EP1137379A1 - Bioerodable myringotomy tube - Google Patents
Bioerodable myringotomy tubeInfo
- Publication number
- EP1137379A1 EP1137379A1 EP98962978A EP98962978A EP1137379A1 EP 1137379 A1 EP1137379 A1 EP 1137379A1 EP 98962978 A EP98962978 A EP 98962978A EP 98962978 A EP98962978 A EP 98962978A EP 1137379 A1 EP1137379 A1 EP 1137379A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- myringotomy tube
- myringotomy
- tube
- accordance
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/044—Proteins; Polypeptides; Degradation products thereof
- A61L29/045—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F11/00—Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
- A61F11/20—Ear surgery
- A61F11/202—Surgical middle-ear ventilation or drainage, e.g. permanent; Implants therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/044—Proteins; Polypeptides; Degradation products thereof
- A61L29/046—Gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/14—Materials or treatment for tissue regeneration for ear reconstruction or ear implants, e.g. implantable hearing aids
Definitions
- the present invention relates to the field of otology implants and is particularly directed toward a myringotomy tube.
- myringotomy tubes also referred to as tympanotomy tubes
- tympanotomy tubes have been used as a form of treatment for recurrent infections in the ear and for abnormal pressure and fluid in the middle ear behind the eardrum due to abnormal ventilation of the middle ear. More than two million operations are performed yearly in the United States whereir; these tubes are surgically inserted into the ear drum (tympanic membrane) so as to provide fluid communication between the middle ear and the external canal.
- Myringotomy tubes typically stay in the ear drum for four to thirty-six months, depending upon the age of the patient and the shape of the tube. Most patients in the younger age groups (1-6 years) require a myringotomy tube for twelve to twenty-four months. Older patients may require very short term tubes (1-3 months) or long term tubes (2-3 years) depending upon their etiology of their otologic dysfunction.
- the ideal myringotomy tube would stay in place indefinitely without extruding, but would instantly be gone from the ear when the patient no longer needed ventilation of the middle ear.
- Numerous designs have been developed which allow myringotomy tubes to stay in position for long periods (at least 1 year or more) without extruding.
- many of these tubes never extrude and must be surgically removed. This removal risks injury to the surrounding ear drum and any middle ear structures which may have connected to the tube by fibrous adhesions in the middle ear.
- this procedure must be done under anesthesia on children who do not tolerate such manipulation in the clinic or office setting.
- myringotomy tubes that do not extrude after twenty-four months very often cause a permanent perforation of the ear drum after they are surgically removed. This perforation must be surgically repaired.
- the present invention solves the problems noted above associated with existing myringotomy tubes.
- the present invention relates to a bioerodable myringotomy tube.
- the invention is to be made of various forms of collagen, which is a natural architectural component of the tissues of the human body.
- Gelatin is a variation of collagen that is prepared and manufactured in various ways.
- the invention in its preferred form, is to be made of a form of gelatin called GELFILM ® . In other forms, the invention is to be made of other forms of collagen and gelatin, not specifically GELFILM ® .
- a myringotomy tube for providing drainage of the middle ear through the external ear canal.
- the myringotomy tube is comprised of a member having a passageway provided therein for communicating the middle ear with the external ear canal subsequent to the member having been inserted through a surgical incision in the tympanic membrane.
- the myringotomy tube is further comprised of a bio erodable material so as to dissolve upon exposure to middle ear fluids, whereby the myringotomy tube does not have to be surgically removed from the tympanic membrane.
- the bio erodable material dissolves over a period of nine to twelve months.
- the myringotomy tube is made from GELFILM ® .
- GELFILM ® has a long half-life (approximately one year when used in the middle ear).
- the myringotomy tube might be made of GELFILM ® which is impregnated with various broad spectrum antibiotics so as to assist in the treatment of infection or disease in the ear. As the tube dissolves, the antibiotic is released, aiding in the prevention of infections in the middle ear.
- the myringotomy tube might be made of forms of gelatin other than GELFILM ® .
