EP1164286B1 - Procédé pour la surveillance de l'augmentation de production d'oxydes d'azote - Google Patents

Procédé pour la surveillance de l'augmentation de production d'oxydes d'azote Download PDF

Info

Publication number
EP1164286B1
EP1164286B1 EP00127160A EP00127160A EP1164286B1 EP 1164286 B1 EP1164286 B1 EP 1164286B1 EP 00127160 A EP00127160 A EP 00127160A EP 00127160 A EP00127160 A EP 00127160A EP 1164286 B1 EP1164286 B1 EP 1164286B1
Authority
EP
European Patent Office
Prior art keywords
conductivity values
combustion
sequence
accordance
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00127160A
Other languages
German (de)
English (en)
Other versions
EP1164286A3 (fr
EP1164286A2 (fr
Inventor
Joseph A. Engel
Henri M.A.F. Dufaux
Magnus P. Glavmo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU90495A external-priority patent/LU90495B1/en
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Publication of EP1164286A2 publication Critical patent/EP1164286A2/fr
Publication of EP1164286A3 publication Critical patent/EP1164286A3/fr
Application granted granted Critical
Publication of EP1164286B1 publication Critical patent/EP1164286B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/028Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Definitions

  • the invention relates to a method for monitoring the increased formation of nitrogen oxides during the combustion of fossil fuels, in particular during combustion in a cylinder of an internal combustion engine.
  • a measuring device is arranged in the process space in which the combustion of fossil fuels takes place, at which a positive electrical voltage is applied during a combustion process which is usually limited in time.
  • the combustion gas ie in the mixture of combusted and unburnt fuel
  • negatively charged particles and positively charged particles are formed.
  • the negatively charged particles contained in the combustion gas such as electrons and negatively charged molecules, can be detected and in this way the conductivity of the combustion gas can be determined.
  • a sequence of first conductivity values over a predetermined period of time is detected, which is then evaluated to assess the sequence of the monitored combustion process.
  • This known method is suitable for monitoring combustion processes in heating systems, gas boilers or internal combustion engines.
  • this known method is used to monitor the sequence of individual combustion processes in the cylinder of the internal combustion engine and optionally by appropriate measures, such as by changing the injection timing, the injected fuel quantity or the course of injection, the other combustion processes targeted influence. Furthermore, the known method is used to keep the resulting during the combustion processes temperatures in a desired temperature range in which the increased formation of undesirable exhaust gas components such as nitrogen oxides (NO x ) does not occur, their formation should be avoided for environmental reasons.
  • nitrogen oxides are formed increasingly from a temperature of about 2000 K during the combustion processes in the cylinder. After detecting the increased formation of undesirable exhaust gas components, the temperature in the cylinder can be reduced with the aid of the measures described above.
  • the invention achieves the object by a method having the features according to claim 1 and in particular by the method determining a sequence of first conductivity values of the combustion gases present during a combustion process, which is formed on the basis of the negatively charged particles contained in the combustion gas first conductivity values is compared with a series of second conductivity values which has been formed on the basis of positively charged particles which occur in a further combustion process in the combustion gas under at least approximately identical boundary conditions, and an increased formation of nitrogen oxides during the combustion is determined when the Result of first conductivity values and the sequence of second conductivity values during the comparison increasingly differ.
  • the fact is exploited that with increasing combustion temperature in addition to the electrons contained in the combustion gas, the content of negatively charged nitrogen and oxygen ions increases disproportionately compared to the content of positively charged ions, such as hydrogen ions.
  • This has the consequence that at low temperatures in the combustion gas at least approximately a balance between the content of negatively charged particles and the content of positively charged particles.
  • the combustion temperature increases, decreases a temperature value of about 2000 K due to the sudden decomposition of nitrogen molecules and oxygen molecules, the content of negatively charged particles in the combustion gas, while the proportion of positively charged particles in the combustion gas remains approximately constant or possibly even decreases.
