EP1149949A2 - Cockle resistant inkjet paper - Google Patents

Cockle resistant inkjet paper Download PDF

Info

Publication number
EP1149949A2
EP1149949A2 EP00402745A EP00402745A EP1149949A2 EP 1149949 A2 EP1149949 A2 EP 1149949A2 EP 00402745 A EP00402745 A EP 00402745A EP 00402745 A EP00402745 A EP 00402745A EP 1149949 A2 EP1149949 A2 EP 1149949A2
Authority
EP
European Patent Office
Prior art keywords
surface area
paper
cockle
pigment
inkjet recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00402745A
Other languages
German (de)
French (fr)
Other versions
EP1149949A3 (en
Inventor
Joel R. Recht
Jonathan L. Snover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westvaco Corp
Original Assignee
Westvaco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westvaco Corp filed Critical Westvaco Corp
Publication of EP1149949A2 publication Critical patent/EP1149949A2/en
Publication of EP1149949A3 publication Critical patent/EP1149949A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0035Uncoated paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape

Definitions

  • the present invention relates generally to the manufacture of inkjet recording paper. More particularly, the invention relates to a process for reducing or preventing cockle or wrinkling of inkjet recording paper during the printing process.
  • Papers for inkjet printing can be divided into two types, (a) uncoated for low quality printing, and (b) coated for high quality (usually multi-colored) printing.
  • Uncoated papers generally contain high surface area pigments, either as fillers or added at the size press to help control dot spread. The objective is to make the sheet absorptive enough to permit rapid ink penetration, but to minimize feathering and retain good circularity of dots after printing.
  • Coated inkjet papers used for high quality multi-color printing are also required to have rapid ink absorption while still being able to dissipate the ink vehicle.
  • print quality is superior to that of an uncoated sheet where the ink and ink vehicle has deeply penetrated the substrate.
  • both types of inkjet recording papers must include some amount of sizing so as to keep the cellulose fibers from absorbing too much of the ink vehicle, otherwise the sheet becomes cockled or wrinkled during printing.
  • inkjet inks are aqueous based formulations which may contain from 85-95% water (by weight). Where low levels of sizing are used in the paper substrate, the cellulose fibers tend to absorb excess water which destroys the dimensional stability of the sheet and produces cockle. Where high levels of sizing are employed, the cellulose fibers absorb little or no water, so that print performance is impaired and drying times are unduly long.
  • cockle refers to the swelling of paper fibers and the deformation of paper while wet with ink, which may occur immediately after printing.
  • U.S. Patent No. 5,207,824 discloses the use of between 15-50% by weight of an anti-cockle agent in the ink to reduce cockle.
  • U.S. Patent No. 5,419,644 discloses a printer control mechanism for regulating the pen-to-sheet spacing during printing to reduce cockle.
  • U.S. Patent No. 5,431,724 the addition of a water-soluble solvent or salt to the inkjet ink is disclosed as reducing paper cockle during printing.
  • the present invention relies on a modification to the paper basestock used to make the inkjet sheets. Whether the inkjet sheet is coated or uncoated, it must have a high ink-absorbing capacity such that the ink vehicle is rapidly absorbed into the substrate while the images received on the recording sheet appear to be dry. This must be accomplished while still providing a high resistance to the tendency of curling and cockling. Generally, since the tendency of curling and cockling is increased with an increase in the ink absorption of the recording sheet, the requirement for enhancing the ink-absorption of the recording sheet is contradictory to the requirement of preventing the tendency of curling and cockling. Yet, in accordance with the present invention, this seemingly contradictory result is accomplished in a highly effective and cost efficient manner.
  • U.S. Patent No. 5,213,873 describes the use of a neutral paper sheet for inkjet recording having a highly absorbent top coating containing fine silica particles for achieving superior print performance
  • U.S. Patent No. 5,985,424 discloses a moderately sized sheet (Hercules size of from about 300-900 seconds), onto which there is applied both a base coating and an ink receptive top coating for achieving superior print performance.
  • Another object of the present invention is to reduce the cockle of the inkjet recording sheet during printing by a cost effective modification to the paper basestock used to make the inkjet recording sheet.
  • the preferred high surface area pigments of the present invention have a specific surface area in the range of 80-650 m 2 /g, as compared with the specific surface area of 5-15 m 2 /g for conventional filler pigments.
  • the pigments of the present invention most preferably have a bulk density of from about 0.14 to 0.26 g/cm 3 as compared with the bulk density of conventional inkjet pigments which range from about 0.4 to 1.0 g/cm 3 , and an internal pore volume as measured by an oil absorption test of from about 1.35 to 2.80 cm 3 /g as compared with the pore volumes of conventional inkjet pigments which range from about 0.10 to 0.50 cm 3 /g by the oil absorption test.