- the myringotomy tube might be made of collagen that is not in the form of a gelatin or GELFILM ® .
- the myringotomy tube might be made of gelatin other than GELFILM ® which is impregnated with various broad spectrum antibiotics.
- the myringotomy tube might be made of collagen that is not in the form of a gelatin or GELFILM ® and which is impregnated with various broad spectrum antibiotics.
- a bio erodable or dissolvable myringotomy tube avoids many of the problems l o associated with standard non-dissolvable tubes.
- FIG. 1 is a diagrammatic perspective view of a myringotomy tube in accordance with the principles of the present invention disposed in the ear drum;
- Figure 2 is a diagrammatic side view of the myringotomy tube shown in figure 1;
- Figure 3 is an diagrammatic end view of the myringotomy tube shown in Figure 1.
- Figure 4 is a diagrammatic side view of an alternate embodiment of the l o myringotomy tube.
- the drawings provided represent the preferred shape, size, and configuration of the bioerodable myringotomy tube.
- other embodiments of this bioerodable myringotomy tube might be of alternative shapes, sizes, and configurations.
- These alternative embodiments of the bioerodable myringotomy tube might include a bevelled design with various angles between the shaft of the tube and the ends, a larger or smaller
- FIG. 1 there is diagramatically illustrated in Figure 1 an embodiment of a myringotomy tube 20 positioned in an eardrum 22 so as to provide 25 communication between a middle ear 24 and an external ear canal 26.
- the myringotomy tube 20 might take on varying configurations and still be in keeping with the principles of the present invention.
- one embodiment of the myringotomy tube 20 might have a hollow shaft 30 defining a passageway 31 extending from one end 32 to another end 34.
- the end 32 is disposed in the middle ear 24 and the end 34 is disposed in the external canal 26 upon insertion of the myringotomy tube 20 through a surgical incision in the eardrum 22.
- fluid communication is provided between the middle ear 24 and the external ear canal 26 whereby fluid can drain from the middle ear 24 to the external canal 26.
- the end 32 has a diameter of roughly 40 mm and the end 34 has a diameter of 2.4 mm.
- the diameter of the passageway 31 might be roughly 1.5 mm.
- a tab 36 Disposed on the end 34, is a tab 36 for engagement by a surgical instrument so as to enable insertion through an incision in the ear drum 22.
- the ends 32,34 are generally circular in shape. However, the ends 32,34 could have shapes other than a circle, such as oval, triangle, rectangle, and oblong.
- Figure 4 illustrates an alternate embodiment of a myringotomy tube 20', in which the end 32' is angled relative to the shaft 30, with the end 34 being the same as in the first embodiment shown in Figure 2.
- the end 32' can be angled relative to the longitudinal axis of the shaft such that the angle ⁇ is approximately 45 degrees and the angle ⁇ is approximately 135 degrees, although smaller or larger angles could be used as well.
- the tube 20' is otherwise similar to the first embodiment.
- the myringotomy tube 20 is made of a material which is bio erodable upon exposure to middle ear fluids.
- the myringotomy tube 20 might dissolve in nine to twelve months. Any remaining portions of the tube 20, might then be washed away by use of particular solvents.
- An example of such a bio erodable material is GELFILM ® which is made by The UpJohn Company of Kalamazoo, Michigan.
- GELFILM ® is a material that has been used for many years safely in the middle ear. It has been used to provide temporary support to structures that have been surgically repaired and require a scaffolding to maintain a certain position until healing has occurred. The material dissolves in approximately one year and its components; collagen, water and nitrogen are resorbed by the body without sequelae.
- GELFILM ® is also dissolvable in certain solvents. Such solvents could be used to irrigate the external ear, resulting in the dissolution of the myringotomy tube. This would provide a simple and safe method for the removal of GELFILM ® myringotomy tubes prior to their natural dissolution, should the physician deem the tube no longer necessary. This avoids the above mentioned risks of physically extracting the myringotomy tube, and in children, alleviates the need for an operating room procedure.
