EP1124050B1 - Method and device for desulphating a nox accumulator catalyst - Google Patents

Method and device for desulphating a nox accumulator catalyst Download PDF

Info

Publication number
EP1124050B1
EP1124050B1 EP01101850A EP01101850A EP1124050B1 EP 1124050 B1 EP1124050 B1 EP 1124050B1 EP 01101850 A EP01101850 A EP 01101850A EP 01101850 A EP01101850 A EP 01101850A EP 1124050 B1 EP1124050 B1 EP 1124050B1
Authority
EP
European Patent Office
Prior art keywords
catalytic converter
storage catalytic
concentration
exhaust gas
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01101850A
Other languages
German (de)
French (fr)
Other versions
EP1124050A2 (en
EP1124050A3 (en
Inventor
Stephan Ramatschi
Peter Müller
Stefan Detterbeck
Igor Milanovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1124050A2 publication Critical patent/EP1124050A2/en
Publication of EP1124050A3 publication Critical patent/EP1124050A3/en
Application granted granted Critical
Publication of EP1124050B1 publication Critical patent/EP1124050B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency

Definitions

  • the invention relates to a method and a device according to the preamble of the patent claim 1 mentioned.
  • the invention is based on EP-A-0 915 244, in which a method of operation an internal combustion engine for desulfating one in an emission control system arranged NOx storage catalyst by cyclically changing the air ratio is described, wherein the NOx emission in the combustion exhaust gas after a NOx storage catalyst continuously or intermittently measured and at the same time another value for a NOx concentration upstream of the NOx storage catalyst is determined and the quotient of the value of the NOx concentration before the NOx storage catalyst to the NOx measurement after the NOx storage catalyst is formed and this continuously with a first setpoint is compared, wherein falls below a first setpoint desulfation is initiated.
  • a disadvantage of the cited prior art is that the duration of desulfation is predetermined by a fixed time window. Due to the inexact termination criterion, d. H. Termination of desulfation after a predetermined period, desulphation usually takes longer than necessary for desulphation is. This means that even after the NOx storage catalyst already completely desulfated, the "fat" operation, d. H. Operation of the internal combustion engine with a fuel surplus, continues. This leads to considerable emission disadvantages, the fuel consumption of the internal combustion engine is increased and hydrocarbons leave the exhaust system unburned and pollute the environment. But also during the desulfurization occur hydrocarbon breakthroughs, which also leave the exhaust system unburned and pollute the environment unnecessarily. Furthermore, a subsequent to a Desulfatmaschinesphase Hydrogen sulfide emission can not be prevented.
  • Object of our invention is the hydrocarbon emission already during and to minimize after desulfating the NOx storage catalyst.
  • the basic idea of the invention is based on measurements which confirm that the sulfur dioxide concentration (SO 2 ) emitted by an NO x storage catalyst during desulfurization is indirectly detected with an NO x sensor. This effect is exploited to determine the degree of desulfation of a NO x storage catalyst. This determination is independent of the sulfur content in the fuel and of the aging of the NO x storage catalytic converter.
  • a demolition time for these is set by falling below a defined second setpoint representative of the SO 2 concentration in the combustion exhaust gas after the NO x storage catalyst during desulfation.
  • Advantageous for determining the degree of desulfurization of the NO x storage catalytic converter is the performance of a NO x measurement instead of a complex SO 2 concentration measurement in the combustion exhaust gas. The method set forth herein allows for demand desulfation regardless of the sulfur content of the fuel derived directly from the NO x concentration in the combustion exhaust gas after the NO x storage catalyst and the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalyst.
  • the catalyst efficiency is determined.
  • the advantage of claim 8 is the elimination of a component when using an existing controller instead of a second NO x sensor to provide the NO x concentration in the combustion exhaust gas before the NO x storage catalytic converter.
  • a map with the NO x concentration in the combustion exhaust gas is stored in front of the NO x storage catalytic converter for each operating point of the internal combustion engine.
  • the map values are determined by measurements on an internal combustion engine or calculated by means of combustion models in a computing unit in the control unit.
  • Advantageous according to claim 9 is the adaptation of changes in Internal combustion engine combustion process by simple software changes in the Control unit.
  • Positive according to claim 10 is the use of a combination sensor, which also measures O 2 in addition to NO x .
  • a combination sensor which also measures O 2 in addition to NO x .
  • the currently customary O 2 sensors (lambda probe for ⁇ measurement) for three-way catalysts can be replaced by a combination sensor.
  • Fig. 1 shows a controlled by an electronic control unit 1 multi-cylinder internal combustion engine 2, which is designed for lean engine operation.
  • the combustion exhaust gases are discharged through an exhaust system 3.
  • An arranged in the exhaust system 3 NO x storage catalyst 4 cleans the combustion exhaust gases of nitrogen oxides.
  • a second NO x sensor 6 is mounted in the Exhaust system 3 is arranged, which measures the NO x concentration in the combustion exhaust gas in front of the NO x storage catalytic converter 4. Both NO x sensors 5 and 6 are connected to the control unit 1.
  • the control unit 1 has a memory with setpoint values 27. By comparing the quotient with a first setpoint value, the internal combustion engine 2 is controlled such that the NO x storage catalytic converter 4 is protected from an inadmissibly high degree of sulfurization and desulfated as required.
  • the first setpoint value is dependent on the load currently requested by the internal combustion engine 2, corresponding to the current operating state.
  • Fig. 2 shows an embodiment variant of the invention.
  • the representation essentially corresponds to the arrangement shown in FIG.
  • the only difference is that the second NO x sensor 6 is replaced by a memory with map 28.
  • the NO x concentrations in the combustion exhaust gas of the internal combustion engine 2 are stored in front of the NO x storage catalytic converter 4.
  • the NO x concentrations stored in the map before the NO x storage catalytic converter 4 are obtained either by measurements or by numerical simulations with combustion models.
  • the NO x concentrations stored in the map, corresponding to the current operating state are polled continuously before the NO x storage catalytic converter 4 of the internal combustion engine 2.
  • the quotient formation and the reference value comparison with the first reference value are carried out as in the first-mentioned basic structure.
  • Fig. 3 shows a further embodiment variant of the invention.
  • the representation essentially corresponds to the arrangement shown in FIG. The difference is that the second NO x sensor 6 is replaced by the arithmetic unit with a combustion model in the control unit 1.
  • This calculates the current NO x concentration in front of the NO x storage catalytic converter 4 in accordance with the operating state of the internal combustion engine 2.
  • the quotient formation and the setpoint comparison with the first desired value are carried out as in the first-mentioned basic structure.
  • the desulphation begins at about 55 seconds, the air ratio ⁇ 9 decreases.
  • the course of the temperature of the combustion exhaust gas 13 upstream of the NO x storage catalyst 4 increases faster than the course of the temperature of the combustion exhaust gas 11 in the NO x storage catalyst 4.
  • the sulfur dioxide emission 7 reaches a maximum after about 15 seconds, and falls then back to a low level.
  • the hydrogen sulfide emission 8 increases sharply. As shown in the problem, this is the time when desulfation must be stopped if no hydrogen sulphide is allowed to be emitted.
  • Fig. 5 shows a simultaneous measurement during a change desulfation. about the time axis in seconds are shown in FIG. 2, all previously measured values determined at the same measuring points. The Emissions are offset by measurement system-related signal propagation times the air ratio ⁇ 9 delayed by about 10 seconds.
  • Alternating desulfation is realized by alternately rich and lean engine operation, clearly recognizable by the nitrogen oxide emissions 10 and the air ratio ⁇ 9.
  • the beginning of the alternating desulfation is about 50 seconds. It can be clearly seen in each rich phase, the increase in the sulfur dioxide emission 7, which indicates a sulfur discharge due to desulfation. In each lean phase an increased nitric oxide emission 10 can be seen. Part of the nitrogen oxide concentration 12 present in front of the NO x storage catalyst 4 passes through it.
  • the temperature profile of the combustion exhaust gas 11 in the NO x storage catalyst 4 shows higher values than the temperature curve 13 before about 120 seconds after the beginning of the measurement.
  • the common drop in sulfur dioxide 7 and nitrogen oxide emission 10 is noticeable from about 100 seconds. It can be seen that the measurement of the nitrogen oxide emission 10 is representative of the sulfur dioxide emissions 7. When the nitrogen oxide emission 10 becomes small, it can be concluded that the sulfur is largely decomposed from the NO x storage catalyst 4. If the nitrogen oxide emission 10 falls below a second desired value during desulfation, desulfation is stopped.
  • Fig. 6 shows a flow diagram for detection of a sulfur poisoning of the NO x storage catalytic converter 4.
  • the start 15 of the internal combustion engine 2 starts the measurement of the NO x emission 16 after the NO x storage catalytic converter 4 by the first NO x sensor 5 and simultaneously the determination of the NO x concentration 17 in the combustion exhaust gas before the NO x storage catalyst 4.
  • the control unit 1 performs a quotient 18 of the NO x concentration in the combustion exhaust gas before the NO x storage catalyst 4 to the NO x emission. Subsequently, a setpoint comparison 19 between the quotient and a first setpoint value, which is read from the memory with setpoint values 19, is carried out.
  • the first setpoint value is dependent on the instantaneous operating point of the internal combustion engine 2.
  • control unit 1 checks the possibility of desulfation 20. If this is not feasible, the controller 1 continues to perform the setpoint comparison 19 with current quotients until the possibility of desulfation 20 is given. If the operating state of the internal combustion engine 2 permits the desulfation 21 to be carried out, it is started.
  • the determination of the NO x concentration 17 in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 takes place according to the embodiment in FIG. 1 either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the characteristic map of the memory with characteristic map 28 , or corresponding to FIG. 3 from a NO x calculation of the arithmetic unit 29 with a combustion model in the control unit 1.
  • FIG. 7 shows a flowchart for the demand-ended termination of a change desulfation.
  • the internal combustion engine 2 is in the operating state change dysulfatation 21.
  • the first NO x sensor 5 measures the NO x emission 22 after the NO x storage catalytic converter 4 during a lean engine operation.
  • the lean engine operation lasts between one and thirty seconds, depending on the catalytic coating;
  • the rich engine operation also lasts between one and thirty seconds, depending on the catalytic coating, and is terminated before the formation of hydrogen sulfide.
  • the actual NO x concentration 23 in the combustion exhaust gas before the NO x storage catalyst 4 is determined.
  • the determination of the NO x concentration 23 is carried out according to the embodiment in FIG. 1 either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the characteristic map of the memory with map 28, or according to FIG. 3 from a NO x calculation of the arithmetic unit 29 with a combustion model in the control unit 1.
  • Both NO x values (before and after the NO x storage catalytic converter 4) are available to the control unit 1.
  • the control unit 1 carries out a quotient formation 24 of the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 for the NO x emission and subsequently carries out a further setpoint comparison 25 with a second setpoint value from the memory with setpoint values 27.
  • the second set value likewise depends on the instantaneous operating point of the internal combustion engine 2. If the quotient does not exceed the second set value, the alternating desulfation 21 is continued. If the second setpoint value is exceeded, the control unit 1 ends the alternating desulfation 26.
  • the internal combustion engine can again be operated in lean engine operation.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung gemäß der im Oberbegriff des Patentanspruch 1 genannten Art.The invention relates to a method and a device according to the preamble of the patent claim 1 mentioned.

