EP1121818B1 - Communicating a scrambling code identifier in a mobile communication system - Google Patents

Communicating a scrambling code identifier in a mobile communication system Download PDF

Info

Publication number
EP1121818B1
EP1121818B1 EP00952052.9A EP00952052A EP1121818B1 EP 1121818 B1 EP1121818 B1 EP 1121818B1 EP 00952052 A EP00952052 A EP 00952052A EP 1121818 B1 EP1121818 B1 EP 1121818B1
Authority
EP
European Patent Office
Prior art keywords
scrambling code
code
primary
codes
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00952052.9A
Other languages
German (de)
French (fr)
Other versions
EP1121818A1 (en
EP1121818A4 (en
Inventor
Sung-Oh Hwang
Jae-Yoel Kim
Hee-Won Kang
Kyeong-Cheol Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to EP05005497.2A priority Critical patent/EP1549087B1/en
Publication of EP1121818A1 publication Critical patent/EP1121818A1/en
Publication of EP1121818A4 publication Critical patent/EP1121818A4/en
Application granted granted Critical
Publication of EP1121818B1 publication Critical patent/EP1121818B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0044OVSF [orthogonal variable spreading factor]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates generally to a channel communication method in a mobile communication system, and in particular, to a communication method for readily setting a secondary scrambling code in a mobile communication system which expands a channel capacity using a plurality of scrambling codes.
  • a CDMA (Code Division Multiple Access) communication system uses scrambling codes for identification of base stations.
  • the scrambling codes are also used for an increase in the channel capacity of the base stations as well as identification of the base stations.
  • a UMTS (Universal Mobile Telecommunication System) communication system which is a European W-CDMA communication system, uses a plurality of scrambling codes for identification of the base station and an increase in the channel capacity of the base stations.
  • the base station uses another scrambling code to expand the channel capacity. That is, the base station sets a new scrambling code and then assigns orthogonal codes for the newly set scrambling code.
  • a Gold sequence of length 2 18 -1 is typically used. In the Gold sequence of length 2 18 -1, 2 18 -1 different Gold codes constitute one group.
  • the Gold code of length 2 18 -1 is repeatedly selected by 38400 bits from the first bit.
  • the scrambling code used for identification of the base stations is referred to as a "primary scrambling code”.
  • the primary scrambling code and orthogonal codes using the primary scrambling code are then assigned. If the orthogonal code is insufficient to assign for newly adding channels using the primary scrambling code, another scrambling code is set and then orthogonal codes using the set scrambling code are assigned.
  • the scrambling code used at that case is referred to as a "secondary scrambling code”. That is, the number of the orthogonal codes which can be assigned using the corresponding scrambling code is determined by the data rate of presently communicating channels. Therefore, it is possible to expand the channel capacity by providing a plurality of the scrambling codes and setting an unused scrambling code when the channel capacity is insufficient.
  • the primary scrambling code is used for identification of the base stations and for scrambling the signal spread with the assigned orthogonal codes. It will be assumed herein that the number of the primary scrambling codes is 512. Therefore, adjacent base stations use different primary scrambling codes out of the 512 primary scrambling codes.
  • the mobile stations identify the base stations by analyzing the primary scrambling codes. Therefore, the base station transmits the common control channels to the mobile stations using a unique primary scrambling code, and transmits the downlink channels using either the primary scrambling code or the secondary scrambling code according to the present channel capacity.
  • the base station transmits the common control channels to the mobile stations using a unique primary scrambling code, and transmits the downlink channels using either the primary scrambling code or the secondary scrambling code according to the present channel capacity. Therefore, the mobile stations identify the base stations by analyzing the primary scrambling codes.
  • the secondary scrambling codes used to increase the channel capacity of the base stations correspond to the primary scrambling codes used in the base station, and the maximum number of the secondary scrambling codes is 512.
  • the base station selects the secondary scrambling codes.
  • FIG. 1 illustrates a downlink channel transmitter of a UMTS base station.
  • a dedicated physical control channel DPCCH and N dedicated physical data channels DPDCH 1 - to DPDCH N are applied to demultiplexers 100 to 104, respectively, after channel coding and interleaving.
  • the demultiplexers 100-104 demultiplex DPCCH and DPDCH 1 -DPDCH N into I and Q signal components, respectively.
  • the I and Q signal components output from the demultiplexer 100 are applied to multipliers 110 and 111, which multiply the received I and Q signal components by a first orthogonal code for channel separating of the I and Q signals.
  • a scrambler 120 scrambles the multiplied signals.
  • the demultiplexers 102-104 have the same operation as the demultiplexer 100, multipliers 114, 115, 118 and 119 have the same operation as the multipliers 110 and 111, and scramblers 124 and 128 have the same operation as the scrambler 120.
  • a scrambling code generator 150 generates scrambling codes and provides the generated scrambling codes to the scramblers 120, 124 and 128.
