EP1169396B1 - High solids clear coating composition - Google Patents
High solids clear coating composition Download PDFInfo
- Publication number
- EP1169396B1 EP1169396B1 EP00918021A EP00918021A EP1169396B1 EP 1169396 B1 EP1169396 B1 EP 1169396B1 EP 00918021 A EP00918021 A EP 00918021A EP 00918021 A EP00918021 A EP 00918021A EP 1169396 B1 EP1169396 B1 EP 1169396B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- percent
- range
- melamine
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008199 coating composition Substances 0.000 title claims abstract description 62
- 239000007787 solid Substances 0.000 title claims description 33
- 239000000203 mixture Substances 0.000 claims abstract description 63
- 238000000576 coating method Methods 0.000 claims abstract description 52
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 37
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 22
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 22
- 239000012948 isocyanate Substances 0.000 claims abstract description 15
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 14
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims description 34
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 33
- -1 organo tin Chemical compound 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 150000001412 amines Chemical class 0.000 claims description 12
- 239000004611 light stabiliser Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 9
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 8
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 8
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 claims description 6
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 5
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 5
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000003377 acid catalyst Substances 0.000 claims description 4
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 4
- 239000012974 tin catalyst Substances 0.000 claims description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 3
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 claims description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 3
- 125000000962 organic group Chemical group 0.000 claims description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 3
- VSHIRTNKIXRXMI-UHFFFAOYSA-N 2,2-dimethyl-1,3-oxazolidine Chemical group CC1(C)NCCO1 VSHIRTNKIXRXMI-UHFFFAOYSA-N 0.000 claims description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 2
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 239000013638 trimer Substances 0.000 claims description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 claims 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 claims 1
- 239000000178 monomer Substances 0.000 description 22
- 239000003381 stabilizer Substances 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 14
- 229920003270 Cymel® Polymers 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 150000007974 melamines Chemical class 0.000 description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 9
- 229920002554 vinyl polymer Polymers 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- 229920006243 acrylic copolymer Polymers 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- YGCOKJWKWLYHTG-UHFFFAOYSA-N [[4,6-bis[bis(hydroxymethyl)amino]-1,3,5-triazin-2-yl]-(hydroxymethyl)amino]methanol Chemical compound OCN(CO)C1=NC(N(CO)CO)=NC(N(CO)CO)=N1 YGCOKJWKWLYHTG-UHFFFAOYSA-N 0.000 description 5
- 229920000180 alkyd Polymers 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000004815 dispersion polymer Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- JFMGYULNQJPJCY-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one Chemical compound OCC1COC(=O)O1 JFMGYULNQJPJCY-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- 229940124543 ultraviolet light absorber Drugs 0.000 description 3
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 2
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 2
- OLFNXLXEGXRUOI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol Chemical compound C=1C(N2N=C3C=CC=CC3=N2)=C(O)C(C(C)(C)C=2C=CC=CC=2)=CC=1C(C)(C)C1=CC=CC=C1 OLFNXLXEGXRUOI-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- ZGHFDIIVVIFNPS-UHFFFAOYSA-N 3-Methyl-3-buten-2-one Chemical compound CC(=C)C(C)=O ZGHFDIIVVIFNPS-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000012674 dispersion polymerization Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 2
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- KHUXNRRPPZOJPT-UHFFFAOYSA-N phenoxy radical Chemical group O=C1C=C[CH]C=C1 KHUXNRRPPZOJPT-UHFFFAOYSA-N 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- 150000000185 1,3-diols Chemical class 0.000 description 1
- VKSWWACDZPRJAP-UHFFFAOYSA-N 1,3-dioxepan-2-one Chemical class O=C1OCCCCO1 VKSWWACDZPRJAP-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 1
- BYDACBZVIXPNEX-UHFFFAOYSA-N 2,2-bis(1,2,2,6,6-pentamethylpiperidin-3-yl)decanedioic acid Chemical compound CC1(C)N(C)C(C)(C)CCC1C(CCCCCCCC(O)=O)(C(O)=O)C1C(C)(C)N(C)C(C)(C)CC1 BYDACBZVIXPNEX-UHFFFAOYSA-N 0.000 description 1
- SEHSXHXBEYVCSI-UHFFFAOYSA-N 2,2-bis(2,2,6,6-tetramethylpiperidin-1-yl)decanedioic acid Chemical compound CC1(C)CCCC(C)(C)N1C(CCCCCCCC(O)=O)(C(O)=O)N1C(C)(C)CCCC1(C)C SEHSXHXBEYVCSI-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- CFEMQJSIISTPQR-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methyl-1-phenylbutyl)phenol Chemical compound C=1C(C(C(C)CC)C=2C=CC=CC=2)=C(O)C(N2N=C3C=CC=CC3=N2)=CC=1C(C(C)CC)C1=CC=CC=C1 CFEMQJSIISTPQR-UHFFFAOYSA-N 0.000 description 1
- ZMWRRFHBXARRRT-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(N2N=C3C=CC=CC3=N2)=C1O ZMWRRFHBXARRRT-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- DLTLLZLEJKRETK-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n-pentamethoxy-6-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical compound CON(C)C1=NC(N(OC)OC)=NC(N(OC)OC)=N1 DLTLLZLEJKRETK-UHFFFAOYSA-N 0.000 description 1
- KFVIYKFKUYBKTP-UHFFFAOYSA-N 2-n-(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound COCNC1=NC(N)=NC(N)=N1 KFVIYKFKUYBKTP-UHFFFAOYSA-N 0.000 description 1
- ZCYIYBNDJKVCBR-UHFFFAOYSA-N 2-prop-2-enoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCC=C ZCYIYBNDJKVCBR-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- PEAOADVZXHOLJJ-UHFFFAOYSA-N 4-ethenyl-n-methylbenzenesulfonamide Chemical compound CNS(=O)(=O)C1=CC=C(C=C)C=C1 PEAOADVZXHOLJJ-UHFFFAOYSA-N 0.000 description 1
- GKGOIYMLPJJVQI-UHFFFAOYSA-N 4-ethenylbenzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=C(C=C)C=C1 GKGOIYMLPJJVQI-UHFFFAOYSA-N 0.000 description 1
- ZBTJKUUDJZBYGA-UHFFFAOYSA-N 5-(benzotriazol-2-yl)-1,3-bis(2-methylbutan-2-yl)cyclohexa-2,4-dien-1-ol Chemical compound OC1(CC(=CC(=C1)C(C)(C)CC)N1N=C2C(=N1)C=CC=C2)C(C)(C)CC ZBTJKUUDJZBYGA-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- UPIYXCQZCKSJJX-UHFFFAOYSA-N CCCCOCC=C(C)C(N)=O Chemical compound CCCCOCC=C(C)C(N)=O UPIYXCQZCKSJJX-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 238000005848 Knoop reaction Methods 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- PKEKLMFPUCJDOF-UHFFFAOYSA-N N=C=O.COCNC1=NC(N)=NC(N)=N1 Chemical compound N=C=O.COCNC1=NC(N)=NC(N)=N1 PKEKLMFPUCJDOF-UHFFFAOYSA-N 0.000 description 1
- FUCRTFHCJZBKBB-UHFFFAOYSA-N N=C=O.N=C=O.CCCCCCCCC Chemical compound N=C=O.N=C=O.CCCCCCCCC FUCRTFHCJZBKBB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005452 alkenyloxyalkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007590 electrostatic spraying Methods 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 235000020544 functional carbonate Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- UTSYWKJYFPPRAP-UHFFFAOYSA-N n-(butoxymethyl)prop-2-enamide Chemical compound CCCCOCNC(=O)C=C UTSYWKJYFPPRAP-UHFFFAOYSA-N 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- PLYIPBIZXSTXCW-UHFFFAOYSA-N octanoic acid;tin Chemical compound [Sn].CCCCCCCC(O)=O PLYIPBIZXSTXCW-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000005459 perfluorocyclohexyl group Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3819—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
- C08G18/3842—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring
- C08G18/3851—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring containing three nitrogen atoms in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4045—Mixtures of compounds of group C08G18/58 with other macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4244—Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
- C08G18/4261—Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups prepared by oxyalkylation of polyesterpolyols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4291—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from polyester forming components containing monoepoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/58—Epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8064—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
Definitions
- the present invention generally relates to high solids, low VOC (volatile organic component) coating compositions and more particularly to low VOC clear coating compositions suited for multi-layered coatings used in automotive OEM and refinish applications.
- VOC volatile organic component
- Basecoat-clearcoat systems have found wide acceptance in the automotive finishes market. Continuing effort has been directed to improve the overall appearance, the clarity of the topcoat, and the resistance to deterioration of these coating systems at ever-higher application solids levels. Further effort has also been directed to the development of coating compositions having low VOC. A continuing need still exists for clear coating formulations having an outstanding balance of performance characteristics after application, particularly gloss and distinctness of image (DOI) at high solids levels.
- DOI gloss and distinctness of image
- Melamine/acrylic polyol crosslinked or melamine self-condensed coatings may provide coatings having acceptable mar but such coatings have poor acid etch resistance and decreased appearance at higher solids levels.
- isocyanate/acrylic polyol based 2K urethane coatings generally provide acceptable acid-etch resistance but such coatings have poor mar resistance. Therefore, a need still exists for coatings that not only provide acceptable mar and acid-etch resistance but also high gloss and DOI at the lowest VOC possible.
- the present invention is directed to a clear coating composition
- a clear coating composition comprising isocyanate, cyclic carbonate and melamine components wherein said isocyanate component comprises an aliphatic polyisocyanate having on an average 2.5 to 6 isocyanate functionalities.
- the present invention is also directed to a method of producing a clear coating on a substrate comprising:
- One of the advantages of the present invention is its low VOC, which is significantly below the current guidelines of Environment Protection Agency (EPA) of the United States.
- Another advantage is the mar and etch resistance and hardness of the coating resulting from the coating composition of the present invention.
- Applicants have unexpectedly discovered that contrary to conventional approaches used in typical thermoset coating compositions, i.e., those involving polymers and crosslinking components, a very viable route lies in a combination of what would traditionally be considered as crosslinking agents for producing a unique low VOC high solids clear coating composition that produces coatings having superior coating properties, such as clarity, and mar and etch resistance.
- Applicants have further unexpectedly discovered that by including a cyclic carbonate component in a clear coating composition, the solids level can be further increased without sacrificing the etch and mar resistance, gloss, DOI, and other desired coating properties. It is believed that the carbonate component acts as a substitute for a solvent typically used in a coating composition and reacts upon cure to generate a stable and durable crosslinking structure. Thus, the viscosity of the resulting coating composition can be substantially lowered without sacrificing coating properties.
- the clear coating composition includes isocyanate, cyclic carbonate and melamine components.
- the isocyanate component includes an aliphatic polyisocyanate having on an average 2.5 to 6 and preferably 3 to 4 isocyanate functionalities.
- the coating composition includes in the range of from 30 percent to 70 percent, preferably in the range of from 35 percent to 55 percent, and most preferably in the range of 40 percent to 50 percent of the aliphatic polyisocyanate, the percentages being in weight percentages based on the total weight of composition solids.
- Suitable aliphatic polyisocyanates include aliphatic or cycloaliphatic tri- or tetra-isocyanates, which may or may not be ethylenically unsaturated, such as polyisocyanates having isocyanurate structural units such as the isocyanurate of hexamethylene diisocyanate and isocyanurate of isophorone diisocyanate, the adduct of 3 molecules of hexamethylene diisocyanate and 1 molecule of water (available under the trademark Desmodur N of Bayer Corporation, Pittsburgh, Pennsylvania).
- Aromatic polyisocyanates are not suitable for use in the present invention as the clear coatings resulting therefrom are too light sensitive and tend to yellow with age and crack upon long term exposure to sunlight. As a result such clear coatings are not durable.
- the isocyanate functionalities of the polymeric isocyanate are capped with a monomeric alcohol to prevent premature crosslinking in a one-pack composition.
- a monomeric alcohol include methanol, ethanol, propanol, butanol, isopropanol, isobutanol, hexanol, 2-ethylhexanol and cyclohexanol.
- the melamine component of the coating composition includes suitable monomeric or polymeric melamines or a combination thereof. Alkoxy monomeric melamines are preferred.
