EP1130460B1 - Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process - Google Patents
Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process Download PDFInfo
- Publication number
- EP1130460B1 EP1130460B1 EP20010200764 EP01200764A EP1130460B1 EP 1130460 B1 EP1130460 B1 EP 1130460B1 EP 20010200764 EP20010200764 EP 20010200764 EP 01200764 A EP01200764 A EP 01200764A EP 1130460 B1 EP1130460 B1 EP 1130460B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base paper
- polymer
- process according
- coating
- extrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/775—Photosensitive materials characterised by the base or auxiliary layers the base being of paper
- G03C1/79—Macromolecular coatings or impregnations therefor, e.g. varnishes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/22—Addition to the formed paper
- D21H23/30—Pretreatment of the paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/22—Addition to the formed paper
- D21H23/46—Pouring or allowing the fluid to flow in a continuous stream on to the surface, the entire stream being carried away by the paper
Definitions
- the invention is directed to the preparation of polymer laminated base paper and more in particular to the preparation of polymer laminated photographic base paper.
- Polymer laminated base paper for photographic printing paper is conventionally prepared from a base paper that is laminated with at least one polymer resin layer, usually a titanium dioxide filled polyethylene, polypropylene or a polymethylene-methacrylate resin, by extrusion-coating (or co-extrusion-coating) of a polymer melt onto the surface of the base paper.
- a polymer resin layer usually a titanium dioxide filled polyethylene, polypropylene or a polymethylene-methacrylate resin
- EP-A-0 704 753 describes pretreatment of a paper base with corona discharge treatment and flame treatment.
- JP-A 57-102622 a process is described for the extrusion-coating of a base paper with polyethylene, in which process the base paper is subjected to a corona treatment, followed by heating to a temperature of at least 80°C. This process aims at improving the adhesion between base paper and polymer coating.
- photographic base paper Further important aspects of photographic base paper are the speed of production and the thickness of the polymer layers. Both aspects are important in view of the economy of the process of producing photographic print paper. The formation of pits has turned out to be strongly dependent on those aspects.
- the present invention is based thereon, that the coated paper shows less pits in case the base paper web is heated, preferably by infrared radiation, prior to the extrusion-coating with the polymer resin.
- the present invention is directed to a process for the preparation of polymer laminated base paper, said process comprising laminating a base paper web on at least one side thereof with at least one polymer layer, by extrusion-coating at a coating speed of 300 m/min or more, wherein the said base paper web is heated prior to laminating.
- the present invention resides therein that the paper web is heated just prior to the (co-)extrusion-coating.
- This heating can be done by the application of heated air, heated rollers and/or by radiation. More in particular, preference is given to the use of radiation in the Near Infra Red (NIR) region.
- NIR radiation can be emitted at radiation temperatures of over 2500 K, preferably over 2900 K, most preferred over 3000 K. Generally, the upper limit for the emission temperature is 3500 K.
- the temperature of the paper is preferably raised to a value of at least 30°C, preferably to a value between 30 and 125°C. More in particular the upper limit of the temperature of the web is 90°C. In case energy consumption is a consideration, the temperature may be kept at a value of less than 80°C without negative effects.
- the extrusion-coating can be done with one layer of polymer or with a combination of polymer layers by co-extrusion.
- the paper web can be coated on one side or on both sides, the latter embodiment having preference.
- the polymers to be used for the extrusion-coating are the conventional polymers used in paper coating, more in particular in the preparation of photographic base paper. Examples are polyolefins, polyacrylates or polyesters. More in particular, the coating is done using low-density polyethylene, high density polyethylene and blends thereof.
- the amount of polymer coating depends on the required properties of the laminated base paper, such as stiffness, gloss, number of pits and the like. More in particular the amount is preferably not more than 50 g/m 2 , more preferably between 25 and 50 g/m 2 .
- the heating step can be incorporated in an extrusion-coating line for paper. It is to be noted that in case of the use of more than one layer of polymer resin it is possible to use co-extrusion.
- co-extrusion is therefor intended to include also co-extrusion.
- the invention is now elucidated on the basis of the attached figure.
- an extrusion-coating line has been shown.
- the base-paper web is fed, via a number of rollers, past a corona treatment, via the nip-roll to the nip-zone.
- the polymer melt and the base paper web come together in the nip.