- the myringotomy tube might be made of any number of different materials dissolvable in middle ear fluids.
- the myringotomy tube 20 might be made of a collagen, a naturally occurring animal protein.
- collagen used to make each embodiment of the tube (collagen, gelatin or GELFILM ® )
- the various embodiments of the tube may dissolve in middle ear fluids after anywhere from 3 months to 12 months of exposure to such fluids.
- the myringotomy tube 20 might also be impregnated with broad spectrum antibiotics which are released as the myringotomy tube erodes in the body or is dissolved by the application of a solution so as to assist in the treatment of disease or infection of the ear.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surgery (AREA)
- Otolaryngology (AREA)
- Psychology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Medicinal Preparation (AREA)
Abstract
A myringotomy tube which is bioerodable and does not require removal. The myringotomy tube is insertable into an opening in the tympanic membrane to provide drainage of the middle ear through the external ear canal. The myringotomy tube includes a shaft that is adapted for disposition in the opening of the tympanic membrane and has a passageway provided therein for communicating the middle ear with the external ear canal when the shaft is inserted in the opening. The myringotomy tube further includes a first flange on one end of the shaft and a second flange on an opposite end of the shaft, with the myringotomy tube being sized such that the first flange and the second flange are disposed on opposite sides of the tympanic membrane when the shaft is disposed in the opening such that the first flange is extendable into the middle ear and the second flange is extendable into the external ear canal. Since the myringotomy tube is formed of a bioerodable material that is dissolvable upon exposure to certain fluids, such as middle ear fluids, the myringotomy tube simply dissolves over a period of time without requiring surgical removal.
Description
Bio Erodable Myringotomy Tube
Background of the Invention
The present invention relates to the field of otology implants and is particularly directed toward a myringotomy tube.
Since 1952 myringotomy tubes (also referred to as tympanotomy tubes) have been used as a form of treatment for recurrent infections in the ear and for abnormal pressure and fluid in the middle ear behind the eardrum due to abnormal ventilation of the middle ear. More than two million operations are performed yearly in the United States whereir; these tubes are surgically inserted into the ear drum (tympanic membrane) so as to provide fluid communication between the middle ear and the external canal.
Myringotomy tubes typically stay in the ear drum for four to thirty-six months, depending upon the age of the patient and the shape of the tube. Most patients in the younger age groups (1-6 years) require a myringotomy tube for twelve to twenty-four months. Older patients may require very short term tubes (1-3 months) or long term tubes (2-3 years) depending upon their etiology of their otologic dysfunction.
The ideal myringotomy tube would stay in place indefinitely without extruding, but would instantly be gone from the ear when the patient no longer needed ventilation of the middle ear. Numerous designs have been developed which allow myringotomy tubes to stay in position for long periods (at least 1 year or more) without extruding. Unfortunately, many of these tubes never extrude and must be surgically removed. This removal risks injury to the surrounding ear drum and any middle ear structures which may have connected to the tube by fibrous adhesions in the middle ear. In addition, this procedure must be done under anesthesia on children who do not tolerate such manipulation in the clinic or office setting. Furthermore, myringotomy tubes that do not
extrude after twenty-four months very often cause a permanent perforation of the ear drum after they are surgically removed. This perforation must be surgically repaired.
Other myringotomy tubes have been designed to avoid the problem of myringotomy tubes staying in place longer than desired (2-3 years or more).
Unfortunately, by the nature of their design, these tubes extrude easily and often extrude during the first four months after placement. This premature extrusion results in recurrent disease and usually results in the myringotomy tube having to be replaced in the ear drum.
Again, in children, this requires another operating room procedure.
The present invention solves the problems noted above associated with existing myringotomy tubes.
Summary of the Invention
The present invention relates to a bioerodable myringotomy tube.
The invention is to be made of various forms of collagen, which is a natural architectural component of the tissues of the human body. Gelatin is a variation of collagen that is prepared and manufactured in various ways. The invention, in its preferred form, is to be made of a form of gelatin called GELFILM®. In other forms, the invention is to be made of other forms of collagen and gelatin, not specifically GELFILM®.
