EP1147245B1 - Elektrolytische zelle mit verbesserter tonerde-zufuhr - Google Patents

Elektrolytische zelle mit verbesserter tonerde-zufuhr Download PDF

Info

Publication number
EP1147245B1
EP1147245B1 EP00900037A EP00900037A EP1147245B1 EP 1147245 B1 EP1147245 B1 EP 1147245B1 EP 00900037 A EP00900037 A EP 00900037A EP 00900037 A EP00900037 A EP 00900037A EP 1147245 B1 EP1147245 B1 EP 1147245B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
anode
alumina
cell
foraminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00900037A
Other languages
English (en)
French (fr)
Other versions
EP1147245A1 (de
Inventor
Vittorio De Nora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moltech Invent SA
Original Assignee
Moltech Invent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moltech Invent SA filed Critical Moltech Invent SA
Publication of EP1147245A1 publication Critical patent/EP1147245A1/de
Application granted granted Critical
Publication of EP1147245B1 publication Critical patent/EP1147245B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes

Definitions

  • the present invention concerns a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-containing molten electrolyte such as cryolite, having means to promote dissolution of alumina into the electrolyte and supply of alumina-rich electrolyte to the inter-electrode gap, as well as a metallic anode of special design for such a cell provided with these means and a method to produce aluminium utilising this cell.
  • a major drawback of conventional cells is due to the fact that irregular electromagnetic forces create waves in the molten aluminium pool and the anode-cathode distance (ACD), also called inter-electrode gap (TEG), must be kept at a safe minimum value of approximately 5 cm to avoid short circuiting between the aluminium cathode and the anode or re-oxidation of the metal by contact with the CO 2 gas formed at the anode surface.
  • ACD anode-cathode distance
  • TOG inter-electrode gap
  • Another drawback of the conventional cells is the anode effect which occurs when the electrolyte in a cell contains insufficient dissolved and/or non-uniform distribution of alumina-rich electrolyte below the entire active surface of the anodes and therefore allows the electrolysis of the fluoride-based electrolyte which produces fluorine and fluoride-based gas.
  • the fluoride-based gas accumulates under the anodes and greatly inhibits the current transport between the anodes and the cathodes.
  • the anode effect manifests itself by a sudden increase of the cell voltage.
  • the voltage increase can vary from 7-8 volts up to 30 volts in commercial cells.
  • US Patent 4,602,990 (Boxall/Gamson/Green/Traugott) describes a drained cathode cell having a bubble generated bath circulation, however this design could not achieve the expected constant voltage.
  • the ACD reduction was coupled with an undesired reduction of the electrical conductivity of the bath caused by the increase of gas bubbles concentration in the reduced electrolyte between the drained cathodes and the anodes.
  • European Patent Application No. 0 393 816 (Stedman) describes another design for a drained cathode cell improving the bubble evacuation.
  • drained cathode configuration cannot ensure optimal distribution of the dissolved alumina.
  • Most of the alumina is electrolysed on the parts of the cathodes close to the dissolution point, whereas remote areas of the cathodes are poorly fed with alumina. This is due to the gradual depletion of the alumina concentration in the electrolyte while the electrolyte is moving between the electrodes where its electrolysis takes place.
  • This insufficient distribution of dissolved alumina can cause the exposure of the cell to the anode effect, an uneven consumption of the electrodes and a non-optimal utilisation of the cathode surfaces leading to a decrease of the current efficiency and the cell performance.
  • US Patent 4,504,369 discloses an anode comprising a massive oxide-based anode having a central vertical through-opening for feeding anode constituents and alumina into the electrolyte.
  • this cell design does not address the problem of dissolution and distribution of dissolved alumina between anodes and facing cathodes.
  • US Patent 4,681,671 discloses a low temperature aluminium electrowinning cell with a series of vertical anode plates or vertical blades located above a horizontal perforated cathode plate and an electrolyte circulation generated by means of a pump or electromotive forces.
  • US Patent 5,310,476 (Sekhar/de Nora) describes cells for the electrowinning of aluminium, having wedge-shaped cathode blocks and oxygen-evolving anodes made of anode plates fitting like roofs over the wedges.
  • the anode plates are joined together and have openings adjacent the top of their inclined faces for the escape of anodically generated oxygen.
  • US Patent 5,368,702 discloses designs including tubular or conical vertical oxygen-evolving anodes located inside and facing correspondingly shaped cathodes.
  • the tubes and the conical surfaces forming the anodes have lateral openings guiding the escape of anodically released oxygen to generate an electrolyte flow between the anodes and the facing cathodes.
  • bent oxygen-evolving anode plates face a series of juxtaposed V-shaped cathode surfaces.
  • the inclination of the anodes assists in releasing the anodically formed gases through a central opening. It is suggested to enhance gas release by providing ridges on the anodes or making the anodes foraminate.
  • US Patent 5,725,744 (de Nora/Duruz) describes a multimonopolar aluminium electrowinning cell operating at reduced temperature with vertical or inclined anode and cathode plates, electrolyte being circulated between the anode and cathode plates by anodically-produced oxygen lift.
  • Another object of the invention is to provide an anode of a cell for the electrowinning of aluminium whose design promotes dissolution of alumina and the supply of alumina-rich electrolyte between the electrochemically active surfaces of the anode and of a facing cathode.
  • An important object of the invention is to provide means for the dissolution of alumina fed to a thermally insulated cell by feeding and spreading powder alumina on top of the electrolyte which forms no crust
  • a further object of the invention is to provide a cell for the electrowinning of aluminium having improved means for guiding the escape of anodically produced gas, in particular oxygen, to generate an electrolyte circulation between the inter-electrode gap and the electrolyte surface of the cell, thereby permitting an increase of alumina dissolution.
  • the invention relates to an electrolytic cell for the electrowinning of aluminium from alumina dissolved in a thermally insulated fluoride-containing crustless molten electrolyte.
