EP1144804A1 - Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede - Google Patents

Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede

Info

Publication number
EP1144804A1
EP1144804A1 EP99961157A EP99961157A EP1144804A1 EP 1144804 A1 EP1144804 A1 EP 1144804A1 EP 99961157 A EP99961157 A EP 99961157A EP 99961157 A EP99961157 A EP 99961157A EP 1144804 A1 EP1144804 A1 EP 1144804A1
Authority
EP
European Patent Office
Prior art keywords
mud
characteristic
train
drilling
thermal equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99961157A
Other languages
German (de)
English (en)
Other versions
EP1144804B1 (fr
Inventor
Thierry Botrel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Elf Exploration Production SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Exploration Production SAS filed Critical Elf Exploration Production SAS
Publication of EP1144804A1 publication Critical patent/EP1144804A1/fr
Application granted granted Critical
Publication of EP1144804B1 publication Critical patent/EP1144804B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/103Locating fluid leaks, intrusions or movements using thermal measurements

Definitions

  • the present invention relates to a method for detecting the arrival of formation fluids in a well during drilling, as well as a device for implementing this method. It finds its application on well drilling installations, notably petroleum on land or at sea.
  • a drilling installation comprises a train of hollow cylindrical rods disposed inside a casing, provided at its lower end with a drilling tool and coupled at its upper part to a rotary drive device.
  • the installation also includes an extension tube which connects the upper part of the casing to the surface equipment.
  • fresh mud stored in tanks is injected inside the drill string by a mud pump.
  • the mud injected inside the drill string is loaded with rock cuttings formed by the action of the drilling tool on the formation, rises in the defined annular space by the drill string on the one hand and the casing extended by the extension tube and the wall of the hole in during drilling on the other hand, then returns to the storage tanks after removal of the cuttings.
  • a known method for detecting the inflow of fluids into the well being drilled consists in measuring the difference between the flow rate of injected fresh mud and the flow rate of charged mud which rises, then in comparing this difference with a predetermined threshold. Exceeding this threshold signifying an inflow of fluid.
  • This difference in flow rate is generally determined indirectly from the measurement of the level of the mud in the storage tanks corrected for known additions of fluids to the mud, such as chemicals, and of the variations in volume of mud in the well associated equipment maneuvers.
  • This determination is also affected by the loss of mud in a part of the formation which can mask or delay the variation of the difference between the flow of fresh mud and the flow of charged mud resulting from the arrival of fluids in the well, difference which is the basis of the detection.
  • the accuracy of such a determination is therefore very poor and insufficient to detect efficiently and early, the inflows of fluid into the wells.
  • Another method of detecting an inflow of formation fluid is described in document EP 621 397 of 25.06.1991. It consists of analyzing the vibrations emitted in the mud at the entrance to the drill string and the vibrations captured at the top of the annular space. These latter vibrations resulting from the propagation, inside the drill string and into the annular space, of the vibrations emitted, are affected by the variations in the characteristics of the mud which change with the arrival of formation fluids in the well. The comparison to by means of an analyzer of the emitted vibrations and the captured vibrations makes it possible to detect the arrival of formation fluids.
  • the object of the present invention is precisely to remedy these drawbacks and in particular to provide a method and a device for early detection of a formation fluid coming into a well during drilling.
  • the present invention provides a method of detecting an inflow of formation fluid into a well being drilled, said drilling consisting in making a hole in a formation, by means of an installation comprising a drill string hollow cylindrical, disposed inside a casing and into which fresh mud is injected, said drill string, said casing and the wall of the hole in progress defining an annular space through which the charged mud rises, which process is characterized in that it consists:
  • the characteristic representative of the thermal equilibrium is the speed of variation of the heat flux circulating between the fresh mud and the mud loaded through the wall of the drill string, at a given depth.
  • the characteristic representative of the thermal equilibrium is the difference between the instantaneous value and a sliding time average value of the heat flux circulating between the fresh mud and the mud charged through the wall of the train stems, at a given depth.
  • the present invention proposes a method which also consists, in the event of detection of a variation of the characteristic, greater than a threshold, to transmit to said system a signal indicative of said detection so that it generates an alarm.
  • the present invention also relates to a device for detecting the arrival of a formation fluid in a well during drilling, said drilling consisting in making a hole in a formation by means of an installation comprising a drill string hollow cylindrical, placed inside a casing and into which fresh mud is injected, said drill string, said casing and the wall of the hole in progress defining an annular space through which the charged mud rises,
  • said device is characterized in that it comprises: at least one sensor for measuring the heat flow circulating between the fresh mud and the mud loaded through the wall of the drill string, at a given depth, sensor which provides a signal measurement of said thermal flux on an output, calculation means, connected to the output of said sensor, to calculate from measured thermal flux, the value of a characteristic representative of an equilibrium t hermetic being established in the absence of an inflow of formation fluid, between the fresh mud circulating inside the drill string and the charged mud rising in the annular space, and treatment means, connected to a output of the calculation means, for:. detecting variations in the value
  • the characteristic representative of the thermal equilibrium is the speed of variation of the heat flow circulating between the fresh mud and the mud loaded through the wall of the drill string, at a given depth .
  • the characteristic representative of the thermal equilibrium is the difference between the instantaneous value and a sliding time average value of the thermal flux. flowing between the fresh mud and the loaded mud through the wall of the drill string, at a given depth.
  • the drilling installation being conducted from a command and control system
  • said device comprises transmission means connected to the output of the processing means, for transmitting to said system signal indicative of a fluid arrival, so that said system generates an alarm.
  • the present invention also relates to a second method for detecting an inflow of formation fluid in an underwater well during drilling, said drilling being carried out by means of an installation comprising a train of hollow cylindrical rods, arranged inside a casing extended by an extension tube extending into the water between the seabed and the surface, fresh mud being injected into said drill string which forms with said casing and said extension tube an annular space through which the charged mud rises, which process is characterized in that it consists:
  • the characteristic representative of the thermal equilibrium is the speed of variation of the heat flow circulating between the charged mud and the sea water through the wall of the extension tube, at a given depth.
  • the characteristic representative of the thermal equilibrium is the difference between the instantaneous value and a sliding time average value of the thermal flux circulating between the charged mud and the sea water through the wall of the extension tube, at a given depth.