  • the sequence of second conductivity values is determined during the further combustion process by detecting the positively charged particles contained in the combustion gas. This has the advantage that the conditions actually occurring during the further combustion process can be detected and used for comparison with the sequence of first conductivity values.
  • the sequence of second conductivity values is preferably detected during a combustion event which occurs either before or after the combustion process in which the series of first conductivity values is determined.
  • the sequence of second conductivity values from a series of stored sequences of second conductivity values.
  • the selection is made as a function of the boundary conditions of the combustion process during which the sequence of first conductivity values is determined.
  • boundary conditions for example, the injected fuel quantity, the duration of injection, the course of the injection, the crankshaft angle or the ignition time is used.
  • the stored second conductivity values are determined based on empirical evaluations. Another possibility is to determine the stored second conductivity values at least partially by approximation from the injected fuel quantity, from the injection duration and / or from the injection profile, so that the required memory for the second conductivity values to be stored is comparatively small.
  • the difference between two conductivity values of the two sequences is formed in each case and an increased formation of nitrogen oxides is considered given if the differences of the two conductivity values subsequently compared with one another are taken as given the two episodes remain at least constant or possibly larger.
  • Another way to determine the increased formation of nitrogen oxides is to form curves with respect to time for the two sequences of the first and second conductivity values to be compared, which are then compared with each other.
  • the comparison is preferably made by calculating the areas of the two curves and by subtracting the areas from each other, whereby the amount of nitrogen oxide formed can be determined indirectly.
  • increased formation of nitrogen oxides is detected when the area difference between the areas of the curves calculated by subtraction exceeds a predetermined maximum value.
  • the use of a measuring device is proposed, to which a positive electrical voltage is applied for determining the conductivity of the combustion gas.
  • the measuring device can detect the proportion of negatively charged particles in the combustion gas.
  • the use of a measuring device is proposed, to which a negative electrical voltage is applied, so that positively charged particles in the combustion gas can influence the signal of the measuring device.
  • the spark plug is used as a measuring device by the conductivity of the combustion gas is detected in the spark gap between the center electrode and the ground electrode to determine the sequence of first conductivity values.
  • the sequence of second conductivity values is determined by applying a negative voltage to the spark plug and detecting the conductivity of the combustion gas in the spark gap.
  • the glow plug protruding into the cylinder can be used as a measuring device.
  • the conductivity of the present between the glow plug and the inner wall of the cylinder combustion gas is detected by applying a positive or a negative electrical voltage.
  • a separate measuring device may protrude into the cylinder of the internal combustion engine to determine the conductivity of the combustion gas.
  • the inventive method is used in a diesel engine.
  • a glow plug of the respective cylinder of the diesel engine is used.
  • the glow plug of the respective cylinder is connected in series with a reference resistor and conductively connected to the inner wall of the cylinder.
  • a positive voltage is applied to the glow plug during a part of the compression stroke and a part of the working stroke.
  • the conductivity of the combustion gas between the glow plug and the inner wall of the cylinder changes, which changes the voltage drop across the reference resistor, which voltage is measured and amplified for evaluation.
  • the various voltage values are stored in a memory as a result of first conductivity values.
  • FIGS. 1 and 2 show a positive measurement signal curve 10 which shows the change of the first conductivity values with respect to the crankshaft angle.
  • FIG. 1 shows a negative measurement signal curve 12 relative to the crankshaft angle.
  • the two Meßsignalkurven 10 and 12 show a value of about 0 volts.
  • the engine control of the diesel engine begins with a pilot injection in which a small amount of diesel fuel is injected into the cylinder to heat the interior of the cylinder prior to the actual main injection. This is reflected in the two traces 10 and 12 by the small signal fluctuations 14 in the waveform.
