EP1157738A2 - Verweilzeitmodul für Mikroreaktoren - Google Patents

Verweilzeitmodul für Mikroreaktoren Download PDF

Info

Publication number
EP1157738A2
EP1157738A2 EP01112112A EP01112112A EP1157738A2 EP 1157738 A2 EP1157738 A2 EP 1157738A2 EP 01112112 A EP01112112 A EP 01112112A EP 01112112 A EP01112112 A EP 01112112A EP 1157738 A2 EP1157738 A2 EP 1157738A2
Authority
EP
European Patent Office
Prior art keywords
module according
molded body
dwell time
recess
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01112112A
Other languages
English (en)
French (fr)
Other versions
EP1157738B1 (de
EP1157738A3 (de
Inventor
Klaus Dr. Golbig
Bernd Dittmann
Sebastian Oberbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPC Cellular Process Chemistry Systems GmbH
Original Assignee
CPC CELLULAR PROCESS CHEMISTRY
CPC Cellular Process Chemistry GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPC CELLULAR PROCESS CHEMISTRY, CPC Cellular Process Chemistry GmbH filed Critical CPC CELLULAR PROCESS CHEMISTRY
Publication of EP1157738A2 publication Critical patent/EP1157738A2/de
Publication of EP1157738A3 publication Critical patent/EP1157738A3/de
Application granted granted Critical
Publication of EP1157738B1 publication Critical patent/EP1157738B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4413Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed conical or cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4416Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the opposed surfaces being provided with grooves
    • B01F25/44163Helical grooves formed on opposed surfaces, e.g. on cylinders or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/00862Dimensions of the reaction cavity itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00961Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00963Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00966Measured properties pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00984Residence time