  • the scrambling codes generated by the scrambling code generator 150 include the primary scrambling codes, and the secondary scrambling codes for increasing the channel capacity of the base stations.
  • the scrambling code generator 150 provides the primary scrambling codes to the scramblers that use the primary scrambling codes, and the secondary scrambling codes to the scramblers that use the secondary scrambling codes.
  • the scramblers 120, 124 and 128 each complex-multiply the multiplied input signals by the corresponding scrambling codes, and provides the resulting real part components to a summer 130 and the resulting imaginary components to a summer 135.
  • the summer 130 sums the real part components of the scrambled signals and the summer 135 sums the imaginary part components of the scrambled signals.
  • FIG. 2 illustrates a detailed structure of the scrambling code generator 150 of FIG. 1 , which simultaneously generates several scrambling codes.
  • control information #1 to control information #N of scrambling codes for several channels are applied to N Gold sequence generators 211-21N, respectively.
  • the Gold sequence generators 211-21N generate Gold codes corresponding to the received control information #1 to control information #N, and output the I-channel components unchanged and provide the Q-channel components to corresponding delays 221-22N.
  • the delays 221-22N delay the received Q-channel components for a specific chip period.
  • FIG. 3 illustrates a downlink channel receiver of a UMTS mobile station.
  • the receiver be able to descramble the received down link common control channel signals that were scrambled with the primary scrambling code in the base station. And should also be able to descramble other received downlink channels, which were scrambled with the primary scrambling codes or the secondary scrambling codes in the base station. Therefore, the receiver should be able to generate a plurality of scrambling codes to descramble the received downlink channels.
  • the I and Q components of the signals received at the mobile station are applied to descramblers 310 and 315, respectively.
  • a scrambling code generator 300 simultaneously generates primary scrambling codes and secondary scrambling codes for respective channels, and provides the generated scrambling codes to the descramblers 310 and 315.
  • the descramblers 310 and 315 multiply the received signals I+jQ by conjugate values of the scrambling codes provided from the scrambling code generator 300 to despread (descramble) the received signals, and provide the descrambled I and Q components to multipliers 320-326.
  • the signals output from the descramblers 310 and 315 are applied to the multipliers 320-326 where the signals are multiplied by orthogonal codes for the corresponding channels, for despreading. Thereafter, the despread signals are multiplexed by multiplexers 330 and 335.
  • FIG. 4 illustrates a detailed structure of the scrambling code generator 300 of FIG. 3 , which simultaneously generates several scrambling codes.
  • the common control channels are normally scrambled with the primary scrambling codes and other channels are scrambled with either the primary scrambling codes or the secondary scrambling codes according to the system capacity. Therefore, the mobile station should be able to generate the secondary scrambling codes as well as the primary scrambling codes.
  • the signal scrambled with primary scrambling code and the signal scrambled with secondary scrambling code can be simultaneously received, it is necessary for the mobile station to be able to simultaneously generate the primary scrambling codes and the secondary scrambling codes.
  • Gold sequence generators 411 and 412 upon receipt of control information #1 and control information #2 of scrambling codes for the respective channels, Gold sequence generators 411 and 412 generate Gold codes corresponding to the control information #1 and #2. At this point, the I components of the generated Gold codes are output unchanged, and the Q components are delayed by the corresponding delays 421 and 422 for a specific chip period.
  • FIG. 5 illustrates a detailed structure of the Gold sequence generators of FIGS. 2 and 4 .
  • a Gold sequence is generated by XORing two different m-sequences.
  • the Gold codes generated by the Gold sequence generator are divided into the primary scrambling codes and the secondary scrambling codes.
  • 261,144 Gold codes 512 are the primary scrambling codes, and 511 Gold codes are associated with each primary scrambling code, constituting a set of the secondary scrambling codes.
  • the 512 primary scrambling codes are generated by setting 512 upper shift register initial values and XORing the output of upper shifter register 500 and the lower shift register 510.
  • the upper shift register 500 has a binary value of a decimal number of 0 to 511 as an initial value
  • the lower shift register 510 normally has a value of '1' at every shift register as an initial value.
  • the secondary scrambling codes are generated by providing i+512*k as an initial value of the upper register 500, where 'i' denotes a code number of the primary scrambling code and 'k' denotes a value of 1 to 511. Therefore, each primary scrambling code is associated with 511 secondary scrambling codes.
  • Each base station uses one primary scrambling code, and uses one or more secondary scrambling codes as occasion demands.
  • the primary scrambling codes are necessarily used when scrambling a primary common control channel (P_CCPCH).
  • P_CCPCH primary common control channel
  • Other downlink physical channels are scrambled with either the primary scrambling signal or a secondary scrambling code selected from the secondary scrambling code set, before transmission.