  • the cell comprises an electrochemically active foraminate metallic anode structure for the evolution of oxygen and the escape of oxygen therethrough, which anode is spaced by an inter-electrode gap above a facing cathode on which during operation aluminium is produced.
  • the cell further comprises means for promoting dissolution of powder alumina fed to the surface of the electrolyte and for supplying alumina-rich electrolyte to the inter-electrode gap by inducing an electrolyte circulation up from and down to the inter-electrode gap driven by the escape of anodically evolved oxygen through the foraminate anode structure.
  • These means comprise electrolyte guide members having at least one inclined surface immersed in the molten electrolyte above the foraminate anode structure.
  • the electrolyte guide members may comprise downwardly converging inclined surfaces guiding a downward flow of alumina-rich electrolyte to the inter-electrode gap and/or upwardly converging surfaces guiding an upward flow of alumina-depleted electrolyte from the inter-electrode gap, driven by anodically-evolved oxygen.
  • the cell comprises means to thermally insulate the surface of the electrolyte, such as an insulating cover above the electrolyte as described in co-pending application WO99/02763 (de Nora/Sekhar).
  • the foraminate anode structure and the facing cathode are horizontal or at a corresponding slope, typically at an angle below 60°.
  • the electrolyte guide members may be adapted to retrofitted cells, in particular Hall Héroult cells provided with suitable foraminate metallic anodes.
  • the electrolyte guide members may be utilised in cells operating with a deep, a shallow or a stabilised pool of aluminium, or in a drained configuration, as for example described in US Patent 5,683,130 (de Nora), WO99/02764 and WO99/41429 (both in the name of de Nora/Duruz).
  • the electrolyte guide members may comprise vertical parallel sections extending from the bottom of the inclined surface to the foraminate anode structure and/or from the top of the inclined surfaces up to close to the surface of the electrolyte.
  • each electrolyte guide member may extend up from the foraminate anode structure. If required, the bottom ends of the electrolyte guide members may be spaced apart above the or each anode to allow alumina-rich electrolyte flowing down from the bottom ends of the electrolyte guide members to be horizontally dispersed by the anodically-evolved upward flowing oxygen. In this case, part or all of the electrolyte may enter the inter-electrode gap by passing around the electrode structure.
  • the electrolyte guide members may be situated relative to the surface of the electrolyte so that the upwardly flowing anodically-evolved oxygen generates turbulence above the electrolyte guide members to enhance the dissolution of alumina.
  • the uppermost end of each electrolyte guide member may be immersed in the electrolyte by no more than 5 cm below the surface of the electrolyte.
  • the electrolyte guide members consist of a series of baffles parallel to the surface of the electrolyte.
  • the baffles are arranged in a spaced-apart parallel configuration and laterally inclined, to form alternate pairs of upward converging surfaces and of downward converging surfaces.
  • the electrolyte guide members may form a plurality of funnels which may be in the shape of truncated cones or truncated pyramids.
  • the foraminate metallic anode structure may comprises a series of parallel spaced-apart coplanar electrochemically active anode members, for instance spaced-apart blades, bars, rods or wires.
  • Each blade, bar, rod or wire may be generally rectilinear, or alternatively, in a generally concentric arrangement, each blade, bar, rod or wire forming a loop to minimise edge effects of the current during use.
  • each blade, bar, rod or wire can be generally circular, oval or polygonal, in particular rectangular or square, preferably with rounded corners.
  • the parallel anode members should be connected to one another, for instance in a grid-like, net-like or mesh-like configuration of the anode members.
  • the extremities of the anode members can be connected together, for example they can be arranged extending across a generally rectangular peripheral anode frame from one side to an opposite side of the frame.
  • the anode members can be transversally connected by at least one transverse connecting member.
  • the anode members are connected by a plurality of transverse connecting members which are in turn connected together by one or more cross members.
  • the transverse connecting members may be radial.
  • the radial connecting members extend radially from the middle of the parallel anode member arrangement and optionally are secured to or integral with an outer ring at the periphery of this arrangement.
  • the transverse connecting members are of variable section to ensure a substantially equal current density in the connecting members before and after each connection to an anode member. This also applies to the cross member when present.
  • each metallic anode comprises at least one vertical current feeder arranged to be connected to a positive bus bar.
  • a current feeder is mechanically and electrically connected to one or more transverse connecting members or to one or more cross members connecting a plurality of transverse connecting members, so that the current feeder carries electric current to the anode members through the transverse connecting member(s) and where present through the cross member(s).
  • the vertical current feeder is directly connected to the anode members which are in a grid-like, net-like or mash-like configuration.
  • the vertical current feeder, anode members, transverse connecting members and where present the cross members may be secured together for example by being cast as a unit. Assembly by welding or other mechanical connection means is also possible.
  • electrolyte guide members may be secured together for example by being cast as a unit, welding or using other mechanical connecting means to form an assembly.
  • This assembly can be connected to the vertical current feeder or secured to or placed on the foraminate anode structure.
  • the foraminate anode structure and the facing cathode are horizontal or at a corresponding slope.
  • the cathodes of the cell are advantageously aluminium-wettable, in particular they may be in drained configuration for instance having a sloping surface, as stated above.
  • the invention also relates to an oxygen evolving anode of an electrolytic cell as described above.
  • the anode comprises an electrochemically active foraminate metallic structure for the evolution of oxygen which during operation is immersed in the an electrolyte and spaced by an inter-electrode gap above a facing cathode on which aluminium is produced.
  • the anode further comprises means arranged to promote dissolution of powder alumina fed to the surface of the electrolyte and supply alumina-rich electrolyte to the inter-electrode gap during operation, as described above.
