung ist das Vorliegen von einzelsträngigen Nukleinsäureziel- und Nukleinsäuresondenmolekülen, was meist durch die Hitzdenaturierung erfolgt, sowie die gewählte optimale Stringenz (Einstellung der Parameter: Temperatur, Ionenstärke, Konzentration helixdestabilisierender Moleküle), die gewährleistet, daß nur Sonden mit nahezu perfekt komplementären (einander entsprechenden) Sequenzen mit der Zielsequenz gepaart bleiben (Leitch, A. R., Schwarzacher, T., Jackson, D. und Leitch I. J., 1994, In situ-Hybridisierung, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Klassische Anwendungen der Sondentechnik, die die Identifikation von unbekannten Organismen bzw. den Nachweis bestimmter Organismen in einem Organismengemisch ermöglichen, sind beispielsweise phylogenetische Studien oder der Nachweis von Keimen in der medizinischen Diagnostik. In beiden Bereichen basiert der Nachweis der Organismen häufig auf der Analyse der Gene für ribosomale RNS (rRNS, rDNS), welche wegen ihrer ubiquitären Verbreitung und der Existenz von variablen, artspezifischen Sequenzabschnitten für diesen Zweck besonders geeignet sind. Neben diesen Eigenschaften enthält die rDNS flankierende Sequenzabschnitte, die innerhalb des jeweiligen Organismenreiches stark konserviert sind. Gegen diese Abschnitte gerichtete Primersequenzen können zur speziesunabhängigen Amplifikation der rDNS eingesetzt werden (G. Van Camp,S. Chapelle, R. De Wachter; Amplification and Sequencing of Variable Regions in Bacterial 23S Ribosomal RNA Genes with conserved Primer Sequences. Current Microbiology, 1993, 27: 147-151 und W.G. Weisburg, S.M. Barns, D.A. Pelletier, D.J. Lane; 16S ribosomal DNA Amplification for Phylogenetic studies. J. Bactertiol, 1991, 173: 697-703), wodurch die Sensistivität nachgeschalteter Nachweismethoden erheblich gesteigert wird.
In Abhängigkeit von der konkreten Zielstellung stehen verschiedene etablierte Verfahren zur rDNS gestützten Identifikation von Organismen zur Verfügung.
Für die Identifikation unbekannter Organismen wird in der Regel die gesamte (meist 16S) rDNS mit zwei universellen Primem per PCR amplifiziert und anschließend sequenziert. Auf diese Weise sind umfangreiche rDNS-Datenbanken entstanden, die gegenwärtig Sequenzen von mehreren 1000 Organismen enthalten (z.B. RDP /Ribosomal Database Project II, Michigan state University, http://www.cme.msu.edu/RDP/) und die phylogenetische Zuordnung neuer Sequenzen erlauben. Dieses Verfahren erlaubt prinzipiell die Detektion jedes beliebigen Organismus, ist jedoch sehr zeitaufwendig und deshalb für diagnostische Anwendungen nicht geeignet. Außerdem ist der Prozeß mit einer Reihe von Fehlerquellen behaftet (F. Wintzingerrode, U.B. Göbel, E. Stackebrand; Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997, 21: 213-229), wobei insbesondere Rekombinationsprozesse und Punktmutationen während der PCR-Amplifikation zu falschen Ergebnissen führen.
Für diagnostische Anwendungen wurden eine Reihe von alternativen Techniken entwickelt. Mattsson und Johansson (J.G. Mattsson, K.E. Johansson; Oligonucleotide probes complementary to 16S rRNA for rapid detection of mycoplasma contamination in cell cultures. FEMS Microbiiol Lett., 1993: 107 139-144) beschreiben ein Verfahren, bei dem ribosomale RNS aus Mycoplasmen isoliert, auf Filtern immobilisiert und durch Hybridisierung von drei unterschiedlichen spezifischen Oligonukleotide nachgewiesen wird. Dieses Verfahren ist relativ schnell, die Anzahl der zu identifizierenden Organismen und die Sensitivität des Nachweises ist jedoch begrenzt.
McCabe und Mitarbeiter (K.M. McCabe, Y.H. Zhang, B.L. Huang, E.A. Wagar, E. McCabe; Bacterial species identification after DNA amplification with a universal Pprimer pair. Mol. Genet. Metab, 1999; 66: 205-211) beschreiben ein Verfahren, bei dem rDNS aus auf Filterspots lysierten klinischen bakteriellen Isolaten durch Einsatz universeller Primer amplifiziert und anschließend durch Hybridnsierung mit spezifischen Sonden identifiziert wird. Dieses Verfahren ist sensitiv; die Zahl der nachzuweisenden Spezies ist jedoch ebenfalls relativ eng begrenzt.
Bei einem von Oyarzabal und Mitarbeitern eingesetzten Verfahren (O.A. Oyarzabal, I.V. Wesley, K.M. Harmon, L. Schroeder-Tucker, J.M. Barbaree, L.H. Lauerman, S. Backert, D.E. Conner; Specific identification of Campylobacter fetus by PCR targeting variable regions of the 16S rDNA. Vet Microbiol, 1997, 58: 61-71), bei dem 16S rDNS einer Campylobacter-Spezies mittels spezifischer Sonden amplifiziert und die Größe des Produktes bestimmt wird, kann nur eine ja/nein Antwort für einen einzelnen spezifischen Keim generiert werden.
The characterization of genome sections which can be carried out using DNA molecules or ribonucleic acid molecules (RNA molecules) by hybridization with specific gene probes (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, in situ hybridization , Spektrum Akademischer Verlag Heidelberg, Berlin Oxford), has been routinely carried out for several years. Gene probes are single-stranded nucleic acid molecules of a known nucleotide base sequence with an optimal length of 100 to 300 bases, which specifically lead to a double-stranded nucleic acid pairing with single-stranded nucleic acid sections, e.g. a gene, and mostly with a non-radioactive or radioactive reporter element (marker), e.g. a radionucleotide dye. are provided, which serve the detection of the gene probes. A distinction is made between double-stranded DNA probes, single-stranded RNA probes, tailor-made synthetic oligonucleotide probes with a length of 10 to 50 bases, genome probes and DNA probes produced by PCR (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, In situ hybridization, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
In hybridization, a distinction is made between the hybridization of probes with isolated single-stranded nucleic acid (DNA or RNA) and the so-called in situ hybridization (on-site hybridization in tissues, cells, cell nuclei and chromosomes), in which the gene probe spreads to one in the cell (Single-stranded) nucleic acid (DNA or RNA) couples (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, in situ hybridization, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford). With this in situ hybridization it is particularly important that the target sequence and the tissue morphology are preserved and that the preserved tissue is permeable to the probe and the detection reagents. This permeability is not always present, which is a disadvantage of this method.
The hybridization of probes with isolated and spread chromosomes, which is also referred to as in situ hybridization, circumvents the disadvantage of the permeability barrier, since the chromosomes are freely accessible, for example fixed on a support. (TA Brown, 1996, genetic engineering for beginners, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Essential for the hybridization is the presence of single-stranded nucleic acid target and nucleic acid probe molecules, which usually occurs through heat denaturation, as well as the selected optimal stringency (setting of the parameters: temperature, ionic strength, concentration of helix-destabilizing molecules), which ensures that only probes with almost perfectly complementary ones (corresponding) sequences remain paired with the target sequence (Leitch, AR, Schwarzacher, T., Jackson, D. and Leitch IJ, 1994, in situ hybridization, Spektrum Akademischer Verlag Heidelberg, Berlin Oxford).
Classic applications of probe technology that enable the identification of unknown organisms or the detection of certain organisms in a mixture of organisms are, for example, phylogenetic studies or the detection of germs in medical diagnostics. In both areas, the detection of organisms is often based on the analysis of the genes for ribosomal RNA (rRNA, rDNA), which are particularly suitable for this purpose because of their ubiquitous distribution and the existence of variable, species-specific sequence segments. In addition to these properties, the rDNA contains flanking sequence sections that are highly conserved within the respective organism kingdom. Primer sequences directed against these sections can be used for species-independent amplification of the rDNA (G. Van Camp, S. Chapelle, R. De Wachter; Amplification and Sequencing of Variable Regions in Bacterial 23S Ribosomal RNA Genes with conserved Primer Sequences. Current Microbiology, 1993, 27: 147-151 and WG Weisburg, SM Barns, DA Pelletier, DJ Lane; 16S ribosomal DNA Amplification for Phylogenetic studies. J. Bactertiol, 1991, 173: 697-703), which significantly increases the sensitivity of downstream detection methods.
Depending on the specific objective, various established methods for rDNS-based identification of organisms are available.
For the identification of unknown organisms, the entire (usually 16S) rDNA is usually amplified with two universal primers by PCR and then sequenced. In this way, extensive rDNA databases have been created which currently contain sequences from several 1000 organisms (e.g. RDP / Ribosomal Database Project II, Michigan state University, http://www.cme.msu.edu/RDP/) and the phylogenetic assignment allow new sequences. In principle, this method allows the detection of any organism, but is very time-consuming and therefore not suitable for diagnostic applications. The process also has a number of sources of error (F. Wintzingerrode, UB Göbel, E. Stackebrand; Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997, 21: 213-229) , in particular recombination processes and point mutations during the PCR amplification lead to incorrect results.
A number of alternative techniques have been developed for diagnostic applications. Mattsson and Johansson (JG Mattsson, KE Johansson; Oligonucleotide probes complementary to 16S rRNA for rapid detection of mycoplasma contamination in cell cultures. FEMS Microbiiol Lett., 1993: 107 139-144) describe a method in which ribosomal RNA is isolated from mycoplasma, immobilized on filters and detected by hybridization of three different specific oligonucleotides. This procedure is relatively fast, but the number of organisms to be identified and the sensitivity of the detection is limited.
McCabe and co-workers (KM McCabe, YH Zhang, BL Huang, EA Wagar, E. McCabe; Bacterial species identification after DNA amplification with a universal Pprimer pair. Mol. Genet. Metab, 1999; 66: 205-211) describe a method in which rDNA is amplified from clinical bacterial isolates lysed on filter spots by using universal primers and then identified by hybridization with specific probes. This process is sensitive; however, the number of species to be detected is also relatively narrow.
In a method used by Oyarzabal and co-workers (OA Oyarzabal, IV Wesley, KM Harmon, L. Schroeder-Tucker, JM Barbaree, LH Lauerman, S. Backert, DE Conner; Specific identification of Campylobacter fetus by PCR targeting variable regions of the 16S rDNA. Vet Microbiol, 1997, 58: 61-71), in which 16S rDNA of a Campylobacter species is amplified using specific probes and the size of the product is determined, only a yes / no response can be generated for a single specific germ.

Das Dokument WO-A-9 533 846 beschreibt eine Vorrichtung, die einen Nukleinsäuren tragenden Chip in einer Reaktions Kammer aufweist, wobei die dem Chip gegenüberliegende Kammerwand aus einem optisch transparenten Material ist.Document WO-A-9 533 846 describes a device that a nucleic acid bearing Chip in a reaction chamber having the chip opposite chamber wall from an optically transparent Material is.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Vervielfältigung und Charakterisierung von Nukleinsäuren anzugeben, die eine nahezu gleichzeitige Vervielfältigung und Charakterisierung mit einem hohen Probendurchsatz ermöglicht, und somit die Nachteile des Standes der Technik umgeht.The invention has for its object a device for Specify the duplication and characterization of nucleic acids, which has an almost simultaneous duplication and characterization allows a high sample throughput, and thus the disadvantages of Bypasses state of the art.

Die Aufgabe wird durch die kennzeichnenden Merkmale des ersten Patentanspruchs gelöst. Vorteilhafte Ausgestaltungen sind durch die nachgeordneten Ansprüche erfaßt.The task is characterized by the distinctive features of the first Claim resolved. Advantageous refinements are due to the subordinate claims recorded.