- the polymer melt is then cooled on the chill-roll and is released from the chill-roll at the release-roll, from where it is transported further.
- NIR radiation equipment is installed between the corona treatment and the nip-roll.
- the infra-red radiation is provided from one side and a radiation mirror is provided on the other side. It is also possible to install the NIR-radiation equipment before the corona treatment.
- the present figure shows lamination on only one side of the paper web.
- the partly laminated paper web can be laminated on the other side in a comparable co-extrusion line. It is also possible to include a second extruder and, if necessary, suitable radiation equipment in this line.
- Paper substrates were used for testing. These substrates, or base papers, represent a range of base paper qualities as can be found in the market. Paper substrate '1' represents a good quality in relation to the number of pits. Paper substrate '2' represents a lower quality.
- the web width of the substrates was 47 cm.
- the substrates were first extrusion coated with 21.0 g/m2 transparent polyolefin resin film on the backside at a line speed of 200 m/min.
- the substrate Before extrusion-coating of the topside, the substrate was pretreated with corona and subsequently preheated with NIR radiation up to a temperature of 39°C or 83°C.
- the treating width of the NIR-equipment covered 24 cm in the centre of the total web width of 47 cm.
- two NIR-units were used.
- the substrate After the online pretreatments (Corona and preheating) the substrate was extrusion coated at the topside with a polyolefin resin LDPE of 28 g/m2 (containing metaloxide, dyes, coloured pigments, optical brighteners and the like) at a speed of 400 m/min.
- the hotmelt (temperature 326°C) was nipped (pressure 6 bar) between the substrate and a cooling chill-roll. Because of the NIR-pretreatment the crater like defects or so-called pits defects decreased in comparison to the samples which received no heat pretreatment (remaining at room temperature). The NIR-pretreatment shows no disadvantage in the number of releasing defects, when the extrusion coated web releases from the cooling chill-roll.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Paper (AREA)
- Laminated Bodies (AREA)
Description
- The invention is directed to the preparation of polymer laminated base paper and more in particular to the preparation of polymer laminated photographic base paper.
- Polymer laminated base paper for photographic printing paper is conventionally prepared from a base paper that is laminated with at least one polymer resin layer, usually a titanium dioxide filled polyethylene, polypropylene or a polymethylene-methacrylate resin, by extrusion-coating (or co-extrusion-coating) of a polymer melt onto the surface of the base paper.
- EP-A-0 704 753 describes pretreatment of a paper base with corona discharge treatment and flame treatment.
- In JP-A 57-102622 a process is described for the extrusion-coating of a base paper with polyethylene, in which process the base paper is subjected to a corona treatment, followed by heating to a temperature of at least 80°C. This process aims at improving the adhesion between base paper and polymer coating.
- An important aspect of the quality of polymer resin laminated base paper is the resin surface appearance, which should not have a large number of crater-like defects (or pits) after extrusion-coating of the polymer resin on the base paper.
- Further important aspects of photographic base paper are the speed of production and the thickness of the polymer layers. Both aspects are important in view of the economy of the process of producing photographic print paper. The formation of pits has turned out to be strongly dependent on those aspects.
- It has been attempted to suppress the number of pits by increasing the thickness of the polymer resin layer. At high extrusion-coating speeds, such as over 300 m/min this is not sufficiently effective, unless very large amounts of polymer are used. Furthermore, it has economical disadvantages as the polymer resin is an important cost factor in the production of photographic print paper.
- At extrusion-coating speeds of the polymer resin of 300 m/min or more it has been found to be much more difficult to reduce the number of pits.
- In the art of providing polymer laminated photographic base paper there is a need for high speed production, especially during the extrusion-coating of the paper with the polymer resin, whereby the amount of pits remains at a sufficiently low value.
- Accordingly it is an object of the present invention to provide a process for the preparation of a polymer laminated base paper, more in particular a polymer laminated photographic base paper, wherein the number of pits is decreased, especially at higher extrusion-coating speeds.
- It is a further object of the invention to provide a process for the preparation of a polymer laminated base paper, more in particular a polymer laminated photographic base paper, wherein the number of pits is decreased, at higher extrusion-coating speeds, without the need to increase the polymer weight.