  • a further aspect of the invention is a method of producing aluminium in a cell as described above.
  • the method comprises dissolving alumina in the electrolyte by feeding the alumina in the form of powder into the crustless molten electrolyte from above the electrolyte guide members, and passing an ionic current between the active foraminate anode structure and the facing cathode thereby carrying out electrolysis in the inter-electrode gap to produce aluminium on the cathode and oxygen on the foraminate anode structure.
  • the means for promoting dissolution of powder alumina and for supplying alumina-rich electrolyte to the inter-electrode gap is arranged to induce an electrolyte circulation up from and down to the inter-electrode gap driven the escape of anodically evolved oxygen through the foraminate anode structure.
  • Another aspect of the invention relates to an electrolytic cell for the electrowinning of aluminium from alumina dissolved in a thermally insulated fluoride-containing crustless molten electrolyte.
  • the cell comprises an electrochemically active foraminate metallic anode structure for the evolution of oxygen and which is spaced by an inter-electrode gap above a facing cathode on which during operation aluminium is produced.
  • the cell further comprises means for promoting dissolution of powder alumina fed to the surface of the electrolyte and for uniformly distributing and feeding alumina-rich electrolyte through the foraminate structure to the inter-electrode gap.
  • These means comprise electrolyte guide members which are located in the electrolyte above the foraminate anode structure.
  • the electrolyte guide members comprise downwardly converging surfaces immersed in the electrolyte which are arranged to: promote dissolution of alumina fed above their downward converging surfaces; and feed alumina-rich electrolyte down through their downward converging surfaces and through the foraminate structure to the inter-electrode gap.
  • Yet another aspect of the invention relates to an electrolytic cell for the electrowinning of aluminium from alumina dissolved in a thermally insulated fluoride-containing crustless molten electrolyte.
  • the cell comprises an electrochemically active foraminate metallic anode structure for the evolution of oxygen and which is spaced apart by an inter-electrode gap above a facing cathode on which during operation aluminium is produced.
  • the cell further comprises means for promoting dissolution of powder alumina fed to the surface of the electrolyte and for uniformly distributing and feeding alumina-rich electrolyte through and/or around the foraminate structure to the inter-electrode gap.
  • These means comprise electrolyte guide members which are located in the electrolyte above the foraminate anode structure.
  • the electrolyte guide members comprise upwardly converging surfaces immersed in the electrolyte which are arranged to: guide an upward flow of alumina-depleted electrolyte driven by anodically evolved oxygen escaped through the foraminate anode structure to promote dissolution of alumina fed above their upwardly converging surfaces; and feed alumina-rich electrolyte down through and/or around the foraminate anode structure to the inter-electrode gap.
  • the foraminate metallic anode structures and/or the electrolyte guide members of the present invention may consist of or preferably are coated with an iron oxide-based material possibly obtained by oxidising the surface of the substrate of a foraminate anode structures and/or an electrolyte guide members which contains iron.
  • Suitable materials are described in greater detail in co-pending application WO 00/06802 (Duruz/de Nora/Crottaz), WO 00/40783 (de Nora/Duruz), WO 00/06803 (Duruz/de Nora/Crottaz), WO 00/06804 (Crottaz/Duruz), WO 01/42534 (de Nora/Duruz) and WO 01/42535 (Duruz/de Nora).
  • the concentration of nickel (a frequent component of proposed metal-based anodes) found in aluminium produced in small scale tests at conventional cell operating temperatures is typically comprised between 800 and 2000 ppm, i.e. 4 to 10 times the maximum acceptable level which is 200 ppm.
  • Iron oxides and in particular hematite have a higher solubility than nickel in molten electrolyte.
  • the contamination tolerance of the product aluminium by iron oxides is also much higher (up to 2000 ppm) than for other metal impurities.
  • Solubility is an intrinsic property of anode materials and cannot be changed otherwise than by modifying the electrolyte composition and/or the operative temperature of a cell.
  • an anode covered with an outer layer of iron oxide can be made dimensionally stable by maintaining a concentration of iron species and alumina in the molten electrolyte sufficient to reduce or suppress the dissolution of the iron-oxide layer, the concentration of iron species being low enough not to exceed the commercial acceptable level of iron in the product aluminium.
  • the presence of dissolved alumina in the electrolyte at the anode surface has a limiting effect on the dissolution of iron from the anode into the electrolyte, which reduces the concentration of iron species necessary to substantially stop dissolution of iron from the anode.
  • the electrolyte may comprise an amount of iron species and dissolved alumina that prevents dissolution of the iron oxide-based surface.
  • the amount of iron species and alumina dissolved in the electrolyte should be sufficient to prevent dissolution of the iron oxide-based surface but such that the product aluminium is contaminated by no more than 2000 ppm iron, preferably by no more than 1000 ppm iron, and even more preferably by no more than 500 ppm iron.
  • the constituents may be fed into the electrolyte intermittently, for instance periodically together with alumina, or continuously, for example by means of a sacrificial electrode.
  • iron species may be fed into the electrolyte in the form of iron metal and/or an iron compound such as iron oxide, iron fluoride, iron oxyfluoride and/or an iron-aluminium alloy.
  • the cell should be operated at a sufficiently low temperature so that the required concentration of constituents, in particular iron species, in the electrolyte is limited by the reduced solubility of iron species in the electrolyte at the operating temperature.
  • the cell may be operated with an operative temperature of the electrolyte below 910°C, usually from 730 to 870°C.
  • the electrolyte may contain NaF and AlF 3 in a molar ratio NaF/AlF 3 required for the operating temperature of the cell comprised between 1.2 and 2.4.
  • the amount of dissolved alumina contained in the electrolyte is usually below 8 weight%, preferably between 2 weight% and 6 weight%.
  • the electrolyte guide members need not be electrochemically active or conductive, their surface may also be made of non-conductive electrolyte resistant materials.