Eine Möglichkeit den Brennstoffverbrauch von Brennkraftmaschinen zu reduzieren ist der magere Motorbetrieb. Dies bedeutet, die Brennkraftmaschine wird nicht mit einem stöchiometrischen Verhältnis von Luft und Brennstoff betrieben, sondern mit Luftüberschuß. Bei dieser Betriebsart können die Stickoxid-Emissionen (NOx) bei Verwendung eines heute üblichen Dreiwegekatalysator nicht reduziert werden, sodass die gesetzlich vorgegebenen Abgasgrenzwerte nicht einhaltbar sind. Aus diesem Grund werden zur Abgasnachbehandlung bei magerem Motorbetrieb Stickoxidspeicherkatalysatoren eingesetzt. Diese speichern die von der Brennkraftmaschine emittierten NOx-Rohemissionen während des Motormagerbetriebs zwischen. Nach einiger Zeit wird die Brennkraftmaschine fett betrieben, um die gespeicherten Stickoxide wieder frei zu setzen und chemisch in unschädliche Stoffe umzuwandeln. Als fetter Motorbetrieb wird ein Motorbetrieb mit Brennstoffüberschuß bezeichnet.One way to reduce the fuel consumption of internal combustion engines is the lean engine operation. This means that the internal combustion engine is not operated with a stoichiometric ratio of air and fuel, but with excess air. In this operating mode, the nitrogen oxide (NO x ) emissions can not be reduced when using a current three-way catalytic converter, so that the statutory exhaust limits are not sustainable. For this reason, nitrogen oxide storage catalysts are used for exhaust aftertreatment in lean engine operation. These store between the emitted by the internal combustion engine NO x raw emissions during engine storage operation between. After some time, the engine is operated in fat to release the stored nitrogen oxides again and chemically convert it into harmless substances. As a rich engine operation, an engine operation is called with excess fuel.

Heute üblicherweise verwendete Brennstoffe und Motorschmiermittel beinhalten neben den gewünschten Kohlenwasserstoffketten auch nicht erwünschte Bestandteile. Hierzu zählt neben anderen der Schwefel und dessen chemischen Verbindungen. Beim Motorbetrieb wird Schwefel in Form von Schwefeldioxid (SO2) von der Brennkraftmaschine ausgestoßen. Problematisch für die neuen Beschichtungen von NOx-Speicherkatalysatoren ist deren Anfälligkeit für eine Schwefelvergiftung durch Sulfatbildung in und auf dem Katalysatormaterial. Als Folge der Schwefelvergiftung nimmt die Speicherkapazität des NOx-Speicherkatalysators für Stickoxide bis zur Unwirksamkeit ab.Fuels and engine lubricants commonly used today also contain undesirable components in addition to the desired hydrocarbon chains. These include, among others, the sulfur and its chemical compounds. During engine operation, sulfur in the form of sulfur dioxide (SO 2 ) is expelled from the engine. A problem for the new coatings of NO x storage catalysts is their susceptibility to sulfur poisoning by sulfate formation in and on the catalyst material. As a result of sulfur poisoning, the storage capacity of the NO x nitrogen oxide storage catalyst decreases until it becomes ineffective.

