EP1188574A2 - Matériau d'enregistrement et méthode d'enregistrement - Google Patents
Matériau d'enregistrement et méthode d'enregistrement Download PDFInfo
- Publication number
- EP1188574A2 EP1188574A2 EP01810887A EP01810887A EP1188574A2 EP 1188574 A2 EP1188574 A2 EP 1188574A2 EP 01810887 A EP01810887 A EP 01810887A EP 01810887 A EP01810887 A EP 01810887A EP 1188574 A2 EP1188574 A2 EP 1188574A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- recording material
- material according
- layer
- image
- ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/504—Backcoats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/506—Intermediate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M7/00—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
- B41M7/0054—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or film forming compositions cured by thermal means, e.g. infrared radiation, heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- This invention relates to a recording material and to a method for the treatment of images produced therewith. More particularly, it relates to a recording material and method for use with the ink jet recording system.
- the ink jet recording system is a printing and imaging method whereby fine droplets of ink are jetted under computer control and deposited on to a recording material such as a paper sheet to record images or letters.
- the ink jet recording system has features such as high speed and flexibility and is inexpensive and convenient, particularly in a case where the number of copies is relatively small.
- There is considerable interest in ink jet printing for various display purposes such as posters, billboards, vehicle graphics, and the like.
- Hitherto ink jet prints for display purposes have been prepared by printing on to a recording material having at least one ink-receiving layer formed on one side of a suitable support and an adhesive layer formed on the other side of the support, and a release sheet integrated thereto to cover the adhesive layer.
- the purpose of the receiving layer is to take up the ink rapidly and provide good image quality.
- the purpose of the adhesive layer is to attach the display to a suitable backing such as a support for a display or, in the case of vehicle graphics, to the body of the vehicle.
- the purpose of the release sheet or liner is to protect the adhesive until it is required for use.
- a recording material which comprises in order:
- Figure 1 shows a cross section through the material of the invention.
- (1) is the sealing layer comprising the particulate polymer
- (2) is the ink-receiving layer, which is hereinafter referred to as the ink-receiving layer
- (3) is the substrate
- (4) is the adhesive layer
- (5) is the release liner.
- Suitable particulate polymers for the sealing layer (1) include any film-forming thermoplastics dispersion, for example a dispersion of polyurethane, low density polyethylene, high density polyethylene, polypropylene, polyvinyl acetate, polyvinyl acetate copolymers, styrene/butadiene copolymers, styrene/butadiene/acrylonitrile terpolymers, styrene/(meth)acrylate copolymers, (meth)acrylic polymers, ethylene/(meth)acrylic acid copolymers, ethylene/vinyl chloride copolymers, and mixtures thereof.
- a suitable average particle size for the particulate polymer is between about 1 ⁇ m and about 50 ⁇ m, with a particle size between about 5 ⁇ m and about 20 ⁇ m being preferable.
- the particulate polymer should have a melt flow index of at least 5, preferably between about 10 and about 100.
- a particularly suitable particulate polymer comprises low-density polyethylene microspheres having an average diameter of about 12 ⁇ m and a melt flow index of 75.
- Another particularly suitable particulate polymer comprises microspheres of a 7 % acrylic acid/polyethylene copolymer having an average diameter of about 10 ⁇ m and a melt flow index of 9.
- Another suitable particulate polymer comprises low-density polyethylene particles of random shape and a particle size of about 13 ⁇ m and a melt flow index of 70. These polymers have melting points between 105° C and 107° C.
- Suitable binders for the sealing layer (1) include polyvinyl alcohol, copolymers of polyvinyl alcohol, carbohydrates such as tragacanth gum or starch, modified carbohydrates such as hydroxyethyl cellulose or carboxymethyl cellulose, polyacrylates, polyvinyl pyrrolidone, gelatine, casein, and mixtures of such binders.