  • the base station should include a scrambling code generator, which can simultaneously generate several scrambling codes, and the mobile station should also have a scrambling code generator, which can generate several scrambling codes, in order to correctly receive the signals transmitted from the base station.
  • the Gold sequence generator cannot simultaneously generate several scrambling codes, and generates only one scrambling code at a time. Thus, to generate several scrambling codes, it is necessary to provide a number of the Gold sequence generators equal to the number of the scrambling codes.
  • the number of the scrambling codes generated by the Gold sequence generator of FIG. 5 is 262,144 in total.
  • Each base station can perform communication even with one primary scrambling code and 511 secondary scrambling codes associated with the primary scrambling code. It is not difficult for the base station to store 262,144 scrambling codes, considering its large memory capacity.
  • the mobile station which performs communication while traveling between base stations, cannot know which primary scrambling code and secondary scrambling code are used by the base stations, the mobile station should store all the 262,144 scrambling codes.
  • a storage area for storing the 262,144 scrambling codes will occupy a considerable storage area of the mobile station, considering the small memory capacity of the mobile station.
  • the base station when there are an insufficient orthogonal codes for the primary scrambling codes, the base station should inform the mobile station of information about a secondary scrambling code which will be using, while transmitting the channel signals which were scrambled with the secondary scrambling codes. However, since the base station should transmit one of the numbers of 512 to 262,144 indicating the secondary scrambling code, the base station should transmit 18-bit information about the secondary scrambling codes.
  • a total of 262144 scrambling codes can be generated, but only 2560 codes are to be used as scrambling codes.
  • the set of primary scrambling codes is further divided into 32 scrambling code groups, each consisting of 16 primary scrambling codes.
  • a method for transmitting a channel signal in a base station of a mobile communication system which scrambles a common channel signal using a primary scrambling code for identifying the base station.
  • the method comprises determining an identifier (ID) of a secondary scrambling code, upon receipt of a dedicated channel assignment request from a mobile station; transmitting the determined ID of the secondary scrambling code to the mobile station and awaiting a response; upon receipt of a response message from the mobile station, generating a primary scrambling code and a secondary scrambling code using an ID of the primary scrambling code and said ID of the secondary scrambling code; and scrambling a common channel signal using the primary scrambling code, scrambling a dedicated channel signal using the secondary scrambling code, and transmitting the scrambled channel signals.
  • ID identifier
  • mobile station or “MS” as used herein refer to a mobile terminal or user equipment (UE).
  • primary scrambling code refers to a code used for identification of the base stations (BS)
  • secondary scrambling code refers to a code used to expand the channel capacity of the base stations.
  • the primary scrambling code is assigned to the channels (e.g., common control channel) transmitted in common to every mobile station from the base station, and the secondary scrambling code is assigned to the dedicated channel when there is an insufficient number of the primary scrambling codes.
  • the primary scrambling code is generated by XORing the output of a first m-sequence generator which initial value is determined by the primary ID (i.e., an ID of the primary scrambling code) and an output of a second m-sequence generator
  • the secondary scrambling code is generated by XORing the output signal which is made by masking the first shift registers value and mask value which is determined by the primary ID and a secondary ID (i.e., an ID of the secondary scrambling code) and an output of a second m-sequence.
  • Gold codes are typically used to constitute the above scrambling codes.
  • the Gold codes are generated by summing two different m-sequences having a good correlation property. If there are two different m-sequences m 1 (t) and m 2 (t) each having a length L, the number of sets of the Gold codes generated from the m-sequences becomes L, and there is provided a good correlation property among L different Gold sequences.
  • a set of the Gold sequences can be expressed by Equation (1) below.
  • G m 1 t + ⁇ + m 2 t
  • Equation (2) if a period of the m-sequences is 2 18 -1, it is possible to cyclic-shift the m 1 (t) by a maximum of 2 18 -1, and the number of the elements in the set of the Gold codes generated by the sum of the cyclic-shifted m 1 (t) and m 2 (t) is equal to 2 18 -1 which is equal to a period by which the m 1 (t) can be cyclic-shifted.
  • a set of the Gold codes includes as elements the Gold codes determined by the sum of the m-sequence m 1 (t) having a generator polynomial shown in Equation (3) and the m-sequence m 2 (t) having a generator polynomial shown in Equation (4), and the number of the Gold codes is 2 18 -1.
  • f x x 18 + x 7 + 1
  • f x x 18 + x 10 + x 7 + x 5 + 1
  • the embodiment of the present invention uses a mask to generate the Gold codes.
  • the present invention employs a method for simultaneously generating a number of the Gold codes equal to the number of the used masks.
  • the method for simultaneously generating several Gold codes can be implemented by applying a mask function on the memory values of a shift register for generating the cyclic-shifted m-sequence m 1 (t).
  • the conventional scrambling code generation method fixes an initial value of the m-sequence m 2 (t) and then uses a binary number of a scrambling code index for an initial value of the m-sequence m 1 (t), thereby generating different Gold sequences. Thereafter, different scrambling codes are generated using the different Gold sequences.