Die Erfindung geht aus von der EP-A-0 915 244, in der ein Verfahren zum Betrieb einer Brennkraftmaschine zur Desulfatisierung eines in einer Abgasreinigungsanlage angeordneten NOx-Speicherkatalysators durch zyklischen Wechsel des Luftverhältnisses beschrieben, ist wobei die NOx-Emission im Verbrennungsabgas nach einem NOx-Speicherkatalysator fortlaufend oder intermittierend gemessen und gleichzeitig ein weiterer Wert für eine NOx-Konzentration vor dem NOx-Speicherkatalysator ermittelt wird und der Quotient aus dem Wert der NOx-Konzentration vor dem NOx-Speicherkatalysator zu dem NOx-Messwert nach dem NOx-Speicherkatalysator gebildet wird und dieser mit einem ersten Sollwert fortlaufend verglichen wird, wobei bei Unterschreitung eines ersten Sollwertes eine Desulfatisierung eingeleitet wird.The invention is based on EP-A-0 915 244, in which a method of operation an internal combustion engine for desulfating one in an emission control system arranged NOx storage catalyst by cyclically changing the air ratio is described, wherein the NOx emission in the combustion exhaust gas after a NOx storage catalyst continuously or intermittently measured and at the same time another value for a NOx concentration upstream of the NOx storage catalyst is determined and the quotient of the value of the NOx concentration before the NOx storage catalyst to the NOx measurement after the NOx storage catalyst is formed and this continuously with a first setpoint is compared, wherein falls below a first setpoint desulfation is initiated.

Nachteilig an dem zitierten Stand der Technik ist, dass die Dauer der Desulfatisierung durch ein festes Zeitfenster vorgegeben ist. Aufgrund des unexakten Abbruchkriteriums, d. h. Abbruch der Desulfatisierung nach einer vorbestimmten Dauer, dauert die Desulfatisierung in der Regel länger als es für die Desulfatisierung notwendig ist. Dies bedeutet, dass auch nachdem der NOx-Speicherkatalysator bereits vollständig desulfatisiert ist, der "fette" Betrieb, d. h. Betrieb der Brennkraftmaschine mit einem Kraftstoffüberschuss, weiter andauert. Dies führt zu erheblichen Emissionsnachteilen, der Kraftstoffverbrauch der Brennkraftmaschine wird erhöht und Kohlenwasserstoffe verlassen den Abgasstrang unverbrannt und belasten die Umwelt. Aber auch während der Desulfatisierung treten Kohlenwasserstoffdurchbrüche auf, die den Abgasstrang ebenfalls unverbrannt verlassen und die Umwelt unnötig belasten. Ferner kann eine sich an eine Desulfatisierungsphase anschließende Schwefelwasserstoffemission nicht verhindert werden.A disadvantage of the cited prior art is that the duration of desulfation is predetermined by a fixed time window. Due to the inexact termination criterion, d. H. Termination of desulfation after a predetermined period, desulphation usually takes longer than necessary for desulphation is. This means that even after the NOx storage catalyst already completely desulfated, the "fat" operation, d. H. Operation of the internal combustion engine with a fuel surplus, continues. This leads to considerable emission disadvantages, the fuel consumption of the internal combustion engine is increased and hydrocarbons leave the exhaust system unburned and pollute the environment. But also during the desulfurization occur hydrocarbon breakthroughs, which also leave the exhaust system unburned and pollute the environment unnecessarily. Furthermore, a subsequent to a Desulfatisierungsphase Hydrogen sulfide emission can not be prevented.

Aufgabe unserer Erfindung ist es, die Kohlenwasserstoffemission bereits während und nach einer Desulfatisierung des NOx-Speicherkatalysators zu minimieren.Object of our invention is the hydrocarbon emission already during and to minimize after desulfating the NOx storage catalyst.

Diese Aufgabe wird durch die Merkmale im kennzeichnenden Teil des Patentanspruchs 1 dadurch gelöst, dass während der Desulfatisierung in jeder Magerphase die NOx-Konzentration im Verbrennungsabgas nach dem NOx-Speicherkataiysator gemessen und gleichzeitig ein weiterer Wert für die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator ermittelt wird, der Quotient aus dem Wert der NOx-Konzentration vor dem NOx-Speicherkatalysator zu dem NOx-Messwert nach dem NOx-Speicherkatalysator gebildet und dieser mit einem zweiten Sollwert fortlaufend verglichen wird, und dass bei Überschreitung des zweiten Sollwertes die Desulfatisierung gestoppt wird.This object is achieved by the features in the characterizing part of the claim 1 achieved in that during the desulfation in each lean phase the NOx concentration in the combustion exhaust gas after the NOx storage catalyst measured and at the same time another value for the NOx concentration in the combustion exhaust gas is determined before the NOx storage catalyst, the quotient of the Value of the NOx concentration upstream of the NOx storage catalyst to the NOx measurement formed after the NOx storage catalyst and this with a second Setpoint is continuously compared, and that when exceeding the second setpoint the desulphation is stopped.

Durch das erfindungsgemäße Verfahren gemäß Patentanspruch 1 und die erfindungsgemäße Vorrichtung gemäß Patentanspruch 6 werden alle o. g. Nachteile vermieden.By the inventive method according to claim 1 and the inventive Device according to claim 6 all o. G. disadvantage avoided.

Dem Grundgedanken der Erfindung liegen Messungen zugrunde, die bestätigen, dass mit einem NOx-Sensor indirekt die von einem NOx-Speicherkatalysator während der Desulfatisierung emittierten Schwefeldioxidkonzentation (SO2) nachgewiesen werden. Dieser Effekt wird ausgenutzt, um den Grad der Desulfatisierung eines NOx-Speicherkatalysators zu bestimmen. Diese Bestimmung ist unabhängig vom Schwefelgehalt im Brennstoff und von der Alterung des NOx-Speicherkatalysators.The basic idea of the invention is based on measurements which confirm that the sulfur dioxide concentration (SO 2 ) emitted by an NO x storage catalyst during desulfurization is indirectly detected with an NO x sensor. This effect is exploited to determine the degree of desulfation of a NO x storage catalyst. This determination is independent of the sulfur content in the fuel and of the aging of the NO x storage catalytic converter.

