EP1125283B1 - Verfahren zur quantisierung der parameter eines sprachkodierers - Google Patents
Verfahren zur quantisierung der parameter eines sprachkodierers Download PDFInfo
- Publication number
- EP1125283B1 EP1125283B1 EP99946281A EP99946281A EP1125283B1 EP 1125283 B1 EP1125283 B1 EP 1125283B1 EP 99946281 A EP99946281 A EP 99946281A EP 99946281 A EP99946281 A EP 99946281A EP 1125283 B1 EP1125283 B1 EP 1125283B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pitch
- frame
- transmitted
- values
- filters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000013598 vector Substances 0.000 claims abstract description 37
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 25
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 25
- 230000007704 transition Effects 0.000 claims abstract description 22
- 238000013139 quantization Methods 0.000 claims abstract description 21
- 230000003595 spectral effect Effects 0.000 claims abstract description 14
- 238000013213 extrapolation Methods 0.000 claims abstract description 9
- 230000006866 deterioration Effects 0.000 claims abstract 2
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 238000011002 quantification Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/087—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using mixed excitation models, e.g. MELP, MBE, split band LPC or HVXC
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L2019/0001—Codebooks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/93—Discriminating between voiced and unvoiced parts of speech signals
Definitions
- the present invention relates to a method for coding the word. It applies in particular to the production of very low vocoders throughput, of the order of 1200 bits per second and implemented for example in satellite communications, internet telephony, static answering machines, voice pagers etc ...
- the objective of these vocoders is to allow the reconstruction of a signal which is as close as possible to the sense of perception by the ear of the original speech signal, using the highest bit rate weak possible.
- vocoders use a model fully configured speech signal.
- the parameters used concern voicing which describes the periodic nature of sounds voiced or randomness of unvoiced sounds, frequency fundamental of voiced sounds still known by the term Anglo-Saxon "PITCH", the time evolution of the energy as well as the envelope signal spectral to excite and configure the synthesis filters.
- voicing describes the periodic nature of sounds voiced or randomness of unvoiced sounds, frequency fundamental of voiced sounds still known by the term Anglo-Saxon "PITCH”, the time evolution of the energy as well as the envelope signal spectral to excite and configure the synthesis filters.
- PITCH Anglo-Saxon
- the filtering is carried out by a filtering technique numerical linear prediction.
- MELP The new federal standard at 2400 bps, published in the IEEE International Conference on Acoustics, Speech, and Signal Processing, Kunststoff, April 1997, pp. 1591 - 1594.
- a first technique is that of the vocoder segmental, two variants of which are those described by MM. B. Mouy, P. de la Noue and G. Goudezeune already cited, and that described by M. Y. Shoham titled "Very low complexity interpolative speech coding at 1.2 to 2.4 K bps ", published in IEEE International Conference on Acoustics, Speech, and Signal Processing, Kunststoff, April 1997, pp 1599 - 1602.
- a second technique is that implemented in phonetic vocoders, which combine recognition principles and of synthesis. Activity in this area is rather at the stage of basic research, the targeted flows are generally very less than 1200 bits / s (typically 50 to 200 bits / s) but the quality obtained is rather bad and there is often no recognition of the speaker.
- a description of these types of vocoders can be found in the article by MM. J. Cernocky, G. Baudoin, G. Chollet, having for title: "Segmental vododer - Going beyond the phonetic approch” published in IEE International Conference on Acoustics, Speech, and Signal Processing, Seattle, May 12 - 15 1998, pp. 605 - 698.
- the object of the invention is to overcome the drawbacks mentioned.