  • the preferred substitution rate of such high specific surface area pigments for conventional pigments in the present invention is less than about 5% by weight, and on the order of about 1-5% by weight.
  • a pigment having a specific surface area of from about 80-650 m 2 /g) was sized to a level greater than 1000 seconds as measured by the Hercules sizing test, the paper so made absorbed more water in a given length of time (as measured by Cobb sizing degree), than paper containing only the conventional pigments which was sized to the same degree.
  • the low bulk density of the high specific surface area pigments due primarily to the large pore volume of such pigments, results in a paper basestock with reduced density and a reduced tendency to produce cockle upon printing with typical inkjet inks, while still providing enhanced print quality at a minimum ink drying time.
  • the subject matter of the present invention comprises a method for reducing the cockle of a paper inkjet recording sheet during inkjet printing wherein even if the paper fibers are given a high degree of sizing to prevent moisture penetration, the recording sheet is still provided with a high degree of water absorption capability by replacing a minor but effective portion of the conventional low specific surface area pigments normally used in the manufacture of inkjet paper with high specific area pigments having a large internal pore volume.
  • the paper basestock made according to the present invention may be advantageously used as an uncoated sheet for low quality printing or it may be coated with one or more ink receptive coatings for use in making high quality, color prints.
  • the density of the paper made is reduced as compared with the density of paper made with conventional inkjet paper pigments.
  • the advantage of reduced density vis-a-vis improved ink absorption is fully disclosed in U.S. Patent No. 5,589,259 wherein it is noted that when the apparent density of the base paper in an inkjet recording sheet is reduced, the internal voids of the base paper is enlarged resulting in better ink absorption.
  • such paper could also be advantageously used in coverstock, paperboard and other paper products benefitting from reduced density.
  • handsheets of approximately 75 g/m 2 were made with a blend of hardwood Kraft and softwood Kraft pulp with 0 to 4% added high surface area pigments from the families of silica, calcium silicate, and sodium aluminosilicate. It was found that the presence of the high surface area pigments, particularly those with large internal void volumes, resulted in lower paper density, preferably at levels of 2-3% filler.
  • Two inch square samples from this initial experiment were taped to a sheet of office paper and printed blue on an HP 870 Cse printer and evaluated for cockle, with improvements seen in several samples. Formulations and results for several of the products are summarized below in Table 1.
  • Handsheets were calendered at 97.7 kg/linear 2.54 cm (200 pounds/linear inch) between 2 steel nips and compared for physical and optical properties.
  • a 2.54 cm by 17.78 cm (1 inch by 7 inch) black strip was printed (using an Epson 740 inkjet printer) onto calendered paper and observed for cockle. Paper was also coated with a proprietary inkjet basecoat and topcoat, then printed with test patterns on a Epson 740 inkjet printer.
  • Basestock made with Hubersorb or FK-310 had 5% lower density after calendering than did the control paper.
  • the basestock made with FK-310 filler exhibited reduced cockle after printing of the black strip. Formulations and results are summarized below in Table 2.
  • Examples of conventional pigment filler materials useful in inkjet recording sheets include inorganic pigments such as talc, clay, kaolin, diatomaceous earth, calcium carbonate, precipitated calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc carbonate, aluminum silicate, calcium silicate, aluminum hydroxide, aluminum oxide, synthetic amorphous silica, colloidal silica, and/or organic pigments such as urea resin pigments, plastic pigments, etc., if desired, all having a fairly low specific surface area on the order of from about 5-15 m 2 /g.
  • inorganic pigments such as talc, clay, kaolin, diatomaceous earth, calcium carbonate, precipitated calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc carbonate, aluminum silicate, calcium silicate, aluminum hydroxide, aluminum oxide, synthetic amorphous silica, colloidal silica, and/or organic pigments such as
  • examples of high specific area pigments useful in the present invention include Huber Hubersorb 250 calcium silicate (specific surface area 120 m 2 /g); Degussa FK-310 silica (specific surface area 650 m 2 /g); and, Speciality Minerals Jetcoat 30 precipitated calcium carbonate (specific surface area 80 m 2 /g).
  • These and other silica based pigments which have a low bulk on the order of from about 0.14 to 0.26 g/cm 3 and a large internal pore volume as measured by an oil absorption test of from about 1.35 to 2.80 cm 3 /g, e.g., the Dibutyl Phthlate (DBP) absorption test, are preferred for use in the present invention.
  • DBP Dibutyl Phthlate