  • the subject of the invention is also a second device for detecting the arrival of a formation fluid in an underwater well during drilling, said drilling being carried out by means of an installation comprising a train of hollow cylindrical rods, placed inside a casing extended by an extension tube extending into the water between the bottom and the surface of the sea, mud fresh being injected into said drill string which forms with said casing and said extension tube an annular space through which rises loaded sludge,
  • said device is characterized in that it comprises: at least one sensor for measuring a physical quantity representative of the operation of the well, which provides a signal for measuring a physical quantity on an output, calculation means, connected to the output of the sensor for a physical quantity, for calculating from said physical quantity, the value of a characteristic characteristic of a thermal equilibrium being established in the absence of an inflow of formation fluid, between seawater and the charged mud rising in the annular space, and treatment means, connected to an outlet calculation means, for:. detecting variations in the value of said characteristic, greater than a threshold, said variations reflecting a rupture
  • the characteristic representative of the thermal equilibrium is the speed of variation of the measured thermal flux.
  • the characteristic representative of the thermal equilibrium is the difference between the instantaneous value and the sliding average value of the measured heat flux.
  • the drilling installation being conducted from a command and control system, it comprises transmission means connected to the output of the processing means, for transmitting to said system the signal indicative of a fluid arrival, so that said system generates an alarm.
  • Figure 1 schematically represents an installation for drilling an oil well in deep water equipped with a device for detecting the arrival of formation fluid in accordance with the description of the invention.
  • FIG. 2 is a timing diagram of the essential signals intervening in the device of FIG. 1. DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 represents a submarine oil well 1 being drilled, produced by means of an installation which comprises, a floating platform 2 which supports a train 3 of rods, consisting of cylindrical tubes screwed end to end, provided with its lower end of a drilling tool 4 and at its upper part of an injection head 13.
  • the train 3 of rods is rotated by means not shown in FIG. 1, mounted on the platform 2.
  • a mud pump 10 sucks fresh mud stored in a tank 8 through a suction pipe 11 and discharges this mud into the injection head 13.
  • the well being drilled has a casing 5 extended at its upper part by an extension tube 6 and at its lower part by the wall of the hole 5a in progress.
  • the extended casing 5 surrounds the train 3 with rods to form an annular space 7, the upper part of which is connected by a pipe 9 to the tank 8.
  • the fresh mud discharged by the pump 10 into the injection head 13 is injected inside the train of rods in which it circulates from top to bottom and passes through the drilling tool 4 is loaded with cuttings, then goes up in the annular space 7 and returns via the pipe 9 to the storage tank 8.
  • the device for detecting the arrival of a formation fluid in the well 1 comprises a sensor 14 for measuring thermal flux mounted against the external wall of the train 3 of rods in the lower part of the annular space 7 to 10 meters above the drilling tool 4.
  • the sensor 14 delivers on an output 15 a signal representative of the heat flux which flows between the fresh mud and the loaded mud through the internal and external walls of the drill string, at its mounting point.
  • the heat flux measured by the sensor 14 is the quantity of heat exchanged by the charged mud which circulates in the annular space 7, with the fresh mud injected inside the train of rods, via said train of rods. , per unit of time and per unit of surface of the external wall of the train 3 of rods, it is expressed for example in Watt per cm2.
  • the loaded mud which rises in the annular space 7 having been in contact with the drilled formation has a temperature different from that of the fresh mud which descends inside the train 3 of rods. Due to this temperature difference, a heat flux circulates between the two sludges, radially through the drill string.
  • a coming of formation fluid produces the following effects:
  • This rupture causes a variation in the heat flux measured by means of the sensor 14.
  • the output 15 of the sensor 14 is connected to an input of the means 16 for calculating the speed of variation of the heat flux measured by the sensor 14 which deliver on an output 17 a signal representative of the derivative with respect to the time of the measured heat flux.
  • the output 17 is connected to an input of the processing means 18 which carry out the following operations:
  • the heat flux measured by the sensor 14 varies and its derivative with respect to time becomes strongly negative and exceeds the value of the predetermined threshold.
  • the filtering of the signal delivered by the means 16 prior to the comparison is a conventional operation which aims to eliminate non-significant variations in fluid inflows. Likewise, fugitive overshoots of thresholds which are not significant of inflows of formation fluid are not taken into account.
  • the threshold value is determined on site as a function of the conditions for carrying out the drilling such as the thermal gradient, the nature of the fluids, the depth, the drilling diameter, the flow rate of circulation of the drilling fluid.
  • the signal delivered to the output 19 by the processing means 18 is therefore indicative of an inflow of formation fluid into the well.
  • the output 19 of the processing means is connected to an input of transmission means comprising a transmitter module 20 placed near the sensor 14 and a receiver module 21 placed at the upper part of the annular space 7.
  • the module 21 delivers on a output 22 an image signal of the signal delivered on output 19 by the processing means 18.
  • a system 23 for controlling the drilling installation connected to the output 22 of the receiver module 21, generates an alarm in the form of a message displayed on a driving console to warn of a coming of fluid in the well, an operator of the drilling installation, who will actuate the safety shutters not shown in FIG. 1.
  • the command and control system 23 can also act on the installation for example by actuating the emergency stop devices to limit the effects of the arrival of fluid which has been detected.
  • a variant of the invention consists in transmitting the signal delivered by the sensor 14, by transmission means suitable for calculation means and processing means installed on the platform.
  • the sensor 14, the calculation means, the processing means and the transmission means may advantageously be mounted on a sleeve which will be inserted between two tubes of the drill string.
  • This cuff can simultaneously support a usual system for measuring other parameters during drilling such as pressure, inclination of the well, weight on the tool.
  • a variant of the embodiment of the invention described above consists in mounting two devices for detecting the arrival of formation fluids on the outer wall of the drill string at different depths and in measuring the time interval between detection fluid coming in from each of the two devices.
  • FIG. 2 represents a timing diagram of the main signals intervening in the device of the invention represented in FIG. 1.
  • F represents the evolution of the heat flux measured by means of the sensor 14 as a function of time, a coming of fluid in the well appearing at the instant to.
  • dF / dT represents the speed of variation of the heat flux measured as a function of time
  • S is the value of the predetermined threshold whose exceeding makes it possible to detect an inflow of fluid.
  • Sg represents the signal delivered by the processing means, indicative of a fluid coming into the well.
  • the invention it is possible to detect early an inflow of formation fluid in a well being drilled in the form of gaseous and / or liquid hydrocarbons, and or water without risk of delay or masking by a loss. of mud in training and at a lower cost.
  • the method and the device of the invention are insensitive to the movements of the platform and to the variations in volume of the extension tube, and in all cases to the presence of cuttings in the loaded mud.