Definitions

  • the chemist must be able to carry out chemical reactions examine various parameters relevant to the course of a reaction are responsible. These parameters include temperature, pressure, Mixing time, intensity of mixing, pH values and finally the type the reaction kinetics. The reaction kinetics determine the time it takes one molecular structure into another under given conditions convert.
  • Microreactors are miniaturized reaction systems for process engineering and chemical process engineering.
  • Such Microreactors are for example from EP 0 688 242 B1 and US 5,811,062 known. They are usually made up of a variety of piled up and interconnected platelets built up, on the surfaces of which micromechanically generated structures are located in their interaction Form reaction spaces to create desired chemical reactions to execute.
  • the residence time systems previously proposed for microreactors are based on double-walled tubes, the reaction mixture flowing through the inner tube and a heat exchange medium flowing through the outer tube. These systems have a number of serious disadvantages: The constructions are comparatively large and yet have small dwell volumes. In addition, the heat control is low. Furthermore, they only offer one way of taking products. This is why you need a version of these systems with different lengths for each dwell time.
  • the invention is therefore based on the object of a residence time module To create microreactor systems that can also be used in various Residence times allowed.
  • the module is intended to provide an exact temperature control of the Allow post-reaction.
  • the module should also be inexpensive to manufacture to be used in the one-way system if necessary.
  • By choosing the This residence time module can have any fluid guide openings as required can be combined with microreactor systems and detachable or non-detachable with be connected.
  • residence time modules are formed which can be suitably adapted with regard to the post-reaction time of the chemical reaction to be carried out.
  • the modular design enables simple adaptation to the prevailing conditions, even of changing types, in that the dwell time can be lengthened or shortened in accordance with the position of the product removal openings in order to meet the kinetics of the selected reaction.
  • dwell time means above and below the time that the Reaction medium for post-reaction after mixing in the module according to the invention is provided. As a rule, it is depending on the flow rate and the volume of the two or three-dimensional, preferably spiral or screw-shaped Indentation on at least one side of the molded body.
  • the volume of the Indentation can be made by the length and diameter of the module Pitch of the helical turn and the geometric position of the Predetermine the product removal opening.
  • reaction medium encompasses mixtures or pure substances, the starting materials, i.e. Contain reactants or products.
  • the shape of the residence time module according to the invention is not critical per se.
  • the individual shaped bodies can be in any geometric shape, e.g. as flat or three-dimensional structures. They are preferably rectangular or round layers or round, oval, square or rectangular hollow bodies. Cylindrical and conical hollow bodies, especially pipes, are with regard to Production of a helical recess and the cover especially prefers.
  • Round layers preferably have a diameter of 10-40 cm, especially 20-30cm.
  • Rectangular layers preferably have edge lengths 5-40 cm, especially 10-30 cm.
  • Hollow bodies preferably have a length from 5.0 to 20.0 cm, in particular 7.5 to 18.0 cm, and an outer diameter from 5.0 to 20.0 cm, in particular 7.5 to 15.0 cm.
  • the well must be chosen so large that the reaction medium can easily happen.
  • the smallest clear width of the depression should not be Have dead water zones, such as dead ends or sharp corners, in to which any particles that may be present can settle.
  • the reaction media are guided in a continuous path.
  • the recess must be small enough to take advantage of the intrinsic benefits Microreaction technology, namely excellent heat control and laminar To exploit current. Therefore, the deepening is usually in one dimension smaller than 1000 ⁇ m, preferably smaller than 800 ⁇ m, especially smaller than 600 ⁇ m.
  • the depression preferably has a width of 200 to 1000 ⁇ m, in particular 400 to 900 microns, and a depth of 100 to 800 microns, especially 200 to 600 microns on.
  • the helical pitch is helical recess 200 to 1500 microns, especially 400 to 1200 microns.
  • Metal, glass, ceramics and plastics come as materials of the shaped bodies into consideration. The selection of these materials or combinations of these judges according to the intended use. Stainless steel is preferred.
  • the installation of sensors in the dwell time module is planned, in particular to record the temperature, the pressure, if necessary the Flow velocity and volume flow.
  • the sensors are with Control loops connected to control and regulate the operating sequence.
  • the tube (1) shown in Fig. 1a has a helical recess (2) on its outside. With the shrink-on cover not shown in FIGS. 1a / 1b, this forms a microcapillary which runs from left to right along the tube (1) shown in FIG. 1a. During operation, this capillary is acted upon by the opening (3) with the reaction medium to be treated. After the aftertreatment has taken place, the reaction medium is discharged through one of the three openings (4, 5, 6) shown in FIG. 1b on the inside of the tube. The dwell time when using the opening (4) is shorter than when using (5) or (6).
  • the individual openings can be regulated via valves so that the dwell time can be controlled depending on the reaction kinetics of the respective reaction. In the exemplary embodiment shown in FIG.