Landscapes

  • Paper (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

A minor but effective amount of a high surface area pigment having an affinity for water and a large internal pore volume is mixed with the filler pigments normally used in the paper basestock for inkjet recording sheets so as to absorb excess water from the inks during printing and provide cockle resistance to the sheets.

Description

    Background of the Invention
  • The present invention relates generally to the manufacture of inkjet recording paper. More particularly, the invention relates to a process for reducing or preventing cockle or wrinkling of inkjet recording paper during the printing process.
  • Papers for inkjet printing can be divided into two types, (a) uncoated for low quality printing, and (b) coated for high quality (usually multi-colored) printing. Uncoated papers generally contain high surface area pigments, either as fillers or added at the size press to help control dot spread. The objective is to make the sheet absorptive enough to permit rapid ink penetration, but to minimize feathering and retain good circularity of dots after printing.
  • Coated inkjet papers used for high quality multi-color printing are also required to have rapid ink absorption while still being able to dissipate the ink vehicle. However, because the ink is retained at the surface of the sheet in the coating layer, print quality is superior to that of an uncoated sheet where the ink and ink vehicle has deeply penetrated the substrate. Nevertheless, both types of inkjet recording papers must include some amount of sizing so as to keep the cellulose fibers from absorbing too much of the ink vehicle, otherwise the sheet becomes cockled or wrinkled during printing.
  • Typically, inkjet inks are aqueous based formulations which may contain from 85-95% water (by weight). Where low levels of sizing are used in the paper substrate, the cellulose fibers tend to absorb excess water which destroys the dimensional stability of the sheet and produces cockle. Where high levels of sizing are employed, the cellulose fibers absorb little or no water, so that print performance is impaired and drying times are unduly long.
  • Without subscribing to any particular theory, it is believed that the reason paper cockles is due to the absorption of water by the paper fibers which produces fiber swelling and breaking of interfiber bonds. Thus it appears that if water is allowed to penetrate a sheet with little or no sizing, the presence of the water causes the cellulose fibers in the paper to swell sufficiently to affect the dimensional stability of the sheet and produce cockle. Thus, cockle as disclosed herein refers to the swelling of paper fibers and the deformation of paper while wet with ink, which may occur immediately after printing.
  • A number of efforts have been made in the past to reduce the cockling of inkjet paper. For example, U.S. Patent No. 5,207,824 discloses the use of between 15-50% by weight of an anti-cockle agent in the ink to reduce cockle. U.S. Patent No. 5,419,644 discloses a printer control mechanism for regulating the pen-to-sheet spacing during printing to reduce cockle. Meanwhile, in U.S. Patent No. 5,431,724, the addition of a water-soluble solvent or salt to the inkjet ink is disclosed as reducing paper cockle during printing.
  • Unlike these prior art methods for reducing cockle, the present invention relies on a modification to the paper basestock used to make the inkjet sheets. Whether the inkjet sheet is coated or uncoated, it must have a high ink-absorbing capacity such that the ink vehicle is rapidly absorbed into the substrate while the images received on the recording sheet appear to be dry. This must be accomplished while still providing a high resistance to the tendency of curling and cockling. Generally, since the tendency of curling and cockling is increased with an increase in the ink absorption of the recording sheet, the requirement for enhancing the ink-absorption of the recording sheet is contradictory to the requirement of preventing the tendency of curling and cockling. Yet, in accordance with the present invention, this seemingly contradictory result is accomplished in a highly effective and cost efficient manner.
  • Summary of Invention
  • It is known that in order to achieve an inkjet recording sheet having superior performance for reproducing images, there is a conflict between obtaining maximum absorption capacity of the applied inks and ink vehicles, while retaining some dimensional stability for the sheet. U.S. Patent No. 5,213,873 describes the use of a neutral paper sheet for inkjet recording having a highly absorbent top coating containing fine silica particles for achieving superior print performance, while U.S. Patent No. 5,985,424 discloses a moderately sized sheet (Hercules size of from about 300-900 seconds), onto which there is applied both a base coating and an ink receptive top coating for achieving superior print performance. Other prior patents that disclose a relationship between ink absorption capacity and the dimensional stability of an inkjet recording sheet include U.S. Patents Nos. 4,780,356; 4,902,568; and 5,013,603. Notwithstanding these efforts and the efforts of others, there remains a need in the art to achieve the desired result in a more efficient and economical manner.
  • It is, therefore, a general object of the present invention to provide an inkjet recording sheet that has superior performance during inkjet printing.