- a particularly suitable binder is polyvinyl alcohol, which is hereinafter referred to as PVOH. It is to be understood that commercial samples of PVOH are normally prepared by hydrolysis of polyvinyl acetate, and that this hydrolysis does not always go to completion. Thus, a preferred binder is PVOH having a degree of hydrolysis of at least 85 %, preferably of at least 90 %, and a particularly preferred binder is PVOH having a degree of hydrolysis of between about 98 % and about 99 %.
- the coating weight of the sealing layer and the weight ratio between the polymeric particles and the binder may be determined by the desired image quality, gloss, and robustness of the final print.
- a suitable coating weight for the sealing layer is from about 15 g/m 2 to about 40 g/m 2 .
- a preferred coating weight is between about 15 g/m 2 and about 25 g/m 2 .
- the ratio of the coating weight of the particulate polymer to that of the hydrophilic binder may be from about 20 : 1 to about 1 : 1, but preferably is between about 10 : 1 and about 5 : 1.
- the ink-receiving layer (2) to be formed on the support may comprise any of the known ink-receiving layers known in the art.
- the ink-receiving layer (2) is formed by a composition comprising at least one white pigment or filler and a suitable polymeric binder as the main components.
- Suitable white pigments and fillers include conventional white inorganic pigments and starch particles.
- white inorganic pigments are light calcium carbonate, heavy calcium carbonate, kaolin, talc, calcium sulphate, barium sulphate, titanium dioxide, zinc oxide, zinc sulphide, zinc carbonate, satin white, aluminium silicate, diatomaceous earth, calcium silicate, magnesium silicate, synthetic non-crystalline silica, colloidal silica, colloidal alumina, pseudo-boehmite, aluminium hydroxide, alumina, lithopone, zeolite, hydrolysed halloysite, magnesium carbonate, magnesium hydroxide, clays and the like.
- a porous inorganic pigment is preferred, such as porous non-crystalline synthetic silica, porous magnesium carbonate, or porous alumina.
- the polymeric binder to be used for the ink-receiving layer (2) of the present invention may, for example, be starch or a starch derivative such as oxidized starch, etherified starch or phosphated starch; a cellulose derivative such as carboxymethyl cellulose or hydroxyethyl cellulose; casein, gelatine, tragacanth gum, soybean protein, a polyacrylate, polyvinyl alcohol, a copolymer of polyvinyl alcohol, polyvinyl pyrrolidone, and mixtures of such binders. Hydrophilic acrylate binders are preferred.
- the ink-receiving layer may also contain a basic or cationic polymer.
- the cationic or basic polymer may comprise a polymer incorporating primary, secondary, or tertiary amino groups or typical cationic groups such as quaternary ammonium salts.
- the polymer may, for example, be a polyalkylene polyamide, a ring-opened polymer of ethyleneimine, a homopolymer of a cationic vinyl polymer or a copolymer thereof with another polymerizable monomer, a homopolymer of a basic nitrogen containing acrylate or other vinyl monomer or a copolymer thereof with another polymerizable monomer.
- a preferred polymer is a copolymer of vinyl imidazole with vinyl pyrrolidone.
- the coating weight of the ink-receiving layer may be determined by the quantity of ink to be printed.
- a suitable coating weight for the ink-receiving layer is from about 5 g/m 2 to about 50 g/m 2 .
- a preferred coating weight for the ink-receiving layer is from about 15 g/m 2 to about 40 g/m 2 .
- the heat sealing layer and receiving layer or layers of the invention may advantageously also comprise additives which are commonly added to ink-receiving layers such as surfactants to improve coating quality, cross linking agents, optical brightening agents, tinting agents, and biocides or preservatives.
- Suitable cross-linking agents for the preferred polyvinyl alcohol binders of the invention include boric acid and aldehydes such as glyoxal or glutaraldehyde.
- Suitable polymeric substrates (3) for the materials of the invention include any of those commonly used for printing and imaging media, especially cellulose acetates, polyethylene, polypropylene, polyvinyl chloride, and polyesters including polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
- Opaque substrates such as voided polyester and poly vinyl chloride are particularly useful.
- a preferred substrate is polyvinyl chloride.