  • the tube (11) has been shrunk over the tube (1) provided with the helical recess.
  • the reaction medium is passed into the helical microcapillary (2) via the opening (3) shown in FIG. 1a.
  • the product is introduced into a storage container via one of the openings (4, 5, 6) shown in FIG.
  • the microcapillary system (1, 11) is enclosed by a further tube (10) which receives a heat exchange medium.
  • the post-reaction takes place in the helical capillary at a precisely predefined temperature.
  • Liquid media such as water, alcohols, glycols, natural or synthetic oils, but also liquid metals that have been cooled or heated to the desired temperature are suitable as heat exchange medium, that is to say cooling and / or heating medium.
  • the inventive Dwell time module via the connection (12) with the heat exchange medium fed, which is discharged through the connection (13) again.
  • the Vent connection (14) is used to vent the heat exchanger, formed from the cavity between tubes 10 and 11.
  • the individual moldings can be screwed or Clamping presses are held together when it comes to a releasable connection goes. You can also use welding, bonding, gluing, soldering or riveting, if such a reaction system no longer changes after assembly shall be.
  • step (a) can be carried out by etching, laser and Water jet cutting and drilling, punching and embossing, milling, planing and drilling, injection molding and sintering, as well as radioactive discharge and combinations thereof.
  • the depression on the surface of the outside of the Shaped body produced by etching, laser beam cutting and / or drilling.
  • the material from which the individual moldings are made depends on the first Line according to the substances to be processed and chemical processes. Generally come the materials suitable for chemistry metal, glass, ceramic and Plastic and combinations of these materials into consideration. Is preferred Stainless steel.
  • the invention provides a residence time module that the integration of various functions that are important for process control enables and because of its microstructure for the aftertreatment of Reaction media from microreactors is suitable. It is particularly suitable for thermal post-treatment of different reactions, which require different dwell times.
  • the invention therefore furthermore relates to a method for carrying it out chemical reactions, one or more chemical reactants in gaseous, fluid and / or suspended form in a microreactor optionally mixed and to form a liquid, dissolved or suspended reaction product are brought to reaction, and that Reaction medium for the post-procedural residence time by an inventive
  • liquid form includes both Products that occur even in a liquid state, as well Products used in a mixture with a fluid diluent become.
  • at least two Reactants in the presence of at least one diluent in one Microreactor reacted and the reaction medium obtained in one after-treatment module according to the invention aftertreated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verweilzeitmodul zur thermischen Nachbehandlung chemischer Reaktionsmedien aus Mikroreaktoren, welches folgende Bestandteile aufweist: (a) einen Formkörper (1) mit mindestens einer zwei- oder dreidimensional gewundenen Vertiefung (2), die sich auf mindestens einer Oberfläche des Formkörpers befindet, eine durch den Formkörper führende Öffnung (3), durch welche die mindestens eine Vertiefung mit einem Reaktionsmedium beschickt werden kann, und eine oder mehrere Öffnungen (4, 5, 6) zur wahlweisen Entnahme des Reaktionsmediums; (b) eine über die strukturierte Oberfläche bzw. die strukturierten Oberflächen des Formkörpers gelegte Abdeckung, welche die mindestens eine Vertiefung dichtend abschliesst und so mindestens einen kanalförmigen Hohlraum ausbildet; (c) gegebenenfalls Vorrichtungen zur Temperaturregulierung und/oder Sensoren zur Kontrolle des Reaktionsverlaufs. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verweilzeitmodul zur thermischen Nachbehandlung chemischer Reaktionsmedien aus Mikroreaktoren, wobei das Modul folgende Bestandteile aufweist:
  • (a) einen Formkörper (1) mit mindestens einer zwei- oder dreidimensional gewundenen Vertiefung (2), die sich auf mindestens einer Oberfläche des Formkörpers befindet, eine durch den Formkörper führende Öffnung (3), durch welche die mindestens eine Vertiefung mit einem Reaktionsmedium beschickt werden kann, und eine oder mehrere Öffnungen (4, 5, 6) zur wahlweisen Entnahme des Reaktionsmediums;
  • (b) eine über die strukturierte Oberfläche bzw. die strukturierten Oberflächen des Formkörpers gelegte Abdeckung, welche die mindestens eine Vertiefung dichtend abschliesst und so mindestens einen kanalförmigen Hohlraum ausbildet;
  • (c) gegebenenfalls Vorrichtungen zur Temperaturregulierung und/oder Sensoren zur Kontrolle des Reaktionsverlaufs.
  • Um chemische Reaktionen durchführen zu können, muss der Chemiker verschiedene Parameter untersuchen, die für den Verlauf einer Reaktion verantwortlich sind. Diese Parameter sind unter anderem Temperatur, Druck, Mischungszeit, Intensität der Durchmischung, pH-Werte und schließlich die Art der Reaktionskinetik. Die Reaktionskinetik bestimmt die Zeit, die benötigt wird, um eine Molekülstruktur bei vorgegebenen Bedingungen in eine andere umzuwandeln.
    In herkömmlichen Reaktoren (Batch-System) wird die Reaktionszeit nach Mischen der Reaktanten dadurch eingestellt, dass die Reaktionsmischung in dem Reaktionsgefäß solange verweilt, bis die gewünschte Nachreaktionszeit vergangen ist. Die sorgfältige Einstellung der Verweilzeit und präzise Temperaturkontrolle während dieser Zeit ist äußerst wichtig, um das gewünschte Produkt in der geforderten Qualität und Ausbeute zu erhalten.
