EP1131599B1 - Device for measuring the dimension and controlling of defects in optical fibres during production - Google Patents

Device for measuring the dimension and controlling of defects in optical fibres during production Download PDF

Info

Publication number
EP1131599B1
EP1131599B1 EP00920792.9A EP00920792A EP1131599B1 EP 1131599 B1 EP1131599 B1 EP 1131599B1 EP 00920792 A EP00920792 A EP 00920792A EP 1131599 B1 EP1131599 B1 EP 1131599B1
Authority
EP
European Patent Office
Prior art keywords
fiber
sensor
measurement
fringes
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920792.9A
Other languages
German (de)
French (fr)
Other versions
EP1131599A1 (en
Inventor
Jean-François Fardeau
Original Assignee
FARDEAU Jean-Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FARDEAU Jean-Francois filed Critical FARDEAU Jean-Francois
Publication of EP1131599A1 publication Critical patent/EP1131599A1/en
Application granted granted Critical
Publication of EP1131599B1 publication Critical patent/EP1131599B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/37Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected perpendicularly to the axis of the fibre or waveguide for monitoring a section thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires

Definitions

  • the present invention relates to a method for high speed and high accuracy absolute measurement of the diameter of transparent fibers and the control of internal and superficial defects.
  • a method of measuring the diameter of an optical fiber is also described in the document US 5,513,004 .
  • the present invention relates to a method and an assembly for both dimensional measurement and control of glass fibers before coating (bare fiber) as dimensional measurement and control of coatings (coating).
  • No known device to date can achieve contactless, more than 50 KHz, and statically an absolute diameter measurement with resolutions of the order of a few hundredths of a micron including the detection of defects.
  • References [1] and [2] summarize the fundamental principles of light propagation in a transparent fiber, as described figure 1 , in particular when it is illuminated by a monochromatic field of light colimated, coherent, perpendicular to the axis of the fiber.
  • the deviation of the light by the fiber produces a system of interferometry fringes whose periods and phases depend on the profiles of indices; diameters, materials, homogeneity, concentricity. From the analysis of these fringes, according to the angles of measurement, one deduces precise information on the conformity of the fiber with respect to a model defined as absolute reference.
  • the quality of the measured signal represented by the contrast and the regularity of the fringes as well as by the energy of the signal depends on the optical quality of the fiber, ie the absence of defects, the homogeneity, the geometric regularity .
  • Continuous contrast analysis of high-speed fringes can detect very small defects such as bubbles in polymer coatings.
  • the reference [1] describes in detail the propagation relations and deduces a method for rapidly measuring the diameter variations and a method for measuring the diameter by calibration on a standard fiber.
  • the cited documents describe assemblies for measuring diameter variations by counting fringe slip or diameter by measuring the period of the fringes with reference to a period of standard fiber.
  • the document [6] uses a Fourier transform processing method for measuring the diameter and detecting small defects in the glass.
  • the figure 1 recalls the propagation phenomena in a transparent cylindrical structure consisting of a center of radius "r" and index N 1 , and an envelope of radius "R" and index N 2 , whose ratio r / R is, at most of the order of 0.5, usual case of telecommunication fibers.
  • This structure represents in particular either a multi-mode fiberglass with its core (62.5 / 125 ⁇ m) or a monomode fiber, or finally a glass fiber coated with its coating (125 / 245 ⁇ m).
  • the invention can be applied with models taking into account the differences in the indices of the coating layers.
  • NOT 0 D / ⁇ * not 2 - 2 * not + 1 + 1 ⁇ 4
  • the originality of the presented method rests, on the one hand, on the digital processing of the signal which identifies a parameterizable model on the signal and which leads directly to the absolute measurement of the diameter, on the other hand, an analog method of rapid measurement very high resolution diameter variations, and finally, the correlation of the results of the numerical and analog methods to provide a fast and absolute measurement method.
  • a fundamental element of the method lies in the optical quality of the signal, characterized by the contrast of the fringes.
  • the permanent analogue control of the contrast, included in the device also leads to the detection of possible defects of the fiber.
  • This measurement is carried out by a digital processing of a signal coming from a sensor 6 ( figure 2 ), constituted in our case of a CCD strip, placed between 40 and 80 ° with respect to the origin of the laser beam.
  • a sensor 6 figure 2
  • the angular window of the bar is 24 °.
  • Digital processing is characterized by a low frequency of measurements, currently of the order of 10 Hz.
  • the identification of the model M closest to the fringe system S leads to determining A, B, D and ⁇ minimizing the residual ⁇ . All methods of identification are usable. For our part we use a least squares minimization method, on the one hand on the period by optimizations of D and ⁇ , then on the amplitude. Parameters A and B allow the search for an approximate amplitude profile allowing the detection of defects. Their values are approximately proportional to the diameter (energy of the signal) which makes it possible to initialize them after adjustment of the apparatus. Only the value of D, in N (D, ⁇ ), interests us for the measurement. ⁇ is a parameter which makes it possible to better adjust the phase of the model to that of the signal.
  • the angular calibration of the sensor is done by reference to the direction of the axis of incidence of the measuring laser taken as angular value 0.
  • the optical bench of the measuring apparatus is mounted on a test bench consisting on the one hand of an optical slot (14) to limit the field and the energy of the laser on the sensors, of a large angular encoder precision, centered on the axis of the fiber (axis of the apparatus), of an integral assembly, consisting of an optical (12) focusing of the laser beam and a sensor (13) giving a voltage proportional to the position of the laser spot.
  • the assembly (12) (13) is rotated angularly until the sensor (13) indicates the position of the laser beam at 0 volts.
  • the angular encoder is then secured to the assembly (12) (13) and initialized to zero on the laser axis.
  • the assembly (12) (13) is then rotated by any angle, of the order of 110.degree.
  • the mirror and the assembly (12) (13) are adjusted to find an indication of 0 volts on the sensor (13).
  • the mirror is then made integral with the encoder, the angular value ⁇ 0 corresponding to 0 volts of the encoder is read and the assembly (12) (13) is disconnected.
  • the mirror is then referenced angularly.
  • a first approach is done by identifying the parameters D and ⁇ , by minimizing the differences between the model and the measured signal, between ⁇ 1 and ⁇ 2 which correspond to the angular range of the CCD array.
  • this approach we do not take into account the phase of the fringe system but only the period as a function of the angle.
  • the total uncertainty of the apparatus would therefore be 0.05% of the diameter, ie on 125 ⁇ m, ⁇ 0.06 ⁇ m.
  • To these uncertainties must be added fiber imperfections (ovality, local optical disturbances, residual signals " ⁇ " which reduce the total uncertainty to an estimated value of ⁇ 0.15 ⁇ m.
  • the angular measurement range between 58 and 82 ° corresponds to about 30 fringes.
  • the total uncertainty of the measurements made in an angular window of 24 ° is 0.15%.
  • the phase of S at the origin of the angles is then added to the model to obtain a much improved measurement accuracy.
  • the function (4) is taken into account in the angular range of 0 to ⁇ o on the CCD.
  • the sliding of a fringe represents the result of the variation of all the fringe periods between the angular origin and the angular position of the measurement plus the phase variation at the angular origin.
  • This phase measurement method at the point ⁇ has the advantage of being very stable, very reproducible, very sensitive to variations in the diameter and not very sensitive to the residual modulations of the fringe system. It differs from the digital measurement method but leads to the same resolutions.
  • This method gives only the variations of the diameter but at high speed, in opposition to the absolute method, numerical, but slow. They are therefore complementary to ensure both the absolute measurement and the high speed.
  • the pitch of the fringes as a function of the angle ⁇ is shown Figure 9 . It can be seen that the pitch of the fringes remains substantially constant in the zone 60 ° ⁇ 10 °. This characteristic makes it possible to place in this zone sensors spaced at a constant pitch corresponding to the pitch of the fringes. It is also interesting for the measurement of the period (frequency) by Fourier transform [6].
  • the figure 6 shows a block diagram of the realization of an analog measurement on this principle from signals S1 and S2.
  • the signals A1 and A2 drive a dual multiplexer which alternately switches the four inputs S1, -S1, S2, -S2 to s1 and s2 as indicated above.
  • Analogue measurement tests provided the ENR1 record in terms of reproducibility.
  • the defects are essentially small air tubes, "air-line", in the glass fibers, or localized defects, superficial.
  • coatings include air bubbles, inclusions of unmelted materials, delaminations (gas gap between the glass and the coating), thicknesses, under thicknesses and eccentricity.
  • Two parameters are used to characterize the quality of the optical signal: the energy, which increases with the size of an air-line, but especially the contrast of the fringes (difference between the maxima and the minima of S1 and S2), which constitutes a fundamental element for this method of measurement.
  • the absence of contrast on the fringes effectively prevents the measurement.
  • the real-time energy is obtained by the sum of the currents coming from the photodiodes of the analog sensor.
  • the real-time contrast is obtained by taking the maximum of the four signals S1, -S1, S2, -S2. This signal is naturally fluctuating since the Si are sinusoids.
  • the digital processing extracts the component of the measured signal which does not correspond to an acceptable distribution of the amplitude and the period of the fringes (see figure 3 (normal signal), figure 4 (disturbed signal), figure 5 , difference of the signals of the Figures 3 and 4 ).