  • It is another object of the present invention to provide a paper basestock for an inkjet sheet that has excellent dimensional stability when used with aqueous based inks.
  • Another object of the present invention is to reduce the cockle of the inkjet recording sheet during printing by a cost effective modification to the paper basestock used to make the inkjet recording sheet.
  • These and other objects of the present invention are accomplished by substituting a minor but effective amount of a high surface area pigment having a large internal pore volume for the conventional filler materials normally used in the manufacture of the paper basestock for an inkjet recording sheet. The preferred high surface area pigments of the present invention have a specific surface area in the range of 80-650 m2/g, as compared with the specific surface area of 5-15 m2/g for conventional filler pigments. The pigments of the present invention most preferably have a bulk density of from about 0.14 to 0.26 g/cm3 as compared with the bulk density of conventional inkjet pigments which range from about 0.4 to 1.0 g/cm3, and an internal pore volume as measured by an oil absorption test of from about 1.35 to 2.80 cm3/g as compared with the pore volumes of conventional inkjet pigments which range from about 0.10 to 0.50 cm3/g by the oil absorption test. The preferred substitution rate of such high specific surface area pigments for conventional pigments in the present invention is less than about 5% by weight, and on the order of about 1-5% by weight.
  • In this regard, the use of pigments having a high specific surface area for inkjet recording sheets either as a coating applied to the substrate or in the substrate itself is well documented in the literature as shown for example in the aforementioned U.S. Patent No. 5,013,603. However, the prior art teaches the use of such pigments in amounts greater than anticipated by the present invention, and since such pigments are generally very expensive and are not retained well during the manufacture of paper, the most economical use of such pigments in the past has been primarily in coatings applied to the paper. Now, however, it has been discovered that when a portion of the conventional pigments normally used in the manufacture of inkjet paper is replaced with a minor but effective amount of such high specific surface area pigments, the ability of the paper to absorb water from the inks without cockling is enhanced. As an example, it was found that when between 1-5% of the conventional pigments (e.g., hydrous clay, calcium carbonate and titanium dioxide) having a specific surface area of from 5-15 m2/g, was substituted with a high specific area pigment (i.e. a pigment having a specific surface area of from about 80-650 m2/g), and the papermaking furnish was sized to a level greater than 1000 seconds as measured by the Hercules sizing test, the paper so made absorbed more water in a given length of time (as measured by Cobb sizing degree), than paper containing only the conventional pigments which was sized to the same degree. The low bulk density of the high specific surface area pigments, due primarily to the large pore volume of such pigments, results in a paper basestock with reduced density and a reduced tendency to produce cockle upon printing with typical inkjet inks, while still providing enhanced print quality at a minimum ink drying time.
  • Thus, the subject matter of the present invention comprises a method for reducing the cockle of a paper inkjet recording sheet during inkjet printing wherein even if the paper fibers are given a high degree of sizing to prevent moisture penetration, the recording sheet is still provided with a high degree of water absorption capability by replacing a minor but effective portion of the conventional low specific surface area pigments normally used in the manufacture of inkjet paper with high specific area pigments having a large internal pore volume. The paper basestock made according to the present invention may be advantageously used as an uncoated sheet for low quality printing or it may be coated with one or more ink receptive coatings for use in making high quality, color prints. Likewise, because of the low bulk density of the added high specific area pigments, the density of the paper made is reduced as compared with the density of paper made with conventional inkjet paper pigments. The advantage of reduced density vis-a-vis improved ink absorption is fully disclosed in U.S. Patent No. 5,589,259 wherein it is noted that when the apparent density of the base paper in an inkjet recording sheet is reduced, the internal voids of the base paper is enlarged resulting in better ink absorption. Moreover, because of the reduced density of the paper basestock made in accordance with the present invention, such paper could also be advantageously used in coverstock, paperboard and other paper products benefitting from reduced density.
  • Detailed Description
  • The present invention will be more completely understood as a result of a review of the following Examples which describe the steps leading up to the invention. It should be understood, however, that the invention is not to be restricted or limited to the specific Examples set forth herein.
  • Example 1