    Bei Mikroreaktoren ist es wesentlich komplizierter, genügend Verweilzeit zur Verfügung zu stellen. Mikroreaktoren stellen miniaturisierte Reaktionssysteme für die Verfahrenstechnik und die chemische Prozesstechnik dar. Solche Mikroreaktoren sind zum Beispiel aus der EP 0 688 242 B1 und der US 5,811,062 bekannt. Sie werden in der Regel aus einer Vielzahl von aufeinandergestapelten und miteinander verbundenen Plättchen aufgebaut, auf deren Oberflächen sich mikromechanisch erzeugte Strukturen befinden, die in ihrem Zusammenwirken Reaktionsräume bilden, um jeweils erwünschte chemische Reaktionen auszuführen.
    Da solche Mikroreaktoren gewöhnlich kontinuierlich betrieben werden, ist es nicht empfehlenswert, das aus dem Mikroreaktor kommende Reaktionsgemisch in einen herkömmlichen Reaktor zu füllen und dort verweilen zu lassen.
    Die bisher für Mikroreaktoren vorgeschlagenen Verweilzeitsysteme beruhen auf doppelwandigen Röhren, wobei das innere Rohr von der Reaktionsmischung und das äußere Rohr von einem Wärmetauschermedium durchflossen wird. Diese Systeme weisen eine Reihe von gravierenden Nachteilen auf:
    DieKonstruktionen sind vergleichsweise groß und weisen dennoch geringe Verweilvolumina auf. Zudem ist die Wärmekontrolle gering. Weiterhin bieten sie nur eine Möglichkeit der Produktentnahme. Daher benötigt man für jede Verweilzeit jeweils eine Ausführung dieser Systeme mit unterschiedlicher Länge.
    Der Erfindung liegt daher die Aufgabe zugrunde, ein Verweilzeitmodul für Mikroreaktorsysteme zu schaffen, das auch den Einsatz bei verschiedenen Verweilzeiten erlaubt. Das Modul soll eine exakte Temperaturführung der Nachreaktion ermöglichen. Das Modul soll ferner preiswert herstellbar sein, um gegebenenfalls im Einwegsystem verwendet zu werden. Durch die Wahl der Fluidführungsöffnungen kann dieses Verweilzeitmodul, je nach Bedarf, beliebig mit Mikroreaktorsystemen kombiniert werden und lösbar oder unlösbar mit solchen verbunden werden.
    Die gestellte Aufgabe wird aufgrund der Merkmale des Anspruchs 1 gelöst und durch die weiteren Merkmale der Unteransprüche ausgestaltet und
    weiterentwickelt. Im einzelnen werden Verweilzeitmodule gebildet, die sich im Hinblick auf die Nachreaktionszeit der durchzuführenden chemischen Reaktion geeignet anpassen lassen. Die modulare Bauweise ermöglicht eine einfache Anpassung an die jeweils auftretenden Bedingungen auch wechselnder Art, indem die Verweilzeit entsprechend der Lage der Produktentnahmeöffnungen verlängert oder verkürzt werden kann, um der Kinetik der gewählten Reaktion zu genügen.
    Der Begriff Verweilzeit bedeutet vorstehend und nachfolgend die Zeit, die dem Reaktionsmedium zur Nachreaktion nach der Durchmischung in dem erfindungsgemäßen Modul zur Verfügung gestellt wird. In der Regel ist sie abhängig von der Durchflussgeschwindigkeit und dem Volumen der zwei- oder dreidimensional gewundenen, bevorzugt spiral- oder schraubenförmigen Vertiefung auf mindestens einer Seite des Formkörpers. Das Volumen der Vertiefung lässt sich durch die Länge und den Durchmesser des Moduls, die Ganghöhe der schraubenförmigen Windung sowie die geometrische Lage der Produktentnahmeöffnung vorbestimmen.
    Der Begriff Reaktionsmedium umfasst Gemische oder Reinstoffe, die Edukte, d.h. Reaktanten oder Produkte enthalten.
    Die Formgebung des erfindungsgemäßen Verweilzeitmoduls ist an sich unkritisch. Die einzelnen Formkörper können in jeder geometrischen Form vorliegen, z.B. als flächige oder dreidimensionale Gebilde. Vorzugsweise sind sie rechteckige oder runde Schichten oder runde, ovale, quadratische oder rechteckige Hohlkörper. Zylinder- und kegelförmige Hohlkörper, insbesondere Rohre, sind im Hinblick auf Herstellung einer schraubenförmigen Vertiefung und der Abdeckung besonders bevorzugt.
    Vorzugsweise weisen runde Schichten einen Durchmesser von 10-40cm, insbesondere 20-30cm auf. Rechteckige Schichten haben bevorzugt Kantenlängen von 5-40 cm, insbesondere 10-30cm. Vorzugsweise weisen Hohlkörper eine Länge von 5,0 bis 20,0 cm, insbesondere 7,5 bis 18,0 cm, und einen Aussendurchmesser von 5,0 bis 20,0 cm, insbesondere 7,5 bis 15,0 cm auf.
    Die Vertiefung muss so groß gewählt werden, dass das Reaktionsmedium sie problemlos passieren kann. Die kleinste lichte Weite der Vertiefung sollte keine Totwasserzonen, wie zum Beispiel Sackgassen oder scharfe Ecken, aufweisen, in denen sich eventuell vorhandene Teilchen absetzen können. Die Reaktionsmedien werden in einer kontinuierlichen Bahn geführt.
    Die Vertiefung muss klein genug sein, um die immanenten Vorteile der Mikroreaktionstechnik, nämlich hervorragende Wärmekontrolle und laminare Strömung auszunutzen. Daher ist die Vertiefung in der Regel in einer Dimension kleiner als 1000 µm, vorzugsweise kleiner als 800 µm, insbesondere kleiner als 600 µm.
    Vorzugsweise weist die Vertiefung eine Breite von 200 bis 1000 µm, insbesondere 400 bis 900 µm, und eine Tiefe von 100 bis 800 µm, insbesondere 200 bis 600 µm auf.
    In einer weiteren bevorzugten Ausführungsform beträgt die helikale Ganghöhe der schraubenförmigen Vertiefung 200 bis 1500 µm, insbesondere 400 bis 1200 um.
    Als Materialien der Formkörper kommen Metall, Glas, Keramiksowie Kunststoffe in Betracht. Die Auswahl dieser Werkstoffe oder von Kombinationen davon richtet sich nach dem vorgesehenen Verwendungszweck. Bevorzugt ist Edelstahl.
    Bei der chemischen Prozessführung müssen diverse Parameter beachtet werden. Deshalb ist der Einbau von Sensoren in das Verweilzeitmodul vorgesehen, insbesondere zur Erfassung der Temperatur, des Drucks, gegebenenfalls der Strömungsgeschwindigkeit und des Volumenstroms. Die Sensoren sind mit Regelkreisen verbunden, um den Betriebsablauf zu steuern und zu regeln.
    Die Erfindung wird anhand der Zeichnungen beschrieben. Dabei zeigen:
  • Fig. 1a und 1b jeweils eine perspektivische Darstellung des inneren Formkörpers (1) des erfindungsgemäßen Verweilzeitmoduls in schematischer Darstellung.