Durch Messung der NOx-Emission in Strömungsrichtung nach dem NOx-Speicherkatalysator wird, stellvertretend für die SO2-Konzentation im Verbrennungsabgas nach dem NOx-Speicherkatalysator, während einer Desulfatisierung ein Abbruchzeitpunkt für diese durch Unterschreiten eines definierten zweiten Sollwertes festgelegt. Vorteilhaft zur Bestimmung des Desulfatisierungsgrades des NOx-Speicherkatalysators ist die Durchführung einer NOx-Messung anstelle einer aufwendigen SO2-Konzentrationsmessung im Verbrennungsabgas. Das hier dargelegte Verfahren gestattet eine bedarfsgerechte Desulfatisierung, unabhängig vom Schwefelgehalt des Brennstoffs, direkt abgeleitet aus der NOx-Konzentration im Verbrennungsabgas nach dem NOx-Speicherkatalysator und der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator. Dies führt, neben dem Motormagerbetrieb, zu weiterer Brennstoffersparnis, da die Desulfatisierung nur so lang, wie es bis zur Wiederherstellung der notwendigen NOx-Katalysatoreffizenz notwendig ist, durchgeführt wird. Hieraus leitet sich wiederum vorteilhaft eine längere Katalysatorlebensdauer ab, da sowohl eine übermäßige Verschwefelung als auch ein zu langer Betrieb mit Temperaturerhöhung im NOx-Speicherkatalysator vermieden wird. Die Temperaturerhöhung kommt unter anderem durch eine exotherme Reaktion aufgrund der fetten Motorbetriebsphasen im NOx-Speicherkatalysator zustande. Sie unterstützt zusätzlich den Schwefel-Abbau. Zusätzlich wird eine gleichbleibend hohe NOx-Umsetzungsrate des Speicherkatalysators über seine gesamte Lebensdauer realisiert.By measuring the NO x emission in the flow direction after the NO x storage catalyst, a demolition time for these is set by falling below a defined second setpoint representative of the SO 2 concentration in the combustion exhaust gas after the NO x storage catalyst during desulfation. Advantageous for determining the degree of desulfurization of the NO x storage catalytic converter is the performance of a NO x measurement instead of a complex SO 2 concentration measurement in the combustion exhaust gas. The method set forth herein allows for demand desulfation regardless of the sulfur content of the fuel derived directly from the NO x concentration in the combustion exhaust gas after the NO x storage catalyst and the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalyst. This leads, in addition to the engine storage operation, to further fuel savings, since the desulfation is only as long as it is necessary to restore the necessary NO x catalyst efficiency, is performed. This in turn is advantageously derived from a longer catalyst life, since both excessive sulfurization and too long operation with temperature increase in the NO x storage catalyst is avoided. The increase in temperature is due inter alia by an exothermic reaction due to the rich engine operating phases in the NO x storage catalytic converter. It additionally supports the sulfur degradation. In addition, a consistently high NO x conversion rate of the storage catalytic converter is realized over its entire service life.

Vorteilhaft nach Anspruch 7 ist die ständige Verfügbarkeit der aktuellen NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator durch eine einfache NOx-Messung mit einem zweiten NOx-Sensor, da durch Quotientenbildung von NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator zur NOx-Emission nach dem NOx-Speicherkatalysator die Katalysatoreffizienz bestimmt wird. Advantageous according to claim 7, the constant availability of the current NO x concentration in the combustion exhaust gas before the NO x storage by a simple NO x measurement with a second NO x sensor, as by quotient NO x concentration in the combustion exhaust gas before the NO x- storage catalyst for NO x emission after the NO x storage catalyst, the catalyst efficiency is determined.

Vorteilhaft nach Anspruch 8 ist der Entfall eines Bauteiles bei Verwendung eines vorhandenen Steuergeräts anstelle eines zweiten NOx-Sensors zur Bereitstellung der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator. In einem Speicher ist ein Kennfeld mit der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator für jeden Betriebspunkt der Brennkraftmaschine abgelegt. Die Kennfeldwerte werden durch Messungen an einer Brennkraftmaschine ermittelt oder mit Hilfe von Verbrennungsmodellen in einer Recheneinheit in dem Steuergerät berechnet.The advantage of claim 8 is the elimination of a component when using an existing controller instead of a second NO x sensor to provide the NO x concentration in the combustion exhaust gas before the NO x storage catalytic converter. In a memory, a map with the NO x concentration in the combustion exhaust gas is stored in front of the NO x storage catalytic converter for each operating point of the internal combustion engine. The map values are determined by measurements on an internal combustion engine or calculated by means of combustion models in a computing unit in the control unit.

Vorteilhaft nach Anspruch 9 ist die Anpassung von Veränderungen im Brennverfahren der Brennkraftmaschine durch einfache Softwareänderungen im Steuergerät.Advantageous according to claim 9 is the adaptation of changes in Internal combustion engine combustion process by simple software changes in the Control unit.

Positiv nach Anspruch 10 ist der Einsatz eines Kombinationssenors, der neben NOx auch O2 misst. Dies bedeutet, dass für den Magerbetrieb die heute üblichen O2-Sensoren (Lambda-Sonde für λ-Messung) für Dreiwegekatalysatoren durch einen Kombinationssensor ersetzbar sind.Positive according to claim 10 is the use of a combination sensor, which also measures O 2 in addition to NO x . This means that for lean-burn operation, the currently customary O 2 sensors (lambda probe for λ measurement) for three-way catalysts can be replaced by a combination sensor.

Weitere Einzelheiten eines bevorzugten Ausführungsbeispieles sind aus den sieben beigelegten Zeichnungen zu entnehmen. Es stellen im Einzelnen dar:

  • Fig. 1: Prinzipaufbau zum Betrieb einer Brennkraftmaschine zur Desulfatisierung eines Stickoxidspeicherkatalysators
  • Fig. 2: weitere Ausbildungsvariante von Fig. 1
  • Fig. 3: weitere Ausbildungsvariante von Fig. 1
  • Fig. 4: Zeitlicher Verlauf von Schwefeldioxid- und Schwefelwasserstoffemission während einer kontinuierlichen Desulfatisierung
  • Fig. 5: Zeitlicher Verlauf von Schwefeldioxid- und Stickoxid-Emission während einer Wechseldesulfatisierung
  • Fig. 6: Flußdiagramm zur Erkennung einer Schwefelvergiftung
  • Fig. 7: Flußdiagramm zur bedarfsgerechten Beendung einer Wechseldesulfatisierung
  • Further details of a preferred embodiment can be taken from the seven accompanying drawings. They show in detail:
  • Fig. 1: Principle structure for operating an internal combustion engine for desulfating a nitrogen oxide storage catalyst
  • 2: further training variant of Fig. 1st
  • 3: further training variant of FIG. 1
  • Fig. 4: Time course of sulfur dioxide and hydrogen sulfide emission during a continuous desulfation
  • Fig. 5: Time course of sulfur dioxide and nitrogen oxide emission during a Wechseldesulfatierung
  • Fig. 6: Flow chart for the detection of sulfur poisoning
  • Fig. 7: Flow chart for demand-ended termination of a Wechseleldesulfatisierung
  • Fig. 1 zeigt eine von einem elektronischen Steuergerät 1 gesteuerte mehrzylindrige Brennkraftmaschine 2, die für mageren Motorbetrieb ausgelegt ist. Die Verbrennungsabgase werden durch eine Abgasanlage 3 abgeleitet. Ein in der Abgasanlage 3 angeordneter NOx-Speicherkatalysator 4 reinigt die Verbrennungsabgase von Stickoxiden. Ein erster NOx-Sensor 5, in Strömungsrichtung hinter dem NOx-Speicherkatalysator 4 angeordnet, misst die NOx-Emission nach dem NOx-Speicherkatalysator 4. Vor dem NOx-Speicherkatalysator 4 ist ein zweiter NOx-Sensor 6 in die Abgasanlage 3 angeordnet, der die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 misst. Beide NOx-Sensoren 5 und 6 sind mit dem Steuergerät 1 verbunden. Durch Quotientenbildung der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 zur NOx-Emission nach dem NOx-Speicherkatalysator 4 werden von dem Steuergerät 1 die Katalysatoreffizienz, bzw. seine Beladung mit Schwefelverbindungen ermittelt. Das Steuergerät 1 verfügt über einen Speicher mit Sollwerten 27. Durch Vergleich des Quotienten mit einem ersten Sollwert wird die Brennkraftmaschine 2 derart gesteuert, dass der NOx-Speicherkatalysator 4 vor einer unzulässig starken Verschwefelung geschützt und bedarfsgerecht desulfatisiert wird. Der erste Sollwert ist abhängig von der aktuell von der Brennkraftmaschine 2 angeforderten Last, entsprechend dem aktuellen Betriebszustand.Fig. 1 shows a controlled by an electronic control unit 1 multi-cylinder internal combustion engine 2, which is designed for lean engine operation. The combustion exhaust gases are discharged through an exhaust system 3. An arranged in the exhaust system 3 NO x storage catalyst 4 cleans the combustion exhaust gases of nitrogen oxides. A first NO x sensor 5, arranged downstream of the NO x storage catalytic converter 4, measures the NO x emission downstream of the NO x storage catalytic converter 4. In front of the NO x storage catalytic converter 4, a second NO x sensor 6 is mounted in the Exhaust system 3 is arranged, which measures the NO x concentration in the combustion exhaust gas in front of the NO x storage catalytic converter 4. Both NO x sensors 5 and 6 are connected to the control unit 1. By quotient of the NO x concentration in the combustion exhaust gas before the NO x storage 4 for NO x emission after the NO x storage 4, the catalyst efficiency, or its loading with sulfur compounds are determined by the control unit 1. The control unit 1 has a memory with setpoint values 27. By comparing the quotient with a first setpoint value, the internal combustion engine 2 is controlled such that the NO x storage catalytic converter 4 is protected from an inadmissibly high degree of sulfurization and desulfated as required. The first setpoint value is dependent on the load currently requested by the internal combustion engine 2, corresponding to the current operating state.