- the coating composition includes in the range of from 10 percent to 45 percent, preferably in the range of from 20 percent to 40 percent, and most preferably in the range of from of 25 percent to 35 percent of the melamine, the percentages being in weight percentages based on the total weight of composition solids.
- alkoxy monomeric melamine means a low molecular weight melamine which contains, on an average three or more methylol groups etherized with a C 1 to 5 monohydric alcohol such as methanol, n-butanol, isobutanol or the like per triazine nucleus, and has an average degree of condensation up to about 2 and preferably in the range of about 1.1 to about 1.8, and has a proportion of mononuclear species not less than about 50 percent by weight.
- the polymeric melamines have an average degree of condensation of more than 1.9
- Suitable monomeric melamines include highly alkylated melamines, such as methylated, butylated, isobutylated melamines and mixtures thereof. More particularly hexamethylol melamine, trimethylol melamine, partially methylated hexamethylol melamine, and pentamethoxymethyl melamine are preferred. Hexamethylol melamine and partially methylated hexamethylol melamine are more preferred and hexamethylol melamine is most preferred.
- Suitable monomeric melamines are supplied commercially.
- Cytec Industries Inc., West Patterson, New Jersey supplies Cymel® 301 (degree of polymerization of 1.5, 95% methyl and 5% methylol), Cymel® 350 (degree of polymerization of 1.6, 84% methyl and 16% methylol), 303, 325, 327 and 370, which are all monomeric melamines.
- Suitable polymeric melamines include high amino (partially alkylated, -N, -H) melamine known as ResimeneTM BMP5503 (molecular weight 690, polydispersity of 1.98, 56% buytl, 44 % amino), which is supplied by Solutia Inc., St. Louis, Missouri, or Cymel® 1158 provided by Cytec Industries Inc., West Patterson, New Jersey.
- Cytec Industries Inc. also supplies Cymel® 1130 @ 80 percent solids (degree of polymerization of 2.5), Cymel® 1133 (48% methyl, 4 % methylol and 48 % butyl), both of which are polymeric melamines.
- the coating composition preferably includes one or more catalysts to enhance crosslinking of the components on curing.
- the coating composition includes in the range of from 0.1 percent to 5 percent, preferably in the range of from 0.1 to 2 percent, more preferably in the range of from 0.5 percent to 2 percent and most preferably in the range of from 0.5 percent to 1.2 percent of the catalyst, the percentages being in weight percentages based on the total weight of composition solids.
- the suitable catalysts include the conventional acid catalysts, such as aromatic sulfonic acids, for example dodecylbenzene sulfonic acid, para-toluenesulfonic acid and dinonylnaphthalene sulfonic acid, all of which are either unblocked or blocked with an amine, such as dimethyl oxazolidine and 2-amino-2-methyl-I-propanol, n,n-dimethylethanolamine or a combination thereof.
- aromatic sulfonic acids for example dodecylbenzene sulfonic acid, para-toluenesulfonic acid and dinonylnaphthalene sulfonic acid, all of which are either unblocked or blocked with an amine, such as dimethyl oxazolidine and 2-amino-2-methyl-I-propanol, n,n-dimethylethanolamine or a combination thereof.
- Other acid catalysts that can be used are strong acids, such as phospho
- the coating composition preferably includes a small amount of one or more organo tin catalysts, such as dibutyl tin dilaurate, dibutyl tin diacetate, stannous octate, and dibutyl tin oxide.
- organo tin catalysts such as dibutyl tin dilaurate, dibutyl tin diacetate, stannous octate, and dibutyl tin oxide.
- Dibutyl tin dilaurate is preferred.
- the amount of organo tin catalyst added generally ranges from 0.001 percent to 0.5 percent, preferably from 0.05 percent to 0.2 percent and more preferably from 0.1 percent to 0.15 percent, the percentages being in weight percentages based on the total weight of composition solids.
- These catalysts are preferably added to the melamine component.
- the carbonate component of the coating composition includes five membered or six member cyclic carbonates or a combination thereof. Six membered cyclic carbonates are preferred.
- the coating composition includes in the range of from 5 percent to 40 percent, preferably in the range of from 10 percent to 35 percent, and most preferably in the range of from of 15 percent to 30 percent of the melamine, the percentages being in weight percentages based on the total weight of composition solids.
- Suitable cyclic carbonates include cyclic carbonates possessing one or more ring structures per molecule.
- the cyclic carbonate preferably contains between one to four rings, preferably one ring. Each ring may contain 3 or 4 carbon atoms, with or without pendant side groups.
- the carbonate component may contain a five-member or a six-member cyclic carbonate, or a combination thereof. Six-member cyclic carbonates are preferred.
- aliphatic diisocyanates or polyisocyanates such as hexamethylene diisocyanate (HMDI), isophorone diisocyanate, nonane diisocyanate, or their biuret or isocyanurate trimers.
- HMDI hexamethylene diisocyanate
- isophorone diisocyanate isophorone diisocyanate
- nonane diisocyanate or their biuret or isocyanurate trimers.
- a 5 membered cyclic carbonate having 2 or more cyclic carbonate ring structures
- Suitable five membered cyclic carbonates include those having on average one ring structure, such as ethylene carbonate, propylene carbonate, butylene carbonate, glycerin carbonate, butyl soyate carbonate, butyl linseed carbonate, or a combination thereof. Ethylene, propylene, and butylene carbonates are preferred.
- Six membered cyclic carbonates having on average one or more ring structure include the reaction products of dialkyl carbonates or phosgene with any 1,3 diol, such as neopentyl glycol, 1,3 propane diol, 2-methyl,-2-propypl-1,3-prolanediol, or trimetholylpropane.
- 1,3 diol such as neopentyl glycol, 1,3 propane diol, 2-methyl,-2-propypl-1,3-prolanediol, or trimetholylpropane.
- the present invention includes six membered cyclic carbonates having on an average one or more cyclic carbonate ring structures which may be conventionally prepared by providing polyester, polyether, or polyacrylics with carbonate functionalities.
- Six membered cyclic carbonate functionalized polyurethanes prepared by reacting aliphatic diisocyanates or polyisocyanates with hydroxy functional carbonates, or by reacting multifunctional amines with multi ring containing cyclic carbonates are also suitable for use in the present invention.
- the coating composition of the present invention which is formulated into high solids coating systems further contains at least one organic solvent typically selected from the group consisting of aromatic hydrocarbons, such as petroleum naphtha or xylenes; ketones, such as, methyl amyl ketone, methyl isobutyl ketone, methyl ethyl ketone or acetone; esters, such as, butyl acetate or hexyl acetate; and glycol ether esters, such as propylene glycol monomethyl ether acetate.
- aromatic hydrocarbons such as petroleum naphtha or xylenes
- ketones such as, methyl amyl ketone, methyl isobutyl ketone, methyl ethyl ketone or acetone
- esters such as, butyl acetate or hexyl acetate
- glycol ether esters such as propylene glycol monomethyl ether acetate.
- the amount of organic solvent added depends upon the desired
- the coating composition of the present invention may also contain conventional additives, such as stabilizers, and rheology control agents, flow agents, and toughening agents. Such additional additives will, of course, depend on the intended use of the coating composition. Any additives that would adversely effect the clarity of the cured coating will not be included as the composition is used as a clear coating. The foregoing additives may be added to either component or both, depending upon the intended use of the coating composition.
- the clear coating composition of the present invention may be supplied in the form of a two-pack coating composition in which the first-pack includes the polyisocyanate component and the second-pack includes the melamine component.
- the first and the second pack are stored in separate containers and mixed before use.
- the containers are preferably sealed air tight to prevent degradation during storage.
- the mixing may be done, for example, in a mixing nozzle or in a container.
- both the components of the coating composition can be stored in the same container in the form of a one-pack coating composition.
- an ultraviolet light stabilizer or a combination of ultraviolet light stabilizers and absorbers may be added.
- These stabilizers include ultraviolet light absorbers, screeners, quenchers and specific hindered amine light stabilizers.
- an antioxidant can be added.
- Typical ultraviolet light stabilizers that are useful include benzophenones, such as hydroxydodecyclbenzo-phenone, 2,4-dihydroxybenzophenone; triazoles, such as 2-phenyl-4-(2'-4'-dihydroxybenzoyl)triazoles; and triazines, such as 3,5-dialkyl-4-hydroxyphenyl derivatives of triazine and triazoles such as 2-(benzotriazole-2-yl)-4,6-bis(methylethyl-1-phenyl ethyl)phenol, 2-(3-hydroxy-3,5'-di-tert amyl phenyl) benzotriazole, 2-(3',5'-bis(1,1-dimethylpropyl)-2'-hydroxyphenyl)-2H-benzotriazole, benzenepropanoic acid, 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-C 7-9 -
- Typical hindered amine light stabilizers are bis(2,2,6,6-tetramethylpiperidinyl)sebacate, bis(N-methyl-2,2,6,6-tetramethylpiperidinyl)sebacate and bis(N-octyloxy-2,2,6,6-tetramethylpiperidynyl)sebacate.
- One of the useful blends of ultraviolet light absorbers and hindered amine light stabilizers is bis(N-octyloxy-2,2,6,6-tetramethylpiperidynyl)sebacate and benzenepropanoic acid, 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-,C7-9-branched alkyl esters.
- Another useful blend of ultraviolet light absorbers and hindered amine light stabilizers is 2-(3',5'-bis(1-methyl-1-phenylethyl)-2'-hydroxyphenyl)benzotriazole and decanedioc acid,bis(2,2,6,6,-tetramethyl-4-piperidinyl)ester both supplied by Ciba Specialty Chemicals, Tarrytown, New York under the trademark Tinuvin® 900 and Tinuvin® 123, respectively.
- the coating composition of the present invention optionally contains in the range of from 0.1 percent to 40 percent, preferably in the range of from 5 percent to 35 percent, and more preferably in the range of from 10 percent to 30 percent of a flow modifying resin, such as a non-aqueous dispersion (NAD), all percentages being based on the total weight of composition solids.
- a flow modifying resin such as a non-aqueous dispersion (NAD)
- NAD non-aqueous dispersion
- the weight average molecular weight of the flow modifying resin generally varies in the range of from 20,000 to 100,000, preferably in the range of from 25,000 to 80,000 and more preferably in the range from 30,000 to 50,000.
- the non-aqueous dispersion-type resin is prepared by dispersion-polymerizing at least one vinyl monomer in the presence of a polymer dispersion stabilizer and an organic solvent.
- the polymer dispersion stabilizer may be any of the known stabilizers used commonly in the field of non-aqueous dispersions, and may include the following substances (1) through (9) as examples:
- dispersion stabilizers can be used alone or in combination.
- dispersion stabilizers preferred for the purposes of the invention are those which can be dissolved in comparatively low polar solvents, such as aliphatic hydrocarbons to assure the film performance requirements to some extent.
- the acrylic copolymers mentioned under (4) and (5) are desirable in that they not only lend themselves well to adjustment of molecular weight, glass transition temperature, polarity (polymer SP value), hydroxyl value, acid value and other parameters but are excellent in weatherability. More desirable are acrylic copolymers containing an average of about 0.2 to about 1.2 polymerizable double bonds, per molecule, which are graft copolymerized with dispersed particles.
- the non-aqueous dispersion-type resin used in accordance with this invention can be easily prepared by dispersion-polymerizing at least one vinyl monomer in the presence of the aforedescribed polymer dispersion stabilizer and an organic solvent, which mainly contains an aliphatic hydrocarbon.
- the dispersion stabilizer and the vinyl monomer are soluble in the organic solvent.
- the polymer particles formed by the vinyl monomer are not soluble in the solvent.
- the monomer component forming the acrylic copolymer suitable as the polymer dispersion stabilizer and the vinyl monomer forming the dispersed particles may be virtually any radical-polymerizable unsaturated monomer.
- a variety of monomers can be utilized for the purpose. Typical examples of such monomers include the following.
- the following materials can be used with particular advantage for the preparation of the acrylic copolymer used as a dispersion stabilizer:
- the dispersion stabilizer may be one prepared by adding glycidyl (meth)acrylate or isocyanatoethyl methacrylate to a copolymer of the monomers for introduction of polymerizable double bonds.
- the acrylic copolymer used as the dispersion stabilizer can be easily prepared using a radical polymerization initiator in accordance with the known solution polymerization process.