In one embodiment of the present invention, there is provided a myringotomy tube for providing drainage of the middle ear through the external ear canal. The myringotomy tube is comprised of a member having a passageway provided therein for communicating
the middle ear with the external ear canal subsequent to the member having been inserted through a surgical incision in the tympanic membrane. The myringotomy tube is further comprised of a bio erodable material so as to dissolve upon exposure to middle ear fluids, whereby the myringotomy tube does not have to be surgically removed from the tympanic membrane.
In one embodiment, the bio erodable material dissolves over a period of nine to twelve months.
In a preferred embodiment, the myringotomy tube is made from GELFILM®.
GELFILM® has a long half-life (approximately one year when used in the middle ear).
In still another embodiment, the myringotomy tube might be made of GELFILM® which is impregnated with various broad spectrum antibiotics so as to assist in the treatment of infection or disease in the ear. As the tube dissolves, the antibiotic is released, aiding in the prevention of infections in the middle ear.
In another embodiment, the myringotomy tube might be made of forms of gelatin other than GELFILM®.
In still another embodiment, the myringotomy tube might be made of collagen that is not in the form of a gelatin or GELFILM®.
In still another embodiment, the myringotomy tube might be made of gelatin other than GELFILM® which is impregnated with various broad spectrum antibiotics.
In still another embodiment, the myringotomy tube might be made of collagen that is not in the form of a gelatin or GELFILM® and which is impregnated with various broad spectrum antibiotics.
5 It is a purpose of a preferred embodiment of the present invention, to provide a myringotomy tube which further provides for long term stability in the ear drum, without premature extrusion.
A bio erodable or dissolvable myringotomy tube avoids many of the problems l o associated with standard non-dissolvable tubes.
These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the 15 objects obtained by its use, reference should be made to the accompanying drawings and descriptive matter, which form a further part hereof, and in which there is illustrated and described a preferred embodiment of the invention.
Brief Description of the Drawings
In the drawings wherein corresponding reference numerals generally indicate corresponding parts throughout the several views; 5 Figure 1 is a diagrammatic perspective view of a myringotomy tube in accordance with the principles of the present invention disposed in the ear drum;
Figure 2 is a diagrammatic side view of the myringotomy tube shown in figure 1; Figure 3 is an diagrammatic end view of the myringotomy tube shown in Figure 1. Figure 4 is a diagrammatic side view of an alternate embodiment of the l o myringotomy tube.
Detailed Description of Preferred Embodiment(s)
15 The drawings provided represent the preferred shape, size, and configuration of the bioerodable myringotomy tube. However, other embodiments of this bioerodable myringotomy tube might be of alternative shapes, sizes, and configurations. These alternative embodiments of the bioerodable myringotomy tube might include a bevelled design with various angles between the shaft of the tube and the ends, a larger or smaller
20 internal shaft diameter, larger or smaller internal and/or external ends, and various shapes and angles of the ends.
Referring now to the figures, there is diagramatically illustrated in Figure 1 an embodiment of a myringotomy tube 20 positioned in an eardrum 22 so as to provide 25 communication between a middle ear 24 and an external ear canal 26.
It will be appreciated, the myringotomy tube 20 might take on varying configurations and still be in keeping with the principles of the present invention. As
shown in Figures 2 and 3, one embodiment of the myringotomy tube 20 might have a hollow shaft 30 defining a passageway 31 extending from one end 32 to another end 34. The end 32 is disposed in the middle ear 24 and the end 34 is disposed in the external canal 26 upon insertion of the myringotomy tube 20 through a surgical incision in the eardrum 22. Upon insertion of the myringotomy tube 20 into the eardrum 22, fluid communication is provided between the middle ear 24 and the external ear canal 26 whereby fluid can drain from the middle ear 24 to the external canal 26. In the embodiment shown, the end 32 has a diameter of roughly 40 mm and the end 34 has a diameter of 2.4 mm. The diameter of the passageway 31 might be roughly 1.5 mm. Disposed on the end 34, is a tab 36 for engagement by a surgical instrument so as to enable insertion through an incision in the ear drum 22.