Das Wesen der Erfindung besteht darin, daß durch die Vorrichtung die PCR und die parallele Hybridisierung gegen chipgebundene Nukleinsäure in einer temperatur- und durchflußsteuerbaren Zelle (Kammer) räumlich vereint sind. Dabei trägt die Kammer in ihrem Inneren einen Chip, der zwischen dem Kammerboden und der Detektionsfläche des Chips einen Kapillarspalt generiert, der die Probenflüssigkeit aufnimmt, wobei die Durchmischung der Probenflüssigkeit durch einen induzierten elektroosmotischen Fluß erfolgt.
Vorteilhaft bildet dabei die Kammer um den Kapillarspalt und den Chip ein Gasreservoir, durch das eine Gasreservoimase zum Kapillarspalt führt, welche einen Einlaß von einem Auslaß trennt, so daß über den Einlaß die Proben injizierbar sind, auf Grund der Kapillarkräfte von dem Einlaß in den Kapillarspalt gelangen und von diesem über den Auslaß abführbar sind. Beim befüllten Kapillarspalt ist auf Grund von Oberflächenspannungseffekten ein Luftspalt als Ring um den in der Kammer gelagerten Chip und den Kapillarspalt (der als Probenreservoir dient) generiert, so daß der Chip und der Kapillarspalt von dem Kammerkörper thermisch isoliert sind, was dazu führt, daß die Proben im Kammerspalt schnell durch Heiz- und Kühlelemente aufgeheizt und abgekühlt werden können, die gemeinsam mit Temperaturfühlern und Elektroden auf einem Kammerträger, der die Kammer haltert und mit ihr über den Kammerboden in wärmeleitenden Kontakt steht, plaziert ist. Dadurch daß der Kapillarspalt als Probenreservoir dient, ist die Verdunstungsrate der Probenflüssigkeit auch bei Temperaturen nahe des Siedepunkts der Probenflüssigkeit stark herabgesetzt, da die Probe nur über den Rand des Kapillarspalts verdunsten kann.
Der Kapillarspalt (das Probenreservoir) ist der Ort der Nukleinsäureamplifikation in der Probenflüssigkeit durch PCR mit spezifischen Primem sowie der genetischen Charakterisierung der Probe. Die markierten PCR-Produkte werden dabei durch die immobilisierten spezifischen Sonden, die auf dem Nukleinsäurechip gebunden sind, aus der Probenflüssigkeit gefischt. Die Kammer und der Chip sind optisch transparent und ermöglichen aufgrund ihrer Ausführung die on line Detektion des Markierungssignals der an die Sonden gebunden PCR-Produkte.
Die erfindungsgemäße Vorrichtung besitzt gegenüber den bisher verwendeten Verfahren den Vorteil, daß in einer minimalen Diagnosezeit mit minimalen Probenvolumina eine maximale genetische Typisierung unter Verwendung spezifischer Sonden automatisierbar und mit hohem Probendurchsatz in einer temperatur- und durchflußsteuerbaren Zelle möglich ist, wobei durch die PCR ein Hervorheben diagnostisch relevanter Genstrukturen gegenüber einem Sequenzhintergrund und durch die nahezu gleichzeitige, parallele Hybridisierung der PCR-Produkte gegen die chipgebundene Nukleinsäure eine spezifische Detektion bewirkt wird.
The essence of the invention is that the device spatially combines the PCR and the parallel hybridization against chip-bound nucleic acid in a temperature and flow controllable cell (chamber). The inside of the chamber has a chip that generates a capillary gap between the chamber bottom and the detection surface of the chip, which receives the sample liquid, the sample liquid being mixed by an induced electroosmotic flow.
The chamber around the capillary gap and the chip advantageously forms a gas reservoir through which a gas reservoir leads to the capillary gap, which separates an inlet from an outlet, so that the samples can be injected via the inlet, due to the capillary forces from the inlet into the capillary gap arrive and can be removed from it via the outlet. When the capillary gap is filled, an air gap is generated as a ring around the chip stored in the chamber and the capillary gap (which serves as a sample reservoir) due to surface tension effects, so that the chip and the capillary gap are thermally insulated from the chamber body, which leads to the fact that the Samples in the chamber gap can be quickly heated and cooled by heating and cooling elements, which, together with temperature sensors and electrodes, are placed on a chamber support that holds the chamber and is in heat-conducting contact with it over the chamber floor. Because the capillary gap serves as a sample reservoir, the evaporation rate of the sample liquid is greatly reduced even at temperatures near the boiling point of the sample liquid, since the sample can only evaporate over the edge of the capillary gap.
The capillary gap (the sample reservoir) is the location of the nucleic acid amplification in the sample liquid by PCR with specific primers and the genetic characterization of the sample. The labeled PCR products are fished out of the sample liquid by the immobilized specific probes, which are bound on the nucleic acid chip. The chamber and the chip are optically transparent and, due to their design, enable the on-line detection of the marking signal of the PCR products bound to the probes.
The device according to the invention has the advantage over the previously used methods that a maximum genetic typing using specific probes can be automated in a minimal diagnosis time with minimal sample volumes and is possible with a high sample throughput in a temperature and flow controllable cell, with PCR being used to highlight the diagnosis relevant gene structures against a sequence background and the almost simultaneous, parallel hybridization of the PCR products against the chip-bound nucleic acid results in a specific detection.

Die erfindungsgemäße Vorrichtung findet z.B. für die gleichzeitige Erkennung von verschiedenen mikrobiellen Krankheitserregern (bspw. auf Basis der 16S oder 23S rRNA-Analyse), das Screening nach Resistenzen einzelner krankheitserregender Mikroorganismen oder eine genomische Typisierung diagnostisch relevanter Allelstrukturen von Eukaryontenzellen Verwendung, wobei die parallele Erkennung durch den Chip mit seinen unterschiedlichen, für die verschiedenen Zielsequenzen spezifischen Sonden ermöglicht wird.The device according to the invention finds e.g. for the simultaneous Detection of various microbial pathogens (e.g. based on 16S or 23S rRNA analysis), the screening for Resistance of individual pathogenic microorganisms or a genomic typing of diagnostically relevant allele structures of Eukaryotic cells use, the parallel recognition by the chip with its different, for the different Target sequences specific probes is made possible.

Die Erfindung soll nachstehend anhand der schematischen Zeichnungen und der Anwendungsbeispiele näher erläutert werden. Es zeigen:

Fig. 1:
eine prinzipielle Darstellung einer möglichen Ausführungsform einer erfindungsgemäßen Vorrichtung zur Vervielfältigung und Charakterisierung von Nukleinsäuren,
Fig. 2:
einen Querschnitt entlang der Ebene A-A gemäß der Fig. 1,
Fig. 3:
eine Draufsicht auf die Vorrichtung gemäß der Fig. 1,
Fig. 4:
eine schematische Darstellung der Ansicht der Unterseite der Vorrichtung gemäß Fig. 1,
Fig. 5.
einen Querschnitt entlang der Ebene B-B gemäß der Fig. 4,
Fig. 6:
eine schematische Darstellung der Draufsicht auf den Kammerträger der Vorrichtung gemäß der Fig. 1,
Fig. 7:
einen Querschnitt entlang der Ebene C-C gemäß der Fig. 6,
Fig. 8:
eine Schematische Darstellung einer möglichen Quadrupolanordnung auf dem Kammerträger der Vorrichtung gemäß der Fig. 1,
Fig. 9:
einen Querschnitt entlang der Ebene D-D gemäß der Fig.8 ,
Fig. 10a:
eine schematische Darstellung einer möglichen Positionierung einer Probenflüssigkeit innerhalb der Vorrichtung gemäß Fig. 1,
Fig. 10b:
einen Querschnitt entlang der Ebene E-E gemäß der Fig. 10a,
Fig. 11:
eine schematische Blockdarstellung eines möglichen Einbaus der Vorrichtung gemäß Fig. 1 in ein Analysensystem,
Fig. 12a:
eine Angabe der Abmessungen einer Vorrichtung gemäß der Fig. 1 in Millimetern,
Fig. 12b:
eine Angabe der Abmessungen einer Vorrichtung gemäß der Fig. 2 in Millimetern,
Fig. 12c:
eine Angabe der Abmessungen einer Vorrichtung gemäß der Fig. 3 in Millimetern,
Fig. 13:
eine schematische Darstellung des optischen Strahlengangs durch die Vorrichtung gemäß Fig. 1,
Fig. 14:
eine schematische Darstellung einer Ausführungsform eines Chips der Vorrichtung gemäß Fig. 1 und
Fig. 15:
eine schematische Darstellung sekundärer und tertiärer Amplifikationsprodukte des Chips gemäß Fig. 14.
The invention will be explained below with reference to the schematic drawings and the application examples. Show it:
Fig. 1:
2 shows a basic illustration of a possible embodiment of a device according to the invention for the duplication and characterization of nucleic acids,
Fig. 2:
2 shows a cross section along the plane AA according to FIG. 1,
Fig. 3:
2 shows a plan view of the device according to FIG. 1,
Fig. 4:
2 shows a schematic representation of the view of the underside of the device according to FIG. 1,
Fig. 5.
3 shows a cross section along the plane BB according to FIG. 4,
Fig. 6:
2 shows a schematic illustration of the top view of the chamber support of the device according to FIG. 1,
Fig. 7:
6 shows a cross section along the plane CC according to FIG. 6,
Fig. 8:
2 shows a schematic representation of a possible quadrupole arrangement on the chamber support of the device according to FIG. 1,
Fig. 9:
3 shows a cross section along the plane DD according to FIG. 8,
10a:
1 shows a schematic illustration of a possible positioning of a sample liquid within the device according to FIG. 1,
10b:
10 shows a cross section along the plane EE according to FIG. 10a,
Fig. 11:
2 shows a schematic block diagram of a possible installation of the device according to FIG. 1 in an analysis system,
Fig. 12a:
an indication of the dimensions of a device according to FIG. 1 in millimeters,
Fig. 12b:
an indication of the dimensions of a device according to FIG. 2 in millimeters,
Fig. 12c:
an indication of the dimensions of a device according to FIG. 3 in millimeters,
Fig. 13:
2 shows a schematic illustration of the optical beam path through the device according to FIG. 1,
Fig. 14:
is a schematic representation of an embodiment of a chip of the device according to FIGS. 1 and
Fig. 15:
14 shows a schematic illustration of secondary and tertiary amplification products of the chip according to FIG. 14.

Die in Fig. 1 gezeigte Vorrichtung 20 zur Vervielfältigung undThe device 20 shown in FIG. 1 for reproduction and

Charakterisierung von Nukleinsäuren besteht aus einem Kammerkörper 1 und einem Kammerträger 5. Der Kammerkörper 1 ist mit einer Auflagefläche 4 versehen über die er mit dem Kammerträger 5 dichtend in Verbindung steht, so daß eine Probenkammer 3 ausgebildet ist. Diese Probenkammer 3 besteht aus einem Gasreservoir 6 sowie einem Kapillarspalt 7 und ist mit zumindest einem Einlaß 81 und zumindest einem Auslaß 82 versehen. Der Einlaß 81 und der Auslaß 82 führen in die Probenkammer 3 und werden von einer zwischengeordneten Gasreservoirnase 9 des Gasreservoirs 6 beabstandet. Der Kammerkörper l, der bspw. durch eine nicht im einzelnen dargestellte Verklebung oder Verschweißung mit einem Kammerträger 5 unlösbar in dichtender Verbindung steht, haltert einen Chip 2, bspw. einen Nukleinsäure-Chip. Dieser Chip 2, der Detektionsflächen 12 in Form von Spots 13 trägt, ist in dem Kammerkörper 1 derart gehaltert, daß die Detektionsflächen 12 in Form der Spots 13 der Oberfläche des Kammerträgers 5 zugewandt gegenüber und durch die Berandung 42 des Kammerkörpers 1 von dem Kammerträgers 5 gleichmäßig beabstandet positioniert sind, so daß der Chip 2 und der Kammerträger 5, wie in Fig. 2 gezeigt den Kapillarspalt 7, der als Probenreservoir dient, generieren. Dieser Kapillarspalt 7 nimmt die Probenflüssigkeit 19 auf.
Der Kammerkörper 1 besteht bspw. aus optisch transparanten Kunststoff oder Glas, wobei die Probenkammer 3, die eine Raum zum Einfüllen der Probenflüssigkeit 19 darstellt, durch Fräsen und der Einlaß 81 sowie der Auslaß 82, die Leitwege für die Probenflüssigkeit darstellen, durch Bohren in den Kammerkörper 1 eingebracht werden können.
Der Nukleinsäure-Chip 2 besteht bekannter Maßen aus einem optisch transparenten Träger, dessen Material bspw. Silizium oder Glas sein kann, und aus auf diesem Träger immobilisierten Nukleinsäuremolekülen spezifischer Sequenz (z.B. Sonden).
Die Probenkammer 3 umfaßt das Gasreservoir 6 und den Kapillarspalt 7, wobei sich in dem Gasreservoir 6 beim Einfüllen der Probenflüssigkeit 19 auf Grund von Oberflächenspannungseffekten Gas und Luftblasen sammeln, so daß der Chip 2 und der Kapillarspalt 7 vom Kammerkörper 1 thermisch isoliert werden. Der Kapillarspalt 7, der das Probenreservoir (bspw. mit einem Volumen von 1,8 µl) ausbildet, gewährleistet, daß die Detektionsfläche 12 vollständig mit der Probenflüssigkeit 19 benetzt wird.
Der Einlaß 81 und der Auslaß 82 dienen der Leitung der Probenflüssigkeit 19, wodurch ein Befüllen und Entleeren der Probenkammer 3, und somit infolge der wirkenden Kapillarkräfte auch ein Befüllen und Entleeren des Kapillarspalts 7, ermöglicht ist.
Der Einlaß 81 und der Auslaß 82, die bspw. wie in Fig. 1 gezeigt nebeneinander verlaufen können, sind durch eine Gasreservoimase 9 voneinander räumlich getrennt, so daß verhindert wird, daß die Probenflüssigkeit 19 vom Einlaß 81 zum Auslaß 82 fließt, ohne in den Kapillarspalt 7 zu gelangen.
Der Kammerträger 5, der optisch transparent und gut wärmeleitend ist besteht bspw. aus Glas, und ist, wie in den Fig. 4, 6 und 8 gezeigt, mit Mitteln zur Temperaturbeaufschlagung 17, bspw. in Form miniaturisierter Heizer, und mit miniaturisierten Temperaturfühlern 16 sowie Elektroden eines Quadropol 18 versehen, so daß ein Temperieren der Probenflüssigkeit 19 sowie ein Durchmischung der Probenflüssigkeit 19 durch einen induzierten elektroosmotischen Fluß ermöglicht ist. Bei einer anderen, nicht im einzelnen dargestellten Ausführungsform der Vorrichtung 20 kann der Kammerkörper 1 mit den Mitteln zur Temperaturbeaufschlagung 17 und den miniaturisierten Temperaturfühlern 16 sowie den Elektroden des Quadropol 18 versehen sein.
Characterization of nucleic acids consists of a chamber body 1 and a chamber carrier 5. The chamber body 1 is provided with a bearing surface 4, via which it is sealingly connected to the chamber carrier 5, so that a sample chamber 3 is formed. This sample chamber 3 consists of a gas reservoir 6 and a capillary gap 7 and is provided with at least one inlet 81 and at least one outlet 82. The inlet 81 and the outlet 82 lead into the sample chamber 3 and are spaced apart by an intermediate gas reservoir nose 9 of the gas reservoir 6. The chamber body 1, which, for example, is inseparably sealed by a bond or weld to a chamber carrier 5 (not shown in detail), holds a chip 2, for example a nucleic acid chip. This chip 2, which carries detection surfaces 12 in the form of spots 13, is held in the chamber body 1 in such a way that the detection surfaces 12 in the form of spots 13 face the surface of the chamber carrier 5 and through the edge 42 of the chamber body 1 from the chamber carrier 5 are positioned evenly spaced so that the chip 2 and the chamber carrier 5, as shown in FIG. 2, generate the capillary gap 7, which serves as a sample reservoir. This capillary gap 7 receives the sample liquid 19.
The chamber body 1 consists, for example, of optically transparent plastic or glass, the sample chamber 3, which represents a space for filling the sample liquid 19, by milling, and the inlet 81 and the outlet 82, which are routes for the sample liquid, by drilling into the Chamber body 1 can be introduced.
As is known, the nucleic acid chip 2 consists of an optically transparent support, the material of which can be, for example, silicon or glass, and of nucleic acid molecules of a specific sequence (for example probes) immobilized on this support.
The sample chamber 3 comprises the gas reservoir 6 and the capillary gap 7, gas and air bubbles collecting in the gas reservoir 6 when filling the sample liquid 19 due to surface tension effects, so that the chip 2 and the capillary gap 7 are thermally insulated from the chamber body 1. The capillary gap 7, which forms the sample reservoir (for example with a volume of 1.8 μl), ensures that the detection surface 12 is completely wetted with the sample liquid 19.
The inlet 81 and the outlet 82 serve to direct the sample liquid 19, which enables filling and emptying of the sample chamber 3, and thus also filling and emptying of the capillary gap 7 as a result of the acting capillary forces.
The inlet 81 and the outlet 82, which can for example run side by side as shown in FIG. 1, are spatially separated from one another by a gas reservoir 9, so that the sample liquid 19 is prevented from flowing from the inlet 81 to the outlet 82 without entering the Capillary gap 7 to arrive.
The chamber support 5, which is optically transparent and has good thermal conductivity, is made, for example, of glass and, as shown in FIGS. 4, 6 and 8, is provided with means for applying temperature 17, for example in the form of miniaturized heaters, and with miniaturized temperature sensors 16 and electrodes of a quadropole 18 so that temperature control of the sample liquid 19 and mixing of the sample liquid 19 by an induced electroosmotic flow is made possible. In another embodiment of the device 20, not shown in detail, the chamber body 1 can be provided with the means for applying temperature 17 and the miniaturized temperature sensors 16 and the electrodes of the quadropole 18.