Description

La présente invention concerne une méthode pour la mesure absolue à grande vitesse et de grande précision du diamètre des fibres transparentes et le contrôle des défauts internes et superficiels.The present invention relates to a method for high speed and high accuracy absolute measurement of the diameter of transparent fibers and the control of internal and superficial defects.

Depuis 1970 de nombreux travaux ont été consacrés à l'étude de la propagation de la lumière perpendiculairement à l'axe de la fibre. Ces travaux ont donné lieu au fil des années à de nombreuses méthodes et solutions pour la mesure dimensionnelles des fibres et le contrôle des défauts. Parmi ces travaux auxquels nous nous sommes référés :

  • [1] Thèse de l'université de Saint-Etienne, par Lionel Delaunay, 28/03/1986
  • [2] US Patent n° 3,982,816 de Laurence S. Watkins, Sept. 28, 1976
  • [3] US Patent n° 4,027,977 de Ralph E. Frazee, June 7th, 1977 .
  • [4] US Patent n° 4,280,827 de Edward F. Murphy, July, 28th, 1981 .
  • [5] US Patent n° 4,176,961 de Ralph E. Frazee, December 4th, 1979 ,
  • [6] EP 0 549 914 B1, de Button Leslie James , Corning Inc. 07/05/1997 et documents antérieurs.
  • [7] 3396052966 FCOTAC, Alcatel FO
Since 1970, many studies have been devoted to the study of the propagation of light perpendicular to the axis of the fiber. Over the years, this work has led to numerous methods and solutions for dimensional measurement of fibers and control of defects. Among these works to which we have referred:
  • [1] Thesis of the University of Saint-Etienne, by Lionel Delaunay, 28/03/1986
  • [2] US Patent No. 3,982,816 to Laurence S. Watkins, Sept. 28, 1976
  • [3] US Patent No. 4,027,977 to Ralph E. Frazee, June 7th, 1977 .
  • [4] US Patent No. 4,280,827 to Edward F. Murphy, July, 28th, 1981 .
  • [5] US Patent No. 4,176,961 to Ralph E. Frazee, December 4th, 1979 ,
  • [6] EP 0 549 914 B1, by Button Leslie James , Corning Inc. 07/05/1997 and earlier documents.
  • [7] 3396052966 FCOTAC, Alcatel FO

Un procédé de mesure de diamètre d'une fibre optique est aussi décrit dans le document US 5 513 004 .A method of measuring the diameter of an optical fiber is also described in the document US 5,513,004 .

La production des fibres optiques de télécommunication par fibrage, demande des dispersions autour du diamètre nominal spécifié de plus en plus faibles et une absence de défaut critique pour les caractéristiques mécaniques et optiques des fibres mais surtout pour leur durée de vie. C'est le cas des défauts dans le verre, «air-line» ou dans le revêtement, «bulles», «délaminations», ainsi que l'excentricité du verre dans son revêtement polymère. Enfin, l'augmentation des vitesses de fibrage et les fluctuations hautes fréquences du diamètre des fibres demandent des instruments plus rapides que ceux couramment utiliser pour visualiser ces phénomènes et les réduire.The production of telecommunication optical fiber by fiber drawing, requires dispersions around the specified nominal diameter of increasingly weak and a lack of critical defect for the mechanical and optical characteristics of the fibers but especially for their lifetime. This is the case of defects in the glass, "air-line" or in the coating, "bubbles", "delaminations", as well as the eccentricity of the glass in its polymer coating. Finally, the increase in fiberizing speeds and the high frequency fluctuations of the fiber diameter require faster instruments than those commonly used to visualize these phenomena and reduce them.

La présente invention concerne une méthode et un montage permettant aussi bien la mesure dimensionnelle et le contrôle des fibres de verre avant revêtement (bare fibre) que la mesure dimensionnelle et le contrôle des revêtements (coating). D'une façon plus générale elle s'applique à toute tige de section circulaire, optiquement transparente, correspondant à la figure 1 et présentant un profil d'indice R1, N1 et R2, N2. Aucun appareil connu à ce jour ne permet de réaliser sans contact, à plus de 50 KHz, et de façon statique une mesure absolue du diamètre avec des résolutions de l'ordre de quelques centièmes de micron incluant la détection des défauts.The present invention relates to a method and an assembly for both dimensional measurement and control of glass fibers before coating (bare fiber) as dimensional measurement and control of coatings (coating). In a more general way it applies to any rod of circular section, optically transparent, corresponding to the figure 1 and having an index profile R1, N1 and R2, N2. No known device to date can achieve contactless, more than 50 KHz, and statically an absolute diameter measurement with resolutions of the order of a few hundredths of a micron including the detection of defects.

Les références [1] et [2] résument les principes fondamentaux de la propagation de la lumière dans une fibre transparente, telle que décrite figure 1, en particulier lorsqu'elle est illuminée par un champ de lumière monochromatique colimatée, cohérent, perpendiculaire à l'axe de la fibre. La déviation de la lumière par la fibre, produit un système de franges d'interférométrie dont les périodes et les phases dépendent des profils d'indices ; diamètres, matières, homogénéité, concentricité. De l'analyse de ces franges, selon les angles de mesure, on en déduit des informations précises sur la conformité de la fibre par rapport à un modèle défini comme référence absolue. La qualité du signal mesuré représenté par le contraste et la régularité des franges ainsi que par l'énergie du signal, dépend de la qualité optique de la fibre, c'est à dire l'absence de défauts, l'homogénéité, la régularité géométrique. L'analyse continue du contraste des franges à grande vitesse permet de détecter des très petits défauts comme les bulles dans les revêtements polymères.References [1] and [2] summarize the fundamental principles of light propagation in a transparent fiber, as described figure 1 , in particular when it is illuminated by a monochromatic field of light colimated, coherent, perpendicular to the axis of the fiber. The deviation of the light by the fiber, produces a system of interferometry fringes whose periods and phases depend on the profiles of indices; diameters, materials, homogeneity, concentricity. From the analysis of these fringes, according to the angles of measurement, one deduces precise information on the conformity of the fiber with respect to a model defined as absolute reference. The quality of the measured signal represented by the contrast and the regularity of the fringes as well as by the energy of the signal, depends on the optical quality of the fiber, ie the absence of defects, the homogeneity, the geometric regularity . Continuous contrast analysis of high-speed fringes can detect very small defects such as bubbles in polymer coatings.