- the substrate may contain other additives as are known in the art. It is especially preferred to use plasticisers such as phthalate esters, phosphate esters, or polymeric plasticisers and stabilisers such as tin stabilisers and lead stabilisers with the preferred polyvinyl chloride substrates of the invention.
- Suitable adhesives (4) include solvent type and aqueous type adhesives.
- Aqueous adhesives of the emulsion type obtained by emulsion polymerisation in water employing a surface-active agent are well known.
- the adhesive (4) is a pressure sensitive organic solvent type adhesive such as a rubber type adhesive or an acrylic resin type adhesive.
- the main material of the rubber-type adhesive is natural rubber or styrene-butadiene rubber. To the natural rubber, a resin or a plasticiser may be incorporated, and a suitable solvent for coating such as n-hexane.
- the acrylic resin type adhesive may be prepared by polymerising an acrylic monomer such as 2-ethylhexyl acrylate, butyl acrylate, ethyl acrylate, or ⁇ -hydroxyethyl acrylate, in an organic solvent. Further, in order to improve the physical properties such as the heat resistance and the solvent resistance of the adhesive, a cross linking agent of isocyanate type, melamine type or metal chelate type may be reacted to the above material for the cross linking reaction, or a pigment such as silica, kaolin, clay, calcium carbonate, aluminium hydroxide, zinc oxide, titanium dioxide, melamine resin particles or starch particles, may be incorporated to the above material.
- additives may be incorporated in the adhesive layer (4) including a water soluble polymer, a petroleum type resin, a paraffin wax, a fatty acid or its derivative, a higher alcohol, a metal soap, or a silicone as well as an antistatic agent, a thickener, a dispersant, a preservative, an antioxidant or a defoaming agent.
- Suitable materials for the release sheet (5) include wood free paper, kraft paper, glassine paper, impregnated paper, or a plastic film such as a polyester film or a polyamide film. These may be coated with a silicone resin or polytetrafluoroethylene as a release agent.
- a thermoplastic resin may preferably be laminated on the base material to form a smooth surface so as to improve the peeling properties.
- the release sheet is a siliconised plain kraft paper weighing about 100 g/m 2 .
- the release sheet is releasably adhered to the rest of the material, and is selected on such a basis that the release sheet has an adhesive force sufficiently strong not to be peeled during transportation in an ink jet recording apparatus or during sealing of the heat sealing layer but weak enough to peel easily when it is desired to attach the printed image to its display panel.
- the image-receiving layer or layers (2) together with the sealing layer (1) are coated either simultaneously or separately on to a material comprising the substrate (3), the adhesive layer (4), and the release sheet (5).
- the sealing layer (1) may be coated on to a existing ink jet medium which comprises the release liner (5), adhesive layer (4), substrate (3), and image-receiving layer or layers (2).
- Any convenient coating method may be used for the preparation of the materials of the present invention, such as blade coating, knife coating, slide coating and curtain coating.
- This treatment may take the form of a surface modification technique such as flame or corona treatment, buffing, or the like, but preferably may involve the application of a chemical priming or subbing layer.
- a surface modification technique such as flame or corona treatment, buffing, or the like
- a chemical priming or subbing layer Such adhesion promoting treatments are well known.
- any convenient ink jet printer may be used for printing on the materials of the invention, for example a continuous printer or a piezoelectric or thermal drop-on-demand printer.
- Suitable jetting inks include aqueous inks and those based on organic solvents such as 2-butanone, ester solvents, and mineral oils.
- Suitable colorants for these inks include dyes or pigments.
- Preferred inks for the invention are pigmented aqueous inks.
- the recording materials of the invention may also be used with other printing methods as are known in the art, or as writing or drawing materials for use with felt tip pens and the like.
- the materials of the invention are particularly suitable for use in a printing process wherein the printed image is heated after printing to seal the sealing layer to provide a robust image protecting coating.
- the printed image is heated after printing to seal the sealing layer.
- the heating process may use any convenient method, such as heated air, contact with a heated surface, or infrared or microwave radiation.
- the print may be heated under pressure in contact with a heated surface or by passing it between heated rollers.