- the number average molecular weight of the dispersion stabilizer is preferably in the range of about 1,000 to about 50,000 and, for still better results, about 3,000 to about 20,000.
- particularly preferred vinyl monomers for the formation of the dispersed polymer particles predominantly contain comparatively high-polarity monomers, such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, and acrylonitrile, supplemented as necessary with (meth)-acrylic acid, and 2-hydroxyethyl (meth)acrylate.
- gel particles as cross-linked in molecules by copolymerizing a small amount of polyfunctional monomers, such as divinylbenzene, and ethylene glycol dimethacrylate, by copolymerizing a plurality of monomers having mutually reactive functional groups, such as glycidyl methacrylate and methacrylic acid, or by copolymerizing an auto-reactive monomer, such as N-alkoxymethylated acrylamides, and ⁇ -methacryloyloxypropyl trimethoxy silanes.
- polyfunctional monomers such as divinylbenzene, and ethylene glycol dimethacrylate
- an auto-reactive monomer such as N-alkoxymethylated acrylamides, and ⁇ -methacryloyloxypropyl trimethoxy silanes.
- the ratio of the dispersion stabilizer to the vinyl monomer forming dispersed particles is selected from the range of about 5/95 to about 80/20 by weight, preferably about 10/90 to about 60/40 by weight, and the dispersion polymerization can be conducted in the presence of a radical polymerization initiator by a known procedure.
- particle size of the resulting non-aqueous dispersion type acrylic resin is generally in the range of about 0.05 ⁇ m to about 2 ⁇ m, the range of about 0.1 ⁇ m to about 0.7 ⁇ m is preferable from the stability of shelf life and the gloss, smoothness and weatherability of the film.
- the first-pack of the two-pack coating composition containing the polyisocyanate and the second-pack containing the melamine and cyclic carbonate are mixed just prior to use or about 5 to 30 minutes before use to form a pot mix, which has limited pot life of about 10 minutes to about 6 hours. Thereafter, it becomes too viscous to permit application through conventional application systems, such as spraying.
- a layer of the pot mix is typically applied to a substrate by conventional techniques, such as spraying, electrostatic spraying, roller coating, dipping or brushing.
- a clear coat layer having a thickness in the range of from 25 micrometers to 75 micrometers is applied over a metal substrate, such as automotive body, which is often pre-coated with other coating layers, such as an electrocoat, primer and a basecoat.
- the two pack coating composition may be baked upon application for about 60 to 10 minutes at about 80°C to 160°C.
- the one-pack coating composition containing the blocked polyisocyanate When the one-pack coating composition containing the blocked polyisocyanate is used, a layer thereof applied over a substrate using aforedescribed application techniques, is cured at a baking temperature in the range of from 80°C to 200°C, preferably in the range of 80°C to 160°C, for about 60 to 10 minutes. It is understood that actual baking temperature would vary depending upon the catalyst and the amount thereof, thickness of the layer being cured and the blocked isocyanate functionalities and the melamine utilized in the coating composition. The use of the foregoing baking step is particularly useful under OEM (Original Equipment Manufacture) conditions.
- the clear coating composition of the present invention is suitable for providing clear coatings on variety of substrates, such as metal, wood and concrete substrates.
- the present composition is especially suitable for providing clear coatings in automotive OEM or refinish applications. These compositions are also suitable as clear coatings in industrial and maintenance coating applications.
- test Test Method Dry film thickness ASTM D1400 Appearance Excellent, Good (acceptable minimum), Poor ASTM D523, VISUAL 20° Gloss A rating of at least 80 (acceptable minimum)
- ASTM D523 DOI A rating of at least 80 (acceptable minimum)
- ASTM D5767 Tukon Hardness ASTM D 1474 MEK rubs
- ASTM D5402 Synthetic Rain Acid Etch Resistance See below Percent solids 65 percent (acceptable minimum) ASTM D2369
- Panels, which have cured clearcoat over black basecoats were coated with a thin layer of Bon Ami abrasive supplied by Faultless Starch/Bon Ami Corporation, Kansas City, Missouri.
- the clear coats had a dry coating thickness of 50 microns.
- the panels were then tested for mar damage for 10 double rubs against a green felt wrapped fingertip of A.A.T.C.C. Crockmeter (Model CM-1, Atlas Electric Devices Corporation, Chicago, Illinois). The dry mar resistance was recorded as percentage of gloss retention by measuring the 20° gloss of the marred areas versus non-marred areas of the coated panels.
- the composition of the wet alumina slurry was as follows: Deionized Water (DI) Water 294 g ASE-60® Thickener 21 g AMP-95% (10% solution in DI water) 25 g Aluminum oxide (120# grit) 7 g
- the pH of the slurry was maintained in the range of 7.6 - 8.0, and the viscosity was maintained at 125 ⁇ 10 poise (Brookfield #4 spindle at 10 rpm).
- 0.7 ml of the slurry was applied over the black basecoated panels having cured clearcoats thereon.
- the clear coats had a dry coating thickness of 40 microns.
- the portions of panels coated with the slurry were then tested for mar damage for 10 double rubs against a green felt wrapped finger tip of A.A.T.C.C. Crockmeter (Model CM-1, Atlas Electric Devices).
- the wet mar resistance was recorded as percentage of gloss retention by measuring the 20° gloss of the marred areas versus non-marred areas of the coated panels.
- a synthetic rain formulation have the following formulation was prepared: Cationic Solution 28% Aqueous ammonia 35.7g 95% Calcium hydroxide 10.5g 95% Sodium hydroxide 12.6g 85% Potassium hydroxide 1.2g
- deionized water was added to produce 1000g of anionic solution.
- the synthetic rain was created by adding the anionic solution to the cationic solution until a pH of 1 was achieved. After a 24-hour mixing period, the pH was readjusted to 1.
- the test consisted of placing about 0.2 ml drops of the synthetic rain on a test coated surface previously coated with a black basecoat [a 5.08 cm x 5.08 cm (2 in. x 2 in.) steel panel]. The panel was then placed in a gradient oven at 80°C for 30 minutes. The etch depth on the test coating, averaged over 12 data points, was measured by a portable profilometer (Surtronic 3P profilometer supplied by Taylor Hobson Inc., Ralling Meadows, Illinois).
- Step 1 in Table 2 The components listed in Step 1 in Table 2 below were charged to a twelve-liter flask fitted with a trap, mixer and a condenser. The flask was swept with nitrogen and maintained under a nitrogen blanket during the reaction. The charge was heated to 80°C. The components listed in Step 2 in Table 2 below were premixed and were gradually added to the charge over a period of 30 minutes. The temperature of the charge was allowed to increase to 100°C under exothermic conditions and the charge held at 100°C for an hour. An Infrared absorbance spectrograph of the charge was taken to ensure that all of the isocyanate added during Step 2 was consumed.
- Step 1 3-ethoxy ethyl propionate 921 g
- Step 1 Glycerol carbonate 2478 g
- Step 1 Dibutyl Tin dilaurate 1g
- Step 2 Desmodur® 3300 3880 g
- Example 1 and 2 were used to produce coating compositions of the present invention.
- the material listed below in Table 3 was added to produce the coating compositions of Examples 3, 4, 5 and 6: Material Use Example 3
- Example 4 Example 5
- Example 6 Butylene carbonate reactive diluent 38.6 g 19.6 g 19.6 g 12.6 g
- Example 2 reactive diluent 15.6 g 15.6 g 17.8 g Cymel® 350 Monomeric melamine 19.3 g Cymel® 327 Polymeric melamine 21.4 g 21.4 g Cymel® 1158 Polymeric melamine 30.36 g Tinuvin® 292 Light stabilizer 1.5 g 1.5 g 1.5 g 1.5 g Tinuvin® 384 Light stabilizer 2.0 g 2.0 g 2.0 g 2.0 g 2.0 g BYK® 301 Flow Additive 0.07 g 0.07 g 0.07 g 0.07 g Dibutyl Tin dilaurate
- Tinuvin® 292 & 384 light stabilizers were supplied by Ciba Specialty Chemicals, Tarrytown, New York.
- BYK® 301 flow additive was supplied by BYK Chemie, Wallingford, Connecticut.
- Polyester polyol was the reaction product of 1 mole of Dimethylol propionic acid, 2 moles of caprolactone, 0.41 moles of pentaerythritol having 10,000 GPC weight average molecular weight @, 80% n.v.
- Dibutyl Tin Dilaurate was supplied by Air Products Corp. Allentown, Pennsylvania.
- Desmodur® N3300 polyisocyanate was supplied by Bayer Corporation Pittsburgh, Pennsylvania. Phenyl acid phosphate was supplied by King Industries, Norwalk, Connecticut.
- Layers from coating compositions from Examples 3, 4, 5 and 6 were spray applied over electrocoated, and primed phosphated steel which had been previously coated with a forced dried waterborne basecoat and bake cured for 30 minutes at 140°C to form coatings having a dry film thickness of 40 micrometers thereon.
- a coating from a conventional commercially available 2-pack coating composition (Imron® ES polyurethane) supplied by DuPont Company, Wilmington, Delaware was also prepared in the same manner.
- Example 4 The coatings from Examples 3, 4, 5, 6 and Comparative Example 1 (Comp. Ex. 1) were tested for film properties. The results are described in Table 4 below: Coating Properties Example 3 Example 4 Example 5 Example 6 Comp. Ex. 1 Solids (% non-volatiles) 85.3 87.5 87.7 85.1 53.0 Tukon hardness (Knoops) 10.1 14.3 4.1 20.9 14.3 20° Gloss 94 94 92 94 89 DOI 93 98 95 98 98 Wet Mar Resistance as % Gloss Retention 97 98 99 99 82 Dry Mar Resistance as % Gloss Retention 95 93 92 97 60 Acid Etch Resistance in Depth in micrometers 0.87 0.5 0.2 0.25 1.57
- the clear coating composition of the present invention not only provides for a clear coating composition at high solids level, but it also provides superior physical properties, such as mar resistance.
- Polyester Resin is condensation product of 1 mole of dimethylolpropionic acid, 2 moles of E-Caprolactone, and 0.27 moles of pentaerythritol. Tolonate® HDT LV from Rhodia Co.
- Freeport Texas Acid Solution # 1 was 25 percent of Phenyl acid phosphate Acid Solution # 2 was 33 percent of 2-amino-2-methyl-n propanolamine blocked dodecylbenzene sulfonic acid supplied by King Industry, Norwalk, Connecticut.
- Example 7 The coatings from Example 7 were tested for film properties. Comparative Example 2 (Comp. Ex. 2) could not be tested as it was too thick to spray. The results are described in Table 6 below: Coating Properties Example 7 Comp. Ex. 2 Solids (% non-volatiles) 87.8 87.8 Viscosity (# 4 Ford Cup) 70 seconds 168 seconds 20° Gloss 94 (too thick to spray) DOI 96 (") Autospec Appearance 80 (”) Wet Mar Resistance as % Gloss Retention 95 (”) Dry Mar Resistance as % Gloss Retention 93 (")
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
- The present invention generally relates to high solids, low VOC (volatile organic component) coating compositions and more particularly to low VOC clear coating compositions suited for multi-layered coatings used in automotive OEM and refinish applications.
- Basecoat-clearcoat systems have found wide acceptance in the automotive finishes market. Continuing effort has been directed to improve the overall appearance, the clarity of the topcoat, and the resistance to deterioration of these coating systems at ever-higher application solids levels. Further effort has also been directed to the development of coating compositions having low VOC. A continuing need still exists for clear coating formulations having an outstanding balance of performance characteristics after application, particularly gloss and distinctness of image (DOI) at high solids levels. Melamine/acrylic polyol crosslinked or melamine self-condensed coatings for example, may provide coatings having acceptable mar but such coatings have poor acid etch resistance and decreased appearance at higher solids levels. On the other hand, isocyanate/acrylic polyol based 2K urethane coatings generally provide acceptable acid-etch resistance but such coatings have poor mar resistance. Therefore, a need still exists for coatings that not only provide acceptable mar and acid-etch resistance but also high gloss and DOI at the lowest VOC possible.
- One approach described by Ntsihlele and Pizzi in an article titled "Cross-Linked Coatings by Co-Reaction of Isocyanate-Methoxymethyl Melamine Systems" (Journal of Applied Polymer Science, Volume 55, Pages 153-161-1995) provides for reacting aromatic diisocyanate with methoxymethyl melamine. However, a need still exists for a high solids clear coating composition, which upon a long-term exposure to sunlight does not yellow or become brittle and provides high gloss and DOI.