  • the fuel in the cylinder is ignited, whereby the conductivity of the exhaust gas increases, as the two Meßsignalkurven 10 and 12 can be seen by the first signal peaks 16 and 18.
  • the two signal peaks 16 and 18 of the two Meßsignalkurven 10 and 12 flat after a sudden increase with a very steep slope continuously again until they show at a crank angle of about 5 ° before top dead center OT about 0 volt again.
  • the actual main injection of the fuel is made in the cylinder.
  • the interior of the cylinder is preheated, so that the fuel injected during the main injection at least partially evaporated and distributed evenly in the interior of the cylinder.
  • the fuel ignites inside the cylinder, which changes the conductivity of the combustion gas, as the two second signal peaks 20 and 22 show in the Meßsignalkurven 10 and 12, which have their maximum at a crankshaft angle of about -7 ° relative to the top dead center OT of the piston.
  • the positive Meßsignalkurve 10 and the negative Meßsignalkurve 12 are at least approximately identical except for minor deviations. Now, if the temperature of 2000 K, at which an increased formation of nitrogen oxides occurs, not reached, the positive Meßsignalkurve 10 would show approximately the course of the negative Meßsignalkurve 12, as shown in Fig. 1, and finally to about 0th Volts fall.
  • the course of the positive Meßsignalkurve 10 after the second signal tip 20 again increases and shows a third signal peak 24, the maximum at a crankshaft angle of about -17 ° relative to the top dead center OT is about 3 volts.
  • the signal drops continuously until it shows about 0 volts at a crankshaft angle of about -40 ° with respect to the top dead center OT of the piston.
  • the negative measurement signal curve 12 only rises to a value of about 2.2 volts, as shown by the second signal peak 22. Subsequently, the negative Meßsignalkurve 12 falls to form a third signal peak 26 with a value of about 1.2 volts at a crankshaft angle from about -15 ° relative to the top dead center OT of the piston gently until it reaches at a crankshaft angle of about -40 ° with respect to the top dead center OT of the piston also at least approximately 0 volts.
  • the sequence of first conductivity values forming the positive measurement signal curve 10 is compared with the series of second conductivity values forming the negative measurement signal curve 12. If the peak temperature during the combustion process is below a value of about 2000 K, the two measurement signal curves 10 and 12 show an at least approximately identical course, as previously explained. On the other hand, if the peak temperature during the combustion process rises above 2000 K, which results in increased formation of nitrogen oxides in the combustion gas, the two measuring signal curves 10 and 12 clearly deviate from one another in their course, as previously explained.
  • the difference between in each case two conductivity values which occur at identical crankshaft angles is formed, and it is then determined whether the differences of the subsequently compared conductivity values increase or at least show a minimum deviation. If this is the case, it is reinforced by a Formed formation of nitrogen oxides. If, on the other hand, the difference lies below this maximum permissible deviation or if the two curves do not show an increasing deviation in their progression, a normal course of the measuring signal curves 10 and 12 is assumed in which the temperature in the cylinder was below 2000 K and consequently no increased formation of Nitrogen oxides occurred.
  • the two Meßsignalkurven 10 and 12 are integrated over the relevant crankshaft angle range of -10 ° to -40 ° with respect to the top dead center OT of the piston.
  • the calculated surface contents are then subtracted from each other and the resulting surface difference, which is shown hatched in Fig. 1, compared with a maximum allowable surface difference. If the calculated area difference is above the maximum permissible value, there is an increased formation of nitrogen oxides. If, on the other hand, the calculated area difference is below the specified maximum permissible value, an increased formation of nitrogen oxides could not be detected.
  • the two previously described Meßsignalkurven 10 and 12 were detected at immediately successive combustion processes in the cylinder of the diesel engine at a speed of about 1000 rpm, so that the most direct comparison between the two Meßsignalkurven 10 and 12 is possible.
  • FIG. 2 shows a negative reference curve 30 based on such stored second conductivity values.
  • the reference curve 30 shows at a crankshaft angle of about 14 ° before the top dead center OT of the piston, a first signal tip 32, which then drops again and at a crankshaft angle of about -2 ° after top dead center OT of the piston to form a second signal peak 34th rises again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (17)