  • the electrolyte guide members may be made of any ceramic or oxide which is resistant to the electrolyte, such as silicon nitride, aluminium nitride, boron nitride, magnesium ferrite, magnesium aluminate, magnesium chromite, zinc oxide, nickel oxide and alumina.
  • the guide members may be made of the same materials as the anodes.
  • the surfaces of the guide members, or of inactive parts of anodes which during cell operation are exposed to molten electrolyte, in particular those parts near the surface of the electrolyte, may be protected with a zinc-based coating, in particular containing zinc oxide with or without alumina, or zinc aluminate.
  • a zinc-based coating in particular containing zinc oxide with or without alumina, or zinc aluminate.
  • the concentration in the electrolyte of dissolved alumina should be maintained at or above 3 to 4 weight%.
  • Figure 1 shows an aluminium electrowinning cell according to the invention provided with a series of foraminate metallic anodes 10 having a generally horizontal anode structure 12,13,15 below a series of electrolyte guide members 5 according to the invention immersed in a crustless molten electrolyte 30.
  • the cell comprises insulating means such as an insulating cover (not shown) covering the electrolyte to prevent the formation of an electrolyte crust on the surface of the electrolyte 30.
  • insulating cover such as an insulating cover (not shown) covering the electrolyte to prevent the formation of an electrolyte crust on the surface of the electrolyte 30.
  • Such a cover may be provided as described in WO99/02763 (de Nora/Sekhar).
  • the anodes 10 face a horizontal cathode cell bottom 20 connected to a negative busbar by current conductor bars 21.
  • the cathode cell bottom 20 is made of conductive material such as graphite or other carbonaceous material coated with an aluminium-wettable refractory cathodic coating 22 on which aluminium 35 is produced and from which it drains or on which it forms a shallow pool, a deep pool or a stabilised pool.
  • the molten aluminium 35 produced is spaced apart from the facing anodes 10 by an inter-electrode gap.
  • Pairs of anodes 10 are connected to a positive bus bar through a primary vertical current feeder 11' and a horizontal current distributor 11" connected at both of its ends to a foraminate anode 10 through a secondary vertical current distributor 11'''.
  • the secondary vertical current distributors 11''' are mounted on the anode structure 12,13,15, on a cross member 12 which is in turn connected to two or more transverse connecting members 13 for connecting a series of anode members 15.
  • the current feeders 11',11",11''', the cross member 12, the transverse connecting members 13 and the anode members 15 are mechanically secured together by welding, rivets or other means.
  • the anode members 15 have an electrochemically active lower surface 16 where oxygen is anodically evolved during cell operation.
  • the anode members 15 are in the form of parallel rectilinear rods in a foraminate coplanar arrangement, laterally spaced apart from one another by inter-member gaps 17.
  • the inter-member gaps 17 constitute flow-through openings for the circulation of electrolyte and the escape of anodically-evolved gas released at the electrochemically active surfaces 16.
  • the cross member 12 and the transverse connecting members 13 provide a substantially even current distribution through the anode members 15 to their electrochemically active surfaces 16.
  • the current feeder 11, the cross member 12 and the transverse connecting members 13 do not need to be electrochemically active and their surface may passivate when exposed to electrolyte. However they should be electrically well conductive to avoid unnecessary voltage drops and should not substantially dissolve in electrolyte.
  • the electrochemically active surface 16 of the anode members 15 can be iron-oxide based, in particular hematite-based.
  • Suitable anode materials are described in WO 00/06802 (Duruz/de Nora/Crottaz), WO 00/40783 (de Nora/Duruz), WO 00/06803 (Duruz/de Nora/Crottaz), WO 00/06804 (Crottaz/Duruz), WO 01/42534 (de Nora/Duruz) and WO 01/42535 (Duruz/de Nora).
  • the iron oxide surface may extend over all immersed parts 11''',12,13,15 of the anode 10, in particular over the immersed part of the secondary vertical current distributor 11''' which is preferably covered with iron oxide at least up to 10 cm above the surface of the electrolyte 30.
  • the immersed but inactive parts of the anode 10 may be further coated with zinc oxide.
  • the concentration of dissolved alumina in the electrolyte 30 should be maintained above 3 wt% to prevent excessive dissolution of zinc oxide in the electrolyte 30.
  • the core of all anode components 11',11",11'", 12,13,15 is preferably highly conductive and may be made of copper protected with successive layers of nickel; chromium; nickel; copper and, optionally, a further layer of nickel.
  • the anodes 10 are further fitted with a series of electrolyte guide members forming means for promoting the dissolution of powder alumina fed into the crustless molten electrolyte 30 in the form of parallel spaced-apart inclined baffles 5 located above and adjacent to the foraminate anode structure 12,13,15.
  • the baffles 5 provide upper downwardly converging surfaces 6 and lower upwardly converging surfaces 7 that deflect gaseous oxygen which is anodically produced below the electrochemically active surface 16 of the anode members 15 and which escapes between the inter-member gaps 17 through the foraminate anode structure 12,13,15.
  • the oxygen released above the baffles 5 promotes dissolution of alumina fed into the electrolyte 30 above the downwardly converging surfaces 6.
  • the aluminium-wettable cathodic coating 22 of the cell shown in Figure 1 can advantageously be a slurry-applied refractory hard metal coating as disclosed in US Patent 5,651,874 (de Nora/Sekhar).
  • the aluminium-wettable cathodic coating 22 consists of a thick coating of refractory hard metal boride such as TiB 2 , as disclosed in WO98/17842 (Sekhar/Duruz/Liu), which is particularly well suited to protect the cathode bottom of a drained cell as shown in Figure 1.
  • the cell also comprises sidewalls 25 of carbonaceous or other material.
  • the sidewalls 25 are coated/impregnated above the surface of the electrolyte 30 with a boron or a phosphate protective coating/impregnation 26 as described in US Patent 5,486,278 (Manganiello/Duruz/Bell ⁇ ) and in US Patent 5,534,130 (Sekhar).
  • the aluminium-wettable coating 23 extends from the aluminium-wettable cathodic coating 22 over the surface of connecting corner prisms 28 up the sidewalls 25 at least to the surface of the electrolyte 30.
  • the aluminium-wettable side coating 23 may be advantageously made of an applied and dried and/or heat treated slurry of particulate TiB 2 in colloidal silica which is highly aluminium-wettable.