La référence [1] décrit de façon détaillée les relations de propagation et en déduit une méthode de mesure rapide des variations du diamètre et une méthode de mesure du diamètre par étalonnage sur une fibre étalon. Les documents cités décrivent des montages de mesure des variations de diamètre par comptage du glissement des franges ou de diamètre par mesure de la période des franges en référence à une période de fibre étalon. Le document [6] utilise une méthode de traitement par transformée de Fourrier pour la mesure du diamètre et la détection des petits défauts dans le verre.The reference [1] describes in detail the propagation relations and deduces a method for rapidly measuring the diameter variations and a method for measuring the diameter by calibration on a standard fiber. The cited documents describe assemblies for measuring diameter variations by counting fringe slip or diameter by measuring the period of the fringes with reference to a period of standard fiber. The document [6] uses a Fourier transform processing method for measuring the diameter and detecting small defects in the glass.

La figure 1 rappelle les phénomènes de propagations dans une structure cylindrique transparente constituée d'un centre de rayon «r» et d'indice N1, et d'une enveloppe de rayon «R» et d'indice N2, dont le rapport r/R est, au maximum de l'ordre de 0.5, cas habituel des fibres de télécommunication. Cette structure représente en particulier soit une fibre de verre multi-mode avec son coeur (62,5/125µm) soit une fibre monomode, soit enfin une fibre verre revêtue de son coating (125/245µm). On considère voisins les indices des deux couchent de coating par rapport au verre pour utiliser le même modèle. On peut cependant appliquer l'invention avec des modèles prenant en compte les différences d'indices des couches de coating.The figure 1 recalls the propagation phenomena in a transparent cylindrical structure consisting of a center of radius "r" and index N 1 , and an envelope of radius "R" and index N 2 , whose ratio r / R is, at most of the order of 0.5, usual case of telecommunication fibers. This structure represents in particular either a multi-mode fiberglass with its core (62.5 / 125μm) or a monomode fiber, or finally a glass fiber coated with its coating (125 / 245μm). We consider that the indices of the two coatings of coating compared to the glass to consider the same model. However, the invention can be applied with models taking into account the differences in the indices of the coating layers.

La propagation des rayons lumineux au travers de la fibre à été largement étudiée et nous n'utiliserons que les résultats de ces travaux. Les faisceaux réfléchis (Rr) et transmis (Rt) interfèrent à l'infini tout autour de la fibre. Le modèle qui décrit la contribution des faisceaux au système de franges s'exprime par : S = i ψ i n θ D λ ,

Figure imgb0001
avec

ψi
Relation de propagation de chaque raie laser contribuant à la constitution du signal au même point.
n
indice N1 de la matière
θ
Angle de mesure
D
diamètre extérieur
λ
Longueur d'onde du laser
The propagation of light rays through the fiber has been widely studied and we will only use the results of this work. The reflected (Rr) and transmitted (Rt) beams interfere infinitely around the fiber. The model that describes the contribution of the beams to the fringe system is expressed by: S = Σ i ψ i not θ D λ ,
Figure imgb0001
with
ψi
Propagation relationship of each laser line contributing to the constitution of the signal at the same point.
not
N1 index of the material
θ
Angle of measurement
D
outside diameter
λ
Laser wavelength

Dans une zone angulaire θ comprise entre 40° et 80°, deux fonctions Ψ correspondant aux rayons Rt et Rr, dominent largement les autres. Nous rassemblons la contribution des autres faisceaux résiduels (réflexions multiples dans la fibre) sous le caractère ε ce qui conduit à réduire alors la relation (1) à : S = Ψ Rt + Ψ Rr + ε

Figure imgb0002
In an angular zone θ between 40 ° and 80 °, two functions Ψ corresponding to the rays Rt and Rr, largely dominate the others. We collect the contribution of the other residual beams (multiple reflections in the fiber) under the character ε which leads to reduce then the relation (1) to: S = Ψ rt + Ψ rr + ε
Figure imgb0002

La différence de marche Δ des deux faisceaux Ψ s'exprime en fonction du diamètre extérieur de la fibre «D», de l'indice du revêtement extérieur «n = N1», de la longueur d'onde «λ» et de l'angle de la mesure «θ», selon les références [1] et [2]. Δ = D * f n θ + λ / 4

Figure imgb0003
avec f n θ = sin θ / 2 + n 2 + 1 - 2 * n * cos θ / 2 1 / 2
Figure imgb0004
soit en nombre de franges : N = Δ / λ = D / λ * f n θ + ¼
Figure imgb0005
N 0 = D / λ * n 2 - 2 * n + 1 + ¼
Figure imgb0006
The difference Δ of the two beams Ψ is expressed as a function of the outer diameter of the fiber "D", the outer coating index "n = N 1 ", the wavelength "λ" and the angle of measurement "θ", according to references [1] and [2]. Δ = D * f not θ + λ / 4
Figure imgb0003
with f not θ = sin θ / 2 + not 2 + 1 - 2 * not * cos θ / 2 1 / 2
Figure imgb0004
in number of fringes: NOT = Δ / λ = D / λ * f not θ + ¼
Figure imgb0005
NOT 0 = D / λ * not 2 - 2 * not + 1 + ¼
Figure imgb0006

Si on connaît avec précision chaque paramètre, λ, θ et n, les relations (3) et (4) constituent un modèle de référence pour la mesure absolue de D, sans contrainte de calibration par une fibre étalon. λ, est un paramètre mesurable précisément ou connu du laser (He). « N1 » est l'indice connu précisément de la couche externe de la fibre. θ, doit être mesuré sur l'instrument. Chaque point élémentaire du capteur 6 (figure (2) utilisé doit donc correspondre à une valeur angulaire précise.If we know precisely each parameter, λ, θ and n, the relations (3) and (4) constitute a reference model for the absolute measurement of D, without calibration constraint by a standard fiber. λ, is a precisely measurable or known parameter of the laser (He). "N1" is the known index precisely of the outer layer of the fiber. θ, must be measured on the instrument. Each elementary point of the sensor 6 ( figure (2 ) used must therefore correspond to a precise angular value.