- The present invention is directed to a clear coating composition comprising isocyanate, cyclic carbonate and melamine components wherein said isocyanate component comprises an aliphatic polyisocyanate having on an average 2.5 to 6 isocyanate functionalities.
- The present invention is also directed to a method of producing a clear coating on a substrate comprising:
- applying a layer of a clear coating composition comprising isocyanate, cyclic carbonate and melamine components wherein said isocyanate component comprises an aliphatic polyisocyanate having on an average 2.5 to 6 isocyanate functionalities; and
- curing said layer into said clear coating.
-
- One of the advantages of the present invention is its low VOC, which is significantly below the current guidelines of Environment Protection Agency (EPA) of the United States.
- Another advantage is the mar and etch resistance and hardness of the coating resulting from the coating composition of the present invention.
- Yet another advantage is the clarity and high gloss of the coating resulting from the coating composition of the present invention. As used herein:
- "Two-pack coating composition" means a thermoset coating composition comprising two components stored in separate containers. These containers are typically sealed to increase the shelf life of the components of the coating composition. The components are mixed prior to use to form a pot mix. The pot mix has a limited pot life typically of minutes (15 minutes to 45 minutes) to a few hours (4 hours to 6 hours). The pot mix is applied as a layer of desired thickness on a substrate surface, such as an autobody. After application, the layer is cured under ambient conditions or cure-baked at elevated temperatures to form a coating on the substrate surface having desired coating properties, such as high gloss, mar-resistance and resistance to environmental etching.
- "One-pack coating composition" means a thermoset coating composition comprising two components that are stored in the same container. However, the one component is blocked to prevent premature crosslinking. After the application of the one-pack coating composition on a substrate, the layer is exposed to elevated temperatures to unmask the blocked component. Thereafter, the layer is bake-cured at elevated temperatures to form a coating on the substrate surface having desired coating properties, such as high gloss, mar-resistance and resistance to environmental etching.
- "Low VOC coating composition" means a coating composition that includes in the range of from 0 to 0.472 kilogram of organic solvent per liter (4 pounds per gallon), preferable in the range of from 0.118 (1 pound per gallon) to 0.178 kilogram of organic solvent per liter (1.5 pounds per gallon) of the composition, as determined under the procedure provided in ASTM D3960.
- "High solids composition" means a coating composition having a solid component in the range of from 65 to 100 percent and preferably greater than 70 percent, all in weight percentages based on the total weight of the composition.
- "Clear coating composition" means a clear coating composition that produces upon cure, a clear coating having DOI (distinctness of image) rating of more than 80 and 20° gloss rating of more than 80.
- "GPC weight average molecular weight" and "GPC number average molecular weight" means a weight average molecular weight and a weight average molecular weight, respectively measured by utilizing gel permeation chromatography. A high performance liquid chromatograph (HPLC) supplied by Hewlett-Packard; Palo Alto, California was used. Unless stated otherwise, the liquid phase used was tetrahydrofuran and the standard was polymethyl methacrylate.
- "Polymer particle size" means the diameter of the polymer particles measured by using a Brookhaven Model BI-90 Particle Sizer supplied by Brookhaven Instruments Corporation, Holtsville, N.Y. The sizer employs a quasi-elastic light scattering technique to measure the size of the polymer particles. The intensity of the scattering is a function of particle size. The diameter based on an intensity weighted average is used. This technique is described in Chapter 3, pages 48-61, entitled Uses and Abuses of Photon Correlation Spectroscopy in Particle Sizing by Weiner et al. 1987 edition of American Chemical Society Symposium series.
- "Polymer solids" or "composition solids" means a polymer or composition in its dry state.
- "Aliphatic" as employed herein includes aliphatic and cycloaliphatic materials.
- "Crosslinkable" means that the individual components of an adduct contain functionalities which react within the composition of the invention to give a coating of good appearance, durability, hardness and mar resistance.
- "Acid etch resistance" refers to the resistance provided by a coated surface against chemical etching action by the environment, such for example acid rain.
- "Mar resistance" refers to the resistance provided by coating to mechanical abrasions, such as, for example, the abrasion of a coated surface, such as an automotive body, that typically occurs during washing and cleaning of the coated surface.
-
- Applicants have unexpectedly discovered that contrary to conventional approaches used in typical thermoset coating compositions, i.e., those involving polymers and crosslinking components, a very viable route lies in a combination of what would traditionally be considered as crosslinking agents for producing a unique low VOC high solids clear coating composition that produces coatings having superior coating properties, such as clarity, and mar and etch resistance. Applicants have further unexpectedly discovered that by including a cyclic carbonate component in a clear coating composition, the solids level can be further increased without sacrificing the etch and mar resistance, gloss, DOI, and other desired coating properties. It is believed that the carbonate component acts as a substitute for a solvent typically used in a coating composition and reacts upon cure to generate a stable and durable crosslinking structure. Thus, the viscosity of the resulting coating composition can be substantially lowered without sacrificing coating properties.
- The clear coating composition includes isocyanate, cyclic carbonate and melamine components. The isocyanate component includes an aliphatic polyisocyanate having on an average 2.5 to 6 and preferably 3 to 4 isocyanate functionalities. The coating composition includes in the range of from 30 percent to 70 percent, preferably in the range of from 35 percent to 55 percent, and most preferably in the range of 40 percent to 50 percent of the aliphatic polyisocyanate, the percentages being in weight percentages based on the total weight of composition solids.
- Examples of suitable aliphatic polyisocyanates include aliphatic or cycloaliphatic tri- or tetra-isocyanates, which may or may not be ethylenically unsaturated, such as polyisocyanates having isocyanurate structural units such as the isocyanurate of hexamethylene diisocyanate and isocyanurate of isophorone diisocyanate, the adduct of 3 molecules of hexamethylene diisocyanate and 1 molecule of water (available under the trademark Desmodur N of Bayer Corporation, Pittsburgh, Pennsylvania).
- Aromatic polyisocyanates are not suitable for use in the present invention as the clear coatings resulting therefrom are too light sensitive and tend to yellow with age and crack upon long term exposure to sunlight. As a result such clear coatings are not durable.
- The isocyanate functionalities of the polymeric isocyanate are capped with a monomeric alcohol to prevent premature crosslinking in a one-pack composition. Some suitable monomeric alcohols include methanol, ethanol, propanol, butanol, isopropanol, isobutanol, hexanol, 2-ethylhexanol and cyclohexanol.
- The melamine component of the coating composition includes suitable monomeric or polymeric melamines or a combination thereof. Alkoxy monomeric melamines are preferred. The coating composition includes in the range of from 10 percent to 45 percent, preferably in the range of from 20 percent to 40 percent, and most preferably in the range of from of 25 percent to 35 percent of the melamine, the percentages being in weight percentages based on the total weight of composition solids.
- In the context of the present invention, the term "alkoxy monomeric melamine" means a low molecular weight melamine which contains, on an average three or more methylol groups etherized with a C1 to 5 monohydric alcohol such as methanol, n-butanol, isobutanol or the like per triazine nucleus, and has an average degree of condensation up to about 2 and preferably in the range of about 1.1 to about 1.8, and has a proportion of mononuclear species not less than about 50 percent by weight. The polymeric melamines have an average degree of condensation of more than 1.9
- Some of such suitable monomeric melamines include highly alkylated melamines, such as methylated, butylated, isobutylated melamines and mixtures thereof. More particularly hexamethylol melamine, trimethylol melamine, partially methylated hexamethylol melamine, and pentamethoxymethyl melamine are preferred. Hexamethylol melamine and partially methylated hexamethylol melamine are more preferred and hexamethylol melamine is most preferred.
- Many of these suitable monomeric melamines are supplied commercially. For example, Cytec Industries Inc., West Patterson, New Jersey supplies Cymel® 301 (degree of polymerization of 1.5, 95% methyl and 5% methylol), Cymel® 350 (degree of polymerization of 1.6, 84% methyl and 16% methylol), 303, 325, 327 and 370, which are all monomeric melamines. Suitable polymeric melamines include high amino (partially alkylated, -N, -H) melamine known as Resimene™ BMP5503 (molecular weight 690, polydispersity of 1.98, 56% buytl, 44 % amino), which is supplied by Solutia Inc., St. Louis, Missouri, or Cymel® 1158 provided by Cytec Industries Inc., West Patterson, New Jersey.
- Cytec Industries Inc. also supplies Cymel® 1130 @ 80 percent solids (degree of polymerization of 2.5), Cymel® 1133 (48% methyl, 4 % methylol and 48 % butyl), both of which are polymeric melamines.
- The coating composition preferably includes one or more catalysts to enhance crosslinking of the components on curing. Generally, the coating composition includes in the range of from 0.1 percent to 5 percent, preferably in the range of from 0.1 to 2 percent, more preferably in the range of from 0.5 percent to 2 percent and most preferably in the range of from 0.5 percent to 1.2 percent of the catalyst, the percentages being in weight percentages based on the total weight of composition solids.
- Some of the suitable catalysts include the conventional acid catalysts, such as aromatic sulfonic acids, for example dodecylbenzene sulfonic acid, para-toluenesulfonic acid and dinonylnaphthalene sulfonic acid, all of which are either unblocked or blocked with an amine, such as dimethyl oxazolidine and 2-amino-2-methyl-I-propanol, n,n-dimethylethanolamine or a combination thereof. Other acid catalysts that can be used are strong acids, such as phosphoric acids, more particularly phenyl acid phosphate, which may be unblocked or blocked with an amine.
- In addition to the foregoing, the coating composition preferably includes a small amount of one or more organo tin catalysts, such as dibutyl tin dilaurate, dibutyl tin diacetate, stannous octate, and dibutyl tin oxide. Dibutyl tin dilaurate is preferred. The amount of organo tin catalyst added generally ranges from 0.001 percent to 0.5 percent, preferably from 0.05 percent to 0.2 percent and more preferably from 0.1 percent to 0.15 percent, the percentages being in weight percentages based on the total weight of composition solids.
- These catalysts are preferably added to the melamine component.
- The carbonate component of the coating composition includes five membered or six member cyclic carbonates or a combination thereof. Six membered cyclic carbonates are preferred. The coating composition includes in the range of from 5 percent to 40 percent, preferably in the range of from 10 percent to 35 percent, and most preferably in the range of from of 15 percent to 30 percent of the melamine, the percentages being in weight percentages based on the total weight of composition solids.
- Some of the suitable cyclic carbonates include cyclic carbonates possessing one or more ring structures per molecule. The cyclic carbonate preferably contains between one to four rings, preferably one ring. Each ring may contain 3 or 4 carbon atoms, with or without pendant side groups. The carbonate component may contain a five-member or a six-member cyclic carbonate, or a combination thereof. Six-member cyclic carbonates are preferred.
- Some of the suitable five member cyclic carbonates include those having the formula: where R = H, C1-C15 alkyl, alkoxy groups, such as methoxyl, ethoxyl, phenoxyl, or a linked polymer structure, such as from polyurethane, polyester or acrylic polymer, all of low number average molecular weight in the range of from 200 to 10,000, preferably in the range of from 300 to 5000 and more preferably in the range of from 400 to 1000.
- Five membered cyclic carbonates having 2 or more ring structures may be obtained as the reaction products of glycerin carbonate (R= CH2-OH) with aliphatic diisocyanates or polyisocyanates, such as hexamethylene diisocyanate (HMDI), isophorone diisocyanate, nonane diisocyanate, or their biuret or isocyanurate trimers. Alternatively, a 5 membered cyclic carbonate having 2 or more cyclic carbonate ring structures may be prepared by conventional synthetic routes known within the industry which lead to polyester, polyether, or polyacrylics having such functional sites. Some of the suitable five membered cyclic carbonates include those having on average one ring structure, such as ethylene carbonate, propylene carbonate, butylene carbonate, glycerin carbonate, butyl soyate carbonate, butyl linseed carbonate, or a combination thereof. Ethylene, propylene, and butylene carbonates are preferred.
- Some the suitable six member cyclic carbonates include those having the formula: where R = H, C1-C15 alkyl, or alkoxyl group, such as methoxyl, ethoxyl, phenoxyl, or a linked polymer structure, such as from polyurethane, polyester or acrylic polymer, all of low number average molecular weight in the range of from 200 to 10,000, preferably in the range of from 300 to 5000 and more preferably in the range of from 400 to 1000.