  • the sidewalls 25 may be covered with a zinc-based coating, such as a zinc-oxide coating optionally with alumina or a zinc aluminate coating.
  • a zinc-based coating is used to coat sidewalls 25 or anodes 10 as described above, the concentration of dissolved alumina in the molten electrolyte 30 should be maintained above 4 weight% to substantially prevent dissolution of such a coating.
  • alumina is fed to the electrolyte 30 all over the baffles 5 and the metallic anode structure 12,13,15.
  • the fed alumina is dissolved and distributed from the bottom end of the converging surfaces 6 into the inter-electrode gap through the inter-member gaps 17 and around edges of the metallic anode structure 12,13,15, i.e. between neighbouring pairs of anodes 10 or between peripheral anodes 10 and sidewalls 25.
  • oxygen is evolved on the electrochemically active anode surfaces 16 and aluminium is produced which is incorporated into the cathodic molten aluminium 35.
  • the oxygen evolved from the active surfaces 16 escapes through the inter-member gaps 17 and is intercepted by the upwardly converging surfaces 7 of baffles 5.
  • the oxygen escapes from the uppermost ends of the upwardly converging surfaces 7 enhancing dissolution of the alumina fed over the downwardly converging surfaces 6.
  • aluminium electrowinning cells partly shown in Figures 2, 3 and 4 are similar to the one shown in Figure 1.
  • each baffle 5 is located just above mid-height between the surface of the electrolyte 30 and the transverse connecting members 13.
  • an electrolyte circulation 31 is generated by the escape of gas released from the active surfaces 16 of the anode members 15 between the inter-member gaps 17 which is deflected by the upward converging surfaces 7 of the baffles 5 confining the gas and the electrolyte flow between their uppermost edges. From the uppermost edges of the baffles 5, the anodically evolved gas escapes towards the surface of the electrolyte 30, whereas the electrolyte circulation 31 flows down through the downward converging surfaces 6, through the inter-member gaps 17 and around edges of the metallic anode structure 12,13,15 to compensate the depression created by the anodically released gas below the active surfaces 17 of the anode members 15.
  • the electrolyte circulation 31 draws down into the inter-electrode gap dissolving alumina powder 32 fed into the crustless molten electrolyte from above the downward converging surfaces 6 to be uniformly distributed to the inter-electrode gap.
  • FIG 3 shows part of an aluminium electrowinning cell with baffles 5 operating as electrolyte guide members like those shown in cell of Figure 2 but whose surfaces are only partly converging.
  • the lower sections 4 of the baffles 5 are vertical and parallel to one another, whereas their upper sections have upward and downward converging surfaces 6,7.
  • the uppermost end of the baffles 5 are located below but close to the surface of the electrolyte 30 to increase the turbulence at the electrolyte surface caused by the release of anodically evolved gas.
  • Figure 4 shows a variation of the baffles shown in Figure 3, wherein parallel vertical sections 4 are located above the converging surfaces 6,7.
  • electrolyte confinement members 5 shown in Figures 1,2,3 and 4 can either be elongated baffles, or instead consist of a series of vertical chimneys of funnels of circular or polygonal cross-section, for instance as described below.
  • Figures 5 and 7 illustrate an anode 10' having a circular bottom, the anode 10' being shown in cross-section in Figure 5 and from above in Figure 7.
  • the anode 10' is shown with electrolyte guide members 5' according to the invention.
  • the electrolyte guide members 5' represented in Figure 7 are shown separately in Figure 6.
  • the anode 10' shown in Figures 5 and 7 have several, for example four, concentric circular anode members 15.
  • the anode members 15 are laterally spaced apart from one another by inter-member gaps 17 and connected together by radial connecting members in the form of flanges 13 which join an outer ring 13'.
  • the outer ring 13' extends vertically from the outermost anode members 15, as shown in Figure 5, to form with the radial flanges 13 a wheel-like structure 13,13', shown in Figure 7, which secures the anode members 15 to a central anode current feeder 11.
  • the innermost circular anode member 15 partly merges with the current feeder 11, with ducts 18 extending between the innermost circular anode member 15 and the current feeder 11 to permit the escape of oxygen produced underneath the central current feeder 11.
  • Each electrolyte guide member 5' is in the general shape of a funnel having a wide bottom opening 9 for receiving anodically produced oxygen and a narrow top opening 8 where the oxygen is released to promote dissolution of alumina fed above the electrolyte guide member 5'.
  • the inner surface 7 of the electrolyte guide member 5' is arranged to canalise and promote an upward electrolyte flow driven by anodically produced oxygen.
  • the outer surface 6 of the electrolyte guide member 5' is arranged to promote dissolution of alumina fed thereabove and guide alumina-rich electrolyte down to the inter-electrode gap, the electrolyte flowing mainly around the foraminate structure.
  • the electrolyte guide members 5' are in a circular arrangement, only half of the arrangement being shown.
  • the electrolyte guide members 5' are laterally secured to one another by attachments 3 and so arranged to be held above the anode members 15, the attachments 3 being for example placed on the connecting members 13 as shown in Figure 7 or secured as required.
  • Each electrolyte guide member 5' is positioned in a circular sector defined by two neighbouring radial flanges 13 and an arc of the outer ring 13' as shown in Figure 7.
  • the arrangement of the electrolyte guide members 5' and the anode 10' can be moulded as units. This offers the advantage of avoiding mechanical joints and the risk of altering the properties of the materials of the electrolyte guide members 5' or the anode 10' by welding.
  • the anodes 10' and electrolyte guide members 5' can be made of any suitable material resisting oxidation and the fluoride-containing molten electrolyte, for example as disclosed in WO 00/06802 (Duruz/de Nora/Crottaz), WO 00/40783 (de Nora/Duruz), WO 00/06803 (Duruz/de Nora/Crottaz), WO 00/06804 (Crottaz/Duruz), WO 01/42534 (de Nora/Duruz) and WO 01/42535 (Duruz/de Nora).
  • Figure 8 illustrates a square anode 10' as a variation of the round anode 10' of Figures 5 and 7 but shown without its electrolyte guide members.
  • the anode 10' of Figure 8 has generally rectangular concentric parallel anode members 15 with rounded corners.
  • Electrolyte guide members similar to those of Figures 5 to 7 but in a corresponding rectangular arrangement cover the anode 10'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Primary Cells (AREA)