  • In initial screening experiments, handsheets of approximately 75 g/m2 were made with a blend of hardwood Kraft and softwood Kraft pulp with 0 to 4% added high surface area pigments from the families of silica, calcium silicate, and sodium aluminosilicate. It was found that the presence of the high surface area pigments, particularly those with large internal void volumes, resulted in lower paper density, preferably at levels of 2-3% filler. Two inch square samples from this initial experiment were taped to a sheet of office paper and printed blue on an HP 870 Cse printer and evaluated for cockle, with improvements seen in several samples. Formulations and results for several of the products are summarized below in Table 1.
    Initial Screening of Various Silicate Fillers
    Filler Type Filler in Paper (%) Density (lb/rm/cal pt) Cockle Results
          None 0 5.26 (11.6) 0
    San-Sil AN-45 (silica, 60 m2/g) 1.9 4.94 (10.9) 4
    3.9 4.76 (10.5) 3
    Hubersorb 250 (calcium silicate, 120 m2/g) 1.3 4.72 (10.4) 4
    2.4 4.31 (9.5) 5
    Zeolex 80 (sodium aluminosilicate) 1.6 4.85 (10.7) 5
    3.1 4.85 (10.7) 5
    Note: Cockle Results (0-5 worst-to-best)
       Density = Kg/278.7 m2/0.00254 cm
       (lb/3000 ft2/0.001 inch)
       (lb/ream/caliper point)
  • Example 2
  • Further development of the invention was investigated in an experiment where handsheets of approximately 170 g/m2 were produced from hardwood Kraft pulp with approximately 10% total filler. A control set was manufactured with a blend of Omyafil ground calcium carbonate (GCC), No. 2 High Brightness clay, and Millenium Inorganics anatase titanium dioxide (TiO2). Experimental sets were made wherein from 2.0 to 2.4% of the conventional pigment load consisting of ground calcium carbonate, clay, and TiO2 was replaced with one of three high surface area fillers: Huber Hubersorb 250 calcium silicate (surface area 120 m2/g), Degussa FK-310 silica (surface area 650 m2/g), or Speciality Minerals Jetcoat 30 precipitated calcium carbonate (surface area 80 m2/g). Both sized with a 1.81 kg/907.18 kg (4 lb/ton) of Hercules Hercon 70 AKD (alkyl ketene dimer), and unsized handsheets were made. Handsheets were calendered at 97.7 kg/linear 2.54 cm (200 pounds/linear inch) between 2 steel nips and compared for physical and optical properties. A 2.54 cm by 17.78 cm (1 inch by 7 inch) black strip was printed (using an Epson 740 inkjet printer) onto calendered paper and observed for cockle. Paper was also coated with a proprietary inkjet basecoat and topcoat, then printed with test patterns on a Epson 740 inkjet printer. Basestock made with Hubersorb or FK-310 had 5% lower density after calendering than did the control paper. The basestock made with FK-310 filler exhibited reduced cockle after printing of the black strip. Formulations and results are summarized below in Table 2.
    Finished Inkjet Basestock Properties
    Paper Set Density (lb/rm/cal pt) Gurley Porosity (sec) HST (sec) Cobb (g/m2) Cockle Results Silicate %
    1 Sized Control 5.31 (11.7) 15 6353 29.0 2 0
    2 Unsized Control 5.44 (12.0) 15 - - - 0
    3 Sized Huberso rb 5.08 (11.2) 18 2998 37.1 4 2.1
    4 Unsized Huberso rb 5.17 (11.4) 17 - - - 2.4
    5 Sized FK 310 5.13 (11.3) 14 2799 47.0 4 2.0
    6 Unsized FK 310 5.08 (11.2) 15 - - - 2.0
    7 Sized Jetcoat 5.40 (11.9) 17 2728 43.5 2 0
    8 Unsized Jetcoat 5.442 (12.1) 18 - - - 0
    Note:   Control: 45% Ground Calcium Carbonate (Specific Surface Area 11 m2/g)
    45% Clay (Specific Surface Area 12 m2/g
    10% TiO2 (Specific Surface Area 12 m2/g
    Cockle Results (0-5 worst-to-best)
    Density = kg/278.7 m2/0.00254 cm (lb/300 ft3/0.001 inch)
    (lb/ream/caliper point)
  • In another experiment using lightweight handsheets having a basis weight of about 130 g/m2 (a more demanding test for cockle), samples were prepared with 0, 2% and 4% addition of Degussa FK-310 silica pigment and sized with a combination of AKD internal size and a surface application of SMA and starch. The pulp, control fillers and additives were the same as in Example 2 above. The results are shown in Table 3 below.
    Cockle Results
    Pigments HST (sec) Cobb (g/m2) Cockle
    Control 3521 33 2
       2% FK-310 1641 36 3
       4% FK-310 547 54 4
  • Examples of conventional pigment filler materials useful in inkjet recording sheets include inorganic pigments such as talc, clay, kaolin, diatomaceous earth, calcium carbonate, precipitated calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc carbonate, aluminum silicate, calcium silicate, aluminum hydroxide, aluminum oxide, synthetic amorphous silica, colloidal silica, and/or organic pigments such as urea resin pigments, plastic pigments, etc., if desired, all having a fairly low specific surface area on the order of from about 5-15 m2/g. Meanwhile, examples of high specific area pigments useful in the present invention include Huber Hubersorb 250 calcium silicate (specific surface area 120 m2/g); Degussa FK-310 silica (specific surface area 650 m2/g); and, Speciality Minerals Jetcoat 30 precipitated calcium carbonate (specific surface area 80 m2/g). These and other silica based pigments which have a low bulk on the order of from about 0.14 to 0.26 g/cm3 and a large internal pore volume as measured by an oil absorption test of from about 1.35 to 2.80 cm3/g, e.g., the Dibutyl Phthlate (DBP) absorption test, are preferred for use in the present invention.
  • While it is apparent that the invention as disclosed herein is well adapted to fulfill the objects stated hereinbefore, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. It is intended, therefore, that the appended claims cover all such modifications and embodiments as fall within the spirit and scope of the invention.