Die Temperaturfühler 16 können bspw. als Nickel-Chrom-Dickfilm-Widerstandstemperaturfühler ausgeführt sein. Die Länge der Temperaturfühler 16 beträgt bspw. in dem Fall, daß der Kammerträger 1 eine Fläche von 8 x 8 mm aufweist und der Chip 2 eine Fläche von 3 x 3 mm oder kleiner besitzt, 10,4 mm und die Breite der Temperaturfühler 16 beträgt in diesem Beispiel 50 µm, so daß der Widerstand bei 20°C 4 kOhm und der Temperaturkoefizient TKR bei 0°C 1500 ppm beträgt. Alternativ dazu können die Temperaturfühler 16 auch als optisch transparente Dünnschichten ausgeführt sein.
Die Mittel zur Temperaturbeaufschlagung 17 können bspw. als Nickel-Chrom-Dickfilm-Widerstandsheizer ausgeführt sein. Bei den Dimensionen des vorangegangenen Beispiels haben die Mittel zur Temperaturbeaufschlagung 17 eine Länge von 2,6 mm und eine Breite von acht Einzelbahnen zu je 50 µm Breite, so daß der Widerstand bei 20°C 300 Ohm beträgt. Alternativ dazu können die Mittel zur Temperaturbeaufschlagung 17 auch als optisch transparente Dünnschichten ausgeführt sein.
Der Quadrupol 18 kann bspw. als Gold-Titan-Elektroden ausgeführt sein. Bei den Dimensionen des vorangegangenen Beispiels haben diese Elektroden eine Länge von 2,2 mm und eine Breite von 0,5 mm. Der Quadropol dient der Induktion eines elektroosmotischen Flusses, was zum Durchmischen der Probenflüssigkeit 19 in der Probenkammer 1 führt. Alternativ dazu kann der Quadrupel 18 auch als optisch transparente Dünnschicht ausgeführt sein.
The temperature sensors 16 can be designed, for example, as nickel-chrome thick-film resistance temperature sensors. The length of the temperature sensor 16 is, for example, in the case that the chamber support 1 has an area of 8 x 8 mm and the chip 2 has an area of 3 x 3 mm or less, 10.4 mm and the width of the temperature sensor 16 in this example 50 µm, so that the resistance at 20 ° C is 4 kOhm and the temperature coefficient TK R at 0 ° C is 1500 ppm. Alternatively, the temperature sensors 16 can also be designed as optically transparent thin layers.
The means for applying temperature 17 can, for example, be designed as a nickel-chrome thick-film resistance heater. In the dimensions of the previous example, the means for applying temperature 17 have a length of 2.6 mm and a width of eight individual webs, each 50 μm wide, so that the resistance at 20 ° C. is 300 ohms. As an alternative to this, the means for applying temperature 17 can also be designed as optically transparent thin layers.
The quadrupole 18 can be designed, for example, as gold-titanium electrodes. In the dimensions of the previous example, these electrodes have a length of 2.2 mm and a width of 0.5 mm. The quadropole serves to induce an electroosmotic flow, which leads to the mixing of the sample liquid 19 in the sample chamber 1. Alternatively, the quadruple 18 can also be designed as an optically transparent thin layer.

Die Fig. 2 zeigt den Kammerkörper 1, der über die Auflagefläche 4 mit dem Kammerträger 5 in starrer, unlösbarer Verbindung steht. Diese Verbindung kann bspw. durch Verkleben hergestellt sein. Alternativ dazu besteht bspw. auch die Möglichkeit, daß der Kammerträger 5 und der Kammerkörper 1 durch Verschmelzen miteinander verbunden bzw. einstückig gefertigt sind. Zwischen dem Kammerträger 5 und den durch den Kammerkörper 1 über dessen Berandung 42 gehalterten Chip 2 befindet sich der Kapillarspalt 7 (der als Probenreservoir dient), der auf Grund seiner Kapillarwirkung befähigt ist, Probenlüssigkeit aus der Probenkammer 3 aufzunehmen. Fig. 2 shows the chamber body 1, which over the bearing surface 4 with the chamber support 5 is in rigid, non-detachable connection. This Connection can be made, for example, by gluing. alternative there is, for example, the possibility that the chamber support 5 and the chamber body 1 is connected to one another by fusing or are made in one piece. Between the chamber support 5 and through the chamber body 1 over the edge 42 held chip 2 there is the capillary gap 7 (which serves as a sample reservoir), which Due to its capillary action it is able to extract sample liquid from the Record sample chamber 3.

Durch den Kammerkörper 1 führen der Einlaß 81 und der Auslaß 82 in das Gasreservoir 6 der Probenkammer 3, so daß durch den Einlaß 81 Probenflüssigkeit 19 über das Gasreservoir 6 in den Kapillarspalt 7 einfüllbar und über den Auslaß 82 abführbar ist. Der Chip 2 besteht wie der Kammerträger 1 aus optisch transparenten bzw. durchsichtigem Material, wie z.B. Glas, so däß über eine konische Öffnung im Kammerkörper 1, der einen Sichtkegel bildenden durchgehenden Ausnehmung 11, optische und photometrische Auswertungen, wie bspw. Fluoreszenzmessungen, von der Detetktionfläche 12 möglich sind.Through the chamber body 1, the inlet 81 and the outlet 82 lead in the gas reservoir 6 of the sample chamber 3, so that through the inlet 81st Sample liquid 19 via the gas reservoir 6 into the capillary gap 7 can be filled and discharged via the outlet 82. The chip 2 is like the chamber support 1 made of optically transparent or transparent Material such as Glass, so a conical opening in the Chamber body 1, the continuous cone forming a viewing cone Recess 11, optical and photometric evaluations, such as. Fluorescence measurements from which the detection surface 12 are possible.

Die Fig. 3 zeigt den Einlaß 81 und den Auslaß 82 sowie die Ausnehmung 11, durch die die Detektionsfläche 12 mit Spots 13 des Chips 2 optisch zugänglich sind. Diese optische Zugänglichkeit ermöglicht die o.g. optische und photometrische Auswertungen der Signale, die von der Detektionsfläche 12 ausgehen, im Beispiel die nicht dargestellten Fuoreszenzsignale.Fig. 3 shows the inlet 81 and the outlet 82 and the Recess 11 through which the detection surface 12 with spots 13 of the Chips 2 are optically accessible. This visual accessibility enables the above optical and photometric evaluations of the Signals emanating from the detection surface 12, which are not in the example shown fluorescence signals.

In der Fig. 4 sind die auf der Unterseite des transparenten Kammerträgers 5 befindlichen Mittel zur Temperaturbeaufschlagung 17 inklusive Leiterbahnen 1517 und Anschlußflächen 1417 gezeigt. Die Mittel zur Temperatutbeaufschlagung 17 bestehen im Beispiel aus acht einzelnen parallel geschalteten mikrostrukturierten Widerstandsheizleitungen 171, durch die der unter dem Kammerkörper 1 befindliche Kammerträger 5 und mit ihm die eingefüllte Probenflüssigkeit 19 im Kapillarspalt 7 homogen beneizbar ist. Die Widerstandsleitunge 171 der Mittel zur Temperaturbeaufschlagung 17, die mit einer unterschiedlichen, definiert vorgebbaren Temperatur beaufschlagbar sind, besitzen solche Dimensionen, daß die o.g. optische Zugänglichkeit der Detektionsflächen 12 des Chips 2 gewährleistet ist.4 are those on the underside of the transparent Chamber support 5 located means for temperature 17 including interconnects 1517 and pads 1417 shown. The In the example, means for applying temperature 17 consist of eight individual microstructured in parallel Resistance heating lines 171 through which the under the chamber body 1st located chamber support 5 and with it the filled Sample liquid 19 in the capillary gap 7 is homogeneously enicable. The Resistance line 171 of the means for applying temperature 17, those with a different, definable temperature can be acted upon have dimensions such that the above optical Accessibility of the detection surfaces 12 of the chip 2 is ensured.

Die Fig. 5 zeigt die Positionierung der Mittel zur Temperaturbeaufschlagung 17 an der dem Kammerkörper 1 abgewandten Seite des Kammerträgers 5, welcher den Kammerkörpers 1 mit dem gehalterten Chip 2 trägt. 5 shows the positioning of the means for Temperature exposure 17 on the chamber body 1 facing away Side of the chamber support 5, which the chamber body 1 with the supported chip 2 carries.

In der Fig. 6 ist ein auf der Oberseite des transparenten Kammerträgers 5 gelagerter Temperaturfühler 16 inklusive Leiterbahnen 1516 und Anschlußflächen 1416 dargestellt. Der Temperaturfühler 16 ist dabei um die Detektionsfläche 12 des Chips 2 gelagert, so daß die genannte optische Zugänglichkeit der Detektionsfläche 12 gewährleistet ist. Der Temperatrufühler 16 sind durch eine in der Abbildung nicht dargestellten Passivierungsschicht elektrisch gegenüber nachfolgenden Elementen der Vorrichtung 20 und gegenüber der Probenfklüssigkeit 19 elektrisch isoliert.6 is on the top of the transparent chamber support 5 stored temperature sensor 16 including conductor tracks 1516 and Pads 1416 shown. The temperature sensor 16 is around the detection surface 12 of the chip 2 is mounted, so that said optical accessibility of the detection surface 12 is ensured. The Temperatufühler 16 are by a not shown in the figure Passivation layer electrically opposite subsequent elements of the Device 20 and opposite the sample liquid 19 electrically isolated.