    Fig. 2 zeigt eine Ausgestaltungsvariante der Erfindung. Die Darstellung entspricht im Wesentlichen der in Fig. 1 dargestellten Anordnung. Der einzige Unterschied besteht darin, dass der zweite NOx-Sensor 6 durch einen Speicher mit Kennfeld 28 ersetzt ist. In diesem Kennfeld sind die NOx-Konzentrationen im Verbrennungsabgas der Brennkraftmaschine 2 vor dem NOx-Speicherkatalysator 4 abgelegt. Die im Kennfeld abgelegten NOx-Konzentrationen vor dem NOx-Speicherkatalysator 4 werden entweder durch Messungen oder durch numerische Simulationen mit Verbrennungsmodellen erhalten. Anstelle der Messung mit dem zweiten NOx-Sensor 6 werden ständig die im Kennfeld abgelegten, dem aktuellen Betriebszustand entsprechenden NOx- Konzentrationen vor dem NOx-Speicherkatalysator 4 der Brennkraftmaschine 2, abgefragt. Die Quotientenbildung und der Sollwertvergleich mit dem ersten Sollwert erfolgen wie in dem zuerst genannten Prinzipaufbau.Fig. 2 shows an embodiment variant of the invention. The representation essentially corresponds to the arrangement shown in FIG. The only difference is that the second NO x sensor 6 is replaced by a memory with map 28. In this map, the NO x concentrations in the combustion exhaust gas of the internal combustion engine 2 are stored in front of the NO x storage catalytic converter 4. The NO x concentrations stored in the map before the NO x storage catalytic converter 4 are obtained either by measurements or by numerical simulations with combustion models. Instead of the measurement with the second NO x sensor 6, the NO x concentrations stored in the map, corresponding to the current operating state, are polled continuously before the NO x storage catalytic converter 4 of the internal combustion engine 2. The quotient formation and the reference value comparison with the first reference value are carried out as in the first-mentioned basic structure.

    Fig. 3 zeigt eine weitere Ausgestaltungsvariante der Erfindung. Die Darstellung entspricht im Wesentlichen der in Fig. 1 dargestellten Anordnung. Der Unterschied besteht darin, dass der zweite NOx-Sensor 6 durch die Recheneinheit mit einem Verbrennungsmodell im Steuergerät 1 ersetzt ist. Dieses berechnet die aktuelle NOx-Konzentration vor dem NOx-Speicherkatalysator 4 entsprechend dem Betriebszustand der Brennkraftmaschine 2. Die Quotientenbildung und der Sollwertvergleich mit dem ersten Sollwert erfolgen wie in dem zuerst genannten Prinzipaufbau.Fig. 3 shows a further embodiment variant of the invention. The representation essentially corresponds to the arrangement shown in FIG. The difference is that the second NO x sensor 6 is replaced by the arithmetic unit with a combustion model in the control unit 1. This calculates the current NO x concentration in front of the NO x storage catalytic converter 4 in accordance with the operating state of the internal combustion engine 2. The quotient formation and the setpoint comparison with the first desired value are carried out as in the first-mentioned basic structure.

    Fig. 4 zeigt einen zeitlichen Verlauf von Schwefeldioxid-Emissionen 7, Schwefelwasserstoff-Emissionen 8, Luftverhältnis λ 9, Stickoxid-Emissionen 10 gemessen nach dem NOx-Speicherkatalysator 4, Temperaturen des Verbrennungsabgases 11 gemessen in dem NOx-Speicherkatalysator 4, die Stickoxid-Konzentrationen im Verbrennungsabgas 12 und Temperaturen des Verbrennungsabgases 13, gemessen vor dem NOx-Speicherkatalysator 4, während einer kontinuierlichen Desulfatisierung. Gemessen sind die Werte an einer saugrohreinspritzenden 6-zylindrigen Brennkraftmaschine bei 3250 1/min. Die Desulfatisierung wird ausschließlich durch fetten Motorbetrieb - keine Wechseldesulfatisierung - durchgeführt. Auf der X-Achse ist der Zeitverlauf in Sekunden ersichtlich, die Y-Achse zeigt die relative Amplitude der Messwerte. Die Desulfatisierung beginnt bei etwa 55 Sekunden, das Luftverhältnis λ 9 sinkt. Der Verlauf der Temperatur des Verbrennungsabgases 13 in Strömungsrichtung vor dem NOx-Speicherkatalysator 4 steigt schneller an als der Verlauf der Temperatur des Verbrennungsabgases 11 in dem NOx-Speicherkatalysator 4. Die Schwefeldioxid-Emission 7 erreicht nach etwa 15 Sekunden ein Maximum, und fällt dann wieder auf ein niedriges Niveau ab. Wenige Sekunden später steigt die Schwefelwasserstoff-Emission 8 stark an. Wie in der Aufgabe dargestellt ist dies der Zeitpunkt zu dem die Desulfatisierung abgebrochen werden muß, wenn kein Schwefelwasserstoff emittiert werden darf. 4 shows a time profile of sulfur dioxide emissions 7, hydrogen sulfide emissions 8, air ratio λ 9, nitrogen oxide emissions 10 measured according to the NO x storage catalytic converter 4, temperatures of the combustion exhaust gas 11 measured in the NO x storage catalytic converter 4, the nitrogen oxide Concentrations in the combustion exhaust gas 12 and temperatures of the combustion exhaust gas 13, measured in front of the NO x storage catalyst 4, during a continuous desulfation. The values measured on a suction tube-injecting 6-cylinder internal combustion engine at 3250 rpm. The desulfation is carried out exclusively by rich engine operation - no alternating desulfation. The X-axis shows the time course in seconds, the Y-axis shows the relative amplitude of the measured values. The desulphation begins at about 55 seconds, the air ratio λ 9 decreases. The course of the temperature of the combustion exhaust gas 13 upstream of the NO x storage catalyst 4 increases faster than the course of the temperature of the combustion exhaust gas 11 in the NO x storage catalyst 4. The sulfur dioxide emission 7 reaches a maximum after about 15 seconds, and falls then back to a low level. A few seconds later, the hydrogen sulfide emission 8 increases sharply. As shown in the problem, this is the time when desulfation must be stopped if no hydrogen sulphide is allowed to be emitted.