  • Fig. 2 einen Längsschnitt des erfindungsgemäßen Verweilzeitmoduls in schematischer Darstellung.
  • Fig. 3 eine perspektivische Darstellung des erfindungsgemäßen Verweilzeitmoduls in schematischer Darstellung.
  • Das in Fig. 1a dargestellte Rohr (1) weist an seiner Aussenseite eine schraubenförmige Vertiefung (2) auf. Diese bildet mit der nicht in Fig. 1a/1b dargestellten, aufgeschrumpften Abdeckung eine Mikrokapillare, welche entlang des in Fig. 1a gezeigten Rohres (1) von links nach rechts verläuft. Im Betrieb wird diese Kapillare durch die Öffnung (3) mit dem nachzubehandelnden Reaktionsmedium beaufschlagt. Nach erfolgter Nachbehandlung wird das Reaktionsmedium durch eine der drei in Fig. 1b gezeigten Öffnungen (4, 5, 6) an der Innnenseite des Rohres abgeführt. Dabei ist die Verweilzeit bei Einsatz der Öffnung (4) kürzer als bei Einsatz von (5) bzw. (6).
    Die einzelnen Öffnungen sind über Ventile regulierbar, so dass die Verweilzeit in Abhängigkeit der Reaktionskinetik der jeweiligen Reaktion kontrolliert werden kann.
    Bei dem in Fig. 2 dargestellten Ausführungsbeispiel sei angenommen, dass das Rohr (11) über das mit der schraubenförmigen Vertiefung versehene Rohr (1) geschrumpft worden sei. Über die Produktzuleitung (7) wird das Reaktionsmedium über die in Fig. 1a gezeigte Öffnung (3) in die schraubenförmige Mikrokapillare (2) geleitet. Nach Durchlauf der Mikrokapillare wird das Produkt über eine der in Fig. 1b gezeigten Öffnungen (4, 5, 6) über den Anschluss (8) in einen Vorratsbehälter eingeleitet, oder, falls ein weiterer Reaktionsschritt vorgesehen ist, in ein weiteres Mikroreaktorsystem weitergeleitet.
    Das Mikrokapillarsystem (1, 11) wird dabei von einem weiteren Rohr (10), welches ein Wärmetauschermedium aufnimmt, umschlossen. Dadurch findet die Nachreaktion in der schraubenförmigen Kapillare bei einer exakt vordefinierten Temperatur statt.
    Als Wärmetauschermedium, also Kühl- und/oder Heizmedium, eignen sich flüssige Medien wie Wasser, Alkohole, Glykole, natürliche oder synthetische Öle, aber auch flüssige Metalle, die auf die gewünschte Temperatur abgekühlt oder erhitzt wurden.
    Bei dem in Fig. 3 dargestellten Ausführungsbeispiel wird das erfindungsgemäße Verweilzeitmodul über den Anschluss (12) mit dem Wärmetauschermedium beschickt, welches durch den Anschluss (13) wieder abgeführt wird. Der Entlüftungsanschluss (14) dient der Entlüftung des Wärmetauschers, gebildet aus dem Hohlraum zwischen Rohr 10 und 11.
    Die einzelnen Formkörper können durch Schraubverbindungen oder Klammerpressen zusammengehalten werden, wenn es um eine lösbare Verbindung geht. Man kann auch Schweißen, Bonden, Kleben, Löten oder Nieten anwenden, wenn ein solches Reaktionssystem nach dem Zusammenbau nicht mehr verändert werden soll.
    Ein weiterer Gegenstand der Erfindung ist ein Prozess zur Herstellung eines erfindungsgemäßen Verweilzeitmoduls, welcher folgende Schritte umfasst:
  • (a) Herstellen eines Formkörpers, von dem mindestens eine Oberfläche Mikro- und/oder Feinwerk-technisch so bearbeitet wird, dass er eine zwei- oder dreidimensional gewundene Vertiefung (2) sowie eine durch den Formkörper führende Öffnung (3) an einem Ende des Formkörpers, und eine oder mehrere Öffnungen (4, 5, 6) in einer vorbestimmten Entfernung zur Öffnung (3) aufweist;
  • (b) Aufbringen einer über die strukturierte Oberfläche bzw. strukturierten Oberflächen des Formkörpers gelegten Abdeckung, welche die Vertiefung nach aussen dichtend abschliesst; und
  • (c) Gegebenenfalls Anbringen von Vorrichtungen zur Temperaturregulierung und/oder Anschlüssen für Sensoren zur Kontrolle des Reaktionsverlaufs.
  • In einer bevorzugten Ausführungsform wird in Schritt (b) die Abdeckung (11) unter Wärmeeinwirkung ausgedehnt, über den Formkörper (1) gestülpt und abgekühlt.
    Die Strukturierung bei Schritt (a) kann durch Ätzen, Laser- und
    Wasserstrahlschneiden und -bohren, Stanzen und Prägen, Fräsen, Hobeln und Bohren, Spritzguss und Sintern sowie Funkerosiv und mit Kombinationen derselben erfolgen.
    Vorzugsweise wird die Vertiefung auf der Oberfläche der Aussenseite des Formkörpers durch Ätzen, Laserstrahlschneiden und/oder -bohren hergestellt.
    Der Werkstoff, aus dem die einzelnen Formkörper bestehen, richtet sich in erster Linie nach den zu verarbeitenden Stoffen und chemischen Prozessen. Allgemein kommen die für die Chemie tauglichen Werkstoffe Metall, Glas, Keramik und Kunststoff sowie Kombinationen dieser Werkstoffe in Betracht. Bevorzugt ist Edelstahl.
    Insgesamt wird mit der Erfindung ein Verweilzeitmodul zur Verfügung gestellt, das die Integration verschiedener, für die Prozessführung bedeutsamer Funktionen ermöglicht und das aufgrund seiner Mikrostruktur zur Nachbehandlung von Reaktionsmedien aus Mikroreaktoren geeignet ist. Insbesondere eignet es sich für die thermische Nachbehandlung (post reaction) unterschiedlicher Reaktionen, welche verschiedene Verweilzeiten erfordern.
    Weiterhin Gegenstand der Erfindung ist daher ein Verfahren zur Durchführung chemischer Reaktionen, wobei ein oder mehrere chemische Reaktanden in gasförmiger, fluider und/oder suspendierter Form in einem Mikroreaktor gegebenenfalls gemischt und unter Bildung eines flüssigen, gelösten oder suspendierten Reaktionsproduktes zur Reaktion gebracht werden, und das Reaktionsmedium zur postprozessuale Verweilzeit durch ein erfindungsgemäßes Verweilzeitmodul geleitet wird.Der Begriff "flüssige Form" umfasst sowohl Produkte, die selbst in einem flüssigem Aggregatzustand vorkommen, als auch Produkte, die in einem Gemisch mit einem fluiden Verdünnungsmittel eingesetzt werden. In einer besonders bevozugten Ausführungsform werden mindestens zwei Reaktanten in Gegenwart von mindestens einem Verdünnungsmittel in einem Mikroreaktor zur Reaktion gebracht und das erhaltene Reaktionsmedium in einem erfindungsgemäßen Verweilzeitmodul nachbehandelt.