Claims (35)

  1. Elektrolysezelle für die elektrolytische Gewinnung von Aluminium aus Aluminiumoxid, das in einem thermisch isolierten, Fluorid enthaltenden, krustenlosen geschmolzenen Elektrolyt gelöst ist, mit einer elektrochemisch aktiven, gelochten Metallanodenstruktur für das Erzeugen von Sauerstoff und das Entweichen von erzeugtem Sauerstoff durch diese hindurch, und die durch einen Zwischen-Elektroden-Spalt über einer gegenüberliegenden Kathode beabstandet angeordnet ist, an der während des Betriebs Aluminium erzeugt wird, wobei die Zelle außerdem Einrichtungen beinhaltet, um das Auflösen von pulverförmigem Aluminiumoxid zu unterstützen, das der Oberfläche des Elektrolyten zugeführt wird, und um mit Aluminiumoxid angereicherten Elektrolyt zu dem Zwischen-Elektroden-Spalt zu liefern, indem eine Elektrolyt-Zirkulation äufwärts von und abwärts zu dem Zwischen-Elektroden-Spalt induziert wird, die durch das Entweichen von anodisch erzeugtem Sauerstoff durch die gelochte Anodenstruktur angetrieben wird, wobei die Einrichtungen Elektrolyt-Leitbauteile beinhalten, die zumindest eine geneigte Fläche aufweisen, die über der gelochten Anodenstruktur in den geschmolzenen Elektrolyt eingetaucht ist.
  2. Zelle nach Anspruch 1, bei der die Elektrolyt-Leitbauteile nach unten gerichtet konvergierende, geneigte Flächen aufweisen, die eine nach unten gerichtete Strömung von mit Aluminiumoxid angereichertem Elektrolyt zu dem Zwischen-Elektroden-Spalt hinführen.
  3. Zelle nach Anspruch 1, bei der die Elektrolyt-Leitbauteile nach oben gerichtet konvergierende Flächen aufweisen, die eine nach oben gerichtete Strömung von mit Aluminiumoxid abgereichertem Elektrolyt von dem Zwischen-Elektroden-Spalt wegführen, die durch anodisch erzeugten Sauerstoff angetrieben wird.
  4. Zelle nach Anspruch 1, bei der die Elektrolyt-Leitbauteile nach oben gerichtet und nach unten gerichtet konvergierende Flächen aufweisen, die eine nach oben gerichtete strömung und eine nach unten gerichtete Strömung des Elektrolyten führen.
  5. Zelle nach einem der vorhergehenden Ansprüche, bei der sich das untere Ende von jedem Elektrolyt-Leitbauteil von der gelochten Anodenstruktur nach oben erstreckt.
  6. Zelle nach Anspruch 2, bei der untere Enden der Elektrolyt-Leitbauteile über der oder jeder Anode voneinander beabstandet sind, um zu ermöglichen, dass eine mit Aluminiumoxid angereicherte Elektrolyt-Strömung von den unteren Enden der Elektrolyt-Leitbauteile nach unten strömt, um durch den anodisch erzeugten, nach oben strömenden Sauerstoff verteilt zu werden.
  7. Zelle nach Anspruch 3, bei der die Elektrolyt-Leitbauteile unter der Oberfläche des Elektrolyten angeordnet sind, so dass der anodisch erzeugte, nach oben strömende Sauerstoff in dem Elektrolyt über den Elektrolyt-Leitbauteilen Turbulenzen erzeugt, um das Auflösen von Aluminiumoxid zu verbessern.
  8. Zelle nach Anspruch 7, bei der das oberste Ende von jedem Elektrolyt-Leitbauteil mit nicht mehr als 5 cm unter der Oberfläche des Elektrolyten in den Elektrolyt eingetaucht ist.
  9. Zelle nach Anspruch 4, bei der die Elektrolyt-Leitbauteile eine allgemein horizontal angeordnete Reihe von Ablenkplatten aufweisen, die in beabstandeter paralleler Konfiguration angeordnet und seitlich geneigt sind, um abwechselnde Paare von nach oben gerichtet konvergierenden Flächen und Paare von nach unten konvergierenden Flächen zu bilden.
  10. Zelle nach einem der Ansprüche 1 bis 8, bei der die Elektrolyt-Leitbauteile eine Vielzahl von Trichtern bilden.
  11. Zelle nach einem der Ansprüche 1 bis 8, bei der die Elektrolyt-Leitbauteile die Form von Kegelstümpfen oder von kegelstumpfförmigen Pyramiden haben.
  12. Zelle nach einem der vorhergehenden Ansprüche, bei der die Elektrolyt-Leitbauteile Flächen aus Keramik oder einem anderen Material haben, das gegenüber dem Elektrolyt oxidationsbeständig ist.
  13. Zelle nach Anspruch 12, bei der die Flächen der Elektrolyt-Leitbauteile auf Eisenoxid basieren.
  14. Zelle nach einem der vorhergehenden Ansprüche, bei der die Elektrolyt-Leitbauteile als eine Einheit miteinander verbunden sind.
  15. Zelle nach einem der vorhergehenden Ansprüche, bei der die gelochte Anodenstruktur und die gegenüberliegende Kathode horizontal oder mit einer entsprechenden Neigung angeordnet sind.
  16. Zelle nach einem der vorhergehenden Ansprüche, bei der die gelochte Anodenstruktur eine Reihe von parallel beabstandeten, koplanaren, elektrochemisch aktiven Anodenbauteilen aufweist.
  17. Zelle nach einem der vorhergehenden Ansprüche, mit zumindest einer mit Aluminium benetzbaren drainierten Kathode.
  18. Zelle nach Anspruch 17, bei der die mit Aluminium benetzbare drainierte Kathode eine geneigte drainierte Kathodenfläche hat.
  19. Sauerstoff erzeugende Anode von einer Elektrolysezelle für die elektrolytische Gewinnung von Aluminium aus Aluminiumoxid, das in einem Fluorid enthaltenden, geschmolzenen Elektrolyt gelöst ist, mit einer elektrochemisch aktiven, gelochten Metallstruktur für das Erzeugen von Sauerstoff und das Entweichen von erzeugtem Sauerstoff durch diese hindurch, und die bei Betrieb in einem Elektrolyt in einer Zelle durch einen Zwischen-Elektroden-Spalt über einer gegenüberliegenden Kathode beabstandet angeordnet ist, an der Aluminium erzeugt wird, wobei die Anode außerdem Einrichtungen beinhaltet, die dazu ausgestaltet sind, um das Auflösen von pulverförmigem Aluminiumoxid zu unterstützen, das der Oberfläche des Elektrolyten zugeführt wird, und um mit Aluminiumoxid angereicherten Elektrolyt während des Betriebs zu dem Zwischen-Elektroden-Spalt zu liefern, indem eine Elektrolyt-Zirkulation aufwärts von und abwärts zu dem Zwischen-Elektroden-Spalt induziert wird, die durch das Entweichen von anodisch erzeugtem Sauerstoff durch die gelochte Anodenstruktur angetrieben wird, wobei die Einrichtungen Elektrolyt-Leitbauteile beinhalten, die zumindest eine geneigte Fläche aufweisen, die bei Betrieb über der gelochten Anodenstruktur in den geschmolzenen Elektrolyt eingetaucht ist.
  20. Zelle nach Anspruch 19, bei der die gelochte Struktur eine Reihe von parallel beabstandeten, koplanaren, elektrochemisch aktiven Anodenbauteilen aufweist.
  21. Anode nach Anspruch 20, bei der die Anodenbauteile voneinander beabstandete Platten, Stangen, Stäbe oder Drähte sind.
  22. Anode nach Anspruch 21, bei der jede Platte, Stange, Stab oder Draht im wesentlichen geradlinig ist.