- the subject of the invention is a method of coding and speech decoding for voice communications using a very low bit rate vocoder including an analysis part for coding and transmitting the speech signal parameters and part summary for the reception and decoding of the transmitted parameters and the reconstruction of the speech signal by using synthesis filters to linear prediction of the type consisting in analyzing the parameters, describing pitch, voicing transition frequency, energy, and envelope spectral of the speech signal, by cutting the speech signal into frames successive of determined length characterized in that it consists of group the parameters on N consecutive frames to form a super-frame, to perform a vector quantization of the frequencies of transition of voicing during each super-frame, not transmitting without degradation that the most frequent configurations and replacing the less frequent configurations with the closest configuration in terms of absolute error among the most frequent, to code the pitch by scaling only one value for each super-frame, to code the energy by not selecting than a reduced number of values by grouping these values under packets quantified by vector quantization, the energy values not transmitted being recovered in the synthesis part by interpolation or
- the method according to the invention uses a vocoder of type known by the Anglo-Saxon abbreviation HSX of "Harmonic Stochastic Excitation ", as a basis for the realization of a vocoder of good quality at 1200 bits / s.
- the method according to the invention relates to the encoding of parameters that allow best reproduction with minimum flow all the complexity of the speech signal.
- an HSX vocoder is a linear prediction vocoder which uses in its synthesis part a simple mixed excitation model, in which a periodic pulse train excites the low frequencies and a noise level excites the high frequencies a synthetic LPC filter.
- FIG. 1 describes the principle of generation of the mixed excitation which comprises two filtering channels. The first channel 1 1 is energized by a periodic pulse train performs low pass filtering and the second channel 1 2 energized by a stochastic noise signal performs high pass filtering. The cutoff or transition frequency fc of the filters of the two channels is the same and has a variable position over time. The filters of the two channels are complementary.
- a summator 2 adds the signals supplied by the two channels.
- a gain amplifier 3 g adjusts the gain of the first filtering channel so that the excitation signal obtained at the output of the summator 2 is flat spectrum.
- FIG. 2 A functional diagram of the vocoder analysis part is shown in Figure 2.
- the speech signal is first filtered by a high pass filter 4 and then segmented into 22.5 ms frames, comprising 180 samples sampled at the frequency 8 KHz.
- Two analyzes by linear prediction are performed in 5 on each of the frames.
- the semi-whitened signal obtained is filtered into four sub-bands.
- a robust pitch 8 tracker uses the first sub-band.
- the transition frequency f c between the low frequency band of voiced sounds and the high frequency band of unvoiced sounds is determined by the voicing rate measured at 9 in the four sub-bands.
- the energy is measured and coded in step 10 in a pitch-synchronous manner, 4 times per frame.
- the pitch tracker and the analyzer voicing 9 can be greatly improved when their decision is delayed by one frame, the resulting parameters, filter coefficients synthesis, pitch, voicing, transition frequency and energy are encoded with a delay frame.
- the excitation signal of the synthesis filter is formed by the already shown in Figure 1 by the sum of a signal harmonic and of a random signal whose spectral envelopes are complementary.
- the harmonic component is obtained by passing a pulse train at the pitch period in a precalculated bandpass filter 11.
- the random component is obtained from a generator 12 combining an inverse Fourier transform and an overlap temporal.
- the synthesis LPC filter 14 is interpolated 4 times per frame.
- the perceptual filter 15 coupled to filter outlet 14 makes it possible to obtain a better reproduction of the nasal characteristics of the speech signal original.
- the automatic gain control device allows ensure that the pitch-synchronous energy of the output signal is equal to the one that was transmitted.
- Step 17 groups together the vocoder frames by N frames to form a super weft.
- N a value of N equal to 3 can be chosen because it achieves a good compromise between the possible reduction of the flow binary and the delay introduced by the quantification process.
- it is compatible with interlacing and coding techniques corrector of current errors.
- the voicing transition frequency is coded in step 18 by vector quantization using only four values of frequency, 0.750.2000 and 3625 HZ for example. Under these conditions 6 bits at the rate of 2 bits per frame are sufficient to code each of the frequencies and exactly transmit the voicing configuration of three frames of a super frame.
- 6 bits at the rate of 2 bits per frame are sufficient to code each of the frequencies and exactly transmit the voicing configuration of three frames of a super frame.
- voicing patterns are very rare may consider that they are not necessarily characteristic of the evolution of the normal speech signal, because they do not seem to participate intelligibility, nor the quality of the restored speech. This is the case with example when a frame is completely voiced from 0 Hz up to 3,625 Hz and that it is between two completely non- voiced.