  • the embodiment of the present invention generates the different scrambling codes in a method different from the conventional scrambling code generation method.
  • a method for generating different scrambling codes fixes initial values of the m 1 (t) and the m 2 (t) and applies different masks on the m-sequence generated by the m 1 (t) so that the Gold codes generated by the masks should be different from one another.
  • Every base station uses the same initial values for the m 1 (t) and m 2 (t).
  • the reason for using the same initial values for the two m-sequences in every base station is as follows. That is, if each base station takes a mask using the different initial value and generates the Gold code, some Gold codes generated by different base stations may be equal to each other.
  • every base station uses the same initial values for the m-sequences m 1 (t) and m 2 (t), and generates the different scrambling codes by applying the different masks to the m 1 (t).
  • the embodiment of the present invention provides a generator for simultaneously generating several Gold codes using the above mask functions, and a mask structure applied to the generator. Further, the present invention provides a method for simultaneously generating several primary scrambling codes and several secondary scrambling codes using the above generator, and a method for generating the primary scrambling codes and the secondary scrambling codes when necessary, rather than storing the scrambling codes in a memory, in order to reduce the hardware complexity.
  • FIG. 6 illustrates a structure of a scrambling code generator for simultaneously generating several scrambling codes according to an embodiment of the present invention.
  • the scrambling code generator is divided into a Gold code generator 601 and a scrambling code generation section.
  • the Gold code generator 601 includes two shift registers for generating m-sequences, and a masking section for generating new m-sequences by receiving memory values of the upper shift register and mask coefficients.
  • the scrambling code generation section receiving the generated Gold codes through the I and Q channels, outputs the I-channel components unchanged, and delays the Q-channel components for a specific chip period, thereby generating complex scrambling codes.
  • the scrambling code generation section includes delays 631-63N.
  • the number of the Gold codes output from the Gold code generator 601 is equal to the number of the masks in the Gold code generator 601.
  • the I-channel components of the different Gold codes generated through the respective masks are output unchanged, and the Q-channel components are delayed by the delays 631-63N for a specific chip period, thereby generating different scrambling codes.
  • FIGS. 7A and 7B illustrate the detailed structures of the Gold code generator 601 for simultaneously generating the different Gold codes according to an embodiment of the present invention.
  • shift registers 701 and 703 each include 18 memories and generate m-sequences m 1 (t) and m 2 (t), respectively.
  • XOR gates 721, 722 and 731-73N perform XOR operation on the inputs.
  • Masking sections 711-71N each operate with different mask coefficients, and thus, can simultaneously generate a number of different m-sequences equal to the number of the masking sections.
  • 'N' corresponds to the number of the masking sections and is a positive number.
  • 'N' is set to the number of the scrambling codes required by the base station or the mobile station (i.e., a value which is set according to the serviceable channel capacity of the mobile communication system).
  • the number of delays 631-63N of FIG. 6 is equal to the number of the masking sections 711-71N, and delay the Gold codes generated by the corresponding XOR gates 731-73N for a specific chip period, thereby to generate imaginary components of the scrambling codes.
  • FIGS. 7A and 7B show the most typical m-sequence generation methods. Specifically, FIG. 7A shows a structure of a Gold code generator using a Fibbomacci technique, and FIG. 7B shows a structure of a Gold code generator using a Galois technique. Although the two generators are different in structure, they are designed to generate the same Gold codes.
  • the m-sequence generators of FIGS. 7A and 7B are different from each other in the structure of the shift registers which are the m-sequence generating sections, and similar to each other in other structures and functions. In FIG.
  • the generator polynomial of the m-sequence m 1 (t) has a feedback property shown by Equation (5) below, with respect to consecutive symbols of the generated codes.
  • the reason for setting the initial value of m 1 (t) the same in every base station is as follows. Different Gold codes should be generated using the masks. However, if each base station uses different initial values, it is possible that the same Gold code would be generated by more than one base station. In FIG. 7A , '1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0' is used for the initial value of the m-sequence m 1 (t).
  • the initial value of the shift register 703 is set to '1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1'.
  • the memory values of the shift register 701 are applied to the masking sections 711-71N, which generate new m-sequences by operating the received m-sequence m 1 (t) with previously set mask coefficients.
  • the respective masking sections 711-71N have different mask structures.
  • the masking sections 711-71N each have the function of multiplying the memory values received from the shift register 701 by the corresponding mask coefficients and then summing the multiplied values. Multiplication and summation performed on the memory values of the shift register 701 and the mask coefficients are binary operations.
  • FIG. 8 illustrates structures of the masks generated by the masking sections 711-71N.
  • a mask having the structure shown by 801 is used to generate a Gold code for generating the primary scrambling codes.