Fig. 7 zeigt die Positionierung des Temperaturfühlers 16 an der dem Kammerkörper 1 zugewandten Oberflächenseite des Kammerträgers 5, welche gleichzeitig die Oberflächenseite des Kammerträgers 5 ist, mit der der durch den Kammerkörper 1 gehalterte Chip 2 den Kapillarspalt 7 generiert.Fig. 7 shows the positioning of the temperature sensor 16 on the Chamber body 1 facing surface side of the chamber support 5, which is also the surface side of the chamber support 5 with the chip 2 held by the chamber body 1 has the capillary gap 7 generated.

Die Fig. 8 zeigt einen auf die, nicht im einzelnen dargestellte Passivierungsschicht des Temperaturfühlers 16 aufgetragen Quadrupol 18 inklusive zugeordneter Leiterbahnen 1518 und Anschlußflächen 1418. Der Quadrupol 18 steht in elektrisch leitendem Kontakt mit der Probenflüssigkeit 19, so daß durch das alternierende Anlegen einer Spannung von +1 V an zwei Elektroden 181 des Quadrupol 18 eine durch den elektroosmotischen Fluß induzierbare Verwirbelung in dem mit Probenflüssigkeit 19 befüllten Kapillarspalt 7 hervorrufbar ist. Ist ein anderes Paar Elektroden 181 des Quadrupols 181 unter Spannung gesetzt, so verändern sich die Verwirbelungensbedingungen. Durch ständiges Alternieren der Paare von Elektroden 181, die unter Spannung gesetzt werden, erfolgt eine effektive Versmischung der Probenflüssigkeit 19. Die angelegte Niederspannung von nur einem Volt wird verhindert, daß die Probenflüssigkeit 19 im Kapillarspalt 7 elektrochemischen Veränderungen unterliegt und sich bspw. Gasblasen bilden. Der Quadrupol 18 ist dabei, wie in dieser Figur dargestellt, so ausgebildet, daß die optische Zugänglichkeit der Detektionsfläche 12 gewährleistet ist. Alternativ dazu kann der Quadrupol 18 auch als optisch transparente Dünnschicht ausgeführt sein. Fig. 8 shows one on the, not shown in detail Passivation layer of the temperature sensor 16 applied Quadrupole 18 including assigned conductor tracks 1518 and Pads 1418. Quadrupole 18 is electrically conductive Contact with the sample liquid 19 so that the alternating Applying a voltage of +1 V to two electrodes 181 of the Quadrupole 18 an inducible by the electroosmotic flow Swirling in the capillary gap 7 filled with sample liquid 19 can be caused. Another pair of electrodes 181 of quadrupole 181 put under tension, so change Turbulence conditions. By constantly alternating the pairs electrodes 181, which are energized, are made effective mixing of the sample liquid 19. The applied Low voltage of only one volt prevents the Sample liquid 19 in the capillary gap 7 electrochemical Changes are subject to and gas bubbles form, for example. The Quadrupole 18 is designed, as shown in this figure, that the optical accessibility of the detection surface 12 ensures is. Alternatively, the quadrupole 18 can also be an optically transparent one Thin layer.

Die Fig. 9 zeigt die Positionierung des Quadrupols 18 an der dem Kammerkörper 1 zugewandten Oberflächenseite des Kammerträgers 5. Die Fig. 10a und b zeigen schematisch die sich durch Kapillarkräfte zwischen Kammerkörper 1 und Kammerträger 5 im Kapillarspalt 7 gelagerte Probenflüssigkeit 19.
Aufgrund der Größe des Gasreservoirs 6 sind, getrieben von der Minimierung der Grenzflächenenergie, etwaige, nicht im einzelnen dargestellte Luftblasen aus dem Kapillarspalt 7 in das Gasreservoir 6 der Probenkammer 3 ableitbar. Dadurch bildet sich um die Probenflüssigkeit 19 ein Luftring, der diese und den Chip 2 von dem Kammerkörper 1 thermisch isoliert, so daß die Probenflüssigkeit 19 im Kapillarspalt 7 bei geringem Energieverbrauch schnell aufgeheizt und abgekühlt werden kann. Gleichzeitig ist dadurch die Verdunstungsrate der Probenflüssigkeit 19 auch bei Temperaturen nahe des Siedepunktes stark herabgesetzt, da die Probenflüssigkeit 19 nur über den Rand des Kapillarspaltes 7 verdunsten kann. Hinzu kommt, daß der Bedarf an Probenflüssigkeit 19 gering ist (im µl-Bereich) Probenreservoir 7, da der Kapillarspalt 7 nur geringes Raumvolumen ausbildet, wodurch die benötigten Probenvolumina sehr klein sind.
Aufgrund der beschriebenen guten thermischen Isolation des Chips 2 und der Probenflüssigkeit 19 gegenüber dem Kammerkörper 1 sowie des geringen Volumens der Probenflüssigkeit 19, lassen sich die für Mikrothermocycler üblichen, von Posner u.a. beschriebenen Heiz- und Kühlraten erreichen (S. Poser, T. Schulz, U. Dillner, V. Baier, J.M. Köhler, D. Schimkat, G. Mayer, A. Siebert; Chip elementes for fast thermocycling, Sensors and Actuators A, 1997, 62: 672-675). Gleichzeitig ist die Temperaturhomogenität der Probeflüssigkeit 19 und der Wärmeeintrag in die Probeflüssigkeit 19, die im Kapillarspalt 7 zwischen dem Chip 2 und dem themperierbaren Kammerträger 5 positioniert ist, aufgrund des großen Heizflächen-zu-Probenvolumenverhältnisses in hohem Maße gewährleistet.
FIG. 9 shows the positioning of the quadrupole 18 on the surface side of the chamber carrier 5 facing the chamber body 1. FIGS. 10a and b schematically show the sample liquid 19 stored in the capillary gap 7 between the chamber body 1 and the chamber carrier 5.
Due to the size of the gas reservoir 6, driven by the minimization of the interfacial energy, any air bubbles, not shown in detail, can be discharged from the capillary gap 7 into the gas reservoir 6 of the sample chamber 3. This forms an air ring around the sample liquid 19, which thermally insulates it and the chip 2 from the chamber body 1, so that the sample liquid 19 can be quickly heated and cooled in the capillary gap 7 with low energy consumption. At the same time, the evaporation rate of the sample liquid 19 is greatly reduced even at temperatures near the boiling point, since the sample liquid 19 can only evaporate over the edge of the capillary gap 7. In addition, the need for sample liquid 19 is low (in the .mu.l range) sample reservoir 7, since the capillary gap 7 forms only a small volume, which means that the required sample volumes are very small.
Due to the described good thermal insulation of the chip 2 and the sample liquid 19 from the chamber body 1 and the small volume of the sample liquid 19, the heating and cooling rates customary for microthermal cyclers described by Posner and others can be achieved (S. Poser, T. Schulz, U. Dillner, V. Baier, JM Köhler, D. Schimkat, G. Mayer, A. Siebert; Chip elements for fast thermocycling, Sensors and Actuators A, 1997, 62: 672-675). At the same time, the temperature homogeneity of the sample liquid 19 and the heat input into the sample liquid 19, which is positioned in the capillary gap 7 between the chip 2 and the temperature-controllable chamber support 5, are to a large extent ensured due to the large heating surface-to-sample volume ratio.

Figur 11 zeigt den Einbau der Vorrichtung 20 zur Vervielfältigung und Charakterisierung von Nukleinsäuren in ein Analysesystem 200. Das Analysesystem 200 besteht dabei aus einem Temperaturregeler 21, einer Vermischungssteuerung 22, elektrischen Leitungen 23, 24, 33, 34, einem Gesamteinlaß 25, einem Abfallgefäß 26, einem Konditionierer 27, Ventilen/Pumpen 28, Vorratsbehältern 29, Verbindungsschläuchen 30, einer Konditionierersteuerung 31, einer Automatensteuerung 32, einem Steuerrechner 35, einem Rechnerbus 36 und einem Pipettierautomaten 37. Die Vorrichtung 20 steht über den Einlaß 81 und den Auslaß 82 unmittelbar mit , Konditionierer 27 und dem Abfallgefäß 26 sowie über die elektrischen Leitungen 23 und 24 unmittelbar mit dem Temperaturregler 21 und der Vermischungssteuerung 22 in Verbindung, wobei der Temperaturregler mit den Temperaturfühlern 16 und den Mitteln zur Temperaturbeaufschlagung 17 und die Vermischungssteuerung mit dem Quatrupol 18 gekoppelt ist.
Bei der in das Analysesystem 200 eingebauten Vorrichtung 20 zur Vervielfältigung und Charakterisierung von Nukleinsäuren ist die Probenflüssigkeit 19 über den Pipettierautomaten 37 aus nicht im einzelnen dargestellten Mikroplates in den Gesamteinlaß 25 pipettierbar. Durch die Ventile und Pumpen 28, die mit dem Gesamteinlaß 25 in flüssigkeitsleitender Verbindung steht, ist die Probenflüssigkeit 19 durch die Verbindungsschläuche 30 in den Konditionierer 27 leitbar, wobei der Konditionierer 27 zur Aufarbeitung der Probenflüssigkeit 19 dient (bspw. pH-Wert-Einstellung und Ausfiltrieren störender Substanzen). Die Pufferflüssigkeiten und Reaktionslösungen für diese Aufarbeitung sind aus den Vorratsbehältern 29, die mit dem Konditionierer 29 in flüssigkeitsleitender Verbindung stehen, zuführbar. Der Pipettierautomat 3 7 und der Konditionierer 29 stehen mit der Konditionierersteuerung 31 und der Automatensteuerung 32 über die elektischen Leitungen 33 in Verbindung und dienen der Kontrolle und Regelung dieser. Der Einlaß 81 und der Auslaß 82 des Kammerkörpers 1, die in das Gasreservoir 6 führen, dienen der Flüssigkeitsleitung von dem Konditionierer 29 über den Kapillarspalt 7 hin zum Abfall 26.
In der Vorrichtung 20 ist die Probenflüssigkeit 19 im Bereich des Kapillarspalts 7 vermittels des Temperaturregelers 21 und der Vermischungssteuerung 22 temperierbar und vermischbar. Der Kapillarspalt 7 ist dadurch der Ort der Verstärkung und Charakterisierung einer Nukleinsäure, im Beispiel der Target-DNS.
FIG. 11 shows the installation of the device 20 for the duplication and characterization of nucleic acids in an analysis system 200. The analysis system 200 consists of a temperature controller 21, a mixing control 22, electrical lines 23, 24, 33, 34, a total inlet 25, a waste container 26 , a conditioner 27, valves / pumps 28, storage containers 29, connecting hoses 30, a conditioner control 31, an automatic control 32, a control computer 35, a computer bus 36 and an automatic pipetting device 37. The device 20 is directly connected via the inlet 81 and the outlet 82 , Conditioner 27 and the waste vessel 26 and via the electrical lines 23 and 24 directly to the temperature controller 21 and the mixing control 22 in connection, the temperature controller being coupled to the temperature sensors 16 and the means for applying temperature 17 and the mixing control to the Quatrupol 18.
In the device 20 built into the analysis system 200 for the duplication and characterization of nucleic acids, the sample liquid 19 can be pipetted into the total inlet 25 via the automatic pipetting device 37 from microplates not shown in detail. Through the valves and pumps 28, which is in liquid-conducting connection with the total inlet 25, the sample liquid 19 can be conducted through the connecting hoses 30 into the conditioner 27, the conditioner 27 being used for processing the sample liquid 19 (for example pH adjustment and Filter out interfering substances). The buffer liquids and reaction solutions for this workup can be supplied from the storage containers 29, which are in a liquid-conducting connection with the conditioner 29. The automatic pipetting device 37 and the conditioner 29 are connected to the conditioner control 31 and the machine control 32 via the electrical lines 33 and serve to control and regulate them. The inlet 81 and the outlet 82 of the chamber body 1, which lead into the gas reservoir 6, serve the liquid line from the conditioner 29 via the capillary gap 7 to the waste 26.
In the device 20, the sample liquid 19 can be tempered and mixed in the area of the capillary gap 7 by means of the temperature controller 21 and the mixing control 22. The capillary gap 7 is therefore the site of the amplification and characterization of a nucleic acid, in the example the target DNA.