    Claims (15)

    1. Verweilzeitmodul zur thermischen Nachbehandlung chemischer Reaktionsmedien aus Mikroreaktoren, dadurch gekennzeichnet, dass das Modul folgende Bestandteile aufweist:
      (a) einen Formkörper (1) mit mindestens einer zwei- oder dreidimensional gewundenen Vertiefung (2), die sich auf mindestens einer Oberfläche des Formkörpers befindet, eine durch den Formkörper führende Öffnung (3), durch welche die mindestens eine Vertiefung mit einem Reaktionsmedium beschickt werden kann, und eine oder mehrere Öffnungen (4, 5, 6) zur wahlweisen Entnahme des Reaktionsmediums;
      (b) eine über die strukturierte Oberfläche bzw. die strukturierten Oberflächen des Formkörpers gelegte Abdeckung, welche die mindestens eine Vertiefung dichtend abschliesst und so mindestens einen kanalförmigen Hohlraum ausbildet;
      (c) gegebenenfalls Vorrichtungen zur Temperaturregulierung und/oder Sensoren zur Kontrolle des Reaktionsverlaufs.
    2. Verweilzeitmodul nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine zwei- oder dreidimensional gewundene Vertiefung spiralförmig oder schraubenförmig verläuft.
    3. Verweilzeitmodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Formkörper (a) mit der Abdeckung (b) zur Temperaturregulierung an einen weiteren Formkörper angrenzt und damit ein weiterer Hohlraum gebildet wird, in den Anschlüsse für die Zu- und Abfuhr von Wärmetauschermedien hineinführen.
    4. Verweilzeitmodul nach einem der vorangehenden Ansprüche, wobei sowohl der Formkörper (1) als auch die Abdeckung Metallrohre sind, dadurch gekennzeichnet, dass der Aussendurchmesser des mit der schraubenförmigen Vertiefung versehenen Formköpers größer oder gleich dem Innendurchmesser der Abdeckung ist.
    5. Verweilzeitmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper mindestens zwei mit Ventilen regulierbare Öffnungen (4, 5, 6) zur wahlweisen Entnahme des Reaktionsmediums aufweist.
    6. Verweilzeitmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnungen (4, 5, 6) zur wahlweisen Entnahme des Reaktionsmediums in genau vordefinierten Abständen von der Zufuhr-Öffnung (3) angebracht sind.
    7. Verweilzeitmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper (1) eine Länge von 5,0 bis 20,0 cm, einen Aussendurchmesser von 5,0 bis 20,0 cm aufweist.
    8. Verweilzeitmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Vertiefung (2) eine Breite von 200 bis 1000 µm und eine Tiefe von 100 bis 800 µm aufweisen.
    9. Verweilzeitmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die die helicale Ganghöhe der Vertiefung 200 bis 1500 µm beträgt.
    10. Modul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Sensoren (c) zur Erfassung von Prozessparametern, wie Temperatur, Druck, Strömungsgeschwindigkeit, Volumen- oder Massestrom, pH-Wert, entweder in einzelnen Funktionsmodulen oder ausserhalb angebracht sind.
    11. Modul nach Anspruch 10, dadurch gekennzeichnet, dass Regelkreise vorgesehen sind, die aufgrund der gemessenen Parameter den Materialfluss in den Öffnungen sowie die Temperatur regeln.
    12. Mikroreaktor zur Durchführung chemischer Reaktionen, wobei die Prozessführung folgende Schritte umfasst:
      Zuführung von Reaktanten,
      deren präprozessuale Wärmebehandlung,
      Zusammenführung der Reaktanten unter kontrollierten thermischen Bedingungen,
      eine intermediäre thermische Behandlung,
      eine postprozessuale Verweilzeit,
      dadurch gekennzeichnet, dass der Schritt der postprozessuale Verweilzeit in einem Modul nach einem der Ansprüche 1 bis 11 durchgeführt wird.
    13. Prozess zur Herstellung eines Moduls nach einem der Ansprüche 1 bis 11, welcher folgende Schritte umfasst:
      (a) Herstellen eines Formkörpers, von dem mindestens eine Oberfläche Mikro- und/oder Feinwerk-technisch so bearbeitet wird, dass er eine zwei- oder dreidimensional gewundene Vertiefung (2) sowie eine durch den Formkörper führende Öffnung (3) an einem Ende des Formkörpers, und eine oder mehrere Öffnungen (4, 5, 6) in einer vorbestimmten Entfernung zur Öffnung (3) aufweist;
      (b) Aufbringen einer über die strukturierte Oberfläche bzw. strukturierten Oberflächen des Formkörpers gelegten Abdeckung, welche die Vertiefung nach aussen dichtend abschliesst; und
      (c) gegebenenfalls Anbringen von Vorrichtungen zur Temperaturregulierung und/oder Anschlüssen für Sensoren zur Kontrolle des Reaktionsverlaufs.
    14. Prozess nach Anspruch 13, dadurch gekennzeichnet, dass in Schritt (b) die Abdeckung unter Wärmeeinwirkung ausgedehnt, über den Formkörper gestülpt und abgekühlt wird.
    15. Verfahren zur Durchführung chemischer Reaktionen, wobei ein oder mehrere chemische Reaktanden in gasförmiger, fluider und/oder suspendierter Form in einem Mikroreaktor gegebenenfalls gemischt und unter Bildung eines flüssigen, gelösten oder suspendierten Reaktionsproduktes zur Reaktion gebracht werden, dadurch gekennzeichnet, dass das Reaktionsmedium zur postprozessuale Verweilzeit durch ein Modul nach einem der Ansprüche 1 bis 10 geleitet wird.
    EP01112112A 2000-05-21 2001-05-17 Verweilzeitmodul für Mikroreaktoren Expired - Lifetime EP1157738B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10024497 2000-05-21
    DE10024497 2000-05-21