  • the mask 801 has a length of 18 bits, wherein the left 9 bits (i.e., 9 bits from the MSB (Most Significant Bit) or the leftmost bit) are assigned for a primary ID 803 (which is a part indicating the binary value determined by binary converting the code number of the primary scrambling code) and the remaining 9 bits are assigned for null data 805.
  • the 9 upper bits of the mask 801 are used to indicate the 512 primary scrambling codes.
  • the base station or the mobile station of the mobile communication system converts a desired one of the numbers of 0 to 511 to a binary value and applies the converted binary value to the upper 9 bits of the mask 801, thereby to generate a Gold code.
  • the base station in order for the base station, which is assigned a code number 12 for the primary scrambling code, to generate the primary scrambling code corresponding to the code number 12, the base station applies '0,0,0,0,0,1,1,0,0' to the 9 upper bits of the mask 801 and then applies the mask 801 to the Gold code generator 701 of FIGS. 7A or 7B .
  • the scrambling code is generated in the same manner as described above.
  • the mobile station when the mobile station generates the masks as many as the number of the primary scrambling codes desired to be generated and applies the generated masks to the Gold code generator 701 of FIG. 7A or 7B , it is possible to generate another desired primary scrambling code, while generating the 12 th primary scrambling code.
  • a mask having the structure shown by 810 is used to generate a Gold code for generating the secondary scrambling code.
  • the mask 810 has a length of 18 bits, wherein 9 bits from the MSB are assigned for a primary ID 812 (i.e., an ID of the primary scrambling code) which is a part indicating the primary scrambling code, and n bits out of the remaining 9 bits are assigned for a secondary ID 814 (i.e., an ID of the secondary scrambling code) which is a part indicating the secondary scrambling code, and (9-n) bits are assigned for null data 816.
  • the primary ID part 812 of the mask 810 is identical to the primary ID part 803 of the mask 801 in structure and function.
  • the mask 810 is comprised of the primary ID 812 and the secondary ID 814.
  • the mask 810 By applying the mask 810 to the masking section of the scrambling code generator of FIG. 6 , it is possible to simultaneously generate the primary scrambling code and the secondary scrambling code. If it is assumed that a code number of the secondary scrambling code to be generated is '4', a mask coefficient value being input to the mask 810 becomes '0,0,0,0,0,1,1,0,0' for the primary ID and '0,0,0,0,0,1,0,0' for the secondary ID. As a result, the mask 810 becomes '0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0'.
  • the coefficient value of the mask 810 is input on the assumption that the 511 secondary scrambling codes are all used. Therefore, if the mobile communication system uses m secondary scrambling codes, the binary value of the code number of the secondary scrambling code is applied to an n-bit expression part of the secondary scrambling code of the mask 810, where 'n' is larger by 1 than an integer of log 2 m. For example, when 16 secondary scrambling codes are used, the secondary ID is 4 bits in length.
  • the mask 801 and the mask 810 of FIG. 8 are shown by way of example only. As an alternative example, the positions of the 9-bit primary ID part 812 and the n-bit secondary ID part 814 can be exchanged. As shown in the two mask structures of FIG. 8 , the mask for generating the Gold code for generating the primary scrambling code should necessarily include a binary value of the code number of 0 to 511 indicating the primary scrambling code, and the mask for generating the Gold code for generating the secondary scrambling code should necessarily include a binary value of the code number of 0 to 511 indicating the primary scrambling code number and an n-bit value representative of a code number of 1 to 511 indicating the secondary scrambling code.
  • the mask 810 becomes a mask for generating the primary scrambling code, which has the same structure as the mask 801.
  • Table 1 the number of the secondary scrambling codes used in the base station is assumed to be 16.
  • the method for generating the Gold code by using the masks shown in FIG. 8 enables effective classification of the primary scrambling code and the secondary scrambling code.
  • a downlink channel transmitter of the base station and a downlink channel receiver of the mobile station, which use the scrambling code generator of FIG. 6 require no separate storage for the primary scrambling codes and the secondary scrambling codes.
  • the scrambling code generator of FIG. 6 using the masks can classify the primary scrambling codes depending on the binary value of the number of 0 to 511 being input to the mask 801. Further, since the secondary scrambling codes are classified according to a value of the primary scrambling code as shown in Table 1, there is no possibility that the same secondary scrambling codes are generated by the adjacent base stations.
  • the base station and the mobile station require no separate storages.
  • the output bits of the masking sections 711-71N in the Gold code generator of FIG. 7A are XORed with the output bits of the shift register 703 by the XOR gates 731-73N, thereby to generate different Gold codes.
  • the Gold code generator of FIG. 7B also generates the different Gold codes in the same method as shown in FIG. 7A .
  • the generated different Gold codes are used to generate different scrambling codes.
  • FIG. 9 illustrates an operation of the base station, which uses the scrambling code generator of FIG. 6 .