- Six membered cyclic carbonates having on average one or more ring structure include the reaction products of dialkyl carbonates or phosgene with any 1,3 diol, such as neopentyl glycol, 1,3 propane diol, 2-methyl,-2-propypl-1,3-prolanediol, or trimetholylpropane. Examples of 6 membered ring cyclic carbonates, and their synthesis are described in Examples 1, 3 and 9 in US Patent 4,440,937, which is incorporated herein by reference.
- The present invention includes six membered cyclic carbonates having on an average one or more cyclic carbonate ring structures which may be conventionally prepared by providing polyester, polyether, or polyacrylics with carbonate functionalities. Six membered cyclic carbonate functionalized polyurethanes prepared by reacting aliphatic diisocyanates or polyisocyanates with hydroxy functional carbonates, or by reacting multifunctional amines with multi ring containing cyclic carbonates are also suitable for use in the present invention.
- The coating composition of the present invention, which is formulated into high solids coating systems further contains at least one organic solvent typically selected from the group consisting of aromatic hydrocarbons, such as petroleum naphtha or xylenes; ketones, such as, methyl amyl ketone, methyl isobutyl ketone, methyl ethyl ketone or acetone; esters, such as, butyl acetate or hexyl acetate; and glycol ether esters, such as propylene glycol monomethyl ether acetate. The amount of organic solvent added depends upon the desired solids level as well as the desired amount of VOC of the composition. If desired, the organic solvent may be added to both components of the binder.
- The coating composition of the present invention may also contain conventional additives, such as stabilizers, and rheology control agents, flow agents, and toughening agents. Such additional additives will, of course, depend on the intended use of the coating composition. Any additives that would adversely effect the clarity of the cured coating will not be included as the composition is used as a clear coating. The foregoing additives may be added to either component or both, depending upon the intended use of the coating composition.
- The clear coating composition of the present invention may be supplied in the form of a two-pack coating composition in which the first-pack includes the polyisocyanate component and the second-pack includes the melamine component. Generally the first and the second pack are stored in separate containers and mixed before use. The containers are preferably sealed air tight to prevent degradation during storage. The mixing may be done, for example, in a mixing nozzle or in a container.
- Alternatively, when the isocyanates functionalities of the polyisocyanate are blocked, both the components of the coating composition can be stored in the same container in the form of a one-pack coating composition.
- To improve weatherability of the clear finish of the coating composition, about 0.1 to 5%, by weight, based on the weight of the composition solids, of an ultraviolet light stabilizer or a combination of ultraviolet light stabilizers and absorbers may be added. These stabilizers include ultraviolet light absorbers, screeners, quenchers and specific hindered amine light stabilizers. Also, about 0.1 to 5% by weight, based on the weight of the composition solids, of an antioxidant can be added. Typical ultraviolet light stabilizers that are useful include benzophenones, such as hydroxydodecyclbenzo-phenone, 2,4-dihydroxybenzophenone; triazoles, such as 2-phenyl-4-(2'-4'-dihydroxybenzoyl)triazoles; and triazines, such as 3,5-dialkyl-4-hydroxyphenyl derivatives of triazine and triazoles such as 2-(benzotriazole-2-yl)-4,6-bis(methylethyl-1-phenyl ethyl)phenol, 2-(3-hydroxy-3,5'-di-tert amyl phenyl) benzotriazole, 2-(3',5'-bis(1,1-dimethylpropyl)-2'-hydroxyphenyl)-2H-benzotriazole, benzenepropanoic acid, 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-C7-9-branched alkyl esters, and 2-(3',5'-bis(1-methyl-1-phenylethyl)-2'-hydroxyphenyl)benzotriazole.
- Typical hindered amine light stabilizers are bis(2,2,6,6-tetramethylpiperidinyl)sebacate, bis(N-methyl-2,2,6,6-tetramethylpiperidinyl)sebacate and bis(N-octyloxy-2,2,6,6-tetramethylpiperidynyl)sebacate. One of the useful blends of ultraviolet light absorbers and hindered amine light stabilizers is bis(N-octyloxy-2,2,6,6-tetramethylpiperidynyl)sebacate and benzenepropanoic acid, 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-,C7-9-branched alkyl esters. Another useful blend of ultraviolet light absorbers and hindered amine light stabilizers is 2-(3',5'-bis(1-methyl-1-phenylethyl)-2'-hydroxyphenyl)benzotriazole and decanedioc acid,bis(2,2,6,6,-tetramethyl-4-piperidinyl)ester both supplied by Ciba Specialty Chemicals, Tarrytown, New York under the trademark Tinuvin® 900 and Tinuvin® 123, respectively.
- The coating composition of the present invention optionally contains in the range of from 0.1 percent to 40 percent, preferably in the range of from 5 percent to 35 percent, and more preferably in the range of from 10 percent to 30 percent of a flow modifying resin, such as a non-aqueous dispersion (NAD), all percentages being based on the total weight of composition solids. The weight average molecular weight of the flow modifying resin generally varies in the range of from 20,000 to 100,000, preferably in the range of from 25,000 to 80,000 and more preferably in the range from 30,000 to 50,000.
- The non-aqueous dispersion-type resin is prepared by dispersion-polymerizing at least one vinyl monomer in the presence of a polymer dispersion stabilizer and an organic solvent. The polymer dispersion stabilizer may be any of the known stabilizers used commonly in the field of non-aqueous dispersions, and may include the following substances (1) through (9) as examples:
- (1) A polyester macromer having about 1.0 polymerizable double bond within the molecule as obtainable upon addition of glycidyl acrylate or glycidyl methacrylate to an auto-condensation polyester of a hydroxy-containing fatty acid such as 12-hydroxystearic acid.
- (2) A comb-type polymer prepared by copolymerizing the polyester macromer mentioned under (1) with methyl methacrylate and/or other (meth)acrylic ester or a vinyl monomer.
- (3) A polymer obtainable by the steps of copolymerizing the polymer described under (2) with a small amount of glycidyl (meth)acrylate and, then, adding (meth)acrylic acid to the glycidyl groups thereof so as to introduce double bonds.
- (4) A hydroxy-containing acrylic copolymer prepared by copolymerizing at least 20 percent by weight of (meth)acrylic ester of a monohydric alcohol containing 4 or more carbon atoms.
- (5) An acrylic copolymer obtainable by producing at least 0.3 double bond per molecule based on its number average molecular weight, into the copolymer mentioned under (4). A method for introducing double bonds may, for example, comprise copolymerizing the acrylic polymer with a small amount of glycidyl (meth)acrylate and then adding (meth)acrylic acid to the glycidyl group.
- (6) An alkylmelamine resin with a high tolerance to mineral spirit.
- (7) An alkyd resin with an oil length not less than 15 percent and/or a resin obtainable by introducing polymerizable double bonds into the alkyd resin. A method of introducing double bonds may, for example, comprise addition reaction of glycidyl (meth)acrylate to the carboxyl groups in the alkyd resin.
- (8) An oil-free polyester resin with a high tolerance to mineral spirit, an alkyd resin with an oil length less than 15 percent, and/or a resin obtainable by introducing double bonds into said alkyd resin.
- (9) A cellulose acetate butyrate into which polymerizable double bonds have been introduced. An exemplary method of introducing double bonds comprises addition reaction of isocyanatoethyl methacrylate to cellulose acetate butyrate.
-
- These dispersion stabilizers can be used alone or in combination.
- Among the aforementioned dispersion stabilizers, preferred for the purposes of the invention are those which can be dissolved in comparatively low polar solvents, such as aliphatic hydrocarbons to assure the film performance requirements to some extent. As dispersion stabilizers which can meet such conditions, the acrylic copolymers mentioned under (4) and (5) are desirable in that they not only lend themselves well to adjustment of molecular weight, glass transition temperature, polarity (polymer SP value), hydroxyl value, acid value and other parameters but are excellent in weatherability. More desirable are acrylic copolymers containing an average of about 0.2 to about 1.2 polymerizable double bonds, per molecule, which are graft copolymerized with dispersed particles.
- The non-aqueous dispersion-type resin used in accordance with this invention can be easily prepared by dispersion-polymerizing at least one vinyl monomer in the presence of the aforedescribed polymer dispersion stabilizer and an organic solvent, which mainly contains an aliphatic hydrocarbon. The dispersion stabilizer and the vinyl monomer are soluble in the organic solvent. However, the polymer particles formed by the vinyl monomer are not soluble in the solvent.
- The monomer component forming the acrylic copolymer suitable as the polymer dispersion stabilizer and the vinyl monomer forming the dispersed particles may be virtually any radical-polymerizable unsaturated monomer. A variety of monomers can be utilized for the purpose. Typical examples of such monomers include the following.
- (a) Esters of acrylic acid or methacrylic acid, such as for example, C1-18 alkyl esters of acrylic or methacrylic acid, such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, lauryl acrylate, stearyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, lauryl methacrylate, and stearyl methacrylate; glycidyl acrylate and glycidyl methacrylate; C2-8 alkenyl esters of acrylic or methacrylic acid, such as allyl acrylate, and allyl methacrylate; C2-8 hydroxyalkyl esters of acrylic or methacrylic acid, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, and hydroxypropyl methacrylate; and C3-18 alkenyloxyalkyl esters or acrylic or methacrylic acid, such as allyloxyethyl acrylate, and allyloxyethyl methacrylate.
- (b) Vinyl aromatic compounds, such as, for example, styrene, alphamethylstyrene, vinyltoluene, p-chlorostyrene, and vinylpyridine.
- (c) α, β-Ethylenically unsaturated acids, such as, for example, acrylic acid, methacrylic acid, itaconic acid and crotonic acid
- (d) Amides of acrylic or methacrylic acid, such as, for example, acrylamide, methacrylamide, n-butoxymethylacrylamide, N-methylolacrylamide, n-butoxymethylmethacrylamide, and N-methylolmethacrylamide.
- (e) Others: for example, acrylonitrile, methacrylonitrile, methyl isopropenyl ketone, vinyl acetate, VeoVa monomer (product of Shell Chemicals, Co., Ltd.; mixed vinyl esters of a synthetic saturated monocarboxylic acid of highly branched structure containing ten carbon atoms), vinyl propionate, vinyl pivalate, isocyanatoethyl methacrylate, perfluorocyclohexyl (meth)acrylate, p-styrenesulfonamide, N-methyl-p-styrenesulfonamide, anf γ-methacryloyloxypropyl trimethoxy silane.
-
- Among the monomers mentioned above, the following materials can be used with particular advantage for the preparation of the acrylic copolymer used as a dispersion stabilizer:
- Mixed monomers based on comparatively long-chain, low-polar monomers, such as n-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, lauryl methacrylate, and stearyl methacrylate, supplemented as necessary with styrene, methyl (meth)acrylate, ethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, propyl (meth)acrylate, and (meth)acrylic acid. The dispersion stabilizer may be one prepared by adding glycidyl (meth)acrylate or isocyanatoethyl methacrylate to a copolymer of the monomers for introduction of polymerizable double bonds.
- The acrylic copolymer used as the dispersion stabilizer can be easily prepared using a radical polymerization initiator in accordance with the known solution polymerization process.
- The number average molecular weight of the dispersion stabilizer is preferably in the range of about 1,000 to about 50,000 and, for still better results, about 3,000 to about 20,000.
- Among the monomers mentioned above, particularly preferred vinyl monomers for the formation of the dispersed polymer particles predominantly contain comparatively high-polarity monomers, such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, and acrylonitrile, supplemented as necessary with (meth)-acrylic acid, and 2-hydroxyethyl (meth)acrylate. It is also possible to provide gel particles as cross-linked in molecules by copolymerizing a small amount of polyfunctional monomers, such as divinylbenzene, and ethylene glycol dimethacrylate, by copolymerizing a plurality of monomers having mutually reactive functional groups, such as glycidyl methacrylate and methacrylic acid, or by copolymerizing an auto-reactive monomer, such as N-alkoxymethylated acrylamides, and γ-methacryloyloxypropyl trimethoxy silanes.
- In conducting the dispersion polymerization, the ratio of the dispersion stabilizer to the vinyl monomer forming dispersed particles is selected from the range of about 5/95 to about 80/20 by weight, preferably about 10/90 to about 60/40 by weight, and the dispersion polymerization can be conducted in the presence of a radical polymerization initiator by a known procedure.