Landscapes

  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Drilling And Boring (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

L'invention concerne la détection de venues de fluides de formation dans un puits (1) en cours de forage. Selon l'invention, le forage étant réalisé au moyen d'une installation comportant un train (3) de tiges cylindrique creux dans lequel est injecté de la boue fraîche, un cuvelage (5) définissant avec le train (3) de tiges un espace (7) annulaire par lequel remonte de la boue chargée, on mesure en continu au moins un flux thermique, puis on calcule en continu à partir de cette grandeur la valeur d'une caractéristique représentative d'un équilibre thermique s'établissant en l'absence d'une venue de fluide de formation et on détecte les variations de cette caractéristique, supérieures à un seuil, lesdites variations traduisant une rupture de l'équilibre thermique, résultant de venues de fluide de formation dans le puits (1). L'invention trouve son application dans la conduite des installations de forage de puits pétroliers notamment en mer par grande profondeur.

Description

PROCEDE DE DETECTION D'UNE VENUE DE FLUIDE DE FORMATION
DANS UN PUITS EN COURS DE FORAGE ET DISPOSITIF POUR LA
MISE EN OEUVRE DE CE PROCEDE
DOMAINE TECHNIQUE
La présente invention concerne un procédé de détection de venues de fluides de formation dans un puits en cours de forage, ainsi qu'un dispositif pour la mise en oeuvre de ce procédé. Elle trouve son application sur les installations de forage de puits notamment pétroliers à terre ou en mer.
ETAT DE LA TECHNIQUE ANTERIEURE
Les venues de fluides de formation et notamment d'hydrocarbures gazeux dans un puits qui se produisent en cours de forage ou d'opérations sont des phénomènes qu'il convient de détecter le plus précocement possible afin d'en faciliter le contrôle pour en minimiser les conséquences telles que des éruptions incontrôlées pouvant entraîner des incendies, des pollutions, la déstabilisation ou la perte du puits.
Le besoin de détecter précocement les venues s'est amplifié avec le développement des forages de puits dans des conditions de plus en plus difficiles, telles que celles rencontrées dans les forages de puits à haute pression et haute température, ainsi que dans les forages de puits sous-marins par très grande profondeur d'eau.
Classiquement une installation de forage comporte un train de tiges cylindrique creux disposé à l'intérieur d'un cuvelage, muni à son extrémité inférieure d'un outil de forage et couplé à sa partie supérieure à un dispositif d'entraînement en rotation. Pour les forages en mer l'installation comporte en plus un tube prolongateur qui relie la partie supérieure du cuvelage aux équipements de surface. Pendant le forage de la boue fraîche stockée dans des bacs est injectée à l'intérieur du train de tiges par une pompe à boue.
Après passage à travers l'outil de forage, la boue injectée à l'intérieur du train de tiges se charge avec des déblais de roches formés par l'action de l'outil de forage sur la formation, remonte dans l'espace annulaire défini par le train de tiges d'une part et le cuvelage prolongé par le tube prolongateur et la paroi du trou en cours de forage d'autre part, puis retourne dans les bacs de stockages après élimination des déblais.
Une méthode connue de détection des venues de fluides dans le puits en cours de forage consiste à mesurer la différence entre le débit de boue fraîche injectée et le débit de boue chargée qui remonte puis à comparer cette différence à un seuil prédéterminé. Un dépassement de ce seuil signifiant une venue de fluide.
Cette différence de débit est généralement déterminée indirectement à partir de la mesure du niveau de la boue dans les bacs de stockage corrigée des ajouts connus de fluides à la boue, tels que des produits chimiques, et des variations de volume de boue dans le puits liées à des manoeuvres d'équipements. Cette détermination est aussi affectée par la perte de boue dans une partie de la formation qui peut masquer ou retarder la variation de la différence entre le débit de la boue fraîche et le débit de la boue chargée résultant des venues de fluides dans le puits, différence qui est à la base de la détection. La précision d'une telle détermination, est donc très médiocre et insuffisante pour détecter efficacement et précocement, les venues de fluide dans les puits.
Dans le cas d'un forage par très grande profondeur d'eau, cette précision est encore plus mauvaise, du fait des mouvements du support marin flottant qui supporte les installations de forages et du fait des variations cycliques du volume du tube prolongateur dues au pilonnement du support. Cette mauvaise précision est d'autant plus gênante dans ce cas, que la pression de fracturation des formations au point fragile du puits, diminue le volume maximal admissible d'une venue de fluide sans risque de perte du puits. Une autre méthode de détection d'une venue de fluide de formation est décrite dans le document US 4,733,232 du 22.03.1982. Elle consiste à moduler le débit de boue de forage à proximité du fond du puits et à comparer les impulsions de pression qui sont réfléchies à la fois dans le train de tiges et dans l'espace annulaire. Le rapport des impulsions réfléchies étant modifié par une venue de gaz qui change la densité de la boue qui remonte dans l'espace annulaire, cette modification est détectée par un calculateur et utilisée comme signal d'alarme.
Une autre méthode de détection d'une venue de fluide de formation est décrite dans le document EP 621 397 du 25.06.1991. Elle consiste à analyser des vibrations émises dans la boue à l'entrée du train de tiges et les vibrations captées à la partie supérieure de l'espace annulaire. Ces dernières vibrations résultant de la propagation à l'intérieur du train de tiges et dans l'espace annulaire, des vibrations émises, sont affectées par les variations des caractéristiques de la boue qui changent avec les venues de fluides de formation dans le puits. La comparaison au moyen d'un analyseur des vibrations émises et des vibrations captées permet de détecter les venues de fluides de formation.