L'originalité de la méthode présentée repose, d'une part, sur le traitement numérique du signal qui identifie un modèle paramétrable sur le signal et qui conduit directement à la mesure absolue du diamètre, d'autre part, une méthode analogique de mesure rapide des variations de diamètre à très grande résolution, et enfin, sur la corrélation des résultats des méthodes numériques et analogiques pour fournir une méthode de mesure rapide et absolue. Un élément fondamental de la méthode réside dans la qualité optique du signal, caractérisé par le contraste des franges. Le contrôle analogique permanent du contraste, inclus dans l'appareil, conduit aussi à la détection des défauts éventuels de la fibre.The originality of the presented method rests, on the one hand, on the digital processing of the signal which identifies a parameterizable model on the signal and which leads directly to the absolute measurement of the diameter, on the other hand, an analog method of rapid measurement very high resolution diameter variations, and finally, the correlation of the results of the numerical and analog methods to provide a fast and absolute measurement method. A fundamental element of the method lies in the optical quality of the signal, characterized by the contrast of the fringes. The permanent analogue control of the contrast, included in the device, also leads to the detection of possible defects of the fiber.

Mesure absolue du DiamètreAbsolute Diameter Measurement

Cette mesure se réalise par un traitement numérique d'un signal issu d'un capteur 6 (figure 2), constitué dans notre cas d'une barrette CCD, placée entre 40 et 80° par rapport à l'origine du faisceau laser. Dans le montage expérimentale, la fenêtre angulaire de la barrette est de 24°. Le traitement numérique se caractérise par une faible fréquence des mesures, actuellement de l'ordre de 10Hz.This measurement is carried out by a digital processing of a signal coming from a sensor 6 ( figure 2 ), constituted in our case of a CCD strip, placed between 40 and 80 ° with respect to the origin of the laser beam. In the experimental setup, the angular window of the bar is 24 °. Digital processing is characterized by a low frequency of measurements, currently of the order of 10 Hz.

Un modèle de représentation du système de franges produit par Rt et Rr peut s'écrire : M = A / B + θ * 1 + Sin 2 N D θ * π + ϕ ,

Figure imgb0007
et S = M + ε
Figure imgb0008
A representation model of the fringe system produced by Rt and Rr can be written: M = AT / B + θ * 1 + Sin 2 NOT D θ * π + φ ,
Figure imgb0007
and S = M + ε
Figure imgb0008

L'identification du modèle M le plus proche du système de franges S conduit à déterminer A, B, D et ϕ minimisant le résiduel ε. Toutes les méthodes d'identification sont utilisables. Pour notre part nous employons une méthode de minimisation par les moindres carrés, d'une part sur la période par optimisations de D et ϕ, puis sur l'amplitude. Les paramètres A et B permettent la recherche d'un profil d'amplitude approché permettant la détection des défauts. Leurs valeurs sont approximativement proportionnelles au diamètre (énergie du signal) ce qui permet de les initialiser après réglage de l'appareil. Seule la valeur de D, dans N(D, θ), nous intéresse pour la mesure. ϕ est un paramètre qui permet d'ajuster au mieux la phase du modèle sur celui du signal.The identification of the model M closest to the fringe system S leads to determining A, B, D and φ minimizing the residual ε. All methods of identification are usable. For our part we use a least squares minimization method, on the one hand on the period by optimizations of D and φ, then on the amplitude. Parameters A and B allow the search for an approximate amplitude profile allowing the detection of defects. Their values are approximately proportional to the diameter (energy of the signal) which makes it possible to initialize them after adjustment of the apparatus. Only the value of D, in N (D, θ), interests us for the measurement. φ is a parameter which makes it possible to better adjust the phase of the model to that of the signal.

L'étalonnage angulaire du capteur se fait par référence à la direction de l'axe d'incidence du laser de mesure pris comme valeur angulaire 0. Pour identifier les positions angulaires des pixels, on utilise le montage de la figure 10. Le banc optique de l'appareil de mesure est monté sur un banc de test constitué d'une part d'une fente optique (14) pour limiter le champ et l'énergie du laser sur les capteurs, d'un codeur angulaire de grande précision, centré sur l'axe de la fibre (axe de l'appareil), d'un ensemble solidaire, constitué d'une optique (12) de focalisation du faisceau laser et d'un capteur (13) donnant une tension proportionnelle à la position du spot laser. L'ensemble (12)(13) est tourné angulairement jusqu'à ce que le capteur (13) indique la position du faisceau laser à 0 volt. Le codeur angulaire est alors rendu solidaire de l'ensemble (12)(13) et initialisé à zéro sur l'axe du laser. On tourne alors l'ensemble (12)(13) d'un angle quelconque, de l'ordre de 110° par exemple pour permettre de placer et référencer angulairement un miroir sur l'axe de la fibre. On ajuste le miroir et l'ensemble (12)(13) pour retrouver une indication de 0 volt sur le capteur (13). On rend alors le miroir solidaire du codeur, on relève la valeur angulaire θ0 correspondant à 0 volt du codeur et l'on désolidarise l'ensemble (12)(13). Le miroir est alors référencé angulairement. L'axe du laser dévié par le miroir sera alors A = 2*(π - θ) - θ0. En tournant le miroir (11) on déplace le spot laser sur les capteurs 6 et 7. On peut donc relever point à point les positions angulaires des pixels et identifier la fonction de transfert angle = f(Pixels) incluant le système optique 4.The angular calibration of the sensor is done by reference to the direction of the axis of incidence of the measuring laser taken as angular value 0. To identify the angular positions of the pixels, the mounting of the figure 10 . The optical bench of the measuring apparatus is mounted on a test bench consisting on the one hand of an optical slot (14) to limit the field and the energy of the laser on the sensors, of a large angular encoder precision, centered on the axis of the fiber (axis of the apparatus), of an integral assembly, consisting of an optical (12) focusing of the laser beam and a sensor (13) giving a voltage proportional to the position of the laser spot. The assembly (12) (13) is rotated angularly until the sensor (13) indicates the position of the laser beam at 0 volts. The angular encoder is then secured to the assembly (12) (13) and initialized to zero on the laser axis. The assembly (12) (13) is then rotated by any angle, of the order of 110.degree. For example to enable angular positioning and referencing of a mirror on the axis of the fiber. The mirror and the assembly (12) (13) are adjusted to find an indication of 0 volts on the sensor (13). The mirror is then made integral with the encoder, the angular value θ 0 corresponding to 0 volts of the encoder is read and the assembly (12) (13) is disconnected. The mirror is then referenced angularly. The axis of the laser deflected by the mirror will then be A = 2 * (π - θ) - θ 0 . By turning the mirror (11) the laser spot is displaced on the sensors 6 and 7. It is thus possible to point out point by point the angular positions of the pixels and to identify the transfer function angle = f (pixels) including the optical system 4.

Le système de franges dans une zone angulaire de 24° prise entre 40 et 80°, pour une fibre D=125µm, λ= 780nm et n = 1,478 est montré figure 3. La mesure précise de l'évolution de la période du signal mesuré en fonction de l'angle va permettre d'identifier D dans le modèle.The fringe system in an angular zone of 24 ° taken between 40 and 80 °, for a fiber D = 125 μm, λ = 780 nm and n = 1.478 is shown figure 3 . The precise measurement of the evolution of the period of the signal measured as a function of the angle will make it possible to identify D in the model.

Une première approche se fait en identifiant les paramètres D et ϕ, par minimisation des différences entre le modèle et le signal mesuré, entre θ1 et θ2 qui correspondent à la plage angulaire de la barrette CCD. Dans cette approche, on ne prend pas en compte la phase du système de frange mais uniquement la période en fonction de l'angle.A first approach is done by identifying the parameters D and φ, by minimizing the differences between the model and the measured signal, between θ1 and θ2 which correspond to the angular range of the CCD array. In this approach, we do not take into account the phase of the fringe system but only the period as a function of the angle.