  1. Procédé pour surveiller la formation renforcée d'oxydes d'azote pendant la combustion de combustibles fossiles, en particulier pendant la combustion dans un cylindre d'un moteur à combustion interne,
    dans lequel on détermine une suite de premières valeurs de conductivité des gaz de combustion présents pendant une opération de combustion, laquelle suite est formée sur la base des particules chargées négativement contenues dans le gaz de combustion,
    dans lequel on compare la suite de premières valeurs de conductivité à une suite de secondes valeurs de conductivité, qui a été formée sur la base de particules chargées positivement, qui apparaissent dans le gaz de combustion lors d'une autre opération de combustion ayant lieu dans des conditions aux limites au moins approximativement identiques, et dans lequel on constate ensuite une formation renforcée d'oxydes d'azote pendant la combustion, si la suite de premières valeurs de conductivité et la suite de secondes valeurs de conductivité s'écartent de plus en plus l'une de l'autre pendant la comparaison.
  2. Procédé selon la revendication 1, dans lequel on détermine la suite de secondes valeurs de conductivité au cours d'une autre opération de combustion en détectant les particules chargées positivement contenues dans le gaz de combustion.
  3. Procédé selon la revendication 1 ou 2, dans lequel on choisit la suite de secondes valeurs de conductivité à partir d'une pluralité de secondes valeurs de conductivité enregistrées, en fonction des conditions aux limites de l'opération de combustion, pendant laquelle la suite de premières valeurs de conductivité est ou a été déterminée.
  4. Procédé selon les revendications 2 et 3, dans lequel on utilise, en fonction des conditions aux limites de l'opération de combustion, soit la suite de secondes valeurs de conductivité déterminée sur la base des particules chargées positivement détectées au cours de l'autre opération de combustion, soit la suite de secondes valeurs de conductivité choisie parmi les secondes valeurs de conductivité enregistrées.
  5. Procédé selon la revendication 3 ou 4, dans lequel les secondes valeurs de conductivité enregistrées ont été déterminées au moins partiellement sur la base d'évaluations empiriques.
  6. Procédé selon la revendication 3, 4 ou 5, dans lequel les secondes valeurs de conductivité enregistrées ont été déterminées au moins partiellement par approximation à partir de la quantité de carburant injectée, de la durée et/ou du déroulement de l'injection.
  7. Procédé selon l'une quelconque des revendications 3 à 6, dans lequel on adapte par calcul, avant la comparaison, la suite de secondes valeurs de conductivité, choisie parmi les secondes valeurs de conductivité enregistrées à la suite de premières valeurs de conductivité en fonction des conditions aux limites de l'opération de combustion se déroulant effectivement.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel, pour comparer les deux suites de valeurs de conductivité, on compare successivement, à partir de chaque suite, respectivement une valeur de conductivité à une valeur de conductivité de l'autre suite et les deux valeurs de conductivité à comparer mutuellement apparaissent dans des conditions aux limites des opérations de combustion au moins approximativement identiques.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel on forme, à titre de comparaison, respectivement la différence entre deux valeurs de conductivité des deux suites et dans lequel on constate ensuite une formation renforcée d'oxydes d'azote, si la différence des deux valeurs de conductivité des deux suites comparées l'une à l'autre, respectivement à la suite, reste au moins constante ou augmente.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel on forme des courbes en fonction du temps à partir des suites des premières et secondes valeurs de conductivité, lesquelles courbes sont comparées l'une à l'autre, et dans lequel on évalue la présence d'une formation renforcée d'oxydes d'azote de préférence en calculant les aires des deux courbes et en soustrayant les aires l'une à l'autre.
  11. Procédé selon la revendication 10, dans lequel on constate une formation renforcée d'oxydes d'azote, si la différence de surfaces calculée par soustraction dépasse une valeur maximale prédéterminée.
  12. Procédé selon l'une quelconque des revendications précédentes, dans lequel on détecte la conductivité du gaz de combustion par un dispositif de mesure surveillant au moins périodiquement la combustion, une tension électrique positive étant appliquée sur le dispositif de mesure pour déterminer la suite de premières valeurs de conductivité.
  13. Procédé selon l'une quelconque des revendications précédentes, dans lequel on détecte la conductivité du gaz de combustion par un dispositif de mesure surveillant au moins périodiquement la combustion, une tension électrique négative étant appliquée sur le dispositif de mesure pour déterminer la suite de secondes valeurs de conductivité.
  14. Procédé selon l'une quelconque des revendications précédentes, dans lequel les opérations de combustion ont lieu dans le cylindre d'un moteur à combustion interne et sont respectivement surveillées sur une période de temps prédéterminée.
  15. Procédé selon la revendication 14, dans lequel on surveille l'opération de combustion respective pendant la course de compression et pendant la course de travail du cylindre concerné.
  16. Procédé selon la revendication 14 ou 15, dans lequel on forme des courbes en fonction de l'angle de vilebrequin du cylindre surveillé à partir des suites de premières et secondes valeurs de conductivité, que l'on compare l'une à l'autre.
  17. Procédé selon l'une quelconque des revendications précédentes, dans lequel on détermine les suites de premières et secondes valeurs de conductivité lors d'opérations de combustion immédiatement successives.
EP00127160A 1999-12-24 2000-12-12 Procédé pour la surveillance de l'augmentation de production d'oxydes d'azote Expired - Lifetime EP1164286B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
LU90495 1999-12-24
LU90495A LU90495B1 (en) 1999-12-24 1999-12-24 Device and method for ion current sensing
DE10011631A DE10011631A1 (de) 1999-12-24 2000-03-10 Verfahren zur Überwachung der verstärkten Bildung von Stickoxiden
DE10011631 2000-03-10