- the table in Figure 5 shows a distribution of voicing configuration on three successive frames, calculated on a database of 123,158 speech frames.
- the 32 least frequent configurations account for only 4% of all the frames, partially or totally voiced.
- Degradation obtained by replacing each of these configurations with the closest, in terms of absolute error, of the 32 most represented configurations is imperceptible. This shows that it is possible to save a bit by vectorially quantizing the voicing transition frequency on a great frame.
- a vector quantification of the configurations of voicing is shown in the table referenced 22 in Figure 6.
- the table 22 is organized so that the mean square error produced by an error on an addressing bit is minimal.
- the value of the pitch decoded for the three frames of the current superframe is equal to the weighted average value quantified.
- the advantage of carrying out a scalar quantification of values of pitch is that it limits the problem of propagation of errors on the train binary.
- the coding schemes 2 and 3 are sufficiently close each other to be insensitive to bad decoding of the voicing frequency.
- the encoding of the energy is carried out in step 20. It takes place from the as shown in the table referenced 23 in Figure 7 using a vector quantization method of the type described in RM Gray's article, titled “Vector Quantization", published in IEEE ASP Magazine, vol. 1, pp 4-29, April 1984. Twelve values of energy numbered from 0 to 11 are calculated for each superframe by the analysis part and only six energy values among the twelve are transmitted. This leads to construct two vectors of three values by the analysis part. Each vector is quantized on six bits. Two bits are used to transmit the selection scheme number used. then decoding in the synthesis part, the energy values which have not quantified are recovered by interpolation.
- the bits giving the diagram number transmitted are not considered sensitive, since an error on their value only slightly alters the time evolution of the energy value.
- the vector quantization table of energies is organized so that the mean square error produced by an error on an address bit is minimal.
- the coding of the coefficients modeling the envelope of the signal speech takes place by vector quantization in step 21.
- This coding allows to determine the coefficients of the digital filters used in the part synthesis.
- Six LPC filters with 10 coefficients numbered from 0 to 5 are calculated at each superframe by the analysis part and only 3 filters among the 6 are transmitted.
- the six vectors are transformed into six vectors of 10 pairs of LSF spectral lines following for example the process described in the article by M F. ITAKURA, entitled "Line Spectrum Representation of Linear Predictive Coefficients "and published in the Journal Acoustics Sociaty America, vol.57, P.S35, 1975. Pairs of lines spectral are encoded by a technique similar to that used work for the coding of energy.
- the process is to select three LPC filters, and to quantify each of the vectors on 18 bits in using for example a loop predictive vector quantizer open, with a prediction coefficient equal to 0.6, of type SPLIT -VQ relating to two sub-packets of 5 consecutive LSFs to which it is allocated to each 9 bits. Two bits are used to transmit the number of the selection scheme used.
- a filter LPC is not quantified, its value is estimated from that of the filters LPC quantified by linear interpolation for example, or by extrapolation by duplicating for example the previous LPC filter.
- a vector quantization process by packets can be constituted as described in the article by MM K.K. PALIWAL, BS. ATAL, having for title "Efficient Vector Quantization of LPC Parameters at 24 bits / frame "and published in IEEE transaction on Speech and Audio Processing, Vol. 1, January 1993.