Ces deux dernières méthodes sont sensibles aux déblais entraînés par la boue qui remonte dans l'espace annulaire et peuvent dans certains cas être inopérantes du fait de l'importance des réflexions des vibrations sur les particules de roches de formation qui constituent les déblais.
De plus, leur mise en oeuvre nécessite l'utilisation d'équipements coûteux.
EXPOSE DE L'INVENTION
La présente invention a justement pour objet de remédier à ces inconvénients et notamment de fournir un procédé et un dispositif de détection précoce d'une venue de fluide de formation dans un puits en cours de forage.
Ce procédé et ce dispositif sont utilisables pour la détection de venues de fluides sous forme d'hydrocarbures liquides ou gazeux, ou d'eau, au cours de forages en terre ou en mer, cette détection permettant de prendre des mesures pour stopper le développement de ces venues ou en minimiser les effets. A cette fin, la présente invention propose un procédé de détection d'une venue de fluide de formation dans un puits en cours de forage, ledit forage consistant à réaliser un trou dans une formation, au moyen d'une installation comportant un train de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage et dans lequel est injectée de la boue fraîche, ledit train de tiges, ledit cuvelage et la paroi du trou en cours de réalisation définissant un espace annulaire par lequel remonte de la boue chargée, lequel procédé se caractérise en ce qu'il consiste :
- à mesurer en continu le flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée,
- à calculer en continu à partir dudit flux thermique, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre la boue fraîche circulant à l'intérieur du train de tiges et la boue chargée remontant dans l'espace annulaire, et
- à détecter des variations supérieures à un seuil, de la valeur de ladite caractéristique, lesdites variations traduisant une rupture dudit équilibre thermique résultant de venues de fluide de formation dans le puits.
Selon une autre caractéristique de l'invention, la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée. Selon une autre caractéristique de l'invention, la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée.
L'installation de forage étant conduite à partir d'un système de contrôle commande, selon une autre caractéristique, la présente invention propose un procédé qui consiste en plus, en cas de détection d'une variation de la caractéristique, supérieure à un seuil, à transmettre au dit système un signal indicatif de ladite détection pour qu'il génère une alarme.
La présente invention a aussi pour objet un dispositif de détection d'une venue de fluide de formation dans un puits en cours d'un forage, ledit forage consistant à réaliser un trou dans une formation au moyen d'une installation comportant un train de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage et dans lequel est injecté de la boue fraîche, ledit train de tiges, ledit cuvelage et la paroi du trou en cours de réalisation définissant un espace annulaire par lequel remonte de la boue chargée, lequel dispositif se caractérise en ce qu'il comporte : au moins un capteur de mesure du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée, capteur qui fournit un signal de mesure dudit flux thermique sur une sortie, des moyens de calcul, reliés à la sortie dudit capteur, pour calculer à partir flux thermique mesuré, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre la boue fraîche circulant à l'intérieur du train de tiges et la boue chargée remontant dans l'espace annulaire, et des moyens de traitement, reliés à une sortie des moyens de calcul, pour : . détecter les variations de la valeur de ladite caractéristique, supérieures à un seuil, lesdites variations traduisant une rupture dudit équilibre thermique résultant d'une venue de fluide de formation dans le puits, et
. délivrer un signal indicatif d'une venue de fluide sur une sortie. Selon une autre caractéristique du dispositif de l'invention, la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée.
Selon une autre caractéristique du dispositif de l'invention, la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée.
Selon une autre caractéristique du dispositif de l'invention, l'installation de forage étant conduite à partir d'un système de contrôle commande, ledit dispositif comporte des moyens de transmission reliés à la sortie des moyens de traitement, pour transmettre au dit système le signal indicatif d'une venue de fluide, pour que ledit système génère une alarme.
La présente invention a aussi pour objet un second procédé de détection d'une venue de fluide de formation dans un puits sous-marin en cours de forage, ledit forage étant réalisé au moyen d'une installation comportant un train de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage prolongé par un tube prolongateur s'étendant dans l'eau entre le fond de la mer et la surface, de la boue fraîche étant injectée dans ledit train de tiges qui forme avec ledit cuvelage et ledit tube prolongateur un espace annulaire par lequel remonte de la boue chargée, lequel procédé se caractérise en ce qu'il consiste :
- à mesurer en continu le flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée,
- à calculer en continu à partir du flux thermique mesuré, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre l'eau de mer et la boue chargée remontant dans l'espace annulaire, et
- à détecter des variations supérieures à un seuil, de la valeur de ladite caractéristique, lesdites variations traduisant une rupture dudit équilibre thermique résultant de venues de fluide de formation dans le puits.