Publications (3)

Publication Number Publication Date
EP1164286A2 EP1164286A2 (fr) 2001-12-19
EP1164286A3 EP1164286A3 (fr) 2006-12-06
EP1164286B1 true EP1164286B1 (fr) 2007-09-26

Family

ID=26004779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00127160A Expired - Lifetime EP1164286B1 (fr) 1999-12-24 2000-12-12 Procédé pour la surveillance de l'augmentation de production d'oxydes d'azote

Country Status (3)

Country Link
EP (1) EP1164286B1 (fr)
AT (1) ATE374315T1 (fr)
DE (1) DE50014676D1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489296B1 (fr) * 2003-06-20 2009-08-19 Delphi Technologies, Inc. Circuit de commande
US7603226B2 (en) * 2006-08-14 2009-10-13 Henein Naeim A Using ion current for in-cylinder NOx detection in diesel engines and their control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH680238A5 (fr) * 1989-12-04 1992-07-15 Matter & Siegmann Ag
JPH05149230A (ja) * 1991-11-26 1993-06-15 Mitsubishi Electric Corp 内燃機関のノツキング検出装置
DE19816641C1 (de) * 1998-04-15 1999-10-07 Daimler Chrysler Ag Verfahren zur Bestimmung der Laufruhe eines Ottomotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE50014676D1 (de) 2007-11-08
EP1164286A3 (fr) 2006-12-06
ATE374315T1 (de) 2007-10-15
EP1164286A2 (fr) 2001-12-19

Similar Documents

Publication Publication Date Title
DE102005058820B4 (de) Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine
DE19655261B4 (de) Steuervorrichtung für eine Brennkraftmaschine
DE19749817B4 (de) Vorrichtung und Verfahren zur Ermittlung des Spritzbeginns
EP0940571B1 (fr) Procédé et dispositif pour contrôler l'injection de carburant
DE10008553B4 (de) Verfahren und Vorrichtung zur Auswertung eines Ionenstrom-Sensor-Signals einer Brennkraftmaschine
DE102007048650A1 (de) Verfahren und Vorrichtung zur Optimierung der Verbrennung von Dieselkraftstoffen mit unterschiedlichen Cetanzahlen in einer Diesel-Brennkraftmaschine
DE4126782C2 (de) Gerät und Verfahren zur Erfassung von Fehlzündungen bei einem Verbrennungsmotor
WO2008034754A1 (fr) procédé et dispositif de production de signaux d'injection pour le système d'injection d'un moteur à combustion interne
DE102008004221A1 (de) Bestimmung einer während des Betriebs einer Brennkraftmaschine auftretenden NOx- und Rußemission
EP1300588A1 (fr) Procédé de détection du moment de combustion d'un moteur à combustion interne
DE102014207272B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine
DE19612179C1 (de) Verfahren zum Regeln des Verbrennungsvorganges einer mehrzylindrigen Brennkraftmaschine
DE19749816B4 (de) Verfahren zur Ermittlung eines Formfaktors für die Energieumsetzung und Einspritzsystem
DE102010029933B4 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftstoffeinspritzsystems
DE102013005572A1 (de) Verfahren zur Ermittlung einer Abscheidefähigkeit eines Partikelfilters im Abgasstrang eines direkteinspritzenden Ottomotors und Motorsteuergerät
EP1132601B1 (fr) Procédé pour réguler la combustion de carburants fossiles
EP1164286B1 (fr) Procédé pour la surveillance de l'augmentation de production d'oxydes d'azote
EP1226345A1 (fr) Procede pour actionner un moteur a combustion interne presentant au moins un piston moteur
EP1132606A2 (fr) Procédé de commande de moteur à combustion interne
EP2976521B1 (fr) Procédé pour faire fonctionner un moteur à combustion interne ainsi que moteur à combustion interne
EP1132605B1 (fr) Procédé pour détecter le début de la combustion dans un cylindre d'un moteur à combustion interne
EP1113170B1 (fr) Procédé de surveillance du processus de combustion lors de la combustion de carburants fossiles
EP1132608B1 (fr) Procédé d'étalonnage dans un moteur à combustion interne
DE10011631A1 (de) Verfahren zur Überwachung der verstärkten Bildung von Stickoxiden
EP3660297A1 (fr) Procédé de régulation du cliquetis à l'aide de l'acheminement indirect ou direct d'un milieu supplémentaire liquide dans au moins un cylindre d'un moteur à combustion interne à allumage commandé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20061120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50014676

Country of ref document: DE

Date of ref document: 20071108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071227

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080226

ET Fr: translation filed
BERE Be: lapsed

Owner name: DELPHI TECHNOLOGIES, INC.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081224

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081205

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091212