- The present invention is based thereon, that the coated paper shows less pits in case the base paper web is heated, preferably by infrared radiation, prior to the extrusion-coating with the polymer resin.
- Accordingly the present invention is directed to a process for the preparation of polymer laminated base paper, said process comprising laminating a base paper web on at least one side thereof with at least one polymer layer, by extrusion-coating at a coating speed of 300 m/min or more, wherein the said base paper web is heated prior to laminating.
- Surprisingly it has been found that with this process the number of pits can be reduced, even at high extrusion- coating speeds, such as extrusion-coating speeds in excess of 300m/min. The advantages of the invention become apparent already at extrusion speeds of 300 m/min or over. It is preferred to use a speed of at least 350 m/min, more in particular at least 400 m/min. Presently an upper limit of 700 m/min is considered acceptable.
- In the broadest sense the present invention resides therein that the paper web is heated just prior to the (co-)extrusion-coating. This heating can be done by the application of heated air, heated rollers and/or by radiation. More in particular, preference is given to the use of radiation in the Near Infra Red (NIR) region. In particular, it is to be noted that the NIR radiation can be emitted at radiation temperatures of over 2500 K, preferably over 2900 K, most preferred over 3000 K. Generally, the upper limit for the emission temperature is 3500 K.
- It has been found that surprisingly the use of NIR radiation provides good results in terms of product properties. Further, it has been found that in terms of heating rate the use of NIR has advantages.
- The advantages of the treatment of the web by infra-red radiation, with wavelength ranges between 0.8 µm and 1 mm, results in the increase of the web temperature in an extremely short treatment period, usually less than 1 second. With the use of conventional heating technologies this is less easy too achieve. The fastest temperature increase can be realised with NIR radiation of a wavelength between 0.8 and 1.5 µm. Advantages of this method are that it is contactless, eliminating the risk of mechanical damage as in case of the use of heated rollers and is highly flexible as the heating power can continuously and immediately be adapted to process needs, such as varying laminating speed, with temperature controlling devices which control the surface temperature.
- In the heating step prior to the extrusion-coating the temperature of the paper is preferably raised to a value of at least 30°C, preferably to a value between 30 and 125°C. More in particular the upper limit of the temperature of the web is 90°C. In case energy consumption is a consideration, the temperature may be kept at a value of less than 80°C without negative effects.
- The extrusion-coating can be done with one layer of polymer or with a combination of polymer layers by co-extrusion. The paper web can be coated on one side or on both sides, the latter embodiment having preference. The polymers to be used for the extrusion-coating are the conventional polymers used in paper coating, more in particular in the preparation of photographic base paper. Examples are polyolefins, polyacrylates or polyesters. More in particular, the coating is done using low-density polyethylene, high density polyethylene and blends thereof. The amount of polymer coating depends on the required properties of the laminated base paper, such as stiffness, gloss, number of pits and the like. More in particular the amount is preferably not more than 50 g/m2, more preferably between 25 and 50 g/m2.
- The heating step can be incorporated in an extrusion-coating line for paper. It is to be noted that in case of the use of more than one layer of polymer resin it is possible to use co-extrusion. The term 'extrusion' is therefor intended to include also co-extrusion.
- In the extrusion line also other treatments of the paper web can be used such as corona treatment, ozone treatment, flame-treatment and plasma treatment, which treatments all aim at improving the adhesion of the polymer melt to the base paper web.
- The invention is now elucidated on the basis of the attached figure. In this figure an extrusion-coating line has been shown. The base-paper web is fed, via a number of rollers, past a corona treatment, via the nip-roll to the nip-zone. The polymer melt and the base paper web come together in the nip. The polymer melt is then cooled on the chill-roll and is released from the chill-roll at the release-roll, from where it is transported further.
- Between the corona treatment and the nip-roll, NIR radiation equipment is installed. In order to get a very good efficiency, the infra-red radiation is provided from one side and a radiation mirror is provided on the other side. It is also possible to install the NIR-radiation equipment before the corona treatment.
- It is to be noted that the present figure shows lamination on only one side of the paper web. In case lamination on both sides has to be provided, the partly laminated paper web can be laminated on the other side in a comparable co-extrusion line. It is also possible to include a second extruder and, if necessary, suitable radiation equipment in this line.
- The invention is now elucidated on the basis of the Example.