- a suitable temperature is between about 80° C and about 180° C, preferably between about 80° C and about 160° C, particularly preferably between about 100° C and about 120° C. It is important that this heating process does not affect the components of the substrate, adhesive layer, and release liner.
- One of the advantages of the preferred particulate polymers of the heat-sealing layer of the invention is that the softening points are relatively low and thus the temperature and time needed to seal them are minimised.
- the printed image is heated under pressure with the image surface in contact with a second, inert sheet, which is held against the image protective layer of the material.
- the inert sheet does not adhere to the material, but protects it from the means used to apply the pressure.
- Suitable inert sheets include polyester films, polyamide films, and casting papers.
- the inert sheet may be treated with silicones or polytetrafluoroethylene to enhance the release properties.
- a suitable choice of the inert sheet may be used to produce a desired appearance to the final image such as the use of a smooth inert sheet, which will impart a high gloss to the image, or a textured sheet, which will produce a textured finish.
- the printed image is heated by passing through a laminator.
- laminator is meant a device, which is normally used for the lamination of printed images, which comprises a means of heating and pressing together the image and the cover sheet, commonly by passing them through a nip between a pair of heated rollers.
- the dye or pigment components of the ink are substantially retained within the sealing layer after printing, thus separating them from the liquid ink vehicle, which is largely transferred to the ink-receiving layer.
- the colorant components then become encapsulated within the sealing layer after heating.
- the materials and method of this invention are suitable for many uses where robustness of an ink jet image is important, such as posters, displays, vehicle graphics, and the like.
- a material according to the invention was prepared as follows: A support comprising a monomerically plasticised polyvinyl chloride substrate, an acrylic, water based pressure sensitive adhesive layer, and a 100 g/m 2 siliconised plain kraft paper release sheet was coated with the following layers in order:
- a test pattern was printed on the material using ILFORD Archiva Extreme pigmented aqueous inks, available from ILFORD Imaging UK, on a Novajet III printer.
- the image was sealed by passing it through a Seal 600 laminator with the image face in contact with a 125 ⁇ m thickness smooth polyester film available under the trade name Melinex O.
- Melinex O a bright, glossy image was produced, resistant to water and rubbing.
- a sample of the material produced in example 1 was printed with ILFORD Archiva dyed aqueous inks, available from ILFORD Imaging Switzerland GmbH, using an Epson Pro E printer and sealed as in example 1. A bright glossy image was produced, resistant to water and rubbing.
- a sample of the material produced in example 1 was printed using aqueous inks on an Epson 3000 desktop printer.
- the image was sealed using a GBC 1200 desktop laminator at a set temperature of 120° C with the image face in contact with a smooth polyester film as in example 1.
- a bright glossy image was produced, resistant to water and rubbing.
- a sample of the material produced in example 1 was printed with mineral oil based inks according to patent application WO 96-24'642 and sealed as in example 3. A bright glossy image was produced, resistant to water and rubbing.
- a material according to the invention was prepared as follows: A support comprising a polymerically plasticised cast polyvinyl chloride substrate, an acrylic, water based pressure sensitive adhesive layer, and a 100 g/m 2 siliconised plain kraft paper release sheet was coated with the following layers in order:
- the three layers were coated simultaneously onto the substrate using a slide bead coating technique.
- the coating weights (as solids) of the three layers were:
- test pattern was printed and the image was sealed as in example 1.
- a bright, glossy image was produced, resistant to water and rubbing, and which could be adhered to an uneven surface without compromising the quality of the image.