Selon une autre caractéristique du second procédé de l'invention, la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée. Selon une autre caractéristique du second procédé de l'invention, la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée. L'invention a aussi pour objet un second dispositif de détection d'une venue de fluide de formation dans un puits sous marin en cours d'un forage, ledit forage étant réalisé au moyen d'une installation comportant un train de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage prolongé par un tube prolongateur s'étendant dans l'eau entre le fond et la surface de la mer, de la boue fraîche étant injectée dans ledit train de tiges qui forme avec ledit cuvelage et ledit tube prolongateur un espace annulaire par lequel remonte de la boue chargée, lequel dispositif se caractérise en ce qu'il comporte : au moins un capteur de mesure d'une grandeur physique représentative du fonctionnement du puits, qui fournit un signal de mesure de grandeur physique sur une sortie, des moyens de calcul, reliés à la sortie du capteur d'une grandeur physique, pour calculer à partir de ladite grandeur physique, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre l'eau de mer et la boue chargée remontant dans l'espace annulaire, et des moyens de traitement, reliés à une sortie des moyens de calcul, pour : . détecter les variations de la valeur de ladite caractéristique, supérieures à un seuil, lesdites variations traduisant une rupture dudit équilibre thermique résultant d'une venue de fluide de formation dans le puits, et
. délivrer un signal indicatif d'une venue de fluide sur une sortie. Selon une autre caractéristique du second dispositif de l'invention, la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique mesuré. Selon une autre caractéristique du deuxième dispositif de l'invention, la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et la valeur moyenne glissante du flux thermique mesuré.
Selon une autre caractéristique du deuxième dispositif de l'invention, l'installation de forage étant conduite à partir d'un système de contrôle commande, il comporte des moyens de transmission reliés à la sortie des moyens de traitement, pour transmettre au dit système le signal indicatif d'une venue de fluide, pour que ledit système génère une alarme.
BREVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise à l'aide de la description suivante d'un mode réalisation donné à titre d'exemple, en référence aux dessins annexés dans lesquels : - la figure 1 représente schématiquement une installation de forage d'un puits pétrolier en eau profonde équipé d'un dispositif de détection de venue de fluide de formation conforme au descriptif de l'invention.
- la figure 2 est un chronogramme des signaux essentiels intervenant dans le dispositif de la figure 1. EXPOSE DETAILLE DE L'INVENTION
La figure 1 représente un puits 1 pétrolier sous marin en cours de forage, réalisé au moyen d'une installation qui comprend, une plate-forme 2 flottante qui supporte un train 3 de tiges, constitué de tubes cylindriques vissés bout à bout, muni à son extrémité inférieure d'un outil 4 de forage et à sa partie supérieure d'une tête 13 d'injection. Le train 3 de tiges est entraîné en rotation par des moyens non représentés sur la figure 1 , montés sur la plate-forme 2.
Une pompe 10 à boue aspire de la boue fraîche stockée dans un bac 8 au travers d'une tubulure 11 d'aspiration et refoule cette boue dans la tête 13 d'injection.
Le puits en cours de forage comporte un cuvelage 5 prolongé à sa partie supérieure par un tube 6 prolongateur et à sa partie inférieure par la paroi du trou 5a en cours de réalisation. Le cuvelage 5 prolongé entoure le train 3 de tiges pour former un espace annulaire 7 dont la partie supérieure est reliée par une canalisation 9 au bac 8.
La boue fraîche refoulée par la pompe 10 dans la tête 13 d'injection est injectée à l'intérieur du train 3 de tiges dans lequel elle circule de haut en bas et traverse l'outil 4 de forage se charge en déblais, puis remonte dans l'espace 7 annulaire et revient par la canalisation 9 dans le bac de stockage 8.
Le dispositif de détection d'une venue de fluide de formation dans le puits 1 selon un mode préférentiel de réalisation de l'invention représenté sur la figure 1 , comporte un capteur 14 de mesure de flux thermique monté contre la paroi externe du train 3 de tiges dans la partie inférieure de l'espace annulaire 7 à 10 mètres au dessus de l'outil 4 de forage.
Le capteur 14 délivre sur une sortie 15 un signal représentatif du flux thermique qui s'écoule entre la boue fraîche et la boue chargée au travers des parois interne et externe du train de tiges, en son point de montage. Le flux thermique mesuré par le capteur 14 est la quantité de chaleur échangée par la boue chargée qui circule dans l'espace 7 annulaire, avec la boue fraîche injectée à l'intérieur du train 3 de tiges, par l'intermédiaire dudit train de tiges, par unité de temps et par unité de surface de la paroi externe du train 3 de tiges, il s'exprime par exemple en Watt par cm2.
La boue chargée qui remonte dans l'espace 7 annulaire ayant été en contact avec la formation forée, a une température différente de celle de la boue fraîche qui descend à l'intérieur du train 3 de tiges. Du fait de cette différence de température, un flux thermique circule entre les deux boues, radialement au travers du train de tiges.
Lorsque les conditions de forage, notamment le débit, la composition, la température de la boue injectée, les pertes de charges du circuit des boues ne varient pas, un équilibre thermique s'établit en l'absence de venue de fluide dans le puits. Cet équilibre thermique se traduit en particulier par une différence sensiblement constante, entre la température de la boue fraîche qui circule à l'intérieur du train de tiges et la température de la boue chargée. Le flux thermique mesuré, qui résulte de cette différence de température est donc lui aussi sensiblement constant.
Une venue de fluide de formation, produit les effets suivants :