- Two paper substrates were used for testing. These substrates, or base papers, represent a range of base paper qualities as can be found in the market. Paper substrate '1' represents a good quality in relation to the number of pits. Paper substrate '2' represents a lower quality.
- The web width of the substrates was 47 cm. The substrates were first extrusion coated with 21.0 g/m2 transparent polyolefin resin film on the backside at a line speed of 200 m/min.
- Before extrusion-coating of the topside, the substrate was pretreated with corona and subsequently preheated with NIR radiation up to a temperature of 39°C or 83°C. The treating width of the NIR-equipment covered 24 cm in the centre of the total web width of 47 cm. For the pretreatment two NIR-units were used. After the online pretreatments (Corona and preheating) the substrate was extrusion coated at the topside with a polyolefin resin LDPE of 28 g/m2 (containing metaloxide, dyes, coloured pigments, optical brighteners and the like) at a speed of 400 m/min. The hotmelt (temperature 326°C) was nipped (pressure 6 bar) between the substrate and a cooling chill-roll. Because of the NIR-pretreatment the crater like defects or so-called pits defects decreased in comparison to the samples which received no heat pretreatment (remaining at room temperature). The NIR-pretreatment shows no disadvantage in the number of releasing defects, when the extrusion coated web releases from the cooling chill-roll.
- The following test results are obtained which shows the effectivity of the heat pretreatment in order to reduce the number of pits defects:
Paper type 1 Paper type 2 Number of pits per 4mm2 Number of pits per 4mm2 (800-1200 µm2) (>1200 µm2) (800-1200 µm2) (>1200 µm2) No NIR treatment(23°C) 9.3 2.3 22.3 9.3 NIR treatment (39°C) 1.7 0.3 14.3 5.0 NIR treatment (83°C) 2.0 1.3 9.7 1.3 - Pits: Olympus microscope; measure area of 4 mm2
- Web temperature: Minolta Land temperature meter.
- These results show that for the lower quality base paper type, a significant reduction of the number of pits can be realised, even at temperatures as high as 83°C. With a good quality of base paper also a significant reduction of the number of pits is realised.
Claims (13)
- Process for the preparation of polymer laminated base paper, said process comprising laminating a base paper web on at least one side thereof with at least one polymer layer by extrusion-coating at a coating speed of 300 m/min or more, wherein the said base paper web is heated prior to laminating, wherein said heating is done by use of near-infrared radiation.
- Process according to claim 1, wherein the coating speed is at least 350, preferably at least 400 m/min, more in particular not more than 700 m/min.
- Process according to claim 1 or 2, wherein the said infrared radiation is emitted at temperatures of over 2500 K.
- Process according to claims 1-3, wherein the base paper web is extrusion-coated on both sides.
- Process according to claims 1-4, wherein the said polymer is a polyolefin, a polyacrylate or a polyester.
- Process according to claims 1-5, wherein the said base paper web is preheated to a temperature of between 30 and 125°C.
- Process according to claim 6, wherein the temperature is not more than 90°C.
- Process according to claims 1-7, wherein the base paper web is subjected to one or more additional other treatments, prior to extrusion-coating.
- Process according to claim 8, wherein the said other treatment comprises at least one of corona treatment, ozone treatment, flame treatment and plasma treatment.
- Process according to claims 1-9, wherein the laminated base paper is a polymer laminated photographic base paper.
- Process according to claim 10, wherein the polymer laminated photographic base paper is provided with at least one layer of a photographic emulsion.
- Process according to claim 11, wherein the polymer laminated photographic base paper is provided with at least one layer of a gelatin sublayer between the polymer coating and the photographic emulsion.