    Fig. 5. zeigt eine Simultanmessung während einer Wechseldesulfatisierung. Über der Zeitachse in Sekunden sind entsprechend der Fig. 2, sämtliche zuvor genannten Messwerte, ermittelt an den selben Messstellen, aufgetragen. Die Emissionen sind aufgrund von messsystembedingten Signallaufzeiten gegenüber dem Luftverhältnis λ 9 um ca. 10 Sekunden nach spät verschoben.Fig. 5 shows a simultaneous measurement during a change desulfation. about the time axis in seconds are shown in FIG. 2, all previously measured values determined at the same measuring points. The Emissions are offset by measurement system-related signal propagation times the air ratio λ 9 delayed by about 10 seconds.

    Die Wechseldesulfatisierung wird durch abwechselnd fetten und mageren Motorbetrieb realisiert, gut erkennbar an den Stickoxid-Emissionen 10 und dem Luftverhältnis λ 9. Der Beginn der Wechseldesulfatisierung liegt bei etwa 50 Sekunden. Deutlich erkennbar ist in jeder fetten Phase das Ansteigen der Schwefeldioxid-Emission 7, die auf einen Schwefelaustrag aufgrund der Desulfatisierung hinweist. In jeder mageren Phase ist eine erhöhte Stickoxid-Emission 10 erkennbar. Ein Teil der Stickoxid-Konzentration 12 die vor dem NOx-Speicherkatalysator 4 vorhanden ist, passiert diesen. Der Temperaturverlauf des Verbrennungsabgases 11 in dem NOx-Speicherkatalysator 4 zeigt ab ca. 120 Sekunden nach Messbeginn höhere Werte als der Temperaturverlauf 13 vor diesem. Bei Betrachtung der Einhüllenden 14 und 14' der Verläufe von Schwefeldioxid- 7 und Stickoxid-Emission 10 fällt der gemeinsame Abfall der Schwefeldioxid- 7 und Stickoxid-Emission 10 ab etwa 100 Sekunden auf. Hieraus ist ersichtlich, dass die Messung der Stickoxid-Emission 10 repräsentativ für die Schwefeldioxid-Emissionen 7 ist. Wenn die Stickoxid-Emission 10 klein wird, kann daraus gefolgert werden, dass der Schwefel weitestgehend aus dem NOx-Speicherkatalysator 4 abgebaut ist. Unterschreitet die Stickoxid-Emission 10 während einer Desulfatisierung einen zweiten Sollwert, wird die Desulfatisierung abgebrochen.Alternating desulfation is realized by alternately rich and lean engine operation, clearly recognizable by the nitrogen oxide emissions 10 and the air ratio λ 9. The beginning of the alternating desulfation is about 50 seconds. It can be clearly seen in each rich phase, the increase in the sulfur dioxide emission 7, which indicates a sulfur discharge due to desulfation. In each lean phase an increased nitric oxide emission 10 can be seen. Part of the nitrogen oxide concentration 12 present in front of the NO x storage catalyst 4 passes through it. The temperature profile of the combustion exhaust gas 11 in the NO x storage catalyst 4 shows higher values than the temperature curve 13 before about 120 seconds after the beginning of the measurement. When looking at the envelopes 14 and 14 'of the courses of sulfur dioxide 7 and nitrogen oxide emission 10, the common drop in sulfur dioxide 7 and nitrogen oxide emission 10 is noticeable from about 100 seconds. It can be seen that the measurement of the nitrogen oxide emission 10 is representative of the sulfur dioxide emissions 7. When the nitrogen oxide emission 10 becomes small, it can be concluded that the sulfur is largely decomposed from the NO x storage catalyst 4. If the nitrogen oxide emission 10 falls below a second desired value during desulfation, desulfation is stopped.

    Fig. 6 zeigt ein Flussdiagramm zur Erkennung einer Schwefelvergiftung des NOx-Speicherkatalysators 4. Mit dem Starten 15 der Brennkraftmaschine 2 beginnt die Messung der NOx-Emission 16 nach dem NOx-Speicherkatalysator 4 durch den ersten NOx-Sensor 5 und gleichzeitig die Bestimmung der NOx-Konzentration 17 im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4. Das Steuergerät 1 führt eine Quotientenbildung 18 der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 zu der NOx-Emission durch. Anschließend wird ein Sollwertvergleich 19 zwischen dem Quotienten und einem ersten Sollwert, der aus dem Speicher mit Sollwerten 19 ausgelesen wird, durchgeführt. Der erste Sollwert ist abhängig von dem momentanen Betriebspunkt der Brennkraftmaschine 2. Bei Nichtunterschreitung des ersten Sollwertes werden die Schritte 16, 17 und 18 unverändert weiter geführt, bei Unterschreitung des ersten Sollwertes überprüft das Steuergerät 1 die Möglichkeit einer Desulfatisierung 20. Ist diese nicht durchführbar, führt das Steuergerät 1 weiterhin den Sollwertvergleich 19 mit aktuellen Quotienten durch, bis die Möglichkeit einer Desulfatisierung 20 gegeben ist. Erlaubt der Betriebszustand der Brennkraftmaschine 2 die Durchführung der Desulfatisierung 21, so wird diese gestartet.Fig. 6 shows a flow diagram for detection of a sulfur poisoning of the NO x storage catalytic converter 4. The start 15 of the internal combustion engine 2 starts the measurement of the NO x emission 16 after the NO x storage catalytic converter 4 by the first NO x sensor 5 and simultaneously the determination of the NO x concentration 17 in the combustion exhaust gas before the NO x storage catalyst 4. The control unit 1 performs a quotient 18 of the NO x concentration in the combustion exhaust gas before the NO x storage catalyst 4 to the NO x emission. Subsequently, a setpoint comparison 19 between the quotient and a first setpoint value, which is read from the memory with setpoint values 19, is carried out. The first setpoint value is dependent on the instantaneous operating point of the internal combustion engine 2. If the first setpoint value is not undershot, steps 16, 17 and 18 continue unchanged, if the first setpoint value is undershot the control unit 1 checks the possibility of desulfation 20. If this is not feasible, the controller 1 continues to perform the setpoint comparison 19 with current quotients until the possibility of desulfation 20 is given. If the operating state of the internal combustion engine 2 permits the desulfation 21 to be carried out, it is started.

    Die Bestimmung der NOx-Konzentration 17 im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 erfolgt gemäß der Ausführung in Fig. 1 entweder aus dem Sensorausgangssignal des zweiten NOx-Sensors 6, oder gemäß Fig. 2 aus dem Kennfeld des Speichers mit Kennfeld 28, oder entsprechend Fig. 3 aus einer NOx-Berechnung der Recheneinheit 29 mit einem Verbrennungsmodell im Steuergerät 1.The determination of the NO x concentration 17 in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 takes place according to the embodiment in FIG. 1 either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the characteristic map of the memory with characteristic map 28 , or corresponding to FIG. 3 from a NO x calculation of the arithmetic unit 29 with a combustion model in the control unit 1.