Die Figuren 12a bis c zeigen am Beispiel einer Ausführungsform der Vorrichtung 20, daß der Kammerkörper 1 eine Länge und Breite von 8 mm sowie Höhe von 3 mm aufweist, das Gasreservoir Länge und Breite von 5,4 mm sowie eine Höhe von 0,5 bis 0,8 mm besitzt, der Kammerträger 5 eine Dicke von 0,9 mm, die Ausnehmung 11 auf ihrer, dem Chip 2 zugewandten Seite einen Durchmesser von 2,8 mm und der Einlaß 81 und der Auslaß 82 einen Durchmesser von 0,5 mm besitzen, wobei der Einlaß 81 und der Auslaß 82, sowie die Ausnehmung 11 gegenüber dem Kammerträger 5 eine Neigung von 70 aufweisen.
In der Abb. 13 ist der optische Strahlengang durch eine weitere Ausführungsform der Vorrichtung 20, bei der die Auflagefläche 4 mit dem Kammerträger 5 über eine zusätzliche Dichtfläche 43 lösbar und dichtend verbunden ist, für die Dunkelfeld Fluoreszenzabbildung der Detektionsfläche 12 Chips 2 gezeigt. Das Anregungslicht wird, wie dargestellt, durch den Dunkelfeldspiegel 38 auf die Detektionsfläche 12 entlang des Anregungslichtstrahlengangs 39 gelenkt. Das Fluoreszenzlicht, das von der Detektionsfläche 12 ausgeht, wird entlang des Detektionslichtstrahlengangs 40 auf ein Mikroskopobjektiv 41 gelenkt. Dabei beträgt im Beispiel der Abstand zwischen dem Dunkelfeldspiegel 38 und der Detektionsfläche 12 ca. 4,6 mm und der Abstand zwischen der Detektionsfläche 12 und dem Mikroskopobjektiv 41 ca. 22,0 mm.
Figures 12a to c show an example of an embodiment of the device 20 that the chamber body 1 has a length and width of 8 mm and a height of 3 mm, the gas reservoir length and width of 5.4 mm and a height of 0.5 to 0.8 mm, the chamber support 5 has a thickness of 0.9 mm, the recess 11 on its side facing the chip 2 has a diameter of 2.8 mm and the inlet 81 and the outlet 82 have a diameter of 0.5 mm have, the inlet 81 and the outlet 82, and the recess 11 with respect to the chamber support 5 have an inclination of 70.
FIG. 13 shows the optical beam path through a further embodiment of the device 20, in which the support surface 4 is detachably and sealingly connected to the chamber support 5 via an additional sealing surface 43, for the dark field fluorescence image of the detection surface 12 chips 2. As shown, the excitation light is directed by the dark field mirror 38 onto the detection surface 12 along the excitation light beam path 39. The fluorescent light emanating from the detection surface 12 is directed along the detection light beam path 40 onto a microscope objective 41. In the example, the distance between the dark field mirror 38 and the detection surface 12 is approximately 4.6 mm and the distance between the detection surface 12 and the microscope objective 41 is approximately 22.0 mm.

Das optische Auslesen des Wechselwirkungssignals zwischen der in Fig. 14 gezeigten Target-DNS 50 und der Sonden-DNS 56, 57, 58, 59 auf der Oberfläche des Chips 2 kann aufgrund der Konstruktion der Vorrichtung 20 online erfolgen.
Der Chip 2 ist so in dem Kammerkörper 1 gehaltert, daß er in einem weiten Raumwinkel vermittels Licht durchstrahlt werden kann, so daß online oder in situ die Hybridisierung mittels der markierten Sonden 56, 57, 58, 59, z.B. Fluoreszenzmessungen, verfolgbar sind. Die Anordnung und Größe des Temperaturfühlers 16 und des Quadrupols 19 ist so gestaltet, daß der Strahlengang für die Online Detektion bzw. die nachfolgende in situ Detektion nicht gestört wird und die Detektion der Wechselwirkungen auf den Spots 13 durch alle Formen der optischen Detektion oder Spektroskopie (z.B. Photometrie, Differentialphotometrie, konfokale Fluoreszensmessung, Dunkelfeld Fluoreszensmessung, Durchlicht Fluoreszenzmessung, Auflicht Fluoreszenzmessung usw.) auswertbar sind, wobei die Label 60 und Messmethode aufeinander abgestimmt sein müssen.
The optical readout of the interaction signal between the target DNA 50 shown in FIG. 14 and the probe DNA 56, 57, 58, 59 on the surface of the chip 2 can take place online due to the construction of the device 20.
The chip 2 is held in the chamber body 1 in such a way that it can be irradiated by light in a wide solid angle, so that the hybridization can be tracked online or in situ by means of the marked probes 56, 57, 58, 59, for example fluorescence measurements. The arrangement and size of the temperature sensor 16 and the quadrupole 19 is designed in such a way that the beam path for the online detection or the subsequent in situ detection is not disturbed and the detection of the interactions on the spots 13 by all forms of optical detection or spectroscopy ( For example, photometry, differential photometry, confocal fluorescence measurement, dark field fluorescence measurement, transmitted light fluorescence measurement, incident light fluorescence measurement, etc.) can be evaluated, whereby the label 60 and measurement method must be coordinated.

Die Abb. 14 zeigt die schematische Darstellung des Chips 2, der die Primer 54 (A) und 53 (B') trägt, wobei diese den spezifischen Sequenzbereich der Target-DNS 50, also die Sequenzen A,X,S1,X,B und B',X,S1',X,A', entsprechen. Die Sequenzen A und B bzw. A' und B' definieren den für alle Spezies identischen Bereich der Target-DNS 50 beziehungsweise der einsträngigen AB-Target-DNS 51 und A'B'-Target-DNS 52. Auf dem Chip 2 sind im Beispiel über Spacer 55 Sonden 56, 57, 58 und 59 immobilisiert, die Sequenzen tragen, die spezifisch für die Target-DNS 50 einer besitmmter Herkunft sind, d.h. in dem dargestellten Beispiel hybridisieren nur die Sonden 56 und 57 mit den Sequenzen S1 und S1' an die Verstärkungsprodukte der Target-DNS 50 (gezeigt in Fig. 15). An den Sonden 58 und 59 mit den Sequenzen S2 und S2' findet hingegen keine Hybridisierung statt.
Die Primer 53 und 54 tragen bspw. eine Fluoreszenzmarkierung 60, die durch den Verstärkungsprozeß in die sekundären Amplifikationsprodukte 61 und 62 eingebaubar ist, wodurch die Hybridisierung an den Sonden 56 und 57 während der Verstärkung durch Fluoreszenzmessung detektierbar ist, so daß die Entscheidung ermöglicht wird, ob die Target-DNS 50 zwischen den Sequenzbereichen A und B bzw. A' und B' die Sequenz S1 bzw. S1' und/oder die Sequenz S2 bzw. S2' aufweist.
Da die Sonden-Sequenzen bspw. für eine bestimmte Spezies spezifisch sein können, kann mit diesem Verfahren der Nachweis der Anwesenheit einer bestimmten Spezies in einer Probe erbracht werden.
Fig. 14 shows the schematic representation of the chip 2, which bears the primers 54 (A) and 53 (B '), these showing the specific sequence region of the target DNA 50, ie the sequences A, X, S1, X, B and B ', X, S1', X, A '. The sequences A and B or A 'and B' define the region of the target DNA 50, which is identical for all species, or of the single-stranded AB target DNA 51 and A'B 'target DNS 52 Example immobilized via spacer 55 probes 56, 57, 58 and 59, which carry sequences which are specific for the target DNA 50 of a specific origin, ie in the example shown only the probes 56 and 57 hybridize with the sequences S1 and S1 ' to the amplification products of the target DNA 50 (shown in Fig. 15). In contrast, no hybridization takes place at probes 58 and 59 with sequences S2 and S2 '.
The primers 53 and 54 carry, for example, a fluorescent label 60 which can be incorporated into the secondary amplification products 61 and 62 by the amplification process, as a result of which the hybridization to the probes 56 and 57 can be detected during amplification by fluorescence measurement, so that the decision is made possible whether the target DNA 50 has the sequence S1 or S1 'and / or the sequence S2 or S2' between the sequence areas A and B or A 'and B'.
Since the probe sequences can be specific for a particular species, for example, this method can be used to provide evidence of the presence of a particular species in a sample.

Figur 15 zeigt die schematische Darstellung der sekundären und tertiären Amplifikationsprodukte 61, 62 und 63, die vermittels der Vorrichtung 20 erzeugbar sind.. Die Menge an sekundärem Amplifikationsprodukt 61 und 62 wird dabei ab dem zweiten Reaktionszyklus innerhalb des Kapillarspalts 7 mit jedem Zyklus nahezu verdoppelt, so daß die Konzentration an sekundärem Amplifkationsprodukt nach einigen Zyklen ausreicht, um an die Sonden 56, 57, die an den Spots 13 immobilisiert sind, zu hybridisieren, wobei eine Verlängerung der Sonden 56, 57 komplementär zum sekundären Amplifikationsprodukt 61, 62 stattfindet. Dieses tertiäre Amplifikationsprodukt 63 aus Sonden 56, 57 und sekundären Amplifikationsprodukt 61, 62 kann bspw. über ein Label 60, das an die eingesetzten Primer 53, 54 gekoppelt ist, mittels Fluoreszenzdetektion nachgewiesen werden.Figure 15 shows the schematic representation of the secondary and tertiary Amplification products 61, 62 and 63, which are generated by the device 20 The amount of secondary amplification product 61 and 62 is from the second reaction cycle within the Capillary gap 7 almost doubled with each cycle, so that the Concentration of secondary amplification product after a few Cycles sufficient to attach to probes 56, 57 attached to spots 13 are immobilized to hybridize, extending the Probes 56, 57 complementary to the secondary amplification product 61, 62 takes place. This tertiary amplification product 63 out Probes 56, 57 and secondary amplification product 61, 62 can, for example. via a label 60, which is coupled to the primers 53, 54 used, be detected by means of fluorescence detection.