- une variation importante de la conductibilité thermique de la boue qui remonte dans l'espace annulaire, du fait que la boue et le fluide de formation ont des conductibilités thermiques différentes, particulièrement dans le cas de venues de gaz,
- une variation des conditions d'écoulement de la boue chargée, du fait que la boue et le fluide de formation ont des viscosités et des densités différentes et dans le cas de venue de gaz du fait d'une détente possible de ce gaz,
- une variation de la température de la boue qui remonte par l'espace annulaire, du fait que le fluide de formation qui se mélange à la boue a une température différente de celle de cette dernière.
Ces variations ont pour conséquence une modification rapide des conditions d'échange de chaleur entre la boue qui circule à l'intérieur du train de tiges et la boue qui remonte dans l'espace annulaire, qui se traduit par une rupture de l'équilibre thermique établi préalablement à la venue du fluide de formation.
Cette rupture entraîne une variation du flux thermique mesuré au moyen du capteur 14.
La sortie 15 du capteur 14 est reliée à une entrée des moyens 16 de calcul de la vitesse de variation du flux thermique mesuré par le capteur 14 qui délivrent sur une sortie 17 un signal représentatif de la dérivé par rapport au temps du flux thermique mesuré.
La sortie 17 est reliée à une entrée des moyens 18 de traitement qui réalisent les opérations suivantes :
- comparent, après filtration, le signal délivré par les moyens 16 de calcul, représentatif de la dérivé par rapport au temps du flux thermique mesuré, a un seuil prédéterminé négatif et,
- en cas dépassement dudit seuil délivrent un signal sur une sortie 19. Comme il a été indiqué ci-dessus, en l'absence de venues de fluide de formation, le flux thermique mesuré par le capteur 14 est sensiblement constant, sa dérivée par rapport au temps est donc très faible.
Lorsque se produit une venue de fluide de formation dans le puits, le flux thermique mesuré par le capteur 14 varie et sa dérivée par rapport au temps devient fortement négative et dépasse la valeur du seuil prédéterminé.
Le filtrage du signal délivré par les moyens 16 préalablement à la comparaison est une opération classique qui a pour but d'éliminer les variations non significatives de venues de fluide. De même les dépassements fugitifs de seuils qui ne sont pas significatifs de venues de fluide de formation ne sont pas pris en compte.
La valeur du seuil est déterminé sur site en fonction des conditions de réalisation du forage telles que le gradient thermique, la nature des fluides, la profondeur, le diamètre de forage, le débit de circulation du fluide de forage. Le signal délivré sur la sortie 19 par les moyens 18 de traitement est donc indicatif d'une venue de fluide de formation dans le puits.
La sortie 19 des moyens de traitement est reliée à une entrée de moyens de transmission comportant un module 20 émetteur placé à proximité du capteur 14 et un module 21 récepteur placé à la partie supérieur de l'espace annulaire 7. Le module 21 délivre sur une sortie 22 un signal image du signal délivré sur la sortie 19 par les moyens 18 de traitement.
Un système 23 de contrôle commande de l'installation de forage, relié à la sortie 22 du module 21 récepteur, génère une alarme sous forme d'un message visualisé sur une console de conduite pour avertir d'une venue de fluide dans le puits, un opérateur de l'installation de forage, qui actionnera les obturateurs de sécurités non représentés sur la figure 1.
Le système 23 de contrôle commande peut aussi agir sur l'installation par exemple en actionnant les dispositifs d'arrêt d'urgence pour limiter les effets de la venue de fluide qui a été détectée. Une variante de l'invention consiste à transmettre le signal délivré par le capteur 14, par des moyens de transmission appropriés à des moyens de calculs et des moyens de traitement installés sur la plate-forme.
Le capteur 14, les moyens de calcul, les moyens de traitement et les moyens de transmission pourront avantageusement être montés sur une manchette qui viendra s'insérer entre deux tubes du train de tiges.
Cette manchette pouvant supporter simultanément un système habituel de mesure d'autres paramètres en cours de forage tels que la pression, l'inclinaison du puits, le poids sur l'outil. Une variante du mode de réalisation de l'invention décrit ci-dessus consiste à monter deux dispositifs de détection de venues de fluides de formation sur la paroi extérieure du train de tiges à des profondeurs différentes et à mesurer l'intervalle de temps entre la détection d'une venue de fluide par chacun des deux dispositifs.
L'intervalle ainsi mesuré donne une indication sur la nature de la venue. En effet, une venue de gaz se propageant plus rapidement qu'une venue de liquide, l'intervalle de temps mesuré dans le premier cas sera plus court que celui mesuré dans le second. La figure 2 représente un chronogramme des principaux signaux intervenant dans le dispositif de l'invention représenté sur la figure 1.
F représente l'évolution du flux thermique mesuré au moyen du capteur 14 en fonction du temps, une venue de fluide dans le puits apparaissant à l'instant to. dF/dT représente la vitesse de variation du flux thermique mesuré en fonction du temps, S est la valeur du seuil prédéterminé dont le dépassement permet de détecter une venue de fluide.
Sg représente le signal délivré par les moyens de traitements, indicatif d'une venue de fluide dans le puits.
Grâce à l'invention il est possible de détecter précocement une venue de fluide de formation dans un puits en cours de forage sous forme d'hydrocarbures gazeux et/ou liquides, et ou d'eau sans risque de retardement ou de masquage par une perte de boue dans la formation et à moindre coût.
De plus, dans le cas de forage de puits sous-marins, la méthode et le dispositif de l'invention sont insensibles aux mouvements de la plate-forme et aux variations de volume du tube prolongateur, et dans tous les cas à la présence de déblais dans la boue chargée.