    Fig. 7 zeigt ein Flussdiagramm für die bedarfsgerechte Beendung einer Wechseldesulfatisierung. Die Brennkraftmaschine 2 befindet sich im Betriebszustand Wechseldesulfatisierung 21. Der erste NOx-Sensor 5 misst die NOx-Emission 22 nach dem NOx-Speicherkatalysator 4 während eines mageren Motorbetriebs. Der magere Motorbetrieb dauert zwischen einer und dreißig Sekunden, abhängig von der katalytischen Beschichtung; der fette Motorbetrieb dauert ebenfalls zwischen einer und dreißig Sekunden, abhängig von der katalytischen Beschichtung und wird vor Eintritt der Bildung von Schwefelwasserstoff beendet. Gleichzeitig wird die aktuelle NOx-Konzentration 23 im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 bestimmt.FIG. 7 shows a flowchart for the demand-ended termination of a change desulfation. The internal combustion engine 2 is in the operating state change dysulfatation 21. The first NO x sensor 5 measures the NO x emission 22 after the NO x storage catalytic converter 4 during a lean engine operation. The lean engine operation lasts between one and thirty seconds, depending on the catalytic coating; The rich engine operation also lasts between one and thirty seconds, depending on the catalytic coating, and is terminated before the formation of hydrogen sulfide. At the same time, the actual NO x concentration 23 in the combustion exhaust gas before the NO x storage catalyst 4 is determined.

    Die Bestimmung der NOx-Konzentration 23 erfolgt gemäß der Ausführung in Fig. 1 entweder aus dem Sensorausgangssignal des zweiten NOx-Sensors 6, oder gemäß Fig. 2 aus dem Kennfeld des Speichers mit Kennfeld 28, oder entsprechend Fig. 3 aus einer NOx-Berechnung der Recheneinheit 29 mit einem Verbrennungsmodell im Steuergerät 1. The determination of the NO x concentration 23 is carried out according to the embodiment in FIG. 1 either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the characteristic map of the memory with map 28, or according to FIG. 3 from a NO x calculation of the arithmetic unit 29 with a combustion model in the control unit 1.

    Beide NOx-Werte (vor und nach dem NOx-Speicherkatalysator 4) stehen dem Steuergerät 1 zur Verfügung. Das Steuergerät 1 führt eine Quotientenbildung 24 aus der NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator 4 zu der NOx-Emission durch und führt anschließend einen weiteren Sollwertvergleich 25 mit einem zweiten Sollwert aus dem Speicher mit Sollwerten 27 durch. Der zweite Sollwert hängt ebenfalls von dem momentanen Betriebspunkt der Brennkraftmaschine 2 ab. Überschreitet der Quotient den zweiten Sollwert nicht, wird die Wechseldesulfatisierung 21 weiter geführt. Bei Überschreitung des zweiten Sollwertes beendet das Steuergerät 1 die Wechseldesulfatisierung 26. Die Brennkraftmaschine kann wieder im mageren Motorbetrieb betrieben werden.Both NO x values (before and after the NO x storage catalytic converter 4) are available to the control unit 1. The control unit 1 carries out a quotient formation 24 of the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 for the NO x emission and subsequently carries out a further setpoint comparison 25 with a second setpoint value from the memory with setpoint values 27. The second set value likewise depends on the instantaneous operating point of the internal combustion engine 2. If the quotient does not exceed the second set value, the alternating desulfation 21 is continued. If the second setpoint value is exceeded, the control unit 1 ends the alternating desulfation 26. The internal combustion engine can again be operated in lean engine operation.

    Bezugszeichenliste:LIST OF REFERENCE NUMBERS

    1.1.
    Steuergerätcontrol unit
    2.Second
    BrennkraftmaschineInternal combustion engine
    3.Third
    Abgasanlageexhaust system
    4.4th
    NOx-SpeicherkatalysatorNO x storage catalyst
    5.5th
    erster NOx-Sensorfirst NO x sensor
    6.6th
    zweiter NOx-Sensorsecond NO x sensor
    7.7th
    Schwefeldioxid-EmissionSulfur dioxide emissions
    8.8th.
    Schwefelwasserstoff-EmissionHydrogen sulfide emissions
    9.9th
    Luftverhältnis λAir ratio λ
    10.10th
    Stickoxid-EmissionNitrogen oxide emissions
    11.11th
    Temperatur des Verbrennungsabgases im NOx-SpeicherkatalysatorTemperature of the combustion exhaust gas in the NO x storage catalytic converter
    12.12th
    Stickoxid-Konzentration im Verbrennungsabgas vor NOx-SpeicherkatalysatorNitrogen oxide concentration in the combustion exhaust gas before NO x storage catalyst
    13.13th
    Temperatur des Verbrennungsabgases vor NOx-SpeicherkatalysatorTemperature of the combustion exhaust gas before NO x storage catalyst
    14, 14'14, 14 '
    Einhüllende der Emissionen von Schwefeldioxid und StickoxidenEnvelopes of emissions of sulfur dioxide and nitrogen oxides
    15.15th
    Starten der BrennkraftmaschineStarting the internal combustion engine
    16.16th
    Messung der NOx-EmissionMeasurement of NO x emissions
    17.17th
    Bestimmung der NOx-Konzentration im Verbrennungsabgas vor NO Speicherkatalysator Determination of the NO x concentration in the combustion exhaust gas upstream of the NO storage catalytic converter
    1818
    Quotientenbildungquotient
    19.19th
    SollwertvergleichSetpoint comparison
    20.20th
    Möglichkeit einer DesulfatisierungPossibility of desulfation
    21.21st
    Durchführung der DesulfatisierungExecution of desulfation
    22.22nd
    Messung der NOx-EmissionMeasurement of NO x emissions
    23.23rd
    Bestimmung der NOx-Konzentration im Verbrennungsabgas vor NOx-SpeicherkatalysatorDetermination of the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter
    24.24th
    Quotientenbildungquotient
    25.25th
    SollwertvergleichSetpoint comparison
    26.26th
    Beenden der DesulfatisierungTerminating desulfation
    27.27th
    Speicher mit SollwertenMemory with setpoints
    28.28th
    Speicher mit KennfeldMemory with map
    29.29th
    Recheneinheitcomputer unit

    Claims (10)