  • the base station determines in step 901 whether a channel assignment request has been received from the mobile station.
  • the mobile station requests channel assignment in the following two cases. In a first case, the mobile station requests assignment of another channel, while performing communication with a presently assigned dedicated channel. In another case, the mobile station requests assignment of a dedicated channel for communication, in a state where there is no presently assigned channel. Herein, it will be assumed that the mobile station requests assignment of the dedicated channel for the first time.
  • a radio resource controller (RRC) in the base station Upon receipt of the channel assignment request from the mobile station in step 901, a radio resource controller (RRC) in the base station analyzes the number of subscribers being presently serviced and a capacity of the channels assigned to the subscribers in step 902, to determine whether the number of the channel orthogonal codes used together with the primary scrambling code is insufficient or not. That is, the base station determines in step 902 whether the mobile station can assign a channel using the primary scrambling code or has an insufficient number of the channel orthogonal codes to assign the channel using the primary scrambling code.
  • RRC radio resource controller
  • step 902 If it is determined in step 902 that there is a channel orthogonal code to be assigned to the mobile station using the primary scrambling code, the RRC of the base station assigns to the mobile station a mask of a channel to be scrambled with the primary scrambling code and information about the assigned channel orthogonal code in step 903. At this point, since the primary scrambling code is used for the downlink common control channel, the base station may not transmit an ID of the primary scrambling code (i.e., primary ID).
  • the RRC of the base station determines to use the secondary scrambling code in step 904, in order to accept a new channel assignment request from the mobile station.
  • the base station After determining to use the secondary scrambling code, the base station generates a mask in order to generate the secondary scrambling code in step 905.
  • Applied to the generated mask are binary values of the primary ID and the secondary ID.
  • the secondary ID is determined as a value between 1 and m in step 904, and the mask is generated in step 905.
  • the base station After generating the mask for the newly generated scrambling code, the base station transmits, in step 906, ID information of the secondary scrambling code to be newly generated and information about the assigned channel orthogonal code to the mobile station which will receive the scrambled channel with the newly generated secondary scrambling code.
  • the scrambling code information being transmitted to the mobile station is the secondary ID, and the primary ID is not transmitted. That is, since the mobile station knows the primary scrambling code being used in the base station through the common control channel, the mobile station can generate the secondary scrambling code, even though only the secondary ID is received.
  • the information being transmitted to the mobile station is transmitted over the common control channel scrambled with the primary scrambling code.
  • the downlink common control channel may be a paging channel (PCH) or a forward access channel (FACH).
  • PCH paging channel
  • FACH forward access channel
  • the secondary scrambling code is generated in the conventional method, it is necessary to transmit information indicating use of the above secondary scrambling code and information including the code number of the newly generated scrambling code of 512 to 262,144. Therefore, conventionally, 18 bits are required in transmitting the secondary ID in order to inform the mobile station of the secondary scrambling code.
  • the information transmitted from the base station to the mobile station may include only the information indicating use of the secondary scrambling code and the n-bit secondary ID.
  • the mask 810 of FIG. 8 is used, the secondary ID information has a length of 1 to 9 bits, and in the embodiment of the present invention, it is assumed that the secondary ID has a length of 4 bits.
  • the base station After transmitting the secondary scrambling code information of the mask 810, the base station awaits an acknowledgement (ACK) from the mobile station in step 907. Upon receipt of ACK from the mobile station, the base station generates in step 908 the secondary scrambling code using the mask 810 generated in the step 905. That is, the base station newly generates the secondary scrambling code while generating the primary scrambling code, by applying the mask to the scrambling code generator of FIG. 6 . Thereafter, in step 909, the base station transmits the channels scrambled with the primary scrambling code and the channels scrambled with the secondary scrambling code to the mobile station.
  • ACK acknowledgement
  • the base station assigns the channel code scrambled with the secondary scrambling code to the mobile station, and transmits the secondary ID in the same method as shown in FIG. 9 .
  • the secondary ID is transmitted over the dedicated channel, which was used by the mobile station in communication with the base station before assignment request of the new channel. That is, the base station transmits the secondary scrambling code information while assigning the channel to the mobile station presently in service, and the secondary scrambling code information is transmitted over the channel presently in service.
  • FIG. 10 illustrates an operation of the mobile station in association with the operation of the base station shown in FIG. 9 .
  • the mobile station requests assignment of a new channel in step 1001, and awaits a response from the base station in step 1002. That is, when the mobile station requests assignment of a new channel, the base station analyzes a capacity of the available channels, generates a response message according to the analysis results, and transmits the generated response message to the mobile station. Upon receipt of the response message from the base station, the mobile station analyzes the response message received from the base station, in step 1002.
  • the received message includes information about whether the base station will assign a channel scrambled with the primary scrambling code to the mobile station or assign a channel scrambled with the secondary scrambling code to the mobile station. When the base station assigns the channel scrambled with the secondary scrambling code to the mobile station, the received message further includes information about the secondary scrambling code.