As shown in Figures 1 and 3, the ends 32,34 are generally circular in shape. However, the ends 32,34 could have shapes other than a circle, such as oval, triangle, rectangle, and oblong.
Figure 4 illustrates an alternate embodiment of a myringotomy tube 20', in which the end 32' is angled relative to the shaft 30, with the end 34 being the same as in the first embodiment shown in Figure 2. The end 32' can be angled relative to the longitudinal axis of the shaft such that the angle α is approximately 45 degrees and the angle β is approximately 135 degrees, although smaller or larger angles could be used as well. The tube 20' is otherwise similar to the first embodiment.
In the preferred embodiment of the present invention, the myringotomy tube 20 is made of a material which is bio erodable upon exposure to middle ear fluids. In one embodiment, the myringotomy tube 20 might dissolve in nine to twelve months. Any remaining portions of the tube 20, might then be washed away by use of particular solvents.
An example of such a bio erodable material is GELFILM® which is made by The UpJohn Company of Kalamazoo, Michigan. GELFILM® is a material that has been used for many years safely in the middle ear. It has been used to provide temporary support to structures that have been surgically repaired and require a scaffolding to maintain a certain position until healing has occurred. The material dissolves in approximately one year and its components; collagen, water and nitrogen are resorbed by the body without sequelae.
GELFILM® is also dissolvable in certain solvents. Such solvents could be used to irrigate the external ear, resulting in the dissolution of the myringotomy tube. This would provide a simple and safe method for the removal of GELFILM® myringotomy tubes prior to their natural dissolution, should the physician deem the tube no longer necessary. This avoids the above mentioned risks of physically extracting the myringotomy tube, and in children, alleviates the need for an operating room procedure.
It will be appreciated that the myringotomy tube might be made of any number of different materials dissolvable in middle ear fluids. For example, the myringotomy tube 20 might be made of a collagen, a naturally occurring animal protein. Depending upon the form of collagen used to make each embodiment of the tube (collagen, gelatin or GELFILM® ), and depending upon the specific manufacturing process employed to make each embodiment of the tube, the various embodiments of the tube may dissolve in middle ear fluids after anywhere from 3 months to 12 months of exposure to such fluids.
In yet other embodiments, the myringotomy tube 20 might also be impregnated with broad spectrum antibiotics which are released as the myringotomy tube erodes in the body or is dissolved by the application of a solution so as to assist in the treatment of disease or infection of the ear.
It is to be understood, that even though numerous characteristics and advantages of the invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of the parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims
1. A myringotomy tube for providing drainage of the middle ear through the external ear canal, the myringotomy tube being comprised of a member having a passageway provided therein for communicating the middle ear with the external ear canal subsequent to the member having been inserted through a surgical incision in the tympanic membrane, the myringotomy tube being further comprised of a bioerodable material so as to dissolve upon exposure to certain fluids, whereby the myringotomy tube does not have to be surgically removed.
2. A myringotomy tube in accordance with claim 1 , wherein the myringotomy tube is made from collagen.
3. A myringotomy tube in accordance with claim 2, wherein the collagen is in the form of a gelatin material.
4. A myringotomy tube in accordance with claim 3, wherein the gelatin material is in the form of GELFILM®.
5. A myringotomy tube in accordance with claim 1, wherein the myringotomy tube dissolves in middle ear fluids.
6. A myringotomy tube in accordance with claim 1 , wherein the myringotomy tube is impregnated with an antibiotic.
7. A myringotomy tube in accordance with claim 1, wherein the myringotomy tube includes an end connected to the member and disposed within the middle ear, said end being disposed at an acute angle relative to a longitudinal axis of said member.
8. A myringotomy tube in accordance with claim 5, wherein the myringotomy tube dissolves over a time period approximately between 3 months to 12 months.