    1. A method of operating an internal combustion engine for desulphation, by cyclic change of the air ratio, of an NOx storage catalytic converter disposed in an exhaust gas purification system, characterised in that
      the NOx emission in the exhaust gas after leaving an NOx storage catalytic converter is continuously or intermittently measured (16) and an additional value is simultaneously determined for an NOx concentration in front of the NOx storage catalytic converter (17),
      the quotient of the NOx concentration in front of the NOx storage catalytic converter and the NOx measured after the NOx storage catalytic converter is obtained (18) and is continuously compared (19) with a first set value dependent on the load on the engine, and
      if the quotient is below the first set value (20), desulphation is initiated (21),
      during the desulphation process (21) the NOx concentration in the exhaust gas after the NOx storage catalytic converter is measured (22) in each lean phase and simultaneously an additional value is determined for the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (23),
      the quotient of the NOx concentration in front of the NOx storage catalytic converter and the NOx measured after the NOx storage catalytic converter is obtained (24) and is continuously compared with a second set value (25), and
      if the second set value is exceeded, the desulphation process is stopped (26).
    2. A method according to claim 1, characterised in that the set values are read out of a set-value memory (27).
    3. A method according to claim 1, characterised in that the NOx concentration in the exhaust gas is measured in front of the NOx storage catalytic converter (4).
    4. A method according to claim 1, characterised in that the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (4) is read out of a performance-graph memory (28).
    5. A method according to claim 1, characterised in that the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (4) is calculated by an arithmetic unit (29), using a combustion model.
    6. A device for working the method according to any of the preceding claims, characterised in that an NOx sensor (5) is disposed behind an NOx storage catalytic converter (4) in the direction of flow and is connected to a control unit (1) for desulphating the NOx storage catalytic converter (4) in dependence on the output signal of the NOx sensor and an additional value for the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (4).
    7. A device according to claim 6, characterised in that an additional NOx sensor (6) is disposed in front of the NOx storage catalytic converter (4) and connected to the control unit (1).
    8. A device according to claim 6, characterised in that the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (4) is filed in a performance-graph memory (28) and can be read out by the control unit (1).
    9. A device according to claim 6, characterised in that the NOx concentration in the exhaust gas in front of the NOx storage catalytic converter (4) can be calculated by a computer unit (29) in the control unit (1), using a combustion model.
    10. A device according to any of the previous claims, characterised in that the NOx sensor (5) can be combined with an oxygen sensor in a common casing.
    EP01101850A 2000-02-08 2001-01-26 Method and device for desulphating a nox accumulator catalyst Expired - Lifetime EP1124050B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10005473 2000-02-08
    DE10005473A DE10005473C2 (en) 2000-02-08 2000-02-08 Method and device for desulfating a nitrogen oxide storage catalyst

    Publications (3)

    Publication Number Publication Date
    EP1124050A2 EP1124050A2 (en) 2001-08-16
    EP1124050A3 EP1124050A3 (en) 2004-02-25
    EP1124050B1 true EP1124050B1 (en) 2005-12-21

    Family

    ID=7630186

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01101850A Expired - Lifetime EP1124050B1 (en) 2000-02-08 2001-01-26 Method and device for desulphating a nox accumulator catalyst

    Country Status (2)

    Country Link
    EP (1) EP1124050B1 (en)
    DE (2) DE10005473C2 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10303085B4 (en) * 2002-01-28 2011-08-11 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Exhaust gas control device and method of an internal combustion engine
    JP3867612B2 (en) * 2002-04-12 2007-01-10 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
    WO2017138873A1 (en) 2016-02-10 2017-08-17 Scania Cv Ab Method and system for diagnosing exhaust sensors

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP3542404B2 (en) * 1995-04-26 2004-07-14 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
    DE19731624A1 (en) * 1997-07-23 1999-01-28 Volkswagen Ag Reversible rich regeneration of nitrogen@ oxide absorption catalyst
    EP0915244B1 (en) * 1997-11-10 2003-08-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying apparatus of internal combustion engine
    DE19801815A1 (en) * 1998-01-19 1999-07-22 Volkswagen Ag Lean-burn i.c. engine exhaust gas cleaning process
    US5974790A (en) * 1998-03-05 1999-11-02 Ford Global Technologies, Inc. Catalytic converter decontamination method
    DE19816276C2 (en) * 1998-04-11 2000-05-18 Audi Ag Method and device for operating an internal combustion engine
    FR2779482B1 (en) * 1998-06-03 2000-07-21 Renault METHOD AND DEVICE FOR CONTROLLING SULFUR OXIDE PURGE FROM A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
    DE19827195A1 (en) * 1998-06-18 1999-12-23 Volkswagen Ag Process for the de-sulfation of a NOx storage catalytic converter
    DE19830829C1 (en) * 1998-07-09 1999-04-08 Siemens Ag NOX storage catalyst regeneration process
    US6244046B1 (en) * 1998-07-17 2001-06-12 Denso Corporation Engine exhaust purification system and method having NOx occluding and reducing catalyst

    Also Published As

    Publication number Publication date
    EP1124050A2 (en) 2001-08-16
    DE10005473A1 (en) 2001-08-09
    EP1124050A3 (en) 2004-02-25
    DE10005473C2 (en) 2002-01-17
    DE50108418D1 (en) 2006-01-26

    Similar Documents

    Publication Publication Date Title
    DE19744579C2 (en) Method and device for monitoring the effectiveness of a NO¶x¶ trap
    EP1228301B1 (en) Method of monitoring the exhaust catalyst of an internal combustion engine
    EP0858837B1 (en) Process for regenerating a storage catalyst
    EP1307639B1 (en) Method and controller for operating a nitrogen oxide (nox) storage catalyst
    DE19843871B4 (en) Diagnosis of a NOx storage catalytic converter with downstream NOx sensor
    DE19744738A1 (en) Method and device for monitoring the effectiveness of a NOx trap
    DE10001133B4 (en) Device for controlling the air-fuel ratio in an internal combustion engine
    DE10126455B4 (en) Process for desulfating a nitrogen oxide storage catalyst
    EP1192343B1 (en) METHOD FOR INITIATING AND MONITORING A DESULFURIZATION OF AT LEAST ONE NOx STORAGE-TYPE CATALYTIC CONVERTER ARRANGED IN AN EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
    DE102021126386B3 (en) Method for operating a drive device for a motor vehicle and corresponding drive device
    EP0626506B1 (en) Methode for monitoring catalyst efficiency
    EP1124050B1 (en) Method and device for desulphating a nox accumulator catalyst
    DE10156476B4 (en) Method for detecting the progressive sulfurization of a NOx storage catalytic converter
    EP1124051B1 (en) Method and device for desulphating a nox accumulator catalyst with nox-sensor
    DE10222591B4 (en) Method and system for estimating the performance of an exhaust aftertreatment device
    DE112018004733T5 (en) Control device for an exhaust gas purification system
    DE19859176C2 (en) Procedure for checking the functionality of a lambda sensor
    DE10309421A1 (en) Internal combustion engine exhaust system catalytic converter condition diagnosis uses rich and lean exhaust gas feeds and signals from probe downstream of converter
    DE102005012943A1 (en) Method for operating an internal combustion engine and device for carrying out the method
    DE102022211614B3 (en) Method for operating a drive device for a motor vehicle and corresponding drive device
    DE10249609B4 (en) Method for controlling a NOx storage catalytic converter
    DE10305635B4 (en) Emission control method for lean-burn engines
    DE102017211710A1 (en) Determine the sulfur loading of an LNT
    DE102016204216B4 (en) Method and device for determining the loading condition of a NOx storage catalytic converter
    DE10028882A1 (en) Carrying out nitrogen oxides regeneration of nitrogen oxides storage catalyst in IC engine comprises using nitrogen oxides storage activity values of storage catalyst during all or one part of rich phases

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    RIC1 Information provided on ipc code assigned before grant

    Ipc: 7F 02D 41/14 B

    Ipc: 7F 02D 41/02 A

    17P Request for examination filed

    Effective date: 20040308

    17Q First examination report despatched

    Effective date: 20040428

    AKX Designation fees paid

    Designated state(s): DE FR GB IT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50108418

    Country of ref document: DE

    Date of ref document: 20060126

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060108

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060922

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20140113

    Year of fee payment: 14

    Ref country code: DE

    Payment date: 20140122

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20140131

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20140129

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140206

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50108418

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150126

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150126

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150127

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150126