Nous obtenons une stabilité et reproductibilité des mesures meilleures que 0,02µm. L'incertitude totale calculée sur D est inférieure à ± 0,15µm. Ces incertitudes sont les suivantes :

  • Indice : de la silice connue avec une incertitude négligeable en fonction de la longueur d'onde. Pour les coating, les paramètres permettant de calculer les indices sont fournis avec précision par les fabriquants.
  • Longueur d'onde du laser : Pour un laser gaz, les valeurs sont connues aussi avec grande précision et incertitude négligeable. Pour une diode laser stabilisée, la longueur d'onde est mesurée à ± 0,2 nm sur 780, soit ± 0,025%.
  • Valeurs angulaires : La résolution du capteur est de 3 secondes d'arc avec une incertitude totale cumulée de la calibration de l'ordre de 1 minute d'arc, soit sur 70° (4200 minutes d'arc) 0,024.
We obtain a stability and reproducibility of measurements better than 0,02μm. The total uncertainty calculated on D is less than ± 0.15 μm. These uncertainties are as follows:
  • Index: known silica with negligible uncertainty as a function of wavelength. For coatings, the parameters for calculating the indices are accurately provided by the manufacturers.
  • Laser wavelength: For a gas laser, the values are also known with great accuracy and negligible uncertainty. For a stabilized laser diode, the wavelength is measured at ± 0.2 nm over 780 ± 0.025%.
  • Angular values: The resolution of the sensor is 3 arc seconds with a cumulative total uncertainty of the calibration of the order of 1 minute of arc, ie over 70 ° (4200 arc minutes) 0.024.

L'incertitude totale de l'appareil serait donc de 0,05% du diamètre soit sur 125µm, ± 0,06µm. A ces incertitudes, il faut ajouter les imperfections de la fibre (ovalité, perturbations optiques locales, les signaux résiduels « ε » qui réduisent l'incertitude totale à une valeur estimée de ± 0,15µm.The total uncertainty of the apparatus would therefore be 0.05% of the diameter, ie on 125 μm, ± 0.06 μm. To these uncertainties must be added fiber imperfections (ovality, local optical disturbances, residual signals "ε" which reduce the total uncertainty to an estimated value of ± 0.15μm.

La plage angulaire de mesure située entre 58 et 82° correspond à environ 30 franges. La Relation (6) montre qu'à θ = 0, N(0) varie proportionnellement au Diamètre, c'est à dire que la phase de Rt, donc de S à θ = 0 varie proportionnellement au diamètre. Si le modèle est assez sûre pour déterminer la phase de l'onde (Rt, fig. 1) traversant la fibre pour θ = 0, alors il est envisageable de mesurer avec une très grande précision le diamètre de la fibre. Dans ce cas la phase « ϕ » identifiée en première approche prend toute sa signification. Il est alors possible d'envisager, à partir de la plage angulaire de mesure du CCD, de lever te doute sur le nombre de franges du modèle, entre θ = 0 et une frange sur le CCD. En effet l'incertitude totate des mesures faites dans une fenêtre angulaire de 24° est de 0,15%. Le nombre de franges entre 0 et 70° est d'environ 180 à λ = 780 nm. L'incertitude sur le nombre de franges entre 0 et 70° revient à 0,15%*180 = 0,28 soit largement moins qu'une demi-frange. On ajoute alors au modèle la phase de S à l'origine des angles pour obtenir une précision de mesure très améliorée. La fonction (4) est prise en compte dans la plage angulaire de 0 à θo sur le CCD.The angular measurement range between 58 and 82 ° corresponds to about 30 fringes. Relation (6) shows that θ = 0, N (0) varies proportionally to the Diameter, that is to say that the phase of Rt, hence from S to θ = 0 varies proportionally to the diameter. If the model is safe enough to determine the phase of the wave (Rt, Fig. 1 ) passing through the fiber for θ = 0, then it is possible to measure with a very high precision the diameter of the fiber. In this case, the "φ" phase identified in the first approach takes on its full meaning. It is then possible to envisage, starting from the angular range of measurement of the CCD, to raise doubts on the number of fringes of the model, between θ = 0 and a fringe on the CCD. In fact, the total uncertainty of the measurements made in an angular window of 24 ° is 0.15%. The number of fringes between 0 and 70 ° is about 180 to λ = 780 nm. The uncertainty on the number of fringes between 0 and 70 ° amounts to 0.15% * 180 = 0.28, which is considerably less than half a fringe. The phase of S at the origin of the angles is then added to the model to obtain a much improved measurement accuracy. The function (4) is taken into account in the angular range of 0 to θ o on the CCD.

L'intérêt de cette méthode de mesure par adaptation du modèle vient de ce qu'elle s'affranchit des fluctuations liées aux variations des modulations résiduelles du signal dans la plage angulaire de mesure. Elle prend en effet en compte le modèle de N dans la totalité de l'angle de mesure entre 0° et θ. Ceci confère à la mesure numérique une très grande stabilité, du même ordre que la mesure analogique que nous abordons ci-après.The advantage of this method of measurement by adaptation of the model comes from the fact that it frees itself from the fluctuations related to the variations of the residual modulations of the signal in the angular range of measurement. It takes into account the model of N in the whole of the measurement angle between 0 ° and θ. This gives the digital measurement a very high stability, of the same order as the analog measurement that we discuss below.

Il subsiste cependant les incertitudes liées à la dispersion géométrique de la fibre par rapport au modèle ayant conduit à l'établissement des relations de base : circularité de la fibre, défauts de cylindricité, ainsi que des défauts liés à la divergence du faisceau laser. Bien que ces défauts soient très limités ramenés au diamètre, ils ne permettent pas cependant d'espérer réaliser un appareil de mesure absolu dans des précisions correspondant aux résolutions atteintes. D'autre part, les meilleures méthodes de mesure qui pourraient nous permettre de valider les résultats métrologiques ne font pas mieux à ce jour que ±0,15µm. Cela signifie que, dans cette configuration, la première évaluation, par différence des angles, est suffisante.However, there remain uncertainties related to the geometric dispersion of the fiber compared to the model that led to the establishment of basic relationships: circularity of the fiber, cylindricity defects, as well as defects related to the divergence of the laser beam. Although these defects are very limited to diameter, they do not however allow to achieve an absolute measuring device in accuracies corresponding to the resolutions reached. On the other hand, the best measurement methods that could allow us to validate the metrological results are no better than ± 0.15 μm. This means that, in this configuration, the first evaluation, by difference of angles, is sufficient.

Mesures rapides des variations de DiamètreRapid measurements of Diameter variations

Par rapport à une position angulaire donnée, le glissement d'une frange représente le résultat de la variation de toutes les périodes des franges entre l'origine angulaire et la position angulaire de la mesure plus la variation de phase à l'origine angulaire. Cette méthode de mesure de phase au point θ présente l'intérêt d'être très stable, très reproductible, très sensible aux variations du diamètre et peu sensible aux modulations résiduelles du système de franges. Elle diffère de la méthode de mesure numérique mais conduit aux même résolutions. Cette méthode ne donne que les variations du diamètre mais a grande vitesse, en opposition à la méthode absolue, numérique, mais lente. Elles sont donc complémentaires pour assurer à la fois la mesure absolue et la grande vitesse.With respect to a given angular position, the sliding of a fringe represents the result of the variation of all the fringe periods between the angular origin and the angular position of the measurement plus the phase variation at the angular origin. This phase measurement method at the point θ has the advantage of being very stable, very reproducible, very sensitive to variations in the diameter and not very sensitive to the residual modulations of the fringe system. It differs from the digital measurement method but leads to the same resolutions. This method gives only the variations of the diameter but at high speed, in opposition to the absolute method, numerical, but slow. They are therefore complementary to ensure both the absolute measurement and the high speed.