Claims

REVENDICATIONS
- Procédé de détection d'une venue de fluide de formation dans un puits (1 ) en cours de forage, ledit forage consistant à réaliser un trou (5) dans une formation, au moyen d'une installation comportant un train (3) de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage (5) et dans lequel est injectée de la boue fraîche, ledit train (3) de tiges, ledit cuvelage (5) et la paroi du trou (5a) en cours de réalisation définissant un espace (7) annulaire par lequel remonte de la boue chargée, lequel procédé se caractérise en ce qu'il consiste : - à mesurer en continu le flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train (3) de tiges, à une profondeur donnée, à calculer en continu à partir dudit flux thermique, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre la boue fraîche circulant à l'intérieur du train (3) de tiges et la boue chargée remontant dans l'espace (7) annulaire, et à détecter des variations supérieures à un seuil, de la valeur de ladite caractéristique, lesdites variations traduisant une rupture dudit équilibre thermique résultant de venues de fluide de formation dans le puits (1 ). - Procédé selon la revendication 1 , caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train (3) de tiges, à une profondeur donnée. - Procédé selon la revendication 1 , caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train (3) de tiges, à une profondeur donnée. - Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que l'installation de forage étant conduite à partir d'un système de contrôle commande, il consiste en plus, en cas de détection d'une variation de la caractéristique représentative de l'équilibre thermique supérieure à un seuil, à transmettre au dit système un signal représentatif de ladite détection pour qu'il génère une alarme. - Dispositif de détection d'une venue de fluide de formation dans un puits (1) en cours d'un forage, ledit forage consistant à réaliser un trou (5a) dans une formation au moyen d'une installation comportant un train (3) de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage (5) et dans lequel est injecté de la boue fraîche, ledit train (3) de tiges, ledit cuvelage (5) et la paroi du trou (5a) en cours de réalisation définissant un espace (7) annulaire par lequel remonte de la boue chargée, lequel dispositif se caractérise en ce qu'il comporte : - au moins un capteur de mesure du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train (3) de tiges, à une profondeur donnée, capteur qui fournit un signal de mesure dudit flux thermique sur une sortie, des moyens de calcul, reliés à la sortie dudit capteur, pour calculer à partir flux thermique mesuré, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre la boue fraîche circulant à l'intérieur du train (3) de tiges et la boue chargée remontant dans l'espace (7) annulaire, et des moyens de traitement, reliés à une sortie des moyens de calcul, pour : > détecter les variations de la valeur de ladite caractéristique, supérieures à un seuil, lesdites variations traduisant une rupture dudit équilibre thermique résultant d'une venue de fluide de formation dans le puits (1), et . délivrer un signal indicatif d'une venue de fluide sur une sortie. - Dispositif selon la revendication 5 caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée. - Dispositif selon la revendication 5 caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue fraîche et la boue chargée au travers de la paroi du train de tiges, à une profondeur donnée. - Dispositif selon l'une quelconque des revendications 5 à 7 caractérisé en ce que, l'installation de forage étant conduite à partir d'un système de contrôle commande, il comporte des moyens de transmission reliés à la sortie des moyens de traitement, pour transmettre au dit système le signal indicatif d'une venue de fluide, pour que ledit système génère une alarme. - Procédé de détection d'une venue de fluide de formation dans un puits (1) sous-marin en cours de forage, ledit forage étant réalisé au moyen d'une installation comportant un train (3) de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage (5) prolongé par un tube prolongateur s'étendant dans l'eau entre le fond de la mer et la surface, de la boue fraîche étant injectée dans ledit train (3) de tiges qui forme avec ledit cuvelage (5) et ledit tube prolongateur un espace (7) annulaire par lequel remonte de la boue chargée, lequel procédé se caractérise en ce qu'il consiste : à mesurer en continu le flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée, à calculer en continu à partir du flux thermique mesuré, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre l'eau de mer et la boue chargée remontant dans l'espace (7) annulaire, et - à détecter des variations supérieures à un seuil, de la valeur de ladite caractéristique, lesdites variations traduisant une rupture dudit équilibre thermique résultant de venues de fluide de formation dans le puits (1). - Procédé selon la revendication 9, caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée. - Procédé selon la revendication 9, caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et une valeur moyenne temporelle glissante du flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée. - Procédé selon une quelconque des revendications 9 à 11 , caractérisé en ce que l'installation de forage étant conduite à partir d'un système de contrôle commande, il consiste en plus, en cas de détection d'une variation de la caractéristique représentative de l'équilibre thermique supérieure à un seuil, à transmettre au dit système un signal représentatif de ladite détection pour qu'il génère une alarme. - Dispositif de détection d'une venue de fluide de formation dans un puits (1) sous marin en cours d'un forage, ledit forage étant réalisé au moyen d'une installation comportant un train (3) de tiges cylindrique creux, disposé à l'intérieur d'un cuvelage (5) prolongé par un tube prolongateur s'étendant dans l'eau entre le fond de la mer et la surface, de la boue fraîche étant injectée dans ledit train (3) de tiges qui forme avec ledit cuvelage (5) et ledit tube prolongateur un espace (7) annulaire par lequel remonte de la boue chargée, lequel dispositif se caractérise en ce qu'il comporte : au moins un capteur de mesure du flux thermique circulant entre la boue chargée et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée, capteur qui fournit un signal de mesure dudit flux thermique sur une sortie, des moyens de calcul, reliés à la sortie dudit capteur, pour calculer à partir du flux thermique mesuré, la valeur d'une caractéristique représentative d'un équilibre thermique s'etablissant en l'absence d'une venue de fluide de formation, entre la boue chargée remontant dans l'espace (7) annulaire et l'eau de mer au travers de la paroi du tube prolongateur, à une profondeur donnée, et des moyens de traitement, reliés à une sortie des moyens de calcul, pour : . détecter les variations de la valeur de ladite caractéristique, supérieures à un seuil, lesdites variations traduisant une rupture dudit équilibre thermique résultant d'une venue de fluide de formation dans le puits (1), et . délivrer un signal indicatif d'une venue de fluide sur une sortie. - Dispositif selon la revendication 13 caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la vitesse de variation du flux thermique mesuré. - Dispositif selon la revendication 13 caractérisé en ce que la caractéristique représentative de l'équilibre thermique est la différence entre la valeur instantanée et la valeur moyenne glissante du flux thermique mesuré. - Dispositif selon l'une quelconque des revendications 13 à 15 caractérisé en ce que, l'installation de forage étant conduite à partir d'un système de contrôle commande, il comporte des moyens de transmission reliés à la sortie des moyens de traitement, pour transmettre au dit système le signal indicatif d'une venue de fluide, pour que ledit système génère une alarme.
EP99961157A 1998-12-23 1999-12-23 Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede Expired - Lifetime EP1144804B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9816363 1998-12-23
FR9816363 1998-12-23
PCT/FR1999/003267 WO2000039433A1 (fr) 1998-12-23 1999-12-23 Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede

Publications (2)

Publication Number Publication Date
EP1144804A1 true EP1144804A1 (fr) 2001-10-17
EP1144804B1 EP1144804B1 (fr) 2003-08-13