    Publications (3)

    Publication Number Publication Date
    EP1157738A2 true EP1157738A2 (de) 2001-11-28
    EP1157738A3 EP1157738A3 (de) 2003-01-22
    EP1157738B1 EP1157738B1 (de) 2005-11-30

    Family

    ID=7642615

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01112112A Expired - Lifetime EP1157738B1 (de) 2000-05-21 2001-05-17 Verweilzeitmodul für Mikroreaktoren

    Country Status (3)

    Country Link
    EP (1) EP1157738B1 (de)
    AT (1) ATE311246T1 (de)
    DE (1) DE50108217D1 (de)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1481725A1 (de) 2003-05-30 2004-12-01 Fuji Photo Film Co., Ltd. Mikroreaktor
    WO2009151322A1 (en) * 2008-06-10 2009-12-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Process and apparatus for carrying out multi-phase reactions
    EP2769767A3 (de) * 2013-02-22 2014-09-17 Karlsruher Institut für Technologie Nicht-planarer Formkörper, Verfahren zu seiner Herstellung, seine Verwendung, Verfahren zur Herstellung eines Mikrogerüsts und dessen Verwendung
    DE102022104847A1 (de) 2022-03-01 2023-09-07 Friedrich-Alexander-Universität Erlangen-Nürnberg, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Behandlung von Flüssigkeit

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1356922A (en) * 1920-02-03 1920-10-26 John J Keenan Apparatus for stopping vehicles
    US3466269A (en) * 1958-05-16 1969-09-09 Plastugil Plastique Et Elastom Process for continuous mass polymerization of styrene and methyl methacrylate
    FR2416209A1 (fr) * 1977-10-27 1979-08-31 Perani & C Iit Sas Procede pour la sulfonation en continu de compositions liquides organiques et le reacteur de mise en oeuvre du procede
    US4292409A (en) * 1979-05-08 1981-09-29 Italfarmaco S.P.A. Flow reactor for enzymatic reactions in which the enzyme is immobilized on a solid matrix having a planar surface
    DE3906911A1 (de) * 1987-12-02 1990-10-04 Vysoka Skola Chem Tech Kolonne zur enzymatischen umsetzung von substanzen
    US5690763A (en) * 1993-03-19 1997-11-25 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
    EP1031375A2 (de) * 1999-02-24 2000-08-30 CPC Cellular Process Chemistry Systems GmbH Mikroreaktor