- While the particle size of the resulting non-aqueous dispersion type acrylic resin is generally in the range of about 0.05 µm to about 2 µm, the range of about 0.1 µm to about 0.7 µm is preferable from the stability of shelf life and the gloss, smoothness and weatherability of the film.
- In use, the first-pack of the two-pack coating composition containing the polyisocyanate and the second-pack containing the melamine and cyclic carbonate are mixed just prior to use or about 5 to 30 minutes before use to form a pot mix, which has limited pot life of about 10 minutes to about 6 hours. Thereafter, it becomes too viscous to permit application through conventional application systems, such as spraying. A layer of the pot mix is typically applied to a substrate by conventional techniques, such as spraying, electrostatic spraying, roller coating, dipping or brushing. Generally, a clear coat layer having a thickness in the range of from 25 micrometers to 75 micrometers is applied over a metal substrate, such as automotive body, which is often pre-coated with other coating layers, such as an electrocoat, primer and a basecoat. The two pack coating composition may be baked upon application for about 60 to 10 minutes at about 80°C to 160°C.
- When the one-pack coating composition containing the blocked polyisocyanate is used, a layer thereof applied over a substrate using aforedescribed application techniques, is cured at a baking temperature in the range of from 80°C to 200°C, preferably in the range of 80°C to 160°C, for about 60 to 10 minutes. It is understood that actual baking temperature would vary depending upon the catalyst and the amount thereof, thickness of the layer being cured and the blocked isocyanate functionalities and the melamine utilized in the coating composition. The use of the foregoing baking step is particularly useful under OEM (Original Equipment Manufacture) conditions.
- The clear coating composition of the present invention is suitable for providing clear coatings on variety of substrates, such as metal, wood and concrete substrates. The present composition is especially suitable for providing clear coatings in automotive OEM or refinish applications. These compositions are also suitable as clear coatings in industrial and maintenance coating applications.
- The following test procedures were used for generating data reported in the examples below:
Test Test Method Dry film thickness ASTM D1400 Appearance Excellent, Good (acceptable minimum), Poor ASTM D523, VISUAL 20° Gloss A rating of at least 80 (acceptable minimum) ASTM D523 DOI A rating of at least 80 (acceptable minimum) ASTM D5767 Tukon Hardness ASTM D 1474 MEK rubs ASTM D5402 Synthetic Rain Acid Etch Resistance See below Percent solids 65 percent (acceptable minimum) ASTM D2369 - Panels, which have cured clearcoat over black basecoats were coated with a thin layer of Bon Ami abrasive supplied by Faultless Starch/Bon Ami Corporation, Kansas City, Missouri. The clear coats had a dry coating thickness of 50 microns. The panels were then tested for mar damage for 10 double rubs against a green felt wrapped fingertip of A.A.T.C.C. Crockmeter (Model CM-1, Atlas Electric Devices Corporation, Chicago, Illinois). The dry mar resistance was recorded as percentage of gloss retention by measuring the 20° gloss of the marred areas versus non-marred areas of the coated panels.
- Similar Procedure to that used in Crockmeter - Dry Mar Resistance above was used to test wet mar resistance, except the abrasive medium used was a wet alumina slurry instead of Bon Ami abrasive. The composition of the wet alumina slurry was as follows:
Deionized Water (DI) Water 294 g ASE-60® Thickener 21 g AMP-95% (10% solution in DI water) 25 g Aluminum oxide (120# grit) 7 g - The pH of the slurry was maintained in the range of 7.6 - 8.0, and the viscosity was maintained at 125 ± 10 poise (Brookfield #4 spindle at 10 rpm). To test the wet mar resistance, 0.7 ml of the slurry was applied over the black basecoated panels having cured clearcoats thereon. The clear coats had a dry coating thickness of 40 microns. The portions of panels coated with the slurry were then tested for mar damage for 10 double rubs against a green felt wrapped finger tip of A.A.T.C.C. Crockmeter (Model CM-1, Atlas Electric Devices). The wet mar resistance was recorded as percentage of gloss retention by measuring the 20° gloss of the marred areas versus non-marred areas of the coated panels.
- A synthetic rain formulation have the following formulation was prepared:
Cationic Solution 28% Aqueous ammonia 35.7g 95% Calcium hydroxide 10.5g 95% Sodium hydroxide 12.6g 85% Potassium hydroxide 1.2g - To the forgoing, deionized water was added to produce 1000g of cationic solution.
Anionic Solution 98% Sulfuric acid 102.0g 70% Nitric acid 42.9g 35% Hydrochloric acid 200g - To the forgoing, deionized water was added to produce 1000g of anionic solution.
- The synthetic rain was created by adding the anionic solution to the cationic solution until a pH of 1 was achieved. After a 24-hour mixing period, the pH was readjusted to 1.
- The test consisted of placing about 0.2 ml drops of the synthetic rain on a test coated surface previously coated with a black basecoat [a 5.08 cm x 5.08 cm (2 in. x 2 in.) steel panel]. The panel was then placed in a gradient oven at 80°C for 30 minutes. The etch depth on the test coating, averaged over 12 data points, was measured by a portable profilometer (Surtronic 3P profilometer supplied by Taylor Hobson Inc., Ralling Meadows, Illinois).
- The invention is illustrated in the following Examples:
- The components listed in Table 1 below were charged to a five-liter flask fitted with a trap, mixer and a condenser. The flask was swept with nitrogen and maintained under a nitrogen blanket during the reaction. The charge was heated to 140 °C to begin to distill off the distillate, which was mostly ethanol created during the reaction. The charge was held for four hours at 140 °C and the distillate was recovered. The temperature of the charge was gradually increased to 160°C to finish off and recover 748.8 g of the distillate. During cooling phase 81 g of methyl amyl ketone (MAK) solvent was added to yield a clear liquid containing 95% of cyclic carbonate.
Trimethylolpropane 363.43 g Neopentyl glycol 452.9 g 1,6hexane diol 512.14 g Diethyl carbonate 960.0 g Dibutyl Tin dilaurate 1.8 g Distillate (ethanol) removed (748.8) - The components listed in Step 1 in Table 2 below were charged to a twelve-liter flask fitted with a trap, mixer and a condenser. The flask was swept with nitrogen and maintained under a nitrogen blanket during the reaction. The charge was heated to 80°C. The components listed in Step 2 in Table 2 below were premixed and were gradually added to the charge over a period of 30 minutes. The temperature of the charge was allowed to increase to 100°C under exothermic conditions and the charge held at 100°C for an hour. An Infrared absorbance spectrograph of the charge was taken to ensure that all of the isocyanate added during Step 2 was consumed. Thereafter, the charge was allowed to cool to yield a clear liquid containing 90.17 by volume of cyclic carbonate having a GPC weight average molecular weight of 1884.
Step 1 3-ethoxy ethyl propionate 921 g Step 1 Glycerol carbonate 2478 g Step 1 Dibutyl Tin dilaurate 1g Step 2 Desmodur® 3300 3880 g Step 2 Armotic 100 solvent 200 g - The cyclic components of Example 1 and 2 were used to produce coating compositions of the present invention. The material listed below in Table 3 was added to produce the coating compositions of Examples 3, 4, 5 and 6:
Material Use Example
3Example
4Example
5Example
6Butylene carbonate reactive diluent 38.6 g 19.6 g 19.6 g 12.6 g Example 1 reactive diluent 5.6 g 5.6 g 5.6 g Example 2 reactive diluent 15.6 g 15.6 g 17.8 g Cymel® 350 Monomeric melamine 19.3 g Cymel® 327 Polymeric melamine 21.4 g 21.4 g Cymel® 1158 Polymeric melamine 30.36 g Tinuvin® 292 Light stabilizer 1.5 g 1.5 g 1.5 g 1.5 g Tinuvin® 384 Light stabilizer 2.0 g 2.0 g 2.0 g 2.0 g BYK® 301 Flow Additive 0.07 g 0.07 g 0.07 g 0.07 g Dibutyl Tin dilaurate Catalyst 0.1 g Phenyl acid phosphate Catalyst 4 g 4 g 4 g Desmodur® 3300 polyisocyanate 38.6 g 38.6 g 38.6 g 38.6 g Polyester polyol Film forming resin 6.25 g #1 solvent 7.7 g 5.25 g 5.25 g 5.25 g #2 solvent 2.45 g #3 solvent 0.61 g 0.61 g 2.45 g 2.45 g Cymel® 1158,327,350 melamines were supplied by Cytec Industries, West Patterson, New Jersey.
Tinuvin® 292 & 384 light stabilizers were supplied by Ciba Specialty Chemicals, Tarrytown, New York.
BYK® 301 flow additive was supplied by BYK Chemie, Wallingford, Connecticut.
Polyester polyol was the reaction product of 1 mole of Dimethylol propionic acid, 2 moles of caprolactone, 0.41 moles of pentaerythritol having 10,000 GPC weight average molecular weight @, 80% n.v.
Dibutyl Tin Dilaurate was supplied by Air Products Corp. Allentown, Pennsylvania.
Desmodur® N3300 polyisocyanate was supplied by Bayer Corporation Pittsburgh, Pennsylvania.
Phenyl acid phosphate was supplied by King Industries, Norwalk, Connecticut. - Layers from coating compositions from Examples 3, 4, 5 and 6 were spray applied over electrocoated, and primed phosphated steel which had been previously coated with a forced dried waterborne basecoat and bake cured for 30 minutes at 140°C to form coatings having a dry film thickness of 40 micrometers thereon. For comparison, a coating from a conventional commercially available 2-pack coating composition (Imron® ES polyurethane) supplied by DuPont Company, Wilmington, Delaware was also prepared in the same manner.
- The coatings from Examples 3, 4, 5, 6 and Comparative Example 1 (Comp. Ex. 1) were tested for film properties. The results are described in Table 4 below:
Coating Properties Example
3Example
4Example
5Example
6Comp. Ex. 1 Solids (% non-volatiles) 85.3 87.5 87.7 85.1 53.0 Tukon hardness (Knoops) 10.1 14.3 4.1 20.9 14.3 20° Gloss 94 94 92 94 89 DOI 93 98 95 98 98 Wet Mar Resistance as % Gloss Retention 97 98 99 99 82 Dry Mar Resistance as % Gloss Retention 95 93 92 97 60 Acid Etch Resistance in Depth in micrometers 0.87 0.5 0.2 0.25 1.57 - From the foregoing Table 4, it can be seen that the clear coating composition of the present invention not only provides for a clear coating composition at high solids level, but it also provides superior physical properties, such as mar resistance.
- Applicants unexpected discovery of the dramatic improvement in the coating properties when the cyclic carbonate component is added to the melamine/isocyanate components composition can be seen from the coating properties of Example 7 and Comparative Example 2 (Comp. Ex. 2) prepared by adding materials listed in Table 5 below:
Material Use Example
7Comp.
Ex. 2Butylene Carbonate Reactive Diluent 11 g Example 1 Reactive Diluent 15 g Cymel® 1158 Polymeric Melamine 20.56 g 20.25 g Cymel® 327 Polymeric Melamine 7.8 g 0.0 Tinuvin® 292/384 blend Light Stabilizers 7.5 g 7.5 g 10% BYK® 301 Flow Additive 0.68 g 0.68 g Polyester Resin Film forming Resin 9.38 g 10% Dibutyl Tin dilaurate Catalyst 1 g Acid Solution # 1 Catalyst 2 g Acid Solution # 2 Catalyst 2.42 g Tolonate® HDT LV polyisocyanate 40 g 80.8 g Butylene Carbonate was supplied by Huntsman Corporation Austin, Texas.
Cymel® 1158 & Cymel® 327 were supplied by Cytec Corporation, West Patterson, New Jersey Tinuvin® 292/384 solution was supplied by Ciba Chemicals, Tarrytown, New York (Solution of 13.3% Tinuvin® 292 & 26.67% Tinuvin® 384 in solvent).
Polyester Resin is condensation product of 1 mole of dimethylolpropionic acid, 2 moles of E-Caprolactone, and 0.27 moles of pentaerythritol.