In einem ersten Anwendungsbeispiel soll der spezifische Nachweis von einzelnen Mikroorganismenspezies beschrieben werden:
Der Chip 2 der Vorrichtung 20 ist in diesem Beispiel ein DNA-Chip und dient, während oder nach der DNS-Amplifikation, der Detektion der Verstärkungsprodukte und ggf.auch der Bereitstellung von Festphasengekoppelten DNS-Primern (Abb. 14 und 15). Bspw. wird eine Sequenz S1 die spezifisch ist für eine Spezies (z.B. Escherichia coli) durch den thermischen Amplifikationsprozeß (z.B. PCR) so häufig aus einer Vielzahl von möglichen Targets heraus kopiert, daß die sichere Erkennung dieser Sequenz durch Hybridisierung an den Sonden 56, 57, 58 und 59 und Fluoreszenzmessung auf der Detektionsfläche 12 möglich wird. Sind mehrere Sequenzen bekannt, die jeweils spezifisch sind für z.B. eine Spezies, einen Stamm oder eine Krankheit und die alle zwischen zwei konservierten, in allen Fällen identischen Bereichen liegen, so lassen sich durch Immobilisierung der entsprechenden Sonden auf dem Chip 2 alle Spezien, Stämme bzw. Krankheiten parallel mit nur einer thermischen Amplifikationsreaktion in der Vorrichtung 20 nachweisen. Durch Verwendung von mehreren Primerpaaren 53, 54 läßt sich der Anwendungsbereich erweitern. Die Fluoreszenzdetektion der tertiären Amplifikationsprodukte 63 erfolgt im einfachsten Fall durch Fluoreszenzmarkierung 60 der Primer 53, 54. Andere Markierungsarten, wie bspw. Interkalatoren, Radioisotope, FRET-Systeme, fluoreszenzmarkierte Nukleotide usw. sind dadurch nicht ausgeschlossen.
Der in der Vorrichtung 20 ablaufende molekularbiologische Prozeß soll nachfolgend anhand der Abb.14 und 15 beschrieben werden.
Die einer biologischen Probe entstammende Target DNS 50 wird zusammen mit Primem 53, 54, die gelabelt sein können 60, in das Probenreservoir (den Kapillarspalt) 7 gegeben. Die Spots 13 des Chips 2 auf der Detektionsfläche 12 tragen über Spacer 55 Sonden-DNS mit Sequenzen S1, S1', S2, S2' usw., die dadurch charakterisiert sind, daß sie komplementär zu denen sein können, die in der Target-DNS 50 vorkommen. In dem in Abb. 14 dargestelltem Beispiel beinhaltet die Target-DNS 50 Sequenzen, die komplementärzu den Sonden 56 und 57 sind. Jede Sequenz S1, S1' und S2, S2', usw. der Sonden (56, 57, 58, 59) wurde so gewählt, daß sie spezifisch für eine spezielle Fragestellung ist. Gilt es zum Beispiel bestimmte Krankheitserreger mittels der Vorrichtung 20 zu detektieren, so seien S1 und S1' spezifisch für den Erreger Bacillus cereus, S2 und S2' für den Erreger Campylobacter jejuni usw.. Befindet sich lediglich der Erreger Bacillus cereus in einer Stuhlprobe, so wird sich nach der sachgerechten Aufarbeitung der Probe eine Target-DNS 50 in der Probenflüssigkeit befinden, die nur die Sequenzen S1 und S1' beinhaltet. Um diese nun detektierbar auf der Detektionsfläche 12 zur Hybridisierung zu bringen, muß im allgemeinen die Anzahl der Kopien an Target-DNS 50 signifikant erhöht werden. Daher wird eine rauschunterdrückende, spezifische DNS-Amplifikationsmethode in dem Probenreservoir (Kapillarspalt) 7 durchgeführt. Zu diesem Zweck werden zwei Primer 53, 54 mit Sequenzen A und B', die für alle Erreger gleich sind ausgesucht, die alle möglichen erregerspezifischen Sonden-Sequenzen (S1, S2, S3 ...) einrahmen (so wie in Abb. 14 die Sequenzen S1 bzw. S1' von den Sequenzen A und B' eingerahmt werden). Dann wird, wie bei der PCR, die Target-DNS 50 bei ca. 90 °C denaturiert, die Primer 53, 54 anealen bei ca. 65°C an B bzw. A' und es wird bei ca. 70°C eine Primer-Extensions-Reaktion durchgeführt, die die Target DNS 51, 52 doppelsträngig macht. Das erhaltene Produkt ist dann das primäre Amplifikationsprodukt mit der Sequenz A,X,S1,X,B,Y bzw. B',X,S1',X,A',Y. Es wird der Zyklus aus Denaturierung, Anealen und Extension wiederholt, woraufhin man das sekundäre Amplifikationsprodukt 61,62 (siehe Abb.15) erhält. Durch erneutes mehrfaches Wiederholen des Amplifikationszykluses wird die Zahl der sekundären Amplifikationsprodukte 61, 62 jeweils nahezu verdoppelt. Dadurch steigt die Konzentration an DNS, die die Sequenzen S1 und S1' beinhalten derart an, daß eine sichere Detektion der Hybridisierung an den Sonden 56, 57 möglich wird. Unspezifisch an den Spots bindende DNS, die sich noch in der Probenflüssigkeit befindet, wird von dem Amplifikationsprozeß nicht erfaßt, wodurch die Selektivität des Gesamtverfahrens stark erhöht wird.
Auf diese Weise wird hochspezifisch und hochempfindlich Bacillus cereus nachgewiesen. Anstelle des PCR Protokolls können auch andere Verstärkungsverfahren zu Anwendung gelangen.
Durch den Einbau der Vorrichtung 20 zur Vervielfältigung und Charakterisierung von Nukleinsäuren in das Analysesystem 200 (Abb. 11) besteht die Möglichkeit, die Prozesse der Aufarbeitung von Proben automatisch und kontinuierlich durchzuführen.
In a first application example, the specific detection of individual microorganism species will be described:
The chip 2 of the device 20 is a DNA chip in this example and serves, during or after the DNA amplification, for the detection of the amplification products and possibly also for the provision of solid phase coupled DNA primers (Figs. 14 and 15). For example. a sequence S1 which is specific for a species (for example Escherichia coli ) is copied out of a large number of possible targets by the thermal amplification process (for example PCR) so often that the reliable detection of this sequence by hybridization to the probes 56, 57, 58 and 59 and fluorescence measurement on the detection surface 12 is possible. If several sequences are known, each of which is specific for a species, a strain or a disease and which are all between two conserved areas that are identical in all cases, immobilization of the corresponding probes on chip 2 can be used to identify all species, strains and Detect diseases in parallel with only one thermal amplification reaction in the device 20. The range of applications can be expanded by using several pairs of primers 53, 54. In the simplest case, the fluorescence detection of the tertiary amplification products 63 is carried out by means of fluorescent labeling 60 of the primers 53, 54. Other types of labeling, such as intercalators, radioisotopes, FRET systems, fluorescence-labeled nucleotides, etc., are not thereby excluded.
The molecular biological process taking place in the device 20 will be described below with reference to FIGS. 14 and 15.
The target DNA 50 originating from a biological sample is added to the sample reservoir (the capillary gap) 7 together with primers 53, 54, which can be labeled 60. The spots 13 of the chip 2 on the detection surface 12 carry, via spacers 55, probe DNA with sequences S1, S1 ', S2, S2' etc., which are characterized in that they can be complementary to those in the target DNA 50 occur. In the example shown in Fig. 14, the target DNA contains 50 sequences that are complementary to probes 56 and 57. Each sequence S1, S1 'and S2, S2', etc. of the probes (56, 57, 58, 59) was chosen in such a way that it is specific for a specific problem. If, for example, certain pathogens are to be detected by means of the device 20, S1 and S1 'are specific for the Bacillus cereus pathogen , S2 and S2' for the Campylobacter jejuni pathogen etc. If there is only the Bacillus cereus pathogen in a stool sample, so After the sample has been properly processed, there will be a target DNA 50 in the sample liquid which only contains the sequences S1 and S1 '. In order to make them detectably hybridize on the detection surface 12, the number of copies of target DNA 50 must generally be increased significantly. A noise-suppressing, specific DNA amplification method is therefore carried out in the sample reservoir (capillary gap) 7. For this purpose, two primers 53, 54 with sequences A and B ', which are the same for all pathogens, are selected, which frame all possible pathogen-specific probe sequences (S1, S2, S3 ...) (as in Fig. 14) Sequences S1 and S1 'are framed by sequences A and B'). Then, as in the PCR, the target DNA 50 is denatured at approx. 90 ° C, the primers 53, 54 aneal at approx. 65 ° C at B or A 'and it becomes a primer at approx. 70 ° C -Extensions reaction performed, which makes the target DNA 51, 52 double-stranded. The product obtained is then the primary amplification product with the sequence A, X, S1, X, B, Y or B ', X, S1', X, A ', Y. The cycle of denaturation, anal and extension is repeated, whereupon the secondary amplification product 61.62 (see FIG. 15) is obtained. By repeating the amplification cycle several times, the number of secondary amplification products 61, 62 is almost doubled in each case. As a result, the concentration of DNA which contains the sequences S1 and S1 'increases in such a way that reliable detection of the hybridization on the probes 56, 57 is possible. DNA which is not specifically bound to the spots and which is still in the sample liquid is not detected by the amplification process, as a result of which the selectivity of the overall method is greatly increased.
In this way, Bacillus cereus is detected in a highly specific and highly sensitive manner. Instead of the PCR protocol, other amplification methods can also be used.
By installing the device 20 for the duplication and characterization of nucleic acids in the analysis system 200 (FIG. 11), it is possible to carry out the processes of processing samples automatically and continuously.

In einem zweiten Anwendungsbeispiel soll einparalleler Nachweis von bakteriellen Erregern in Stuhlproben beschrieben werden:
Der Chip 2 der Vorrichtung 20 ist bei diesem Beispiel ein DNA-Chip und dient dem parallelen Nachweis mehrerer bakterieller Erreger in humanen oder tierischen Stuhlproben.
Aus jeder Stuhlprobe wird die Gesamt DNS mittels Standardtechniken (z.B. mit Hilfe des dafür vorgesehenen Kits der Firma Qiagen) isoliert. Die DNA wird in ein für die Anwendung in der Vorrichtung 20 geeignetes Volumen eines standardisierten, gegebenenfalls kommerziell verfügbaren Puffersystemes aufgenommen, in dem eine PCR-Amplifikation durchgeführt werden kann. Dieses enthält neben der Pufferkomponente mindestens eine thermostabile Polymerase, ein gegebenenfalls isomolares Gemisch der vier natürlichen Desoxynukleotidtriphosphate, ein divalentes Salz, gegebenenfalls Komponenten zur Steigerung der Effektivität der PCR, sowie Bausteine zum Labeln der PCR-Produkte (z.B. fluoreszenz- Biotin- oder ähnlich markierte Desoxynukleotidtriphosphate).
Für den Nachweis der Organismen findet ein Chip 2 Verwendung, auf dessen Oberfläche Oligonukleotid Sonden 56, 57, 58, 59 immobilisiert sind, die komplementär zu einem oder mehreren variablen Bereichen der 16S rRNS Gene und/oder der 23S rRNS Gene und/oder der innergenischen Bereiche zwischen 16S und 23S rRNS Gen verschiedener nachzuweisender Organismen sind. Die Sonden 56, 57, 58, 59 sind beispielsweise gerichtet gegen eine oder mehrere der entsprechenden Sequenzen von Aeromonas spec. und/oder Bacillus cereus und/oder Campylobacter jejuni und/oder Clostridium difficile und/oder Clostridium perfringens und/oder Plesiomonas shigelloides und/oder Salmonella spec. und/oder Shigella spec. und/oder Staphylococcus aureus und/oder Tropheryma whippelii und/oder Vibrio cholerae und/oder Vibrio parahaemolyticus und/oder Yersinia enterocolitica.
Die Oligonukleotid Sonden 56, 57, 58, 59 werden in Spots 13 angeordnet, so daß jeder einzelne Spot 13 eine Vielzahl von Oligonukleotid Sonden (z.B. die Sonde 56) der gleichen Sequenz enthält. Die Immobilisierung der Sonden 56, 57, 58, 59 erfolgt entweder an deren 3'-Ende oder am 5' Ende bzw. an einer internen Position, wobei gegebenenfalls das 3' Ende der Sonden 56, 57, 58, 59 z.B. durch Aminierung blockiert wird, so daß es als Substrat für DNS-Polymerasen nicht dienen kann.
Die Auswahl der Sonden 56, 57, 58, 59 erfolgt so, daß einerseits jede der Sonden eine hohe Sequenzspezifität für den zu detektierenden Organismus aufweist und andererseits in den Genomen der Keime in einer geringen Distanz von der Bindungsstelle der spezifischen Sonden Motive existieren, die für alle oder für Gruppen der zu detektierenden Organismen die gleiche Sequenz besitzen.
Gegen diese Motive werden universelle Primer 53, 54 gerichtet, die dazu geeignet sind, bei allen nachzuweisenden Organismen einen Sequenzabschnitt, der die Bindungsstelle der auf dem Chip 2 immobilisierten Sonden enthält, mittels PCR zu amplifizieren. Diese
Primer 53, 54 werden der, aus der Stuhlprobe isolierten, in der Amplifikationslösung (Probenflüssigkeit 19) aufgenommenen DNS, zugesetzt. Gegebenenfalls kann der Primer 53, 54, der während der nachfolgenden PCR Amplifikation die Synthese des Stranges spezifiziert, der die zur auf dem Chip 2 immobilisierten Probe komplementäre Sequenz enthält als markierte Komponente zugesetzt werden.
Das Amplifikationsgemisch wird in die mit einem beschriebenen Chip 2 versehene Vorrichtung 20 gefüllt. Die Lösung in der Vorrichtung 20 wird einem zyklischen Temperaturregime unterworfen, so daß die Target-DNS 50 nach einem typischen PCR-Mechanismus amplifiziert und gegebenenfalls gleichzeitig markiert wird. Nach hinreichender Amplifikation erfolgt ein Hybridisierungsschritt, bei dem die mit den universellen Primern 53, 54 amplifizierten Targetsequenzen mit den spezifischen, auf dem Chip 2 immobilisierten Sonden 56, 57, 58, 59 hybridisieren.
Nach Abschluß der Reaktion folgt ein Spülschritt, bei dem nicht mit dem Chip verknüpfte und unspezifisch gebundene DNS Moleküle entfernt werden.
Anschließend erfolgt Detektion der auf dem Chip 2 verbliebenen Markierung. In der Stuhl-Probe anwesende Organismen werden über die Markierung der für sie spezifischen Proben-Spots 13 auf dem Chip 2 identifiziert.
A second application example describes a parallel detection of bacterial pathogens in stool samples:
In this example, the chip 2 of the device 20 is a DNA chip and serves for the parallel detection of several bacterial pathogens in human or animal stool samples.
The total DNA from each stool sample is isolated using standard techniques (eg using the Qiagen kit provided for this). The DNA is taken up in a volume of a standardized, optionally commercially available buffer system suitable for use in the device 20, in which a PCR amplification can be carried out. In addition to the buffer component, this contains at least one thermostable polymerase, an optionally isomolar mixture of the four natural deoxynucleotide triphosphates, a divalent salt, optionally components to increase the effectiveness of the PCR, and building blocks for labeling the PCR products (e.g. fluorescence-biotin or similarly labeled deoxynucleotide triphosphates ).
For the detection of the organisms, a chip 2 is used, on the surface of which oligonucleotide probes 56, 57, 58, 59 are immobilized, which are complementary to one or more variable regions of the 16S rRNA genes and / or the 23S rRNA genes and / or the internal genes Ranges between 16S and 23S rRNA genes of different organisms to be detected are. The probes 56, 57, 58, 59 are directed, for example, against one or more of the corresponding sequences from Aeromonas spec. and / or Bacillus cereus and / or Campylobacter jejuni and / or Clostridium difficile and / or Clostridium perfringens and / or Plesiomonas shigelloides and / or Salmonella spec. and / or Shigella spec. and / or Staphylococcus aureus and / or Tropheryma whippelii and / or Vibrio cholerae and / or Vibrio parahaemolyticus and / or Yersinia enterocolitica .
The oligonucleotide probes 56, 57, 58, 59 are arranged in spots 13, so that each individual spot 13 contains a multiplicity of oligonucleotide probes (for example the probe 56) of the same sequence. The probes 56, 57, 58, 59 are immobilized either at their 3 'end or at the 5' end or at an internal position, the 3 'end of the probes 56, 57, 58, 59 possibly blocking, for example by amination is so that it can not serve as a substrate for DNA polymerases.
The selection of the probes 56, 57, 58, 59 takes place in such a way that on the one hand each of the probes has a high sequence specificity for the organism to be detected and on the other hand there are motifs in the genomes of the germs at a short distance from the binding site of the specific probes all or for groups of the organisms to be detected have the same sequence.
Against these motifs, universal primers 53, 54 are directed, which are suitable for PCR amplification of a sequence section, which contains the binding site of the probes immobilized on chip 2, in all organisms to be detected. This
Primers 53, 54 are added to the DNA isolated from the stool sample and taken up in the amplification solution (sample liquid 19). Optionally, the primer 53, 54, which specifies the synthesis of the strand which contains the sequence complementary to the sample immobilized on the chip 2 during the subsequent PCR amplification, can be added as a labeled component.
The amplification mixture is filled into the device 20 provided with a chip 2 as described. The solution in the device 20 is subjected to a cyclic temperature regime, so that the target DNA 50 is amplified according to a typical PCR mechanism and, if necessary, simultaneously labeled. After sufficient amplification, there is a hybridization step in which the target sequences amplified with the universal primers 53, 54 hybridize with the specific probes 56, 57, 58, 59 immobilized on the chip 2.
After the reaction has ended, a rinsing step follows in which DNA molecules which are not linked to the chip and are bound non-specifically are removed.
Subsequently, the marking remaining on the chip 2 is detected. Organisms present in the stool sample are identified by marking the sample spots 13 specific to them on the chip 2.