Claims (7)

  1. The method for reducing the cockle of paper based inkjet recording sheets during printing while providing high absorption capability of applied inks and low drying time comprises adding to the papermaking furnish used to prepare the inkjet recording sheet a minor but effective amount of a high surface area pigment having a large internal pore volume for absorbing the excess water in the applied inks while simultaneously providing sufficient size to the furnish to render the pulp fibers in the furnish water resistant.
  2. The method of claim 1 wherein the high surface area pigment has a specific surface area within the range of from about 80-650 m2/g.
  3. The method of claim 2 wherein the high specific surface area pigment comprises from about 1-5% of the filler pigment added to the papermaking furnish.
  4. The method of claim 3 wherein the papermaking furnish has a size of greater than about 1000 seconds as measured by the Hercules Size Test.
  5. The method of claim 4 wherein the high specific area pigment has an internal pore volume greater than about 1.35 cm3/g as measured by an oil absorption test.
  6. The method of claim 5 wherein the high specific area pigment is selected from the group consisting of silica, silicates and aluminosilicates.
  7. An inkjet recording sheet having improved cockle resistance comprising a sized paper basestock having a size greater than about 1000 seconds as measured by the Hercules Size Test and a total filler content of at least about 10%, wherein from about 1 to 5% of the total filler content consists of a high surface area pigment having a specific surface area of from about 80-650 m2/g, an internal pore volume as measured by an oil absorption test greater than about 1.35 cm3/g, and a bulk density of from about 0.14 to 0.26 g/cm3.
EP00402745A 2000-04-28 2000-10-05 Cockle resistant inkjet paper Withdrawn EP1149949A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55992000A 2000-04-28 2000-04-28
US559920 2000-04-28

Publications (2)