  23. Anode nach Anspruch 21, bei der die voneinander beabstandeten Platten, Stangen, Stäbe oder Drähte im wesentlichen konzentrisch angeordnet sind, wobei jede Platte, stange, Stab oder Draht eine Schlaufe bildet.
  24. Anode nach Anspruch 23, bei der jede Platte, Stange, Stab oder Draht im wesentlichen rund, oval oder polygonal ist.
  25. Anode nach Anspruch 20, 21 oder 22, bei der die Anodenbauteile in einer Gitter-ähnlichen, Netz-ähnlichen oder Maschen-ähnlichen Konfiguration vorgesehen sind.
  26. Anode nach einem der Ansprüche 20 bis 24, bei der die Anodenbauteile durch ein oder mehrere schräg verlaufende Verbindungsbauteile verbunden sind, um den Anodenbauteilen elektrischen Strom zuzuführen.
  27. Anode nach Anspruch 26, bei der die Anodenbauteile durch eine Vielzahl von schräg verlaufenden Verbindungsbauteilen verbunden sind, die wiederum durch ein oder mehrere Querbauteile miteinander verbunden sind, um den Anodenbauteilen durch die schräg verlaufenden Verbindungsbauteile elektrischen Strom zuzuführen.
  28. Anode nach Anspruch 27, mit zumindest einer vertikalen Stromzuführung, die dazu ausgestaltet ist, um mit einer positiven Sammelschiene verbunden zu sein, die mechanisch und elektrisch mit einem oder mehreren schräg verlaufenden Verbindungsbauteilen oder einem oder mehreren Querbauteilen verbunden ist, die eine Vielzahl von schräg verlaufenden Verbindungsbauteilen verbinden, um den Anodenbauteilen durch das (die) schräg verlaufende(n) Verbindungsbauteil(e) und, falls vorhanden, durch das (die) Querbauteil(e) elektrischen Strom zuzuführen.
  29. Anode nach Anspruch 28, bei der die vertikale Stromzuführung, die Anodenbauteile, das (die) schräg verlaufende(n) Verbindungsbauteil(e) und, falls vorhanden, das (die) Querbauteil(e) als eine Einheit miteinander verbunden sind.
  30. Anode nach Anspruch 28 oder 29, bei der die Elektrolyt-Leitbauteile miteinander und mit der vertikalen Stromzuführung verbunden sind.
  31. Anode nach einem der Ansprüche 19 bis 29, bei der die Elektrolyt-Leitbauteile an der gelochten Anodenstruktur befestigt oder daran angeordnet sind.
  32. Anode nach einem der Ansprüche 19 bis 31, bei der die gelochte Anodenstruktur eine auf Eisenoxid basierende, elektrochemisch aktive Fläche hat.
  33. Verfahren zum Erzeugen von Aluminium in einer Zelle nach einem der Ansprüche 1 bis 18, mit: Auflösen von Aluminiumoxid in dem Elektrolyt durch Einleiten von Aluminiumoxid in Form von Pulver in den krustenlosen geschmolzenen Elektrolyt von einer Stelle oberhalb der Elektrolyt-Leitbauteile, und Durchleiten von einem ionischen Strom zwischen der aktiven gelochten Anodenstruktur und der gegenüberliegenden Kathode, wodurch in dem Zwischen-Elektroden-Spalt eine Elektrolyse durchgeführt wird, um an der Kathode Aluminium und an der gelochten Anodenstruktur Sauerstoff zu erzeugen, und Induzieren einer Elektrolyt-Zirkulation aufwärts von und abwärts zu dem Zwischen-Elektroden-Spalt, die durch das Entweichen von anodisch erzeugtem Sauerstoff durch die gelochte Anodenstruktur angetrieben wird, mit Hilfe dieser Einrichtungen, um das Auflösen von pulverförmigem Aluminiumoxid zu unterstützen und um mit Aluminiumoxid angereicherten Elektrolyt zu dem Zwischen-Elektroden-Spalt zu führen.
  34. Elektrolysezelle für die elektrolytische Gewinnung von Aluminium aus Aluminiumoxid, das in einem thermisch isolierten, Fluorid enthaltenden, krustenlosen geschmolzenen Elektrolyt gelöst ist, mit einer elektrochemische aktiven, gelochten Metallanodenstruktur für das Erzeugen von Sauerstoff und die durch einen Zwischen-Elektroden-Spalt über einer gegenüberliegenden Kathode beabstandet angeordnet ist an der während des Betriebs Aluminium erzeugt wird, wobei die Zelle außerdem Einrichtungen aufweist, um das Auflösen von pulverförmigem Aluminiumoxid zu unterstützen, das der Oberfläche des Elektrolyten zugeführt wird, und zum gleichmäßigen Verteilen und Zuführen von mit Aluminiumoxid angereichertem Elektrolyt durch die gelochte Struktur zum Zwischen-Elektroden-Spalt, wobei die Einrichtungen Elektrolyt-Leitbauteile beinhalten, die in dem Elektrolyt über der gelochten Anodenstruktur angeordnet sind, wobei die Elektrolyt-Leitbauteile nach unten gerichtet konvergierende Flächen aufweisen, die in den Elektrolyt eingetaucht und dazu ausgestaltet sind, um:
    das Auflösen von Aluminiumoxid zu verbessern, das über deren nach unten gerichtet konvergierenden Flächen zugeführt wird; und
    mit Aluminiumoxid angereicherten Elektrolyt nach unten durch deren nach unten gerichtet konvergierenden Flächen und durch die gelochte Struktur zum Zwischen-Elektroden-Spalt zu führen.
  35. Elektrolysezelle für die elektrolytische Gewinnung von Aluminium aus Aluminiumoxid, das in einem thermisch isolierten, Fluorid enthaltenden, krustenlosen geschmolzenen Elektrolyt gelöst ist, mit einer elektrochemische aktiven, gelochten Metallanodenstruktur für das Erzeugen von Sauerstoff und die durch einen Zwischen-Elektroden-Spalt über einer gegenüberliegenden Kathode beabstandet angeordnet ist, an der während des Betriebs Aluminium erzeugt wird, wobei die Zelle außerdem Einrichtungen aufweist, um das Auflösen von pulverförmigem Aluminiumoxid zu unterstützen, das der Oberfläche des Elektrolyten zugeführt wird, und zum gleichmäßigen Verteilen und zuführen von mit Aluminiumoxid angereichertem Elektrolyt durch und/oder um die gelochte Struktur herum zu dem Zwischen-Elektroden-Spalt, wobei die Einrichtungen Elektrolyt-Leitbauteile beinhalten, die in dem Elektrolyt über der gelochten Anodenstruktur angeordnet sind, wobei die Elektrolyt-Leitbauteile nach oben gerichtet konvergierende Flächen aufweisen, die in den Elektrolyt eingetaucht und dazu ausgestaltet sind, um:
    eine nach oben gerichtete Strömung von mit Aluminlumoxid abgereicherten Elektrolyt zu führen, die durch anodisch erzeugten Sauerstoff angetrieben wird, der durch die gelochte Anodenstruktur entweicht, um das Auflösen von Aluminiumoxid zu verbessern, das über deren nach oben gerichtet konvergierenden Flächen zugeführt wird;
    mit Aluminiumoxid angereicherten Elektrolyt nach unten durch und/oder um die gelochte Anodenstruktur herum zu dem Zwischen-Elektroden-Spalt zu führen.
EP00900037A 1999-01-08 2000-01-10 Elektrolytische zelle mit verbesserter tonerde-zufuhr Expired - Lifetime EP1147245B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/IB99/00017 1999-01-08
IB9900017 1999-01-08
PCT/IB2000/000029 WO2000040781A1 (en) 1999-01-08 2000-01-10 Electrolytic cell with improved alumina supply