La variation du Diamètre conduisant à ce glissement s'exprime : dD = - λ * dN / f n θ

Figure imgb0009
The variation of the Diameter leading to this slip is expressed: dD = - λ * dN / f not θ
Figure imgb0009

Le pas des franges en fonction de l'angle θ est montré Figure 9. On voit que le pas des franges reste sensiblement constant dans la zone 60°±10°. Cette caractéristique permet de placer dans cette zone des capteurs espacés d'un pas constant correspondant au pas des franges. Elle est aussi intéressante pour la mesure de la période (fréquence) par transformée de Fourrier [6].The pitch of the fringes as a function of the angle θ is shown Figure 9 . It can be seen that the pitch of the fringes remains substantially constant in the zone 60 ° ± 10 °. This characteristic makes it possible to place in this zone sensors spaced at a constant pitch corresponding to the pitch of the fringes. It is also interesting for the measurement of the period (frequency) by Fourier transform [6].

De la relation (9) on peut.extraire une mesure rapide des variations du Diamètre à grande vitesse et grande résolution. Par exemple, pour un angle de 70°, une longueur d'onde de 780 nm et un indice du verre de 1,478, le glissement de dN =¼ de frange représente une variation du diamètre de 0,13µm. Dans notre méthode, on obtient facilement une résolution de 1/32 de frange, soit 0,01µm.From the relation (9) we can extract a rapid measurement of the Diameter variations at high speed and high resolution. For example, for an angle of 70 °, a wavelength of 780 nm and a glass index of 1.478, the slip of dN = ¼ fringe represents a variation of the diameter of 0.13 μm. In our method, we easily obtain a resolution of 1/32 fringe, or 0.01μm.

On trouve dans la littérature des montages pour la mesure des variations de Diamètre. Ils s'appuient sur des méthodes de comptage des signaux S1, S2 binarisés dont la résolution minimum reste de % de frange. La différence de notre méthode consiste à réaliser une binarisation du signal des franges de façon différente qui va permettre de compter le glissement par incrément de % de frange également mais aussi d'interpoler ce glissement à l'intérieur d'un incrément.We find in the literature assemblies for the measurement of Diameter variations. They rely on counting methods of binarized signals S1, S2 whose minimum resolution remains% fringe. The difference of our method is to perform a binarization of the fringes signal in a different way that will allow to count the slip in increment of% fringe also but also to interpolate this slip within an increment.

On réalise cette mesure en plaçant des capteurs à un pas correspondant à une proportion du pas nominal des franges, voir Figure 7. L'intérêt de cette approche est multiple :

  • La mesure ne prend pas en compte les modulations résiduelles d'amplitude du signal ni les fluctuations des périodes mais seulement la phase des franges par rapport aux capteurs. Cela rend la mesure insensible aux modulations de l'amplitude des franges.
  • Le glissement de la phase des franges résulte de la variation de toutes les franges depuis l'origine angulaire (axe du laser) ce qui fourni une très grande sensibilité. On obtient une résolution et une reproductibilité de l'ordre de 0,01µm.
  • Cette mesure permet la mise en oeuvre de méthodes analogiques continues avec des bandes passantes élevées, 75 Khz dans notre cas.
This measurement is made by placing sensors at a pitch corresponding to a proportion of the nominal pitch of the fringes, see Figure 7 . The interest of this approach is multiple:
  • The measurement does not take into account the residual modulations of signal amplitude nor the fluctuations of the periods but only the phase of the fringes with respect to the sensors. This makes the measurement insensitive to modulations of the amplitude of the fringes.
  • The sliding of the fringes phase results from the variation of all the fringes since the angular origin (laser axis) which provides a very high sensitivity. A resolution and a reproducibility of the order of 0.01 μm are obtained.
  • This measurement allows the implementation of continuous analog methods with high bandwidths, 75 Khz in our case.

Les Figures 6 et 7 présentent le principe de cette mesure haute résolution. Comme il est déjà connu, on place une succession de capteurs optiques (pixels) espacés d'un nombre impair de ¼ de frange du signal optique. On peut par exemple utiliser les capteurs C1 à C4 (Figure 7) qui sont espacés de ¼ de frange ou C'1 à C'4 qui sont espacés de ¾ de frange. Cette dernière disposition permet d'utiliser des capteurs avec des pas entre pixels plus importants que le pas des franges à mesurer. On Reproduit sur plusieurs périodes l'association des capteurs C1 à C4 et on les connecte en parallèle de façon à additionner les signaux des Ci de même indice entre eux. Les surfaces sensibles des capteurs ne doivent pas excéder ¼ du pas des franges pour obtenir un bond contraste dans les signaux. On choisit 1/5 dans notre cas avec un résultat satisfaisant. On réalise alors la somme analogique suivante des signaux :

  • S1 = C1-C3
  • S2 = C2-C4
pour éliminer les composantes continues.The Figures 6 and 7 present the principle of this high-resolution measure. As already known, a succession of optical sensors (pixels) spaced from an odd number of ¼ of the optical signal fringe is placed. For example, the sensors C1 to C4 can be used ( Figure 7 ) which are spaced ¼ of fringe or C'1 to C'4 which are spaced de of fringe. This last arrangement makes it possible to use sensors with pitch between pixels that are larger than the pitch of the fringes to be measured. The combination of the sensors C1 to C4 is reproduced over several periods and they are connected in parallel so as to add the signals of Ci of the same index between them. The sensitive surfaces of the sensors must not exceed ¼ of the pitch of the fringes to obtain a jump contrast in the signals. We choose 1/5 in our case with a satisfactory result. The following analog sum of the signals is then produced:
  • S1 = C1-C3
  • S2 = C2-C4
to eliminate the continuous components.

Au lieu de binariser S1>0 et S2>0, comme couramment pratiqué pour obtenir 2 signaux de comptage/décomptage, on binarise les conditions suivantes :

  • A1 = f[S1-S2>0]
  • A2 = f[S1+S2<0]
Instead of binarizing S1> 0 and S2> 0, as commonly practiced to obtain counting / down counting signals, the following conditions are binarized:
  • A1 = f [S1-S2> 0]
  • A2 = f [S1 + S2 <0]

Les deux signaux binaires A1 et A2 vont servir à deux fonctions, l'une de comptage et décomptage du glissement de S1 et S2 par ¼ de période, de façon classique, l'autre à commuter les signaux S1, -S1, S2 et -S2 sur un circuit de calcul de l'arctgente (s1/s2) en fonction des quatre combinaisons entre A1 et A2 repérées 1 à 4 dans la Figure 7 (/Ai complément logique de Ai).