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Laminated Bodies (AREA)
- Ink Jet (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0022617 | 2000-09-15 | ||
GB0022617A GB2366749A (en) | 2000-09-15 | 2000-09-15 | Recording material and method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1188574A2 true EP1188574A2 (fr) | 2002-03-20 |
EP1188574A3 EP1188574A3 (fr) | 2002-08-28 |
Family
ID=9899488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01810887A Withdrawn EP1188574A3 (fr) | 2000-09-15 | 2001-09-13 | Matériau d'enregistrement et méthode d'enregistrement |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1188574A3 (fr) |
GB (1) | GB2366749A (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1493591A2 (fr) * | 2003-07-02 | 2005-01-05 | Hewlett-Packard Development Company, L.P. | Matériaux d'enregistrement au jet d'encre contenant de surfactants aux copolymères de siloxane |
EP1524125A1 (fr) * | 2003-10-14 | 2005-04-20 | Hewlett-Packard Development Company, L.P. | Procédé pour sceller thermiquement la couche de revêtement de médias multicouches |
GB2410705A (en) * | 2004-02-03 | 2005-08-10 | Ilford Imaging Uk Ltd | Inkjet recording material and method |
WO2006119765A1 (fr) * | 2005-05-12 | 2006-11-16 | Max Otto Henri Rasmussen | Étiquette scellable à la chaleur |
US7718236B2 (en) | 2004-03-08 | 2010-05-18 | Eastman Kodak Company | Inkjet recording element and method |
CN102892848A (zh) * | 2010-05-17 | 2013-01-23 | 日东电工株式会社 | 底涂剂组合物及粘合片 |
WO2013109254A1 (fr) | 2012-01-17 | 2013-07-25 | Hewlett-Packard Development Company, L.P. | Support d'enregistrement pourvu d'une couche protectrice |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110978836B (zh) * | 2019-11-28 | 2021-12-17 | 苏州美盈森环保科技有限公司 | 牛皮纸本色高清色彩饱和度印刷方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0605840A2 (fr) * | 1992-12-25 | 1994-07-13 | Mitsubishi Paper Mills, Ltd. | Feuille d'enregistrement à jet d'encre |
US5885678A (en) * | 1996-06-03 | 1999-03-23 | Xerox Corporation | Coated labels |
EP0908324A1 (fr) * | 1997-10-13 | 1999-04-14 | Canon Kabushiki Kaisha | Procédé d'enregistrement par jet d'encre et milieu d'enregistrement imprimé |
DE19956999A1 (de) * | 1998-11-27 | 2000-05-31 | Mitsubishi Paper Mills Ltd | Tintenstrahl-Aufzeichnungsmedium, Verfahren zur Herstellung eines Tintenstrahl-Druckerzeugnisses und Tintenstrahl-Druckerzeugnis |
US6114022A (en) * | 1997-08-11 | 2000-09-05 | 3M Innovative Properties Company | Coated microporous inkjet receptive media and method for controlling dot diameter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1148600A (ja) * | 1997-07-31 | 1999-02-23 | Somar Corp | インクジェット記録用フィルム |
GB2352681A (en) * | 1999-08-04 | 2001-02-07 | Ilford Imaging Uk Ltd | Ink jet printing method |
-
2000
- 2000-09-15 GB GB0022617A patent/GB2366749A/en not_active Withdrawn
-
2001
- 2001-09-13 EP EP01810887A patent/EP1188574A3/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0605840A2 (fr) * | 1992-12-25 | 1994-07-13 | Mitsubishi Paper Mills, Ltd. | Feuille d'enregistrement à jet d'encre |
US5885678A (en) * | 1996-06-03 | 1999-03-23 | Xerox Corporation | Coated labels |
US6114022A (en) * | 1997-08-11 | 2000-09-05 | 3M Innovative Properties Company | Coated microporous inkjet receptive media and method for controlling dot diameter |
EP0908324A1 (fr) * | 1997-10-13 | 1999-04-14 | Canon Kabushiki Kaisha | Procédé d'enregistrement par jet d'encre et milieu d'enregistrement imprimé |