Um Probenflüssigkeiten 19 bspw. aus Stuhlproben oder Gewebe zu erhalten sind eine Vielzahl von Aufarbeitungsschritte notwendig. Es müssen Zellen aufgeschlossen werden, Proteine, Lipide und Feststoffe abgetrennt werden und die DNS aufgearbeitet und gereinigt werden. Die für die Verwendung der Vorrichtung notwendigen Enzyme, Primer und sonstigen Substanzen müssen ebenfalls der Probenflüssigkeit 19 zugeführt werden. Diese Schritte lassen sich durch den Einbau der Vorrichtung 20 zur Vervielfältigung und Charakterisierung von Nukleinsäuren in das Analysesystem 200, daß u.a. aus Pumpen und Ventilen 28, die die Flüssigkeiten bewegen und Steuern, aus Filtern und Reaktionskammern (Konditionierer 27), in denen die einzelnen Prozeßschritte nacheinander durchgeführt werden und aus Voraratsbehältern 29, die die dazu notwendigen Chemikalien liefern, besteht (gezeigt in Fig. 11), automatisch und kontinuierlich durchführen. Dabei werden die Proben durch einen Pipettierroboter 37 aus einem nicht im einzelnen dargestellten Standardbelieferungssystem in den Gesamteinlaß 25 zur Konditionierung eingefüllt. Die durch das Analysesystem 200 aufgearbeiteten Proben gelangen über den Einlaß 81 in die Vorrichtung 20, so das eine Vervielfältigung und Charakterisierung von Nukleinsäuren der Proben automatisiert durchgeführt werden kann. Der gesamte Prozeß wird von einem Steuerrechner 35 überwacht, der über einen Rechnerbus 36 mit elektronischen Reglern und Kontrollgeräten 21, 22, 31, 32 verbunden ist. To sample liquids 19, for example, from stool samples or tissue a large number of processing steps are required. It cells have to be broken down, proteins, lipids and solids are separated and the DNA is worked up and cleaned. The enzymes, primers and necessary for the use of the device other substances must also be in the sample liquid 19 are fed. These steps can be done by installing the Device 20 for the duplication and characterization of Nucleic acids in the analysis system 200 that i.a. from pumps and Valves 28 that move and control the liquids, from filters and Reaction chambers (conditioner 27) in which the individual Process steps are carried out sequentially and from Storage containers 29, which supply the chemicals required for this, exists (shown in Fig. 11), automatically and continuously. The samples are not made from one by a pipetting robot 37 Standard delivery system shown in detail in the Total inlet 25 filled for conditioning. The through that Analysis system 200 processed samples pass through inlet 81 in the device 20, so that a duplication and Automated characterization of sample nucleic acids can be carried out. The whole process is done by one Control computer 35 monitors the over a computer bus 36 with electronic controllers and control devices 21, 22, 31, 32 is connected.

Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein. All in the description, the following claims and the Features shown in the drawing can be used both individually and any combination with each other be essential to the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1 -1 -
Kammerkörperchamber body
2 -2 -
Chipchip
3 -3 -
Probenkammersample chamber
4 -4 -
Auflageflächebearing surface
5 -5 -
Kammerträgerchamber support
6 -6 -
Gasreservoirgas reservoir
7 -7 -
Kapillarspaltcapillary
81 -81 -
EinlaßInlet
82 -82 -
Auslaßoutlet
9 -9 -
GasreservoirnaseGas reservoir nose
11 -11 -
Ausnehmungrecess
12 -12 -
Detektionsflächedetection area
13 -13 -
Spotcommercial
14 -14 -
Anschlußflächenlands
15 -15 -
Leiterbahnconductor path
16 -16 -
Temperaturfühlertemperature sensor
17 -17 -
Mittel zur TemperaturbeaufschlagungMeans for applying temperature
171 -171 -
Widerstandsleitungenresistance lines
18 -18 -
Quadrupolquadrupole
181 -181 -
Elektrodenelectrodes
19 -19 -
Probenflüssigkeitsample liquid
20 -20 -
Vorrichtungcontraption
21 -21 -
Temperaturreglerthermostat
22 -22 -
Vermischungssteuerungmixing control
23 -23 -
elektrische Leitungen für die Temperaturregelungelectrical cables for temperature control
24 -24 -
elektrische Leitungen für die Quadrupolregelungelectrical cables for quadrupole control
25 -25 -
Gesamteinlaßtotal intake
26 -26 -
Abfallwaste
27 -27 -
Konditioniererconditioner
28 -28 -
Pumpen/VentilePumps / valves
29 -29 -
Vorratsbehälterreservoir
30 -30 -
Verbindungsschläucheconnecting hoses
31 -31 -
KonditionierersteuerungKonditionierersteuerung
32 -32 -
Automatensteuerung The machine control
33 -33 -
elektrische Leitungen für die Konditionierersteuerungelectrical cables for conditioner control
34 -34 -
elektrische Leitungen für die Automatensteuerung.electrical lines for automatic control.
35 -35 -
Steuerrechnertax calculator
36 -36 -
Rechnerbuscomputer bus
37 -37 -
Pipettierautomat (Pipettierroboter)Automatic pipetting device (pipetting robot)
38 -38 -
DunkelfeldspiegelDarkfield mirror
39 -39 -
AnregungslichtstrahiengangAnregungslichtstrahiengang
40 -40 -
DetektionslichtstrahlengangDetection light beam path
4141
Mikroskopobjektivmicroscope objective
4242
Berandungboundary
43 -43 -
Dichtflächesealing surface
50 -50 -
Target-DNSTarget DNA
51 -51 -
AB Target-DNSAB Target DNS
52 -52 -
A'B' Target-DNSA'B 'target DNS
53 -53 -
Primer B'Primer B '
54 -54 -
Primer APrimer A
55 -55 -
Spacerspacer
56 -56 -
Sonde S1Probe S1
57 -57 -
Sonde S1'Probe S1 '
58 -58 -
Sonde S2Probe S2
59 -59 -
Sonde S2'Probe S2 '
60 -60 -
Labellabel
61 -61 -
sekundäres Amplifikationsproduktsecondary amplification product
62 -62 -
sekundäres Amplifikationsproduktsecondary amplification product
63 -63 -
tertiäres Amplifikationsprodukttertiary amplification product
200 -200 -
Analysesystemanalysis system
1416 -1416 -
Anschlußflächen des TemperaturfühlersConnection surfaces of the temperature sensor
1417 -1417 -
Anschlußflächen des HeizersPads of the heater
1418 -1418 -
Anschlußflächen des QuadrupolsQuadrupole pads
1516 -1516 -
Leiterbahn des TemperaturfühlersConductor path of the temperature sensor
1517 -1517 -
Leiterbahn HeizersConductor heater
1518 -1518 -
Leiterbahn QuadrupolsQuadrupols trace
A-A -A-A -
Schnittebenecutting plane
B-B -B-B -
Schnittebenecutting plane
C-C -C-C -
Schnittebenecutting plane
D-D -D-D -
Schnittebenecutting plane
E-E -E-E -
Schnittebenecutting plane

Claims (19)

  1. Device for amplifying and characterizing nucleic acids in a reaction chamber,
    characterized in that an optically transparent chamber body (1), which contains an optically transparent chip (2) having nucleic acids bound thereto and a detection area (12), is sealingly placed on an optically transparent chamber support (5), so that a sample chamber (3) having a capillary gap (7) is formed between the chamber support (5) and the detection area (12) of the chip (2), the chamber being temperature-adjustable and flow-controllable.
  2. Device according to claim 1,
    characterized in that the temperature adjustment means are connected with the chamber support (5) and enable a rapid heating and/or cooling of the sample chamber (3) having the capillary gap (7).
  3. Device according to claim 2,
    characterized in that the temperature adjustment means are situated on the side of the chamber support (5) facing towards the chamber body (1).
  4. Device according to any one of the preceding claims,
    characterized in that the temperature adjustment means (16, 17) are configured in the form of optically transparent thin films and/or are so finely structured that the optical transparency of the chip (2) remains unaffected at least in the area of the nucleic acids bound in spots on the detection area (12).
  5. Device according to claim 4,
    characterized in that the temperature adjustment means comprise micro-structured heating elements (17), preferably nickel-chromium-thick film-resistance heaters and/or micro-structured temperature sensors (16), preferably nickel-chromium-thick film-resistance sensors.
  6. Device according to any one of the preceding claims,
    characterized in that the chamber support (5) comprises systems for thoroughly mixing the sample liquid, which are configured in the form of optically transparent thin films and/or are so finely structured that the optical transparency of the chip (2) remains unaffected at least in the area of the nucleic acids bound in spots on the detection area (12), whereby preferably a quadrupole system for inducing an electro-osmotic flow is concerned.
  7. Device according to claim 6,
    characterized in that the quadrupole system is realized as gold-titanium electrodes.
  8. Device according to any one of the preceding claims,
    characterized in that the chamber support (5) and the chamber body (1) preferably consist of glass and/or an optically transparent synthetic material, particularly preferably of polycarbonate and/or polymethane ethyl acrylate.
  9. Device according to any one of the preceding claims,
    characterized in that the chamber support (5) consists of a thermally conducting material.
  10. Device according to any one of the preceding claims,
    characterized in that the chip consists of glass and/or silicon.
  11. Device according to any one of the preceding claims,
    characterized in that the chamber body (1) comprises at least in the area of the chip (2) an optically transparent conical recess.
  12. Device according to any one of the preceding claims,
    characterized in that the chamber body has an inlet (81) and an outlet (82) spatially separate from each other, for charging the sample chamber (3) and the capillary gap (7).
  13. Device according to claim 12,
    characterized in that the inlet (81) and the outlet (82) are arranged unilaterally to the chip (2) and are separated by a gas reservoir nose (9).
  14. Device according to any one of the preceding claims,
    characterized in that the chamber body (1) is sealingly and unreleasably connected with the chamber support (5) by an adhesive and/or weld connection, or is releasably connected through an additional sealing surface (43).
  15. Device according to any one of the preceding claims,
    characterized in that the detection area (12) is configured in the form of spots, to which probes (56, 57, 58, 59) in the form of nucleic acid molecules are immobilized, said nucleic acid molecules preferably being DNA molecules and/or RNA molecules.
  16. Device according to claim 15,
    characterized in that the probes (56, 57, 58, 59) are immobilized through spacers (55).
  17. Device according to any one of the preceding claims,
    characterized in that the evaluation of the chip-based characterization of nucleic acids may ensue by forms of the optical detection and/or spectroscopy, particularly preferably by transmission light fluorescence measurement, dark field fluorescence measurement, confocal fluorescence measurement, reflective light fluorescence measurement, photometry and/or differential photometry.
  18. Use of a device according to any one of the preceding claims for an almost simultaneous amplification and chip-based characterization of nucleic acids.
  19. Use of a device according to any one of the claims 1 to 17 for an almost simultaneous amplification by PCR and for a chip-based characterization of nucleic acids.
EP00952983A 1999-07-02 2000-06-30 Microchip matrix device for duplicating and characterizing nucleic acids Expired - Lifetime EP1192007B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19932423 1999-07-02
DE19932423 1999-07-02
PCT/EP2000/006103 WO2001002094A1 (en) 1999-07-02 2000-06-30 Microchip matrix device for duplicating and characterizing nucleic acids

Publications (2)

Publication Number Publication Date
EP1192007A1 EP1192007A1 (en) 2002-04-03
EP1192007B1 true EP1192007B1 (en) 2004-04-21

Family

ID=7914426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00952983A Expired - Lifetime EP1192007B1 (en) 1999-07-02 2000-06-30 Microchip matrix device for duplicating and characterizing nucleic acids

Country Status (10)

Country Link
US (1) US7888074B2 (en)
EP (1) EP1192007B1 (en)
AT (1) ATE264718T1 (en)
AU (1) AU768113B2 (en)
CA (1) CA2379125C (en)
DE (1) DE50006164D1 (en)
ES (1) ES2219374T3 (en)
HK (1) HK1046381A1 (en)
IL (2) IL147227A0 (en)
WO (1) WO2001002094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108158A1 (en) * 2012-09-03 2014-03-06 Johann Wolfgang Goethe-Universität Capillary cell, assembly and method for receiving, positioning and examining a microscopic sample