- Bit allocation for the transmission of LSF parameters, of energy, pitch and voicing that results from the method of coding implemented by the invention is represented in the table of Figure 9 in the context of a 1200 bit / s vocoder in which the parameters are coded every 67.5 ms; 81 bits being available at each super frame to encode the signal parameters. These 81 bits break down into 54 LSF bits, 2 bits for decimating the diagram of LSF, 2 times 6 bits for energy, 6 bits for pitch and 5 bits for voicing.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Devices For Executing Special Programs (AREA)
- Executing Machine-Instructions (AREA)
- Machine Translation (AREA)
Claims (12)
- Verfahren zur Kodierung und Dekodierung von Sprache für die Sprachübertragung unter Verwendung eines Vokoders mit sehr geringem Datendurchsatz, der einen Analyseteil (4, ..., 10) für die Kodierung und Übertragung der Parameter des Sprachsignals und einen Syntheseteil (11, ..., 16) für den Empfang und die Dekodierung der übertragenen Parameter sowie für die Rekonstruktion des Sprachsignals durch Verwendung von Synthesefiltern mit linearer Vorhersage enthält, wobei das Verfahren darin besteht, die Parameter zu analysieren, die den Pitch (8), die Übergangsfrequenz auf die stimmhaften Laute (9), die Energie (10) und die spektrale Hüllkurve des Sprachsignals (5) beschreiben, indem das Sprachsignal in aufeinanderfolgende Rahmen einer bestimmten Länge zerschnitten wird, dadurch gekennzeichnet, daß das Verfahren darin besteht, die Parameter in N aufeinanderfolgenden Rahmen zur Bildung eines Überrahmens zusammenzufassen (17), eine vektorielle Quantifizierung der Übergangsfrequenzen zu den stimmhaften Lauten während jedes Überrahmens durchzuführen (18) und ohne Verschlechterung nur die am häufigsten vorkommenden Konfigurationen zu übertragen, während die am wenigsten häufig vorkommenden Konfigurationen durch die hinsichtlich des absoluten Fehlers nächstliegende Konfiguration unter den häufiger vorkommenden ersetzt werden, den Pitch (19) zu kodieren, indem nur ein Pitchwert für jeden Überrahmen skalar quantifiziert wird, die Energie (20) zu kodieren, indem nur eine verringerte Anzahl von Werten durch Zusammenfassung dieser Werte in durch vektorielle Quantifizierung quantifizierte Unterpakete ausgewählt werden, wobei die nicht übertragenen Energiewerte im Syntheseteil durch Interpolation oder Extrapolation ausgehend von den übertragenen Werten wiedergewonnen werden, und durch vektorielle Quantifizierung (21) die Parameter der spektralen Hüllkurve für die Kodierung der Synthesefilter mit linearer Vorhersage zu kodieren, indem nur eine bestimmte Anzahl von Filtern ausgewählt wird, während die nicht übertragenen Parameter durch Interpolation oder Extrapolation ausgehend von den Parametern der übertragenen Filtern konstruiert werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der quantifizierte Pitchwert entweder der letzte Pitchwert der vollkommen stimmhaften stabilen Zonen oder ein durch die Übergangsfrequenz auf die stimmhaften Laute gewichteter Mittelwert in den Zonen ist, die nicht vollkommen stimmhaft sind.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß, wenn der Pitchwert der letzte eines Überrahmens ist, das Verfahren darin besteht, die anderen Werte durch Interpolation zu erzeugen.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der im Syntheseteil verwendete Pitchwert derjenige des dekodierten Pitch ist, der durch einen Multiplikationskoeffizienten modifiziert wurde, um ein leichtes Tremolo in der rekonstruierten Sprache zu erzeugen.
- Verfahren nach einem beliebigen der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Parameter über N=3 aufeinanderfolgende Rahmen zusammengefaßt sind.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß es vier Übergangsfrequenzen zur Stimmhaftigkeit gibt, die vektoriell mithilfe einer Quantifizierungstabelle (22) mit 32 Frequenzkonfigurationen in Dreiergruppen kodiert werden.
- Verfahren nach einem beliebigen der Ansprüche 5 und 6, dadurch gekennzeichnet, daß es darin besteht, die Energie viermal je Rahmen zu messen, wobei nur sechs der zwölf Werte eines Überrahmens in Form von zwei Vektoren von drei Werten übertragen werden (23).