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1356922A (en) * 1920-02-03 1920-10-26 John J Keenan Apparatus for stopping vehicles
    US3466269A (en) * 1958-05-16 1969-09-09 Plastugil Plastique Et Elastom Process for continuous mass polymerization of styrene and methyl methacrylate
    FR2416209A1 (fr) * 1977-10-27 1979-08-31 Perani & C Iit Sas Procede pour la sulfonation en continu de compositions liquides organiques et le reacteur de mise en oeuvre du procede
    US4292409A (en) * 1979-05-08 1981-09-29 Italfarmaco S.P.A. Flow reactor for enzymatic reactions in which the enzyme is immobilized on a solid matrix having a planar surface
    DE3906911A1 (de) * 1987-12-02 1990-10-04 Vysoka Skola Chem Tech Kolonne zur enzymatischen umsetzung von substanzen
    US5690763A (en) * 1993-03-19 1997-11-25 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
    EP1031375A2 (de) * 1999-02-24 2000-08-30 CPC Cellular Process Chemistry Systems GmbH Mikroreaktor

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1481725A1 (de) 2003-05-30 2004-12-01 Fuji Photo Film Co., Ltd. Mikroreaktor
    US7507387B2 (en) 2003-05-30 2009-03-24 Fujifilm Corporation Microreactor
    WO2009151322A1 (en) * 2008-06-10 2009-12-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Process and apparatus for carrying out multi-phase reactions
    US8791176B2 (en) 2008-06-10 2014-07-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Process and apparatus for carrying out multi-phase reactions
    EP2769767A3 (de) * 2013-02-22 2014-09-17 Karlsruher Institut für Technologie Nicht-planarer Formkörper, Verfahren zu seiner Herstellung, seine Verwendung, Verfahren zur Herstellung eines Mikrogerüsts und dessen Verwendung
    DE102022104847A1 (de) 2022-03-01 2023-09-07 Friedrich-Alexander-Universität Erlangen-Nürnberg, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Behandlung von Flüssigkeit

    Also Published As

    Publication number Publication date
    EP1157738B1 (de) 2005-11-30
    EP1157738A3 (de) 2003-01-22
    DE50108217D1 (de) 2006-01-05
    ATE311246T1 (de) 2005-12-15

    Similar Documents

    Publication Publication Date Title
    EP1140349B1 (de) Reaktor zur kontinuierlichen durchführung von gas-flüssig-, flüssig-flüssig- oder gas-flüssig-fest-reaktionen
    EP1718402B1 (de) Mikromischer
    EP2403633B1 (de) Koaxialer kompaktstatikmischer sowie dessen verwendung
    EP1390131B1 (de) Verfahren und statischer mikrovermischer zum mischen mindestens zweier fluide
    WO2004091771A1 (de) Mikroreaktor in plattenbauweise mit einem katalysator
    DE19541265A1 (de) Verfahren zur Herstellung von Dispersionen und zur Durchführung chemischer Reaktionen mit disperser Phase
    DE10036602A1 (de) Mikroreaktor für Reaktionen zwischen Gasen und Flüssigkeiten
    DE10123092B4 (de) Verfahren und statischer Mischer zum Mischen mindestens zweier Fluide
    WO1995030476A1 (de) Verfahren und vorrichtung zur durchführung chemischer reaktionen mittels mikrostruktur-mischung
    DE19927556A1 (de) Statischer Mikromischer
    DE19748481A1 (de) Statischer Mikrovermischer, und Mikroreaktor sowie dessen Verwendung
    DE10138970A1 (de) Rohrreaktor auf Basis eines Schichtstoffes
    EP2915581A1 (de) Statischer Mischer
    EP1157738B1 (de) Verweilzeitmodul für Mikroreaktoren
    DE102008009199A1 (de) Reaktionsmischersystem zur Vermischung und chemischer Reaktion von mindestens zwei Fluiden
    WO2001089693A1 (de) Emulgier- und trennvorrichtung für flüssige phasen
    EP1123735A2 (de) Mikroreaktor für Reaktionsmedien in Form einer Suspension
    DE10318061A1 (de) Mischvorrichtung
    EP1125630B1 (de) Mikroreaktor mit verbessertem Wärmetauscher
    EP1703969B1 (de) Verfahren und vorrichtung zum mischen wenigstens zweier fluide in einem mikromischreaktor
    DE10218278B4 (de) Mikroreaktor
    EP1796829A1 (de) Mikrokapillarreaktor und verfahren zum kontrollierten vermengen von nicht homogen mischbaren fluiden unter verwendung dieses mikrokapillarreaktors
    DE10148615A1 (de) Verfahren und Vorrichtung zur Durchführung chemischer Prozesse
    EP1776183A1 (de) Vorrichtung und verfahren zur kontinuierlichen durchführung chemischer prozesse
    DE102005003964B4 (de) Kontinuierlich durchströmter Wärmeübertrager für fluide Medien

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030715

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20031013

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CPC CELLULAR PROCESS CHEMISTRY SYSTEMS GMBH

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051130

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50108217

    Country of ref document: DE

    Date of ref document: 20060105

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060228

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060228

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060313

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060224

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ROSENICH PAUL; GISLER CHRISTIAN PATENTBUERO PAUL R

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060517

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060831

    BERE Be: lapsed

    Owner name: CPC CELLULAR PROCESS CHEMISTRY SYSTEMS G.M.B.H.

    Effective date: 20060531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060517

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20080408

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080530

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080521

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090517

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090531

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090517

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100531

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50108217

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50108217

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130