Publications (2)

Publication Number Publication Date
EP1147245A1 EP1147245A1 (de) 2001-10-24
EP1147245B1 true EP1147245B1 (de) 2003-09-17

Family

ID=11004811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00900037A Expired - Lifetime EP1147245B1 (de) 1999-01-08 2000-01-10 Elektrolytische zelle mit verbesserter tonerde-zufuhr

Country Status (7)

Country Link
EP (1) EP1147245B1 (de)
AT (1) ATE250154T1 (de)
CA (1) CA2358103C (de)
DE (1) DE60005301T2 (de)
ES (1) ES2206175T3 (de)
NO (1) NO20013377L (de)
WO (1) WO2000040781A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031086A1 (en) * 1999-10-26 2001-05-03 Moltech Invent S.A. Low temperature operating cell for the electrowinning of aluminium
US6638412B2 (en) * 2000-12-01 2003-10-28 Moltech Invent S.A. Prevention of dissolution of metal-based aluminium production anodes
CA2533450C (en) 2003-08-14 2012-07-17 Moltech Invent S.A. Metal electrowinning cell with electrolyte purifier
US9121104B2 (en) * 2011-01-31 2015-09-01 Alcoa Inc. Systems and methods for determining alumina properties
DE102011078002A1 (de) * 2011-06-22 2012-12-27 Sgl Carbon Se Ringförmige Elektrolysezelle und ringförmige Kathode mit Magnetfeldkompensation
RU2698162C2 (ru) 2017-03-01 2019-08-22 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Перфорированный металлический инертный анод для получения алюминия электролизом расплава

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110178A (en) * 1977-05-17 1978-08-29 Aluminum Company Of America Flow control baffles for molten salt electrolysis
IT1165047B (it) * 1979-05-03 1987-04-22 Oronzio De Nora Impianti Procedimento per migliorare il trasporto di materia ad un elettrodo e mezzi idrodinamici relativi
EP0905284B1 (de) * 1994-09-08 2002-04-03 MOLTECH Invent S.A. Aluminium Elektrolysezelle mit drainierfähige Kathode

Also Published As

Publication number Publication date
EP1147245A1 (de) 2001-10-24
NO20013377L (no) 2001-09-07
DE60005301T2 (de) 2004-06-17
CA2358103C (en) 2005-11-15
WO2000040781A1 (en) 2000-07-13
ATE250154T1 (de) 2003-10-15
ES2206175T3 (es) 2004-05-16
DE60005301D1 (de) 2003-10-23
NO20013377D0 (no) 2001-07-06
CA2358103A1 (en) 2000-07-13

Similar Documents

Publication Publication Date Title
EP1230435B1 (de) Bei niedriger temperatur betriebene elektrolysezelle zur herstellung von aluminium
EP1490534B1 (de) Verhinderung der auflösung von metallischen anoden der aluminiumproduktion
US6540887B2 (en) Aluminum electrowinning cells with oxygen-evolving anodes
EP1147245B1 (de) Elektrolytische zelle mit verbesserter tonerde-zufuhr
EP1654401B1 (de) Zelle zur elektrogewinnung von metallen mit elektrolytreiniger
EP1448810B1 (de) Anodenstrukturen auf der basis von legierungen für die herstellung von aluminium
US20080041729A1 (en) Aluminium Electrowinning With Enhanced Electrolyte Circulation
EP1423556B1 (de) Aluminium elektrogewinungszellen mit geneigten durchlöcherten sauerstoffentwicklungsanoden
EP1807552A2 (de) Elektrolytische gewinnung von aluminium mit verbesserter elektrolytzirkulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020607

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MOLTECH INVENT S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030917

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60005301

Country of ref document: DE

Date of ref document: 20031023

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2206175

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040618

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080111

Year of fee payment: 9

Ref country code: FR

Payment date: 20070129

Year of fee payment: 8

Ref country code: GB

Payment date: 20071227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080115

Year of fee payment: 9

Ref country code: NL

Payment date: 20071226

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070110

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090112