Publication Number Publication Date
EP1149949A2 true EP1149949A2 (en) 2001-10-31
EP1149949A3 EP1149949A3 (en) 2003-10-29

Family

ID=24235602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00402745A Withdrawn EP1149949A3 (en) 2000-04-28 2000-10-05 Cockle resistant inkjet paper

Country Status (3)

Country Link
EP (1) EP1149949A3 (en)
JP (1) JP2001310554A (en)
NO (1) NO20004890L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000954A1 (en) * 2007-06-01 2008-12-10 Hewlett-Packard Development Company, L.P. Printing crop marks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792487A (en) * 1987-03-12 1988-12-20 James River Corporation Of Virginia Ink jet recording medium comprising (a) water expansible colloidal clay (b) silica and (c) water insoluble synthetic binder
US5013603A (en) * 1986-06-13 1991-05-07 Mizusawa Industrial Chemicals, Ltd. Ink jet recording paper with amorphous silica filler
EP0634285A1 (en) * 1993-07-13 1995-01-18 Canon Kabushiki Kaisha Ink-jet recording paper, and ink-jet recording method
US5431724A (en) * 1994-03-30 1995-07-11 Hewlett-Packard Corporation Low water content inks for minimizing wet cockle in thermal ink-jet inks
WO1999026881A1 (en) * 1997-11-21 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Mesoporous silica, process for the preparation of the same, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127615A (en) * 1998-10-27 2000-05-09 Nippon Silica Ind Co Ltd Filler for paper for color ink-jet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013603A (en) * 1986-06-13 1991-05-07 Mizusawa Industrial Chemicals, Ltd. Ink jet recording paper with amorphous silica filler
US4792487A (en) * 1987-03-12 1988-12-20 James River Corporation Of Virginia Ink jet recording medium comprising (a) water expansible colloidal clay (b) silica and (c) water insoluble synthetic binder
EP0634285A1 (en) * 1993-07-13 1995-01-18 Canon Kabushiki Kaisha Ink-jet recording paper, and ink-jet recording method
US5431724A (en) * 1994-03-30 1995-07-11 Hewlett-Packard Corporation Low water content inks for minimizing wet cockle in thermal ink-jet inks
WO1999026881A1 (en) * 1997-11-21 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Mesoporous silica, process for the preparation of the same, and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 200033 Derwent Publications Ltd., London, GB; Class G05, AN 2000-381201 XP002253243 & JP 2000 127615 A (NIPPON SILICA KOGYO KK), 9 May 2000 (2000-05-09) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000954A1 (en) * 2007-06-01 2008-12-10 Hewlett-Packard Development Company, L.P. Printing crop marks

Also Published As

Publication number Publication date
NO20004890L (en) 2001-10-29
NO20004890D0 (en) 2000-09-29
JP2001310554A (en) 2001-11-06
EP1149949A3 (en) 2003-10-29

Similar Documents

Publication Publication Date Title
EP0524635B1 (en) Ink jet recording sheet
US5165973A (en) Ink jet recording sheet
US5180624A (en) Ink jet recording paper
EP0600245B2 (en) Ink jet recording sheet and method for producing same
US7374606B2 (en) Water-based ink and ink recording method
JPH0720727B2 (en) Inkjet recording coating sheet
US6632488B2 (en) Ink jet recording material
JPH02243381A (en) Ink jet recording sheet
JPH0235673B2 (en)
JP3222253B2 (en) Inkjet recording sheet
CA2354329C (en) Polyethylene glycol-containing paper
JPH03199081A (en) Sheet for ink jet recording
EP1149949A2 (en) Cockle resistant inkjet paper
US7648746B2 (en) Ink jet recording paper
JP3791316B2 (en) Inkjet recording medium
CA2305949C (en) Basecoated substrate for an inkjet recording sheet
JP2006181954A (en) Inkjet recording paper
JPH0520278B2 (en)
JPH0688448B2 (en) Inkjet recording sheet
JP4498933B2 (en) Inkjet recording paper
JP3031235B2 (en) Inkjet recording sheet
JPH0338375A (en) Ink jet recording sheet
JP3166392B2 (en) Inkjet recording paper
JP2001171223A (en) Ink jet recording paper
JP3329531B2 (en) Inkjet recording sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

18D Application deemed to be withdrawn

Effective date: 20030501