DE19956999A1 (de) * | 1998-11-27 | 2000-05-31 | Mitsubishi Paper Mills Ltd | Tintenstrahl-Aufzeichnungsmedium, Verfahren zur Herstellung eines Tintenstrahl-Druckerzeugnisses und Tintenstrahl-Druckerzeugnis |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1493591A2 (fr) * | 2003-07-02 | 2005-01-05 | Hewlett-Packard Development Company, L.P. | Matériaux d'enregistrement au jet d'encre contenant de surfactants aux copolymères de siloxane |
EP1493591A3 (fr) * | 2003-07-02 | 2005-12-14 | Hewlett-Packard Development Company, L.P. | Matériaux d'enregistrement au jet d'encre contenant de surfactants aux copolymères de siloxane |
EP1524125A1 (fr) * | 2003-10-14 | 2005-04-20 | Hewlett-Packard Development Company, L.P. | Procédé pour sceller thermiquement la couche de revêtement de médias multicouches |
GB2410705A (en) * | 2004-02-03 | 2005-08-10 | Ilford Imaging Uk Ltd | Inkjet recording material and method |
GB2410705B (en) * | 2004-02-03 | 2007-08-22 | Ilford Imaging Uk Ltd | Recording material and method |
US7718236B2 (en) | 2004-03-08 | 2010-05-18 | Eastman Kodak Company | Inkjet recording element and method |
WO2006119765A1 (fr) * | 2005-05-12 | 2006-11-16 | Max Otto Henri Rasmussen | Étiquette scellable à la chaleur |
CN102892848A (zh) * | 2010-05-17 | 2013-01-23 | 日东电工株式会社 | 底涂剂组合物及粘合片 |
EP2573147A1 (fr) * | 2010-05-17 | 2013-03-27 | Nitto Denko Corporation | Composition de primaire et feuille adhésive |
EP2573147A4 (fr) * | 2010-05-17 | 2014-03-26 | Nitto Denko Corp | Composition de primaire et feuille adhésive |
WO2013109254A1 (fr) | 2012-01-17 | 2013-07-25 | Hewlett-Packard Development Company, L.P. | Support d'enregistrement pourvu d'une couche protectrice |
EP2804761A4 (fr) * | 2012-01-17 | 2015-06-03 | Hewlett Packard Development Co | Support d'enregistrement pourvu d'une couche protectrice |
Also Published As
Publication number | Publication date |
---|---|
GB0022617D0 (en) | 2000-11-01 |
EP1188574A3 (fr) | 2002-08-28 |
GB2366749A (en) | 2002-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3328660B1 (fr) | Structure multi-couches avec substrat imperméable à l'eau | |
US9376582B1 (en) | Printing on water-impermeable substrates with water-based inks | |
EP1188573B1 (fr) | Matériau d'enregistrement et procédé d'enregistrement | |
EP1261493B1 (fr) | Substrat imprime realise par transfert d'une image imprimee par jet d'encre a partir d'un film de transfert imprimable | |
EP0782931B1 (fr) | Feuille receptrice pour enregistrement par jet d'encre | |
US5747148A (en) | Ink jet printing sheet | |
US5989701A (en) | Recording material for the inkjet process | |
EP1013466A2 (fr) | Feuille intermédiaire réceptrice d'encre pour l'impression par transfert | |
US6514598B1 (en) | Ink jet recording sheet and method | |
US20050196561A1 (en) | Printing process | |
EP1228889B1 (fr) | Matériau récepteur d'encre et méthode pour l'enregistrement | |
US7198838B2 (en) | Protective layer transfer sheet and print | |
EP1855890B1 (fr) | Milieu reactif fusible comprenant une couche d agent de reticulation | |
US6911239B2 (en) | Recording material and method | |
EP1188574A2 (fr) | Matériau d'enregistrement et méthode d'enregistrement | |
EP0781205B1 (fr) | Feuille pour impression a jet d'encre | |
GB2410705A (en) | Inkjet recording material and method | |
JP3504768B2 (ja) | 熱転写受像シート | |
JPH06247036A (ja) | インクジェット記録用紙 | |
JPH1178223A (ja) | 印刷用シート | |
EP4178803A1 (fr) | Formule de couche de finition à réceptivité au jet d'encre résistante en extérieur et article | |
MXPA98003460A (en) | Sheet to print by jeting it | |
JP2003103906A (ja) | 水性インク用インクジェット記録材料の記録方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030220 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20030519 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20050924 |