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß es darin besteht, die Energie gemäß vier Schemata zu kodieren, (23), die je zwei Vektoren zusammenfassen, wobei ein erstes Schema definiert wird, wenn die zwölf Energievektoren im Überrahmen stabil sind, während die übrigen Schemata für jeden der Rahmen definiert werden, und das Schema zu übertragen, das den quadratischen Gesamtfehler minimiert.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, daßim ersten Schema nur die Energiewerte mit den Nummern 1, 3 und 5 des ersten Vektors und die mit den Nummern 7, 9 und 11 des zweiten Vektors übertragen werden,im zweiten Schema nur die Energiewerte mit den Nummern 0, 1 und 2 das ersten Vektors und die mit den Nummern 3, 7 und 11 des zweiten Vektors übertragen werden,im dritten Schema nur die Energiewerte mit den Nummern 1, 4 und 5 des ersten Vektors und die mit den Nummern 6, 7 und 11 des zweiten Vektors übertragen werden,und im vierten Schema nur die Energiewerte mit den Nummern 2, 5 und 8 des ersten Vektors und die mit den Nummern 9, 10 und 11 des zweiten Vektors übertragen werden.
- Verfahren nach einem beliebigen der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß es darin besteht, die Kodierparameter für die Filter mit linearer Vorhersage gemäß vier Schemata so auszuwählen, daß entweder die Zonen, für die die spektrale Hüllkurve stabil ist, oder die Zonen, für die die spektrale Hüllkurve rasch im Verlauf der Rahmen 1, 2 oder 3 eines Überrahmens verliert, möglichst gut kodiert werden.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß es darin besteht, im Syntheseteil sechs Filter mit linearer Vorhersage und 10 Koeffizienten mit den Nummern 0 bis 5 zu verwenden (24) undin einem ersten Schema nur die Koeffizienten der Filter 1, 3 und 5 zu übertragen, wenn die spektrale Hüllkurve stabil ist,in einem zweiten Schema entsprechend dem ersten Rahmen nur die Koeffizienten der Filter 0, 1 und 4 zu übertragen,in einem dritten Schema entsprechend dem zweiten Rahmen nur die Koeffizienten der Filter 2, 3 und 5 zu übertragen,in einem vierten Schema entsprechend dem dritten Rahmen nur die Koeffizienten der Filter 1, 4 und 5 zu übertragen,
- Verfahren nach einem beliebigen der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Koeffizienten LSF der Synthesefilter über 54 kodiert sind, denen noch zwei Bits für die Übertragung der Dezimierungsschemata hinzugefügt werden, daß die Energie mit zwei mal sechs Bits kodiert wird, denen noch zwei Bits für die Übertragung der Dezimierungsschemata hinzugefügt werden, daß der Pitch über sechs Bits kodiert wird und die Übergangs frequenz auf die stimmhaften Laute über fünf Bits kodiert wird, was insgesamt 81 Bits für die Überrahmen von 67,5 ms ergibt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9812500 | 1998-10-06 | ||
FR9812500A FR2784218B1 (fr) | 1998-10-06 | 1998-10-06 | Procede de codage de la parole a bas debit |
PCT/FR1999/002348 WO2000021077A1 (fr) | 1998-10-06 | 1999-10-01 | Procede de quantification des parametres d'un codeur de parole |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1125283A1 EP1125283A1 (de) | 2001-08-22 |
EP1125283B1 true EP1125283B1 (de) | 2002-08-07 |
Family
ID=9531246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99946281A Expired - Lifetime EP1125283B1 (de) | 1998-10-06 | 1999-10-01 | Verfahren zur quantisierung der parameter eines sprachkodierers |
Country Status (13)
Country | Link |
---|---|
US (1) | US6687667B1 (de) |
EP (1) | EP1125283B1 (de) |
JP (1) | JP4558205B2 (de) |
KR (1) | KR20010075491A (de) |
AT (1) | ATE222016T1 (de) |
AU (1) | AU768744B2 (de) |
CA (1) | CA2345373A1 (de) |
DE (1) | DE69902480T2 (de) |
FR (1) | FR2784218B1 (de) |
IL (1) | IL141911A0 (de) |
MX (1) | MXPA01003150A (de) |
TW (1) | TW463143B (de) |