  • step 1002 If it is determined in step 1002 that the received message indicates that the base station assigns a channel scrambled with the primary scrambling code to the mobile station, the mobile station generates the primary scrambling code in the scrambling code generator of FIG. 6 , and descrambles the downlink channel with the generated primary scrambling code in step 1003, thereby to receive the downlink channel signal transmitted from the base station.
  • step 1002 if it is determined in step 1002 that the received message indicates that the base station assigns a channel scrambled with the secondary scrambling code to the mobile station, the mobile station transmits an ACK message to the base station in step 1004. Thereafter, in step 1005, the mobile station analyzes the secondary ID included in the message received in step 1002. Subsequently, in step 1006, the mobile station generates a mask for generating the secondary scrambling code, the mask having the mask structure 810 shown in FIG. 8 .
  • step 1007 the mobile station simultaneously generates the secondary scrambling code and the primary scrambling code for descrambling the common control channel scrambled with the primary scrambling code before transmission, by using the mask generated in step 1006 and the scrambling code generator of FIG. 6 . Thereafter, in step 1008, the mobile station descrambles the channels scrambled with the respective scrambling codes using the generated primary scrambling code and secondary scrambling code.
  • the base station should use the secondary scrambling code.
  • the conventional Gold code generator of FIG. 5 it is necessary to provide a number of the Gold code generators equal to the number of the necessary secondary scrambling codes.
  • the Gold code generator of FIG. 7A or 7B according to the present invention it is possible to simultaneously generate the primary scrambling code and the secondary scrambling code by using a mask for generating the primary scrambling code and a mask for generating the secondary scrambling code in a single Gold code generator.
  • the number of masks provided is equal to the number of the secondary scrambling codes. It is also possible to generate the secondary scrambling code using an assigned mask, when necessary.
  • the base station can use the primary scrambling code for the downlink common control channel, and use the primary scrambling code or the secondary scrambling code for the downlink dedicated channel according to the states of the channel orthogonal codes, which can be assigned using the primary scrambling code.
  • the mobile station should include one descrambler for descrambling the signals received over the downlink common control channel and the downlink dedicated channel using the primary scrambling code, and another descrambler for descrambling the signal received over the other downlink dedicated channel with the secondary scrambling code.
  • the mobile station uses the Gold code generator of FIG. 7A or 7B according to the present invention, it is possible to simultaneously generate the different scrambling codes by using a number of masks equal to the number of the necessary scrambling codes.
  • the mobile station if the mobile station exists in the handoff area in a mobile communication environment, it is necessary to generate a scrambling code for searching the primary scrambling code of the handoff target base station as well as the scrambling code for descrambling the primary scrambling code of the base station to which the mobile station belongs. Since the process for searching the primary scrambling code of the target base station should be performed in the state where the mobile station continues communication with the base station to which it belongs, the mobile station should necessarily include the function of simultaneously generating several scrambling codes. However, when the conventional Gold code generator of FIG. 5 is used, it is necessary to provide the Gold code generators as many as the number of the scrambling codes to be generated. However, when the Gold code generator of FIG. 7A or 7B according to the present invention is used, it is possible to implement the descrambler of the mobile station, which can simultaneously generate the scrambling codes, which need descrambling.
  • the novel descrambling code generator for the base station transmitter and the mobile station receiver of the mobile communication system can simultaneously generate a plurality of scrambling codes using a single code generator. Further, by using the novel scrambling code generator, the base station transmitter or the mobile station receiver can generate the scrambling codes without a separate storage, thereby reducing its hardware complexity. In addition, by generating the Gold code for generating the scrambling code using the mask, one scrambling code generator can simultaneously generate different scrambling codes. In addition, when transmitting information about the secondary scrambling code in order to expand the channel capacity, the base station transmits an ID of the secondary scrambling code (i.e., secondary ID), and the mobile station can generate the secondary scrambling code by receiving the secondary ID. Therefore, it is possible to readily generate the secondary scrambling code by reducing an amount of the information for generating the secondary scrambling code.
  • an ID of the secondary scrambling code i.e., secondary ID

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

  • The present invention relates generally to a channel communication method in a mobile communication system, and in particular, to a communication method for readily setting a secondary scrambling code in a mobile communication system which expands a channel capacity using a plurality of scrambling codes.
  • In general, a CDMA (Code Division Multiple Access) communication system uses scrambling codes for identification of base stations. The scrambling codes are also used for an increase in the channel capacity of the base stations as well as identification of the base stations.