  1. 1) /A1*/A2 : s1/s2 = S2/S1
  2. 2) A1*/A2 : s1/s2 = -S1/S2
  3. 3) A1*A2 : s1/s2 = -S2/-S1
  4. 4) /A1*A2 : s1/s2 = S1/-S2
The two binary signals A1 and A2 will serve two functions, one of counting and counting of the sliding of S1 and S2 by ¼ of a period, in a conventional way, the other to switch the signals S1, -S1, S2 and - S2 on a circuit of calculation of the arctgente (s1 / s2) according to the four combinations between A1 and A2 marked 1 to 4 in the Figure 7 (/ Ai logical complement of Ai).
  1. 1) / A1 * / A2: s1 / s2 = S2 / S1
  2. 2) A1 * / A2: s1 / s2 = -S1 / S2
  3. 3) A1 * A2: s1 / s2 = -S2 / -S1
  4. 4) / A1 * A2: s1 / s2 = S1 / -S2

La figure 6 montre un schéma fonctionnel de la réalisation d'une mesure analogique sur ce principe à partir des signaux S1 et S2. Les signaux A1et A2 pilotent un double multiplexeur qui commute alternativement les quatre entrées S1, -S1, S2, -S2 vers s1 et s2 selon les indications ci-dessus. Les essais de mesures analogiques ont fourni l'enregistrement ENR1 en terme de reproductibilité.The figure 6 shows a block diagram of the realization of an analog measurement on this principle from signals S1 and S2. The signals A1 and A2 drive a dual multiplexer which alternately switches the four inputs S1, -S1, S2, -S2 to s1 and s2 as indicated above. Analogue measurement tests provided the ENR1 record in terms of reproducibility.

A l'initialisation, on associe les méthodes de mesures numériques et analogiques pour filtrer de façon efficace les dispersions entre les deux méthodes. Ceci est intéressant en production ou les fluctuations du signal entre deux mesures peuvent être considérées comme aléatoires. Pour cela on compare les valeurs mesurées en numérique et analogique, échantillonnées aux même instants, en faisant la moyenne des «n» dernières mesures. Les dispersions résiduelles de la mesure numérique dans la première phase du traitement (diamètre calculé entre deux valeurs angulaires) sont alors pondérées et la valeur absolue analogique est initialisée selon la différence des moyennes et non sur la différence des mesures instantanées.At initialization, digital and analog measurement methods are combined to efficiently filter the dispersions between the two methods. This is interesting in production where signal fluctuations between two measurements can be considered as random. For this we compare the values measured in digital and analog, sampled at the same time, by averaging the "n" last measurements. The residual dispersions of the digital measurement in the first phase of the treatment (diameter calculated between two angular values) are then weighted and the analogical absolute value is initialized according to the difference of the averages and not on the difference of the instantaneous measurements.

Détection des défautsDefect detection

Les défauts sont essentiellement des petits tubes d'air, «air-line», dans les fibres verre, voire des défauts localisés, superficiels.The defects are essentially small air tubes, "air-line", in the glass fibers, or localized defects, superficial.

Dans les revêtements (coating), ils comprennent les bulles d'air, les inclusions de matières infondues, les délaminations (lame de gaz entre le verre et le revêtement), les sur épaisseurs, les sous épaisseurs et l'excentricité.In coatings (coating), they include air bubbles, inclusions of unmelted materials, delaminations (gas gap between the glass and the coating), thicknesses, under thicknesses and eccentricity.

Dans ce montage, nous nous limitons à la détection temps réel des perturbations optiques produites par les air-lines, les bulles, les délaminations et les inclusions. Les variations de diamètres sont prises en compte simplement par comparaisons de la sortie analogique rapide avec des seuils programmés ou réglés.In this setup, we limit ourselves to real-time detection of optical disturbances produced by air-lines, bubbles, delaminations and inclusions. The variations of diameters are taken into account simply by comparisons of the fast analog output with programmed or regulated thresholds.

Deux paramètres sont utilisés pour caractériser la qualité du signal optique : l'énergie, qui s'accroît avec la taille d'un air-line, mais surtout le contraste des franges (différence entre les maxima et les minima de S1 et S2), qui constitue un élément fondamental pour cette méthode de mesure. L'absence de contraste sur les franges empêche effectivement la mesure.Two parameters are used to characterize the quality of the optical signal: the energy, which increases with the size of an air-line, but especially the contrast of the fringes (difference between the maxima and the minima of S1 and S2), which constitutes a fundamental element for this method of measurement. The absence of contrast on the fringes effectively prevents the measurement.

L'énergie temps réel est obtenue par la somme des courants provenant des photodiodes du capteur analogique. Le contraste temps réel est obtenu en prenant le maximum des quatre signaux S1, -S1, S2, -S2. Ce signal est naturellement fluctuant puisque les Si sont des sinusoïdes.The real-time energy is obtained by the sum of the currents coming from the photodiodes of the analog sensor. The real-time contrast is obtained by taking the maximum of the four signals S1, -S1, S2, -S2. This signal is naturally fluctuating since the Si are sinusoids.

L'apparition d'un défaut, même petit, produit soit une chute nette du contraste, soit une saturation. Quel que soit le type de défaut, le contraste réagit toujours de façon beaucoup plus sensible que l'énergie. C'est ce paramètre que nous retenons pour la détection des défauts.The appearance of a defect, even small, produces either a sharp drop in contrast or saturation. Whatever the type of defect, the contrast always reacts much more sensitive than the energy. It is this parameter that we retain for the detection of defects.

Pour les défauts les plus fins de type air-line, le traitement numérique, extrait la composante du signal mesuré qui ne correspond pas à une distribution acceptable de l'amplitude et de la période des franges (voir figure 3 (signal normal), figure 4 (signal perturbé), figure 5, différence des signaux des figures 3 et 4).For the finest defects of the air-line type, the digital processing extracts the component of the measured signal which does not correspond to an acceptable distribution of the amplitude and the period of the fringes (see figure 3 (normal signal), figure 4 (disturbed signal), figure 5 , difference of the signals of the Figures 3 and 4 ).

Claims (5)

  1. A method for measuring the diameter of an optical fiber and for detecting defects in this fiber, comprising the steps consisting in:
    - directing a laser beam perpendicularly to the axis of the fiber, to create a system of interference fringes;
    - providing a first sensor (6) capable of receiving the fringe system and a first digital processing board (8) capable of analyzing the signal emitted by the first sensor (6);
    characterized in that the method further comprises the steps consisting in :
    - providing a second sensor (7) capable of receiving the fringe system and a second analogue processing board (9) capable of analyzing the signal emitted by the second sensor (7);
    - angularly calibrating the first and second sensors (6, 7);
    - achieving an absolute and periodic measurement of the diameter (D) of the fiber by determining, by means of the first sensor (6) and of the first processing board (8), parameters A, B, D, ϕ allowing the optimal identification of the fringe system and of the following physical model: M = A B + θ × 1 + sin 2 N D θ × π + ϕ
    Figure imgb0016
    N D θ = D λ × sin θ 2 + n 2 + 1 - 2 n × cos θ 2 1 / 2 + 1 4
    Figure imgb0017

    where M is the amplitude of the signal measured by the first sensor (6), N is the number of fringes, λ is the wavelength of the laser and θ is the angle of measurement;
    - in parallel, achieving a relative and continuous measurement of the variations of the diameter (D) of the fiber by analysis, by means of the second sensor (7) and of the second processing board (9), of the shift of the fringes, according to the following relationship: dD = - λ × dN sin θ 2 + n 2 + 1 - 2 n × cos θ 2 1 / 2
    Figure imgb0018