5 9. A myringotomy tube insertable into an opening in a tympanic membrane to provide drainage of the middle ear through the external ear canal, the myringotomy tube being comprised of a shaft adapted for disposition in the opening of the tympanic membrane and having a passageway provided therein for communicating the middle ear with the external ear canal when the shaft is inserted in the opening, the myringotomy tube l o further including a first flange on one end of the shaft and a second flange on an opposite end of the shaft, the myringotomy tube being sized such that the first flange and the second flange are disposed on opposite sides of the tympanic membrane when the shaft is disposed in the opening such that the first flange is extendable into the middle ear and the second flange is extendable into the external ear canal, and the myringotomy tube being
15 further comprised of a bioerodable material that is dissolvable upon exposure to middle ear fluids, whereby the myringotomy tube does not have to be surgically removed.
10. A myringotomy tube in accordance with claim 9, wherein the myringotomy tube is made from collagen.
20
11. A myringotomy tube in accordance with claim 10, wherein the collagen is in the form of a gelatin material.
12. A myringotomy tube in accordance with claim 11, wherein the gelatin material is 25 in the form of GELFILM®.
13. A myringotomy tube in accordance with claim 9, wherein the myringotomy tube is impregnated with an antibiotic.
14. A myringotomy tube in accordance with claim 9, wherein said first flange is disposed at an acute angle relative to a longitudinal axis of said shaft.
15. A myringotomy tube in accordance with claim 9, wherein the myringotomy tube dissolves over a time period approximately between 3 months to 12 months.
16. A method of providing drainage of the middle ear through the external ear canal, the middle ear and the external ear canal being separated by the tympanic membrane, comprising: providing a myringotomy tube having a member with a passageway therein, the myringotomy tube being made of a bioerodable material; inserting the myringotomy tube through an incision in the tympanic membrane whereby the middle ear and the external ear canal are in communication through the passageway; and allowing the myringotomy tube to dissolve over a period of time.
17. The method in accordance with claim 16, wherein the step of providing the myringotomy tube comprises making the myringotomy tube from a collagen material.
18. The method in accordance with claim 17, wherein the myringotomy tube is made from a gelatin material.
19. The method in accordance with claim 18, wherein the myringotomy tube is made from GELFILM®.
20. The method in accordance with claim 16, wherein prior to inserting the myringotomy tube, impregnating the myringotomy tube with an antibiotic.
21. A myringotomy tube for inserting into an opening in a tympanic membrane to provide drainage of the middle ear through the external ear canal, the myringotomy tube being comprised of a shaft adapted for disposition in the opening of the tympanic membrane and having a passageway provided therein for communicating the middle ear
5 with the external ear canal when the shaft is inserted in the opening, the myringotomy tube fiirther including a flange disposed on the shaft at one end thereof, the myringotomy tube being sized such that the flange is disposed on one side of the tympanic membrane when the shaft is disposed in the opening, and the myringotomy tube being further comprised of a bioerodable, gelatin collagen material so as to dissolve upon exposure to certain fluids,
1 o whereby the myringotomy tube does not have to be surgically removed.
22. A myringotomy tube in accordance with claim 21 , wherein the myringotomy tube is dissolvable in middle ear fluids.
15 23. A myringotomy tube in accordance with claim 21 , wherein the myringotomy tube is impregnated with an antibiotic.