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677131B2 (en) * 2001-05-14 2004-01-13 Corning Incorporated Well frame including connectors for biological fluids
DE10132785A1 (en) * 2001-07-06 2003-01-16 Clondiag Chip Tech Gmbh Method for the detection of nucleic acid molecules amplified in a polymerase chain reaction
US6893822B2 (en) 2001-07-19 2005-05-17 Nanogen Recognomics Gmbh Enzymatic modification of a nucleic acid-synthetic binding unit conjugate
EP1281439A1 (en) 2001-07-30 2003-02-05 F. Hoffmann-La Roche Ag Device for receiving a chip shaped carrier and process for assembling a plurality of such devices
DE10149684B4 (en) * 2001-10-09 2005-02-17 Clondiag Chip Technologies Gmbh Device for holding a substance library carrier
DE10152690A1 (en) * 2001-10-19 2003-05-08 Genescan Europ Ag Flow reaction chamber for sensor chips
US6756223B2 (en) * 2001-12-18 2004-06-29 Motorola, Inc. Electro-chemical analysis device with integrated thermal sensor and method for monitoring a sample using the device
DE10201463B4 (en) 2002-01-16 2005-07-21 Clondiag Chip Technologies Gmbh Reaction vessel for performing array method
CN1217003C (en) * 2003-02-20 2005-08-31 北京博奥生物芯片有限责任公司 Micro array reaction apparatus and uses thereof
DE10315074A1 (en) 2003-04-02 2004-10-14 Clondiag Chip Technologies Gmbh Device for the duplication and detection of nucleic acids
DE10316723A1 (en) * 2003-04-09 2004-11-18 Siemens Ag Test slide with sample wells, forming sealed reaction chamber with casing, also includes bonded seal forming resting surface for casing
WO2004090633A2 (en) * 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
DE10318219A1 (en) * 2003-04-22 2004-11-11 Febit Ag Plastics housing, to handle and protect a biochip for synthesis and analysis applications, has a recess in the base body to accommodate the biochip with a frame to define its position
DE10323197B4 (en) * 2003-05-22 2008-10-02 Clondiag Chip Technologies Gmbh Device for holding and detecting substance libraries
CN1289904C (en) 2003-08-01 2006-12-13 博奥生物有限公司 Micro array reaction unit and its use
DE10336849A1 (en) 2003-08-11 2005-03-10 Thinxxs Gmbh flow cell
DE10338837A1 (en) * 2003-08-21 2004-11-11 Infineon Technologies Ag Production of DNA chip arrays, to duplicate and characterize nucleic acids, has a structure of ring-shaped sample chambers mounted on an optically transparent wafer carrier which is divided into separate chip arrays
DE10352888A1 (en) * 2003-11-10 2005-05-04 Infineon Technologies Ag DNA-Chip-array processor has base, into which module is inserted containing specimen plate with contacts on its upper surface, cover plate with contact strip on its lower surface and contact bars connecting strip and contacts
EP1541991A1 (en) * 2003-12-12 2005-06-15 STMicroelectronics S.r.l. Integrated semiconductor chemical microreactor for real-time monitoring of biological reactions
DE10359160A1 (en) * 2003-12-16 2005-07-21 Roche Diagnostics Gmbh Test element for the examination of sample material
DE102004003860A1 (en) 2004-01-26 2005-08-18 Clondiag Chip Technologies Gmbh Method for genotyping and pathotyping of Pseudomonas aeruginosa
DE102004022263A1 (en) 2004-05-06 2005-12-15 Clondiag Chip Technologies Gmbh Apparatus and method for detecting molecular interactions
DE102005052752A1 (en) 2005-11-04 2007-05-10 Clondiag Chip Technologies Gmbh Apparatus and method for detecting molecular interactions
DE102005052713A1 (en) 2005-11-04 2007-05-16 Clondiag Chip Tech Gmbh Apparatus and method for detecting molecular interactions
US8053214B2 (en) * 2004-09-09 2011-11-08 Microfluidic Systems, Inc. Apparatus and method of extracting and optically analyzing an analyte from a fluid-based sample
DE102004056735A1 (en) 2004-11-09 2006-07-20 Clondiag Chip Technologies Gmbh Device for performing and analyzing microarray experiments
JP4810093B2 (en) * 2004-12-28 2011-11-09 オリンパス株式会社 Culture observation device and specimen tray heat retention device and lid
US7705739B2 (en) * 2006-08-24 2010-04-27 Microfluidic Systems, Inc. Integrated airborne substance collection and detection system
US7858366B2 (en) * 2006-08-24 2010-12-28 Microfluidic Systems, Inc Integrated airborne substance collection and detection system
WO2008046930A1 (en) 2006-10-20 2008-04-24 Clondiag Gmbh Assay devices and methods for the detection of analytes
CN103497991A (en) 2006-11-06 2014-01-08 科隆迪亚戈有限公司 Device and method for analysis using binding members
DE102007031526B4 (en) 2007-07-06 2010-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Use of an anode in a fuel cell for the oxidation of ethanol and / or at least one C3 to C10-containing alcohol
JP5859203B2 (en) 2007-07-23 2016-02-10 クロンデイアグ・ゲーエムベーハー Assay
DE102007052281A1 (en) * 2007-11-02 2009-05-07 Zenteris Gmbh Single-step multiplex immunoassay
US8368882B2 (en) * 2009-01-30 2013-02-05 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
DE102009061008B4 (en) 2009-03-20 2014-09-25 Retina Implant Ag Use of a test device and method for testing cells, cell cultures and / or organotypic cell aggregates
US9199080B2 (en) 2011-09-12 2015-12-01 Okuvision Gmbh Method for treating an eye
US10928321B2 (en) 2012-03-09 2021-02-23 Ubiquitome Limited Portable device for detecting molecule(s)
CN104583757A (en) 2012-06-28 2015-04-29 弗洛雷森特里克公司 A chemical indicator device
DE102012219656A1 (en) * 2012-10-26 2014-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SYSTEM FOR CARRYING OUT TOUCH-FREE MEASUREMENT ON A SAMPLE AND SAMPLE CARRIER
WO2014137228A1 (en) * 2013-03-08 2014-09-12 Otago Innovation Limited Reaction vessel holder and molecule detection device
GB201403076D0 (en) 2014-02-21 2014-04-09 ALERE TECHNOLOGIES GmbH Methods for detecting multiple nucleic acids in a sample
CA2959742C (en) * 2014-09-09 2019-08-20 Perosphere, Inc. Microfluid chip-based, universal coagulation assay
FR3038383B1 (en) * 2015-07-03 2017-07-07 Avalun APPARATUS FOR ANALYZING A LIQUID SAMPLE COMPRISING A BLOCKING AND EJECTING DEVICE
JP6573257B2 (en) * 2015-09-29 2019-09-11 エア・ウォーター・バイオデザイン株式会社 Measuring apparatus and measuring method
US10094802B2 (en) 2016-06-01 2018-10-09 EXIAS Medical GmbH Heating system for a measurement cell
US11092519B1 (en) * 2017-02-06 2021-08-17 Elemental Scientific Lasers, Llc System and method for automated sampling and analysis
DE102019135557A1 (en) * 2019-12-20 2021-06-24 Biophotonics Diagnostics GmbH SAMPLE CARRIERS FOR THE ELECTRICAL MANIPULATION OF LIQUID SAMPLES AND FOR VIBRATION SPECTROSCOPY ON THE SAMPLES

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
KR100236506B1 (en) * 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 Apparatus for polymerase chain reaction
US5222808A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Capillary mixing device
EP0695941B1 (en) * 1994-06-08 2002-07-31 Affymetrix, Inc. Method and apparatus for packaging a chip
US6521181B1 (en) * 1995-06-20 2003-02-18 The Regents Of The University Of Calfornia Microfabricated electrochemiluminescence cell for chemical reaction detection
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
JP4912517B2 (en) * 1996-04-03 2012-04-11 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー Devices and methods for detection of multiple analytes
US6054277A (en) 1996-05-08 2000-04-25 Regents Of The University Of Minnesota Integrated microchip genetic testing system
JP3077609B2 (en) * 1996-10-31 2000-08-14 株式会社島津製作所 Microchip electrophoresis method and apparatus
US5882903A (en) * 1996-11-01 1999-03-16 Sarnoff Corporation Assay system and method for conducting assays
US5922604A (en) * 1997-06-05 1999-07-13 Gene Tec Corporation Thin reaction chambers for containing and handling liquid microvolumes
AU745989B2 (en) * 1997-08-13 2002-04-11 Cepheid Microstructures for the manipulation of fluid samples
AU4546899A (en) * 1998-06-05 1999-12-20 Sarnoff Corporation Apparatus for separating molecules
US6093370A (en) * 1998-06-11 2000-07-25 Hitachi, Ltd. Polynucleotide separation method and apparatus therefor
EP1742058B1 (en) * 1998-08-28 2011-11-30 febit holding GmbH Substrate for analyte determination and methods for manufacturing such substrates
DE19950225A1 (en) * 1998-10-24 2000-05-18 Leica Microsystems Arrangement for the optical scanning of an object
US6284195B1 (en) 1999-01-25 2001-09-04 Industrial Technology Research Institute Disposable reaction module
US6126400A (en) * 1999-02-01 2000-10-03 General Electric Company Thermal barrier coating wrap for turbine airfoil
US6664104B2 (en) 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
US6642046B1 (en) 1999-12-09 2003-11-04 Motorola, Inc. Method and apparatus for performing biological reactions on a substrate surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108158A1 (en) * 2012-09-03 2014-03-06 Johann Wolfgang Goethe-Universität Capillary cell, assembly and method for receiving, positioning and examining a microscopic sample
DE102012108158B4 (en) * 2012-09-03 2016-03-17 Johann Wolfgang Goethe-Universität Capillary cell, assembly and method for receiving, positioning and examining a microscopic sample

Also Published As

Publication number Publication date
CA2379125A1 (en) 2001-01-11
IL147227A (en) 2006-08-20
WO2001002094A8 (en) 2001-06-21
US7888074B2 (en) 2011-02-15
WO2001002094A1 (en) 2001-01-11
AU6559900A (en) 2001-01-22
EP1192007A1 (en) 2002-04-03
DE50006164D1 (en) 2004-05-27
US20020150933A1 (en) 2002-10-17
IL147227A0 (en) 2002-08-14
HK1046381A1 (en) 2003-01-10
ATE264718T1 (en) 2004-05-15
CA2379125C (en) 2009-04-07
ES2219374T3 (en) 2004-12-01
AU768113B2 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
EP1192007B1 (en) Microchip matrix device for duplicating and characterizing nucleic acids
US20220155251A1 (en) Droplet-based surface modification and washing
Martzy et al. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis
KR101544351B1 (en) Devices and methods for identifying genomic dna of organisms
US10876174B2 (en) Method for the detection and characterization of a toxinogenic Clostridium difficile strain
EP2809803B1 (en) Multiplexed digital pcr
US7851184B2 (en) Droplet-based nucleic acid amplification method and apparatus
US20150174577A1 (en) Filler Fluids for Droplet Operations
US20070242111A1 (en) Droplet-based diagnostics
Liu et al. Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections
MXPA05004470A (en) Microfluidic system utilizing thin-film layers to route fluid.
US20150322515A1 (en) Methods and compositions for detecting target snp
CN103732760A (en) Isolation and enrichment of nucleic acids on microchip
JP2022110152A (en) Diagnostic methods and compositions
EP2337633B1 (en) Device for performing pcr
EP3036341B1 (en) Detection of nucleic acid amplification in a porous substrate
EP1186669A1 (en) Method for specific detection of DNS sequences using parallel amplification
DE102007013099A1 (en) Method and test kit for the rapid detection of specific nucleic acid sequences, in particular for the detection of mutations or SNPs
CN103249844A (en) Quantitative multiplexed identification of nucleic acid targets
CN108291251A (en) System and method for foranalysis of nucleic acids
CN1847852B (en) Fast mononucleotide polymorphism detecting test paper strip and its detection method
DE102014221616A1 (en) Microfluidic device and method for analyzing a sample of biological material
Martzy et al. Challenges and perspectives for isothermal DNA amplification methods in food and water analysis
Mercer Arrays in clinical microbiology
Lederman Laboratory Automation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020110

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZ, TORSTEN

Inventor name: ELLINGER, THOMAS

Inventor name: ERMANTRAUT, EUGEN

Inventor name: TUCHSCHERER, JENS

Inventor name: EHRICHT, RALF

Inventor name: POSER, SIEGFRIED

17Q First examination report despatched

Effective date: 20020628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006164

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040719

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2219374

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080717

Year of fee payment: 9

Ref country code: IE

Payment date: 20080613

Year of fee payment: 9

Ref country code: NL

Payment date: 20080603

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080627

Year of fee payment: 9

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1046381

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080813

Year of fee payment: 9

BERE Be: lapsed

Owner name: *CLONDIAG CHIP TECHNOLOGIES G.M.B.H.

Effective date: 20090630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CLONDIAG CHIP TECHNOLOGIES GMBH

Free format text: CLONDIAG CHIP TECHNOLOGIES GMBH#LOEBSTEDTER STRASSE 105#07743 JENA (DE) -TRANSFER TO- CLONDIAG CHIP TECHNOLOGIES GMBH#LOEBSTEDTER STRASSE 105#07743 JENA (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180614

Year of fee payment: 19

Ref country code: DE

Payment date: 20180619

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180511

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180627

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006164

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630