WO (1) | WO2000021077A1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7315815B1 (en) * | 1999-09-22 | 2008-01-01 | Microsoft Corporation | LPC-harmonic vocoder with superframe structure |
FR2815457B1 (fr) * | 2000-10-18 | 2003-02-14 | Thomson Csf | Procede de codage de la prosodie pour un codeur de parole a tres bas debit |
KR100355033B1 (ko) * | 2000-12-30 | 2002-10-19 | 주식회사 실트로닉 테크놀로지 | 선형예측 분석을 이용한 워터마크 삽입/추출 장치 및 그방법 |
CA2388439A1 (en) * | 2002-05-31 | 2003-11-30 | Voiceage Corporation | A method and device for efficient frame erasure concealment in linear predictive based speech codecs |
US7668712B2 (en) | 2004-03-31 | 2010-02-23 | Microsoft Corporation | Audio encoding and decoding with intra frames and adaptive forward error correction |
US8219391B2 (en) * | 2005-02-15 | 2012-07-10 | Raytheon Bbn Technologies Corp. | Speech analyzing system with speech codebook |
US7707034B2 (en) | 2005-05-31 | 2010-04-27 | Microsoft Corporation | Audio codec post-filter |
US7177804B2 (en) | 2005-05-31 | 2007-02-13 | Microsoft Corporation | Sub-band voice codec with multi-stage codebooks and redundant coding |
US7831421B2 (en) | 2005-05-31 | 2010-11-09 | Microsoft Corporation | Robust decoder |
CN101009096B (zh) * | 2006-12-15 | 2011-01-26 | 清华大学 | 子带清浊音模糊判决的方法 |
WO2008092473A1 (en) * | 2007-01-31 | 2008-08-07 | Telecom Italia S.P.A. | Customizable method and system for emotional recognition |
KR101317269B1 (ko) | 2007-06-07 | 2013-10-14 | 삼성전자주식회사 | 정현파 오디오 코딩 방법 및 장치, 그리고 정현파 오디오디코딩 방법 및 장치 |
CA2972808C (en) * | 2008-07-10 | 2018-12-18 | Voiceage Corporation | Multi-reference lpc filter quantization and inverse quantization device and method |
GB2466201B (en) * | 2008-12-10 | 2012-07-11 | Skype Ltd | Regeneration of wideband speech |
US9947340B2 (en) * | 2008-12-10 | 2018-04-17 | Skype | Regeneration of wideband speech |
GB0822537D0 (en) | 2008-12-10 | 2009-01-14 | Skype Ltd | Regeneration of wideband speech |
US9465836B2 (en) * | 2010-12-23 | 2016-10-11 | Sap Se | Enhanced business object retrieval |
JP6201043B2 (ja) | 2013-06-21 | 2017-09-20 | フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. | エラー封じ込め中の切替音声符号化システムについての向上した信号フェードアウトのための装置及び方法 |
JP7130878B2 (ja) * | 2019-01-13 | 2022-09-05 | 華為技術有限公司 | 高分解能オーディオコーディング |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5255339A (en) * | 1991-07-19 | 1993-10-19 | Motorola, Inc. | Low bit rate vocoder means and method |
US5774837A (en) * | 1995-09-13 | 1998-06-30 | Voxware, Inc. | Speech coding system and method using voicing probability determination |
DE69724819D1 (de) * | 1996-07-05 | 2003-10-16 | Univ Manchester | Sprachkodier- und dekodiersystem |
US6131084A (en) * | 1997-03-14 | 2000-10-10 | Digital Voice Systems, Inc. | Dual subframe quantization of spectral magnitudes |
FR2774827B1 (fr) * | 1998-02-06 | 2000-04-14 | France Telecom | Procede de decodage d'un flux binaire representatif d'un signal audio |
US6094629A (en) * | 1998-07-13 | 2000-07-25 | Lockheed Martin Corp. | Speech coding system and method including spectral quantizer |
FR2786908B1 (fr) * | 1998-12-04 | 2001-06-08 | Thomson Csf | Procede et dispositif pour le traitement des sons pour correction auditive des malentendants |
-
1998
- 1998-10-06 FR FR9812500A patent/FR2784218B1/fr not_active Expired - Fee Related
-
1999
- 1999-10-01 AT AT99946281T patent/ATE222016T1/de not_active IP Right Cessation
- 1999-10-01 WO PCT/FR1999/002348 patent/WO2000021077A1/fr not_active Application Discontinuation
- 1999-10-01 US US09/806,993 patent/US6687667B1/en not_active Expired - Lifetime
- 1999-10-01 EP EP99946281A patent/EP1125283B1/de not_active Expired - Lifetime
- 1999-10-01 DE DE69902480T patent/DE69902480T2/de not_active Expired - Lifetime
- 1999-10-01 MX MXPA01003150A patent/MXPA01003150A/es not_active IP Right Cessation
- 1999-10-01 KR KR1020017004080A patent/KR20010075491A/ko not_active Application Discontinuation