Family

ID=9534432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99961157A Expired - Lifetime EP1144804B1 (fr) 1998-12-23 1999-12-23 Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede

Country Status (6)

Country Link
US (1) US6540021B1 (fr)
EP (1) EP1144804B1 (fr)
AT (1) ATE247222T1 (fr)
DE (1) DE69910438D1 (fr)
NO (1) NO320180B1 (fr)
WO (1) WO2000039433A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252748A1 (en) * 2003-06-13 2004-12-16 Gleitman Daniel D. Fiber optic sensing systems and methods
WO2005038409A2 (fr) * 2003-10-17 2005-04-28 Invensys Systems, Inc. Controle de debit garanti
EP1792048B1 (fr) * 2004-09-21 2017-12-06 Benthic Geotech Pty Ltd Appareil de telesurveillance des gaz pour forages sur fonds marins
ATE390244T1 (de) * 2005-02-08 2008-04-15 Mikron Agie Charmilles Ag Kontrollverfahren für eine werkzeugmaschine
US8256565B2 (en) * 2005-05-10 2012-09-04 Schlumberger Technology Corporation Enclosures for containing transducers and electronics on a downhole tool
US7913806B2 (en) * 2005-05-10 2011-03-29 Schlumberger Technology Corporation Enclosures for containing transducers and electronics on a downhole tool
WO2010118342A1 (fr) * 2009-04-09 2010-10-14 Schlumberger Technology Corporation Procédé et système pour la détection d'une invasion de fluide dans un espace annulaire d'un tuyau flexible
EP2341214A1 (fr) * 2009-12-29 2011-07-06 Welltec A/S Outil de journalisation de la thermographie
CN109164205A (zh) * 2018-07-06 2019-01-08 覃楚倩 一种基于海底基盘的钻探钻井气体监测系统及其监测方法
CN115653573B (zh) * 2022-12-13 2023-04-07 中国石油大学(华东) 一种基于弹性波信号的套管内外双向井下监测装置与方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304766A (en) * 1964-01-17 1967-02-21 Texaco Inc Method for measuring two-phase fluid flow
US3776032A (en) * 1972-07-03 1973-12-04 Shell Oil Co Method and apparatus for detecting an inflow of fluid into a well
US4171642A (en) * 1978-04-19 1979-10-23 Taylor Julian S Fluid producing formation tester
US4733233A (en) * 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4802143A (en) * 1986-04-16 1989-01-31 Smith Robert D Alarm system for measurement while drilling oil wells
US5661236A (en) * 1996-05-24 1997-08-26 Mobil Oil Corporation Pad production log tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0039433A1 *

Also Published As

Publication number Publication date
NO320180B1 (no) 2005-11-07
NO20013116D0 (no) 2001-06-21
DE69910438D1 (de) 2003-09-18
EP1144804B1 (fr) 2003-08-13
WO2000039433A1 (fr) 2000-07-06
ATE247222T1 (de) 2003-08-15
US6540021B1 (en) 2003-04-01
NO20013116L (no) 2001-08-23

Similar Documents

Publication Publication Date Title
RU2570211C2 (ru) Обнаружение притока газа в стволе скважины
FR2619156A1 (fr) Procede de controle des venues de fluides dans les puits d'hydrocarbures
FR2619155A1 (fr) Procede d'analyse dynamique des venues de fluides dans les puits d'hydrocarbures
EP0364362B1 (fr) Procédé et dispositif de diagraphie en puits de production non éruptif
JP4960238B2 (ja) 海底掘削のための遠隔ガスモニタリング装置
NO306270B1 (no) FremgangsmÕte og apparat for Õ detektere innströmning i en brönn under boring
EP1144804B1 (fr) Procede de detection d'une venue de fluide de formation dans un puits en cours de forage et dispositif pour la mise en oeuvre de ce procede
FR2858065A1 (fr) Systeme et procede de mesure de parametres de fond pendant le forage
CN111364978B (zh) 一种井涌井漏监测装置和监测方法
NO335412B1 (no) Fremgangsmåte og apparat for forsterket impulstelemetri under underbalansert boring
US11566480B2 (en) Method for detecting fluid influx or fluid loss in a well and detecting changes in fluid pump efficiency
US4546640A (en) Positive air gas detector
FR2562151A1 (fr) Procede et appareil de determination de la pression dans des formations traversees par un sondage
FR2808596A1 (fr) Source sismique de fond de puits s'etendant axialement
FR2626615A1 (fr) Methode de mesure acoustique de l'impedance et de la dissipation du sous-sol entourant un forage
CN105804724A (zh) 一种石油钻井超声波液位监控装置
FR2659387A1 (fr) Methode d'estimation de la pression interstitielle d'une formation souterraine.
FR2836953A1 (fr) Appareil d'essai de formation pour un pre-essai utilisant un controle du debit du fluide pulse
CA1124102A (fr) Dispositif permettant la mesure simultanee des parametres relatifs au fluide de forage
FR2549132A1 (fr) Procede et appareil pour la detection de la penetration d'un fluide dans un trou de forage
EP1457778A1 (fr) Méthode et dispositif d'analyse du co2 contenu dans un fluide de forage
FR3041372A1 (fr)
EP4204773A1 (fr) Procédé et système pour la détermination temporelle d'un niveau d'interface de phase d'un fluide polyphasique présent dans une conduite verticale
EP0231685B1 (fr) Méthode et dispositif pour évaluer les risques de colmatage d'un puits ou d'un forage traversant un réservoir poreux, notamment une formation géologique
FR2837869A1 (fr) Outil de fond et procedes pour determiner la permeabilite relative de la formation et pour calculer la productivite de la formation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030813

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69910438

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040113

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *ELF EXPLORATON PRODUCTION

Effective date: 20031231

26N No opposition filed

Effective date: 20040514

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181127

Year of fee payment: 20

Ref country code: FR

Payment date: 20181127

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191222