24. A myringotomy tube comprising: a shaft having opposite ends, and a passageway extending through the shaft
2 o between the ends thereof; a flange disposed on the shaft at one of the ends thereof; and the shaft and the flange being made of collagen material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93566697A | 1997-09-23 | 1997-09-23 | |
PCT/US1998/026091 WO2000033774A1 (en) | 1997-09-23 | 1998-12-09 | Bioerodable myringotomy tube |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1137379A1 true EP1137379A1 (en) | 2001-10-04 |
Family
ID=25467493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98962978A Withdrawn EP1137379A1 (en) | 1997-09-23 | 1998-12-09 | Bioerodable myringotomy tube |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1137379A1 (en) |
WO (1) | WO2000033774A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10058629B2 (en) | 2005-12-01 | 2018-08-28 | Sca Hygiene Products Ab | Absorbent article with skin care agent composition immobilized in a lipid phase |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7833282B2 (en) | 2006-02-27 | 2010-11-16 | Mandpe Aditi H | Eustachian tube device and method |
US20130338700A1 (en) * | 2012-06-13 | 2013-12-19 | Matheny Enterprises, Llc | Biodegradable, Active Ingredient-Eluting Structural Support |
CA2921952C (en) * | 2013-08-21 | 2022-12-13 | Children's National Medical Center | Dissolvable on-command implant |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948271A (en) * | 1972-11-07 | 1976-04-06 | Taichiro Akiyama | Drain for the eardrum and apparatus for introducing the same |
DE2756256A1 (en) * | 1977-12-16 | 1979-06-21 | Scheicher Hans | Compsn. for treating bone defects - comprises gellable soln. of polysaccharide and/or gelatin |
US4326512A (en) * | 1980-02-14 | 1982-04-27 | Peerless Sidney A | Composite ventilation tube for the middle ear |
US4468218A (en) * | 1982-09-24 | 1984-08-28 | Armstrong Beverly W | Ventilation tube for the middle ear and method of implanting same |
US4650488A (en) * | 1984-05-16 | 1987-03-17 | Richards Medical Company | Biodegradable prosthetic device |
WO1994013234A1 (en) * | 1992-12-17 | 1994-06-23 | Michael Andrew Coote | Implant device and method for treatment of glaucoma |
-
1998
- 1998-12-09 EP EP98962978A patent/EP1137379A1/en not_active Withdrawn
- 1998-12-09 WO PCT/US1998/026091 patent/WO2000033774A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0033774A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10058629B2 (en) | 2005-12-01 | 2018-08-28 | Sca Hygiene Products Ab | Absorbent article with skin care agent composition immobilized in a lipid phase |
Also Published As
Publication number | Publication date |
---|---|
WO2000033774A1 (en) | 2000-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6379323B1 (en) | Bio erodable myringotomy tube | |
US6599297B1 (en) | Device for ventilating the middle ear | |
US4387706A (en) | Iris retractor | |
EP1988850B1 (en) | Eustachian tube device | |
US5964767A (en) | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal | |
US3807409A (en) | Medical ventilation tube | |
Poe et al. | Evaluation of perilymphatic fistulas by middle ear endoscopy | |
US20050222613A1 (en) | Wound closure device and method for vitrectomy | |
KR20190074673A (en) | An ocular disease implant apparatus for controlling intraocular pressure | |
AU643977B2 (en) | Permanent middle ear vent tube | |
EP4442223A1 (en) | Artificial cornea based on umbrella-shaped cylinder, and preparation process therefor | |
EP1465677B1 (en) | Biodegradable auricular prosthetic device | |
Beekhuis | Augmentation mentoplasty with polyamide mesh: update | |
US6186965B1 (en) | Dissolvable septal splint and method of using the same | |
EP1137379A1 (en) | Bioerodable myringotomy tube | |
US6042574A (en) | Oval ventilation ear tube | |
Tumarkin | Transmeatal Attico-Antrotomy in Chronic Tympanomastoid Suppuration | |
WO1993010729A1 (en) | Middle ear ventilation tube | |
CA2301129C (en) | Device for ventilating the middle ear | |
SU1409285A1 (en) | Drainage tube | |
US20220331568A1 (en) | Neovaginal stent system | |
US6191334B1 (en) | Perforation repair device and method | |
AU2012261629B2 (en) | Eustachian Tube Device and Method | |
SU1643009A1 (en) | Frontal sinus osteomyelitis cure method | |
RU2088191C1 (en) | Method for performing antroatticotomy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040225 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
18D | Application deemed to be withdrawn |
Effective date: 20051026 |