- 1999-10-01 CA CA002345373A patent/CA2345373A1/fr not_active Abandoned
- 1999-10-01 JP JP2000575121A patent/JP4558205B2/ja not_active Expired - Fee Related
- 1999-10-01 IL IL14191199A patent/IL141911A0/xx unknown
- 1999-10-01 AU AU58702/99A patent/AU768744B2/en not_active Ceased
-
2000
- 2000-03-30 TW TW089105887A patent/TW463143B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE69902480D1 (de) | 2002-09-12 |
DE69902480T2 (de) | 2003-05-22 |
JP2002527778A (ja) | 2002-08-27 |
TW463143B (en) | 2001-11-11 |
JP4558205B2 (ja) | 2010-10-06 |
FR2784218A1 (fr) | 2000-04-07 |
ATE222016T1 (de) | 2002-08-15 |
MXPA01003150A (es) | 2002-07-02 |
EP1125283A1 (de) | 2001-08-22 |
AU768744B2 (en) | 2004-01-08 |
AU5870299A (en) | 2000-04-26 |
WO2000021077A1 (fr) | 2000-04-13 |
US6687667B1 (en) | 2004-02-03 |
FR2784218B1 (fr) | 2000-12-08 |
IL141911A0 (en) | 2002-03-10 |
KR20010075491A (ko) | 2001-08-09 |
CA2345373A1 (fr) | 2000-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1125283B1 (de) | Verfahren zur quantisierung der parameter eines sprachkodierers | |
JP5373217B2 (ja) | 可変レートスピーチ符号化 | |
EP1222659B1 (de) | Lpc-harmonischer sprachkodierer mit überrahmenformat | |
EP1145228B1 (de) | Kodierung periodischer sprache | |
US6260009B1 (en) | CELP-based to CELP-based vocoder packet translation | |
ES2380962T3 (es) | Procedimiento y aparato para codificación de baja tasa de transmisión de bits de habla sorda de alto rendimiento | |
US20050154584A1 (en) | Method and device for efficient frame erasure concealment in linear predictive based speech codecs | |
JPH08272398A (ja) | 再生成位相情報を用いた音声合成 | |
TW200912897A (en) | Systems, methods, and apparatus for signal encoding using pitch-regularizing and non-pitch-regularizing coding | |
JP2004310088A (ja) | 半レート・ボコーダ | |
FR2596936A1 (fr) | Systeme de transmission d'un signal vocal | |
EP1597721B1 (de) | Melp (mixed excitation linear prediction)-transkodierung mit 600 bps | |
Meuse | A 2400 bps multi-band excitation vocoder | |
EP4088277B1 (de) | Sprachcodierung mit zeitvariierender interpolation | |
WO2005114653A1 (fr) | Procede de quantification d'un codeur de parole a tres bas debit | |
Gournay et al. | A 1200 bits/s HSX speech coder for very-low-bit-rate communications | |
Drygajilo | Speech Coding Techniques and Standards | |
JPH07104793A (ja) | 音声信号の符号化装置及び復号化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010316 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20011010 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020807 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020807 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020807 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020807 |
|
REF | Corresponds to: |
Ref document number: 222016 Country of ref document: AT Date of ref document: 20020815 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 69902480 Country of ref document: DE Date of ref document: 20020912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021107 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021107 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021122 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030228 |
|
BERE | Be: lapsed |
Owner name: *THALES Effective date: 20021031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030501 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1125283E Country of ref document: IE |
|
26N | No opposition filed |
Effective date: 20030508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170925 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170927 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171024 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180928 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69902480 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181001 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181001 |