- Polymer laminated photographic base paper or print paper, comprising a base paper web on at least one side thereof a polymer coating in an amount of between 25 and 50 g/m2, which laminated paper is obtainable by the process of claim 10-12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20010200764 EP1130460B1 (en) | 2000-03-03 | 2001-03-01 | Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00200764 | 2000-03-03 | ||
EP00200764 | 2000-03-03 | ||
EP20010200764 EP1130460B1 (en) | 2000-03-03 | 2001-03-01 | Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1130460A1 EP1130460A1 (en) | 2001-09-05 |
EP1130460B1 true EP1130460B1 (en) | 2007-06-06 |
Family
ID=26071944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010200764 Expired - Lifetime EP1130460B1 (en) | 2000-03-03 | 2001-03-01 | Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1130460B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105856823A (en) * | 2016-04-01 | 2016-08-17 | 新维畅想数字科技(北京)有限公司 | Gravure and letterpress printing device and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI115652B (en) * | 2000-06-29 | 2005-06-15 | Metso Paper Inc | Method and apparatus for coating moving web with preferably dry coating material |
EP1186952A1 (en) * | 2000-09-06 | 2002-03-13 | Fuji Photo Film B.V. | Method of coating a continuously moving web |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57102622A (en) * | 1980-12-18 | 1982-06-25 | Mitsubishi Paper Mills Ltd | Manufacture of photographic suporting material |
US5182161A (en) * | 1990-07-10 | 1993-01-26 | Mitsubishi Paper Mills Limited | Support for photosensitive materials |
DE4219194C1 (en) * | 1992-06-12 | 1993-12-16 | Schoeller Felix Jun Papier | Process for producing a support material for photographic recording materials |
US5503968A (en) * | 1994-09-27 | 1996-04-02 | Eastman Kodak Company | Flame treatment and corona discharge treatment of photographic paper for improved bond with ozone treated polyolefin resin coating |
EP0952483B1 (en) * | 1998-04-23 | 2002-07-24 | Fuji Photo Film B.V. | Coated base paper for photographic printing paper |
DE19821446A1 (en) * | 1998-05-13 | 1999-11-18 | Voith Sulzer Papiertech Patent | Assembly to apply a liquid or paste coating to the surfaces of a moving paper or cardboard web |
US6030742A (en) * | 1998-11-23 | 2000-02-29 | Eastman Kodak Company | Superior photographic elements including biaxially oriented polyolefin sheets |
-
2001
- 2001-03-01 EP EP20010200764 patent/EP1130460B1/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105856823A (en) * | 2016-04-01 | 2016-08-17 | 新维畅想数字科技(北京)有限公司 | Gravure and letterpress printing device and method |
CN105856823B (en) * | 2016-04-01 | 2018-07-03 | 新维畅想数字科技(北京)有限公司 | A kind of bumps printing equipment and method |
Also Published As
Publication number | Publication date |
---|---|
EP1130460A1 (en) | 2001-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3371002A (en) | Low temperature polyolefin extrusion coating process | |
US3976528A (en) | Laminating method | |
US20080099136A1 (en) | Film lamination process | |
US10889096B2 (en) | Paper-scrim-foil core having extruded polypropylene resin | |
KR19980080034A (en) | In-line method of laminating the silicone-coated polyester film on paper, and the laminate produced by this method | |
US6544722B2 (en) | Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process | |
JP2008507428A (en) | Coated base paper | |
EP1130460B1 (en) | Process for the preparation of polymer laminated base paper and polymer laminated photographic base paper obtainable by said process | |
US4432820A (en) | Process for production of polyester-polyolefin film laminates | |
US20050019591A1 (en) | Metallized films | |
US7279061B2 (en) | Process for the production of improved metallized films | |
JPS6142254B2 (en) | ||
JP3470527B2 (en) | Manufacturing method of resin metal laminate | |
RU2203349C2 (en) | Method for applying coating of thermoplastic material on metallic base | |
KR100924201B1 (en) | Interior sheet | |
HU207111B (en) | Photopaper with polyolefin water-resistant layer | |
JP3039284B2 (en) | Method for producing laminated film and laminated sheet | |
JP3377358B2 (en) | Polyester laminated film or sheet | |
US6986824B2 (en) | Process and apparatus for forming images | |
JP3051804B2 (en) | Manufacturing method of laminated metal sheet | |
JP3470526B2 (en) | Production method of double-sided resin-coated metal laminate | |
JPS60240638A (en) | Paper carton | |
JPS60184826A (en) | Print lamination | |
JPH04289849A (en) | Supporter for photographic printing paper | |
JPS6337925A (en) | Laminator and method for treating laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020304 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20040813 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FUJIFILM MANUFACTURING EUROPE B.V. |
|
REF | Corresponds to: |
Ref document number: 60128742 Country of ref document: DE Date of ref document: 20070719 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080307 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080305 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080312 Year of fee payment: 8 Ref country code: DE Payment date: 20080429 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091123 |