Tolonate® HDT LV from Rhodia Co. Freeport Texas
Acid Solution # 1 was 25 percent of Phenyl acid phosphate
Acid Solution # 2 was 33 percent of 2-amino-2-methyl-n propanolamine blocked dodecylbenzene sulfonic acid supplied by King Industry, Norwalk, Connecticut. - The coatings from Example 7 were tested for film properties. Comparative Example 2 (Comp. Ex. 2) could not be tested as it was too thick to spray. The results are described in Table 6 below:
Coating Properties Example 7 Comp. Ex. 2 Solids (% non-volatiles) 87.8 87.8 Viscosity (# 4 Ford Cup) 70 seconds 168 seconds 20° Gloss 94 (too thick to spray) DOI 96 (") Autospec Appearance 80 (") Wet Mar Resistance as % Gloss Retention 95 (") Dry Mar Resistance as % Gloss Retention 93 (") - From the foregoing results, it can be readily seen that for same solids level (87.8 %) addition of the carbonate component has dramatic effect on the film formation, coating appearance and coating properties.
Claims (24)
- A clear coating composition comprising isocyanate, cyclic carbonate and melamine components wherein said isocyanate component comprises an aliphatic polyisocyanate having on an average 2.5 to 6 isocyanate functionalities or an aliphatic polyisocyanate having on an average 2.5 to 6 isocyanate functionalities which are blocked by reacting said functionalities with a monomeric alcohol.
- The composition of claim 1 wherein said monomeric alcohol is an aliphatic alcohol.
- The composition of claim 1 wherein said cyclic carbonate component comprises at least one cyclic carbonate having one or more five or six membered cyclic rings.
- The composition of claim 1 wherein said composition further comprises one or more organo tin or acid catalysts.
- The composition of claim 4 wherein said organo tin catalyst is selected from the group consisting of dibutyl tin diacetate, dibutyl tin dilaurate, stannous octate, and a combination thereof.
- The composition of claim 4 wherein the acid catalyst is selected from the group consisting of dodecylbenzene sulfonic acid, dodecylbenzene sulfonic acid blocked with an amine, para-toluenesulfonic acid, para-toluenesulfonic acid blocked with an amine, phenyl acid phosphate, phenyl acid phosphate blocked with an amine dinonylnaphthalene sulfonic acid, dinonylnaphthalene sulfonic acid blocked with an amine and a combination thereof.
- The composition of claim 6 wherein said amine is dimethyl oxazolidine, 2-amino-2-methyl-1-propanol, n,n-dimethylethanolamine or a combination thereof.
- The composition of claim 4, 5 or 6 wherein said composition comprises in the range of from 0.001 percent to 5.0 percent of said catalyst, all percentages being weight percentages based on the total weight of composition solids.
- The composition of claim 1 wherein said polyisocyanate comprises one or more trimers of hexamethylene diisocyanate, isophorone diisocyanate, or a combination thereof.
- The composition of claim 1 or 5 comprises in the range of from 30 percent to 70 percent said polyisocyanate wherein all percentages are in weight based on the total weight of composition solids.
- The composition of claim 1 wherein said melamine component comprises a monomeric melamine, a polymeric melamine, or a combination thereof.
- The composition of claim 1 or 11 comprises in the range of from 10 percent to 45 percent of said melamine component wherein all percentages are in weight based on the total weight of composition solids.
- The composition of claim 1 further comprises a flow modifying resin.
- The composition of claim 1 comprises in the range of from 5 percent to 40 percent of said carbonate component, all percentages being in weight percentages based on the total weight of composition solids.
- The composition of claim 1 in the form of a two-pack composition wherein a first-pack of said two-pack composition comprises said polyisocyanate component and a second-pack of said two-pack composition comprises said melamine and cyclic carbonate components.
- The composition of claim 1 wherein a VOC of said composition varies in the range of from 0.0 to 0.472 kilogram of an organic solvent per liter of the composition.
- The clear coating composition of claim 1 wherein a clear coating on a substrate produced from said composition has a DOI rating of at least 80.
- The composition of claim 1 further comprises ultra violet light stabilizers, light absorbers or a combination thereof.
- A method of producing a clear coating on a substrate comprising:applying a layer of a clear coating composition according to claim 1-18 andcuring said layer into said clear coating.
- The method of claim 19 wherein said coating has a DOI rating of at least 80.
- The method of claim 19 wherein said coating has a 20° gloss of at least 80.
- The method of claim 19 wherein said curing of said layer takes place at an elevated baking temperature in the range 80°C to 160°C.
- The method of claim 19 wherein said cyclic carbonate component comprises at least one cyclic carbonate having one or more five or six membered cyclic rings.
- The method of claim 19 wherein said composition comprises in the range of from 5 percent to 40 percent of said carbonate component, all percentages being in weight percentages based on the total weight of composition solids.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12485099P | 1999-03-17 | 1999-03-17 | |
US124850P | 1999-03-17 | ||
US17155699P | 1999-12-22 | 1999-12-22 | |
US171556P | 1999-12-22 | ||
PCT/US2000/006962 WO2000055263A1 (en) | 1999-03-17 | 2000-03-16 | High solids clear coating composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1169396A1 EP1169396A1 (en) | 2002-01-09 |
EP1169396B1 true EP1169396B1 (en) | 2005-11-02 |
Family
ID=26823024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00918021A Expired - Lifetime EP1169396B1 (en) | 1999-03-17 | 2000-03-16 | High solids clear coating composition |
Country Status (14)
Country | Link |
---|---|
US (1) | US6544593B1 (en) |
EP (1) | EP1169396B1 (en) |
JP (1) | JP2002539318A (en) |
KR (1) | KR20020001773A (en) |
CN (1) | CN1344301A (en) |
AT (1) | ATE308591T1 (en) |
AU (1) | AU761107B2 (en) |
BR (1) | BR0010383A (en) |
CA (1) | CA2361327A1 (en) |
DE (1) | DE60023675T2 (en) |
ES (1) | ES2251369T3 (en) |
NZ (1) | NZ514218A (en) |
TW (1) | TW593598B (en) |
WO (1) | WO2000055263A1 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784113B1 (en) * | 1998-10-02 | 2002-06-07 | Rhodia Chimie Sa | MODIFIED ISOCYANATES |
ATE230783T1 (en) * | 1999-03-17 | 2003-01-15 | Du Pont | SCRATCH-RESISTANT AND ACID CORROSION-RESISTANT CLEAR COAT COMPOSITION WITH HIGH SOLIDS CONTENT |
TW200303340A (en) * | 2002-02-20 | 2003-09-01 | Du Pont | Two component coating compositions containing highly branched copolyester polyol |
US8039531B2 (en) * | 2003-03-14 | 2011-10-18 | Eastman Chemical Company | Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions |
US8461234B2 (en) * | 2003-03-14 | 2013-06-11 | Eastman Chemical Company | Refinish coating compositions comprising low molecular weight cellulose mixed esters |
US7585905B2 (en) * | 2003-03-14 | 2009-09-08 | Eastman Chemical Company | Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions |
US8124676B2 (en) * | 2003-03-14 | 2012-02-28 | Eastman Chemical Company | Basecoat coating compositions comprising low molecular weight cellulose mixed esters |
US20070065584A1 (en) * | 2003-11-03 | 2007-03-22 | Ryan John F | Spray-on paint protection film and method of applying same |
JP2007514553A (en) * | 2003-11-26 | 2007-06-07 | スリーエム イノベイティブ プロパティズ カンパニー | Workpiece polishing method |
US20050123781A1 (en) * | 2003-12-04 | 2005-06-09 | Drescher James C. | One-component flexible etch resistant clearcoat |
US7063745B2 (en) | 2004-06-16 | 2006-06-20 | E.I. Dupont De Nemours And Company | Coating formulation kit including a catalyst solution dispenser for a hand-held liquid spraying apparatus |
GB2415197A (en) * | 2004-06-18 | 2005-12-21 | Baxenden Chem | Urethane-group containing diol or polyol polymer products and their use as coatings |
US20060014890A1 (en) * | 2004-07-14 | 2006-01-19 | Zielinski David P | Polyisocyanates with improved compatibility with high hydroxyl content polyols |
US7311265B2 (en) | 2004-07-27 | 2007-12-25 | E.I. Du Pont De Nemours And Company | Hand-held spraying apparatus having a multi-compartment liquid-holding reservoir |
WO2007016234A2 (en) * | 2005-07-29 | 2007-02-08 | E. I. Du Pont De Nemours And Company | Method for producing damage resistant multi-layer coatings on an automotive body or part thereof |
JP4961727B2 (en) * | 2005-11-25 | 2012-06-27 | Basfコーティングスジャパン株式会社 | Coating composition, coating finishing method, and coated article |
US20070243798A1 (en) * | 2006-04-18 | 2007-10-18 | 3M Innovative Properties Company | Embossed structured abrasive article and method of making and using the same |
US7410413B2 (en) * | 2006-04-27 | 2008-08-12 | 3M Innovative Properties Company | Structured abrasive article and method of making and using the same |
US20080085953A1 (en) * | 2006-06-05 | 2008-04-10 | Deepanjan Bhattacharya | Coating compositions comprising low molecular weight cellulose mixed esters and their use to improve anti-sag, leveling, and 20 degree gloss |
US20070282038A1 (en) * | 2006-06-05 | 2007-12-06 | Deepanjan Bhattacharya | Methods for improving the anti-sag, leveling, and gloss of coating compositions comprising low molecular weight cellulose mixed esters |
US8568888B2 (en) | 2007-03-15 | 2013-10-29 | Nanovere Technologies, Inc. | Dendritic polyurethane coating |
US8206827B2 (en) * | 2007-03-15 | 2012-06-26 | Nanovere Technologies, Llc | Dendritic polyurethane coating |
US8038750B2 (en) | 2007-07-13 | 2011-10-18 | 3M Innovative Properties Company | Structured abrasive with overlayer, and method of making and using the same |
EP2240298A4 (en) * | 2007-12-31 | 2014-04-30 | 3M Innovative Properties Co | Plasma treated abrasive article and method of making same |
CN101579672A (en) * | 2008-05-16 | 2009-11-18 | 3M创新有限公司 | Silicon dioxide coating for improving hydrophilicity/transmittivity |
US9206335B2 (en) | 2008-10-10 | 2015-12-08 | 3M Innovation Properties Company | Silica coating for enhanced hydrophilicity |
JP5540071B2 (en) | 2009-03-31 | 2014-07-02 | スリーエム イノベイティブ プロパティズ カンパニー | Coating composition and method for producing and using the same |
CN101941001B (en) | 2009-07-03 | 2014-04-02 | 3M创新有限公司 | Hydrophilic coating, product, coating composition and method |
US8348723B2 (en) | 2009-09-16 | 2013-01-08 | 3M Innovative Properties Company | Structured abrasive article and method of using the same |
US20110135832A1 (en) * | 2009-12-04 | 2011-06-09 | Basf Coatings Ag | Method and composition for refinish coatings |
CN102241899B (en) | 2010-05-11 | 2014-05-14 | 3M创新有限公司 | Coating composition, method for modifying matrix surface, and product |
EP2628755A1 (en) * | 2012-02-14 | 2013-08-21 | Cytec Technology Corp. | Aminoplast Crosslinker Resin Compositions, Process for their Preparation, and Method of Use |
EP2866974B1 (en) | 2012-06-27 | 2017-07-26 | 3M Innovative Properties Company | Abrasive article |
EP2890690B1 (en) * | 2012-08-28 | 2016-04-27 | Covestro Deutschland AG | Binder with cyclic carbonate structures |
CN104250487A (en) * | 2013-06-28 | 2014-12-31 | 方俐善 | Organic dye enhanced transparent and heat-insulating coating material, preparation method and application thereof |
CN105669906B (en) * | 2016-03-09 | 2017-11-21 | 广州伊德尔化学科技有限公司 | A kind of resistance to alcohol is washed, High temperature resistance mirror-like silver resin and preparation method thereof |
EP4114897A1 (en) | 2020-03-06 | 2023-01-11 | LyondellBasell Advanced Polymers Inc. | Automotive molded-in-color thermoplastic polyolefin with clear coating for paint replacement and high gloss applications |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928299A (en) | 1971-04-30 | 1975-12-23 | Bayer Ag | Polymers which contain urethane groups and which are cross-linkable by vinyl polymerisation |