    said second processing board (9), which is analogue, being initialized by said first processing board (8), which is digital, so that the method allows obtaining a quick, continuous, and absolute measurement of the diameter (D) of the fiber.
  2. The method according to claim 1, characterized in that an optical system (4) is provided, projecting a portion of the laser beams deviated by the optical fiber, at an angular range between 40 and 80°, on the two sensors (6, 7), said sensors (6, 7) being optically aligned and located in the focal plane of the optical system (4).
  3. The method according to claim 1 or 2, characterized in that the step of angular calibration of the first and second sensors (6, 7) is carried out using a calibration bench external to the sensor, allowing to accurately identify the axis of the laser beam in order to reference the angular encoder, and to angularly deviate the laser by a mirror integral to the angular encoder, on several points of the sensors, through the optical system, in order to accurately identify the angular positions of these points.
  4. The method according to any of claims 1 to 3, characterized in that it further comprises the steps consisting in comparing two analogue signals (S1, S2) of the second sensor (7) to generate two logic signals (A, B) allowing, on the one hand, the digital counting of the shift of the fringes by quarter period, on the other hand, interpolating between each switching of A or B the continuous variation of the phase of the fringes by carrying out the arctangent of (S1 / S2), finally adding the two results - counting plus interpolation - to afford a quick, continuous and high-resolution measurement, in a wide variation range of the diameter.
  5. The method according to any of claims 1 to 4, characterized in that it further comprises the steps consisting in using the loss of the fringes contrast to detect, in real time, by analogue means, the presence of defects in the fiber and by the use of the amplitudes difference of the model and of the real signal to detect, by digital processing, the very small defects.
EP00920792.9A 1999-04-08 2000-04-07 Device for measuring the dimension and controlling of defects in optical fibres during production Expired - Lifetime EP1131599B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9904553 1999-04-08
FR9904553A FR2792066B1 (en) 1999-04-08 1999-04-08 DEVICE FOR DIMENSIONAL MEASUREMENT AND CONTROL OF FAULTS IN OPTICAL FIBERS IN PRODUCTION
PCT/FR2000/000889 WO2000062013A1 (en) 1999-04-08 2000-04-07 Device for measuring the dimension and controlling of defects in optical fibres during production

Publications (2)

Publication Number Publication Date
EP1131599A1 EP1131599A1 (en) 2001-09-12
EP1131599B1 true EP1131599B1 (en) 2014-07-30

Family

ID=9544298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920792.9A Expired - Lifetime EP1131599B1 (en) 1999-04-08 2000-04-07 Device for measuring the dimension and controlling of defects in optical fibres during production

Country Status (4)

Country Link
US (1) US7212280B1 (en)
EP (1) EP1131599B1 (en)
FR (1) FR2792066B1 (en)
WO (1) WO2000062013A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1016586C2 (en) 2000-11-10 2002-05-14 Draka Fibre Technology Bv Method for measuring the spin in an optical fiber.
KR100624256B1 (en) * 2005-01-13 2006-09-19 엘에스전선 주식회사 Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube
US9019486B2 (en) * 2013-01-31 2015-04-28 Fluke Corporation Multi-light fiber source for fiber end-surface inspection
CN104390988A (en) * 2014-11-28 2015-03-04 中国科学院合肥物质科学研究院 Multi-view whole-surface detecting device aiming at overcoming characteristics of high curvature and strong reflection of train wheels
IT201700042506A1 (en) * 2017-04-18 2018-10-18 Btsr Int Spa METHOD, SYSTEM AND SENSOR TO DETECT A CHARACTERISTIC OF A TEXTILE OR METALLIC THREAD POWERED TO A MACHINE OPERATOR
EP3889581A1 (en) * 2020-03-30 2021-10-06 Heraeus Quarzglas GmbH & Co. KG Method for determining the refractive index profile of a cylindrical optical element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650322A (en) * 1984-09-07 1987-03-17 The Board Of Trustees Of The Leland Standford, Jr. University Method and means for high resolution measurement of fiber diameter
US4653322A (en) 1985-07-05 1987-03-31 Westinghouse Electric Corp. Remote level measurement in a solid-liquid system
FR2595814A1 (en) * 1986-03-14 1987-09-18 Bertin & Cie METHOD AND DEVICE FOR MEASURING THE DIAMETER OF A FIBER, IN PARTICULAR AN OPTICAL FIBER
US5283628A (en) * 1991-12-31 1994-02-01 Corning Incorporated Method for measuring diameters of non-circular fibers
US5408308A (en) * 1993-01-29 1995-04-18 Corning Incorporated Method for monitoring hermetically-coated fibers
US5513004A (en) * 1994-08-12 1996-04-30 Tsi Incorporated Device for interferometric measurements with compensation for tilt and position of measured cylindrical objects

Also Published As

Publication number Publication date
WO2000062013A1 (en) 2000-10-19
FR2792066B1 (en) 2001-06-22
US7212280B1 (en) 2007-05-01
EP1131599A1 (en) 2001-09-12
FR2792066A1 (en) 2000-10-13

Similar Documents

Publication Publication Date Title
EP0108671B1 (en) Apparatus for measuring temperature and/or electric intensity using the faraday effect
EP0094864B1 (en) Process and device for the simultaneous measurement of geometrical characteristics of an optical fibre
FR2722566A1 (en) DYNAMIC MOVEMENT SENSOR, USES OF SUCH A SENSOR AND METHOD FOR MEASURING THE MOVEMENT OF A SURFACE
EP1774299B1 (en) Surface analysis of an elongated object
FR2632404A1 (en) INTERFEROMETRIC SENSOR AND ITS USE IN AN INTERFEROMETRIC DEVICE
EP0695414A1 (en) Method for measuring the thickness of a transparent material
EP3201609B1 (en) Method and system for inspecting wafers for electronics, optics or optoelectronics
EP1910805A1 (en) Optical refractometer for measuring seawater salinity and corresponding salinity sensor
EP1131599B1 (en) Device for measuring the dimension and controlling of defects in optical fibres during production
EP3201610B1 (en) Method and system for inspecting transparent wafers for electronics, optics or optoelectronics
EP0971203B1 (en) Method and apparatus for measuring the thickness of a transparent material
EP1395809B1 (en) Refractometer and method for measuring refractive index
EP0458752B1 (en) Method for measuring the angle of incidence of a light beam, measuring device for carrying out the method, and distance measuring device utilising same
EP2370779B1 (en) Use of an optical fibre device for interferometric analysis of the surface condition of an object
FR2542878A1 (en) SCANNING DEVICE
EP0591912B1 (en) Interferometer, comprising an intergrated arrangement and a mirror, which are seperated from each other by a measurement zone
EP0754955A1 (en) Differential measurement method of the angle of incidence of a light beam and device for carrying out the method
FR2739445A1 (en) Fibre optic reflectometry device for physical measurement
FR2828277A1 (en) Measurement of the angular position of a rotating object, especially a motor vehicle steering column, using a sensor that has an optical fiber connected between a light source, the steering column and a detector
EP2271912A1 (en) Optical probe for determining quantities of a two-phase flow
FR3071610A1 (en) FIBER OPTIC REFLECTOMETRY ANALYSIS SYSTEM
FR2495765A1 (en) Optical measuring device for transparent filaments - uses parallel opaque filament to increase definition of diffraction pattern
FR2743146A1 (en) Refractive index measuring of fluid or viscous body
WO2013024229A1 (en) Optical device for interferometric analysis of the condition of the internal surface of a tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20071221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140225

INTG Intention to grant announced

Effective date: 20140304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET GERMAIN AND MAUREAU, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 680179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60048673

Country of ref document: DE

Effective date: 20140904

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 680179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60048673

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60048673

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150407

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150407

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150407

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190410

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200406