DE2414427A1 (en) | 1974-03-26 | 1975-10-23 | Cassella Farbwerke Mainkur Ag | HEAT-RESISTANT COATING IN THE FORM OF A DISPERSION |
DE2510730A1 (en) | 1975-03-12 | 1976-09-30 | Bayer Ag | PROCESS FOR THE PRODUCTION OF SELF-CROSSLINKABLE POLYMERS |
DE2723117C2 (en) | 1977-05-23 | 1985-08-14 | Bayer Ag, 5090 Leverkusen | Liquid one-component stoving enamels |
DE2914427A1 (en) | 1979-04-10 | 1980-10-23 | Bayer Ag | COATING FOR THERMOPLASTICS |
DE3260794D1 (en) * | 1981-01-30 | 1984-10-31 | Bayer Ag | Cyclic carbonic acid derivatives, process for their preparation and their use as copolymerisation constituents for the preparation of polycarbonates |
US4403086A (en) | 1981-12-28 | 1983-09-06 | Ford Motor Company | Coating composition comprising chain-extendable crosslinkable polyol and diblocked diisocyanate |
US4499150A (en) | 1983-03-29 | 1985-02-12 | Ppg Industries, Inc. | Color plus clear coating method utilizing addition interpolymers containing alkoxy silane and/or acyloxy silane groups |
JPS6035060A (en) | 1983-08-05 | 1985-02-22 | Dainippon Ink & Chem Inc | Resin composition for paint |
US4623481A (en) | 1984-09-21 | 1986-11-18 | E. I. Du Pont De Nemours & Company | Conductive primers |
US4760108A (en) | 1984-12-25 | 1988-07-26 | Mitsui Toatsu Chemicals, Incorporated | Microcapsule-containing water-base coating formulation and copying and/or recording material making use of said coating formulation |
US4632964A (en) | 1985-03-28 | 1986-12-30 | E. I. Du Pont De Nemours And Company | Flexible finishes from branched aliphatic polyester urethanes and a melamine crosslinker |
US4849480A (en) | 1985-10-23 | 1989-07-18 | E. I. Du Pont De Nemours And Company | Crosslinked polymer microparticle |
EP0257848A3 (en) | 1986-08-14 | 1989-01-11 | King Industries, Inc. | Certain carbamates, processes for preparing same and use thereof |
DE3644372A1 (en) * | 1986-12-24 | 1988-07-07 | Hoechst Ag | Curable mixtures and their use |
US4820830A (en) | 1987-03-02 | 1989-04-11 | King Industries, Inc. | Certain hydroxyalkyl carbamates, polymers and uses thereof |
CA1336304C (en) | 1987-08-07 | 1995-07-11 | Kansai Paint Company, Limited | Top coating composition |
JP2668083B2 (en) | 1988-09-05 | 1997-10-27 | 関西ペイント株式会社 | Automotive coating composition |
US5010140A (en) | 1989-05-31 | 1991-04-23 | E. I. Du Pont De Nemours And Company | Process for preparing stabilized polymer dispersion |
US5169719A (en) | 1989-10-06 | 1992-12-08 | Basf Corporation | Nonionically and partially anionically stabilized water-dispersible polyurethane/acrylic graft copolymers |
US5059670A (en) | 1990-04-27 | 1991-10-22 | Arco Chemical Technology, Inc. | Thermosettable compositions containing alkoxylated aromatic compounds |
US5182174A (en) | 1991-05-13 | 1993-01-26 | E. I. Du Pont De Nemours And Company | Flexible etch-resistant finishes with siloxane cross-linking |
DE4124688C2 (en) * | 1991-07-22 | 1994-04-28 | Dainippon Ink & Chemicals | Crosslinking mixtures of polyfunctional formamides and melamine / formaldehyde resins and their use |
US5279862A (en) | 1991-10-21 | 1994-01-18 | E. I. Du Pont De Nemours And Company | Process for refinishing clear coat/color coat finish |
US5281443A (en) | 1991-12-20 | 1994-01-25 | Basf Corporation | Coating method for one-component blocked isocyanate-crosslinked clearcoat |
AU670570B2 (en) | 1992-03-24 | 1996-07-25 | Nippon Paint Co., Ltd. | Polyfunctional polycarbonate polyol |
JPH05271608A (en) | 1992-03-24 | 1993-10-19 | Kansai Paint Co Ltd | Coating composition |
US5726246A (en) | 1992-10-23 | 1998-03-10 | Basf Corporation | Method for improving etch resistance in a coating utilizing carbamate-functional polymer composition |
US5356669A (en) | 1992-10-23 | 1994-10-18 | Basf Corporation | Composite color-plus-clear coating utilizing carbamate-functional polymer composition in the clearcoat |
JPH0710920A (en) | 1992-12-01 | 1995-01-13 | Nippon Paint Co Ltd | Method for ring-opening addition of cyclic carbonate compound to alcoholic hydroxyl group |
US5230962A (en) | 1992-12-11 | 1993-07-27 | E. I. Du Pont De Nemours And Company | Etch-resistant finishes with siloxane cross-linking |
JPH06256714A (en) | 1993-03-04 | 1994-09-13 | Kansai Paint Co Ltd | Coating composition |
US5510443A (en) * | 1993-03-15 | 1996-04-23 | Bayer Corporation | Process for preparing a coating with improved resistance to yellowing and the resulting coating |
US5336566A (en) | 1993-04-30 | 1994-08-09 | Basf Corporation | Tri-carbamate-functional crosslinking agents |
US6423788B1 (en) | 1995-10-06 | 2002-07-23 | Basf Corporation | Curable coating composition |
US5373069A (en) | 1993-07-28 | 1994-12-13 | Basf Corporation | Curable carbamate-functional polymers |
US5744550A (en) | 1994-11-03 | 1998-04-28 | Basf Corporation | Curable coating compositions containing carbamate additives |
US5512639A (en) | 1993-07-28 | 1996-04-30 | Basf Corporation | Curable compositions containing carbamate-modified polyisocyanates |
JP2691864B2 (en) | 1994-02-24 | 1997-12-17 | 昭和アルミニウム株式会社 | Epoxy resin composition |
MX9504227A (en) * | 1994-10-17 | 1997-03-29 | Basf Corp | Clearcoat compositions containing imino-functional melamines. |
JPH11500168A (en) | 1995-02-17 | 1999-01-06 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | Crack resistant one-pack coating composition |
ES2191751T3 (en) | 1995-05-01 | 2003-09-16 | Ppg Ind Ohio Inc | COMPOSITE COATINGS AND ENDURECIBLE COMPOSITIONS AND PROCEDURE FOR INCREASING STRIPPING AND ABRASION RESISTANCE. |
DE19529124C1 (en) | 1995-08-08 | 1996-11-21 | Herberts Gmbh | Acid-resistant coating material, pref. clear top-coat for cars |
US5665433A (en) | 1995-12-20 | 1997-09-09 | Basf Corporation | Method for improving physical characteristics of cured container coatings subjected to steam processing |
US5684084A (en) | 1995-12-21 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Coating containing acrylosilane polymer to improve mar and acid etch resistance |
US5646213A (en) | 1996-06-28 | 1997-07-08 | Arco Chemical Technology, L.P. | High-solids and powder coatings from hydroxy-functional acrylic resins |
CA2227961C (en) | 1996-07-01 | 2003-09-30 | Marvin L. Green | Curable coating compositions containing carbamate additives |
JPH1045867A (en) | 1996-07-30 | 1998-02-17 | Nippon Paint Co Ltd | Thermosetting resin composition |
DE19635771A1 (en) | 1996-09-04 | 1998-03-05 | Huels Chemische Werke Ag | Solvent-free thermosetting 1-component coating materials |
US5853809A (en) | 1996-09-30 | 1998-12-29 | Basf Corporation | Scratch resistant clearcoats containing suface reactive microparticles and method therefore |
US5747590A (en) | 1996-12-04 | 1998-05-05 | E. I. Du Pont De Nemours And Company | Acrylic-melamine-functionalized oligomer coating composition |
US5763528A (en) | 1996-12-17 | 1998-06-09 | E. I. Du Pont De Nemours And Company | Coating compositions containing non-aqueous dispersed polymers having a high glass transition temperature |
EP0946623B2 (en) | 1996-12-18 | 2004-06-23 | BASF Coatings Aktiengesellschaft | Coating agent and method for producing same |
US5886125A (en) | 1997-02-25 | 1999-03-23 | E. I. Du Pont De Nemours And Company | Crosslinkable copolymers comprising vinyl silane and vinyl esters of branched fatty acid |
CA2304198A1 (en) | 1997-10-15 | 1999-04-22 | E.I. Du Pont De Nemours And Company | Coating compositions containing non-aqueous dispersed polymer, a silane functional acrylic polymer and a triazine |
US5965272A (en) | 1997-10-29 | 1999-10-12 | Ppg Industries Ohio, Inc. | Color-plus-clear composite coating compositions containing alkoxysilane functional polymers |
US6221494B1 (en) | 1998-11-03 | 2001-04-24 | E.I. Du Pont De Nemours And Company | Reactive oligomers for isocyanate coatings |
-
2000
- 2000-03-16 AU AU38901/00A patent/AU761107B2/en not_active Ceased
- 2000-03-16 AT AT00918021T patent/ATE308591T1/en not_active IP Right Cessation
- 2000-03-16 KR KR1020017011746A patent/KR20020001773A/en not_active Application Discontinuation
- 2000-03-16 NZ NZ514218A patent/NZ514218A/en unknown
- 2000-03-16 WO PCT/US2000/006962 patent/WO2000055263A1/en not_active Application Discontinuation
- 2000-03-16 US US09/913,570 patent/US6544593B1/en not_active Expired - Fee Related
- 2000-03-16 CA CA002361327A patent/CA2361327A1/en not_active Abandoned
- 2000-03-16 JP JP2000605685A patent/JP2002539318A/en active Pending
- 2000-03-16 BR BR0010383-7A patent/BR0010383A/en not_active IP Right Cessation
- 2000-03-16 CN CN00805130A patent/CN1344301A/en active Pending
- 2000-03-16 EP EP00918021A patent/EP1169396B1/en not_active Expired - Lifetime
- 2000-03-16 ES ES00918021T patent/ES2251369T3/en not_active Expired - Lifetime
- 2000-03-16 DE DE60023675T patent/DE60023675T2/en not_active Expired - Fee Related
- 2000-03-17 TW TW089104967A patent/TW593598B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ES2251369T3 (en) | 2006-05-01 |
JP2002539318A (en) | 2002-11-19 |
DE60023675T2 (en) | 2006-09-07 |
CN1344301A (en) | 2002-04-10 |
DE60023675D1 (en) | 2005-12-08 |
ATE308591T1 (en) | 2005-11-15 |
EP1169396A1 (en) | 2002-01-09 |
BR0010383A (en) | 2002-02-05 |
AU761107B2 (en) | 2003-05-29 |
US6544593B1 (en) | 2003-04-08 |
WO2000055263A1 (en) | 2000-09-21 |
CA2361327A1 (en) | 2001-09-21 |
NZ514218A (en) | 2003-05-30 |
KR20020001773A (en) | 2002-01-09 |
AU3890100A (en) | 2000-10-04 |
TW593598B (en) | 2004-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1169396B1 (en) | High solids clear coating composition | |
AU762095B2 (en) | High solids acid etch and mar resistant clear coating composition | |
EP1171498B1 (en) | High solids acid etch resistant clear coating composition | |
US7199194B2 (en) | Two component coating compositions containing highly branched copolyester polyol | |
US6635314B1 (en) | High solids clear coating composition | |
US8361555B2 (en) | Hydroxy alkyl isocyanurates | |
CA2512627A1 (en) | Coating materials, method for the production thereof, and use thereof | |
MXPA01009326A (en) | High solids acid etch and mar resistant clear coating composition | |
MXPA01009312A (en) | High solids clear coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010822 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UHLIANUK, PETER, WILLIAM Inventor name: NAGATA, ISAO |
|
17Q | First examination report despatched |
Effective date: 20030828 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051102 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051102 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60023675 Country of ref document: DE Date of ref document: 20051208 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060202 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060305 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060308 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060309 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060313 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060315 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060331 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060425 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2251369 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060515 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060803 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070316 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070316 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20071001 |
|
BERE | Be: lapsed |
Owner name: E.I. *DU PONT DE NEMOURS AND CY Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20071130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071002 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060306 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070316 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070316 |