  • A UMTS (Universal Mobile Telecommunication System) communication system, which is a European W-CDMA communication system, uses a plurality of scrambling codes for identification of the base station and an increase in the channel capacity of the base stations. In the UMTS system, when a base station has used up all the orthogonal codes assigned to one scrambling code and thus has no more available orthogonal code, the base station uses another scrambling code to expand the channel capacity. That is, the base station sets a new scrambling code and then assigns orthogonal codes for the newly set scrambling code. To generate the scrambling codes, a Gold sequence of length 218-1 is typically used. In the Gold sequence of length 218-1, 218-1 different Gold codes constitute one group. For the scrambling codes, the Gold code of length 218-1 is repeatedly selected by 38400 bits from the first bit.
  • In general, the scrambling code used for identification of the base stations is referred to as a "primary scrambling code". The primary scrambling code and orthogonal codes using the primary scrambling code are then assigned. If the orthogonal code is insufficient to assign for newly adding channels using the primary scrambling code, another scrambling code is set and then orthogonal codes using the set scrambling code are assigned. The scrambling code used at that case is referred to as a "secondary scrambling code". That is, the number of the orthogonal codes which can be assigned using the corresponding scrambling code is determined by the data rate of presently communicating channels. Therefore, it is possible to expand the channel capacity by providing a plurality of the scrambling codes and setting an unused scrambling code when the channel capacity is insufficient.
  • The primary scrambling code is used for identification of the base stations and for scrambling the signal spread with the assigned orthogonal codes. It will be assumed herein that the number of the primary scrambling codes is 512. Therefore, adjacent base stations use different primary scrambling codes out of the 512 primary scrambling codes.
  • In general, the mobile stations identify the base stations by analyzing the primary scrambling codes. Therefore, the base station transmits the common control channels to the mobile stations using a unique primary scrambling code, and transmits the downlink channels using either the primary scrambling code or the secondary scrambling code according to the present channel capacity.
  • In general, the base station transmits the common control channels to the mobile stations using a unique primary scrambling code, and transmits the downlink channels using either the primary scrambling code or the secondary scrambling code according to the present channel capacity. Therefore, the mobile stations identify the base stations by analyzing the primary scrambling codes.
  • The secondary scrambling codes used to increase the channel capacity of the base stations correspond to the primary scrambling codes used in the base station, and the maximum number of the secondary scrambling codes is 512. The base station selects the secondary scrambling codes.
  • Reference will now be made to UMTS downlink transmission for which several scrambling codes are used.
  • FIG. 1 illustrates a downlink channel transmitter of a UMTS base station. Referring to FIG. 1, a dedicated physical control channel DPCCH and N dedicated physical data channels DPDCH1 - to DPDCHN are applied to demultiplexers 100 to 104, respectively, after channel coding and interleaving. The demultiplexers 100-104 demultiplex DPCCH and DPDCH1-DPDCHN into I and Q signal components, respectively. The I and Q signal components output from the demultiplexer 100 are applied to multipliers 110 and 111, which multiply the received I and Q signal components by a first orthogonal code for channel separating of the I and Q signals. A scrambler 120 scrambles the multiplied signals. The demultiplexers 102-104 have the same operation as the demultiplexer 100, multipliers 114, 115, 118 and 119 have the same operation as the multipliers 110 and 111, and scramblers 124 and 128 have the same operation as the scrambler 120.
  • A scrambling code generator 150 generates scrambling codes and provides the generated scrambling codes to the scramblers 120, 124 and 128. The scrambling codes generated by the scrambling code generator 150 include the primary scrambling codes, and the secondary scrambling codes for increasing the channel capacity of the base stations. The scrambling code generator 150 provides the primary scrambling codes to the scramblers that use the primary scrambling codes, and the secondary scrambling codes to the scramblers that use the secondary scrambling codes.
  • The scramblers 120, 124 and 128 each complex-multiply the multiplied input signals by the corresponding scrambling codes, and provides the resulting real part components to a summer 130 and the resulting imaginary components to a summer 135. The summer 130 sums the real part components of the scrambled signals and the summer 135 sums the imaginary part components of the scrambled signals.
  • FIG. 2 illustrates a detailed structure of the scrambling code generator 150 of FIG. 1, which simultaneously generates several scrambling codes.
  • Referring to FIG. 2, the common control channels normally use the primary scrambling codes. However, when there is an insufficient number of the orthogonal codes, the downlink dedicated channels should use the secondary scrambling codes. Therefore, it is necessary for the base station to be able to generate a plurality of scrambling codes. In FIG. 2, control information #1 to control information #N of scrambling codes for several channels are applied to N Gold sequence generators 211-21N, respectively. The Gold sequence generators 211-21N generate Gold codes corresponding to the received control information #1 to control information #N, and output the I-channel components unchanged and provide the Q-channel components to corresponding delays 221-22N. The delays 221-22N delay the received Q-channel components for a specific chip period.
  • FIG. 3 illustrates a downlink channel receiver of a UMTS mobile station. The receiver be able to descramble the received down link common control channel signals that were scrambled with the primary scrambling code in the base station. And should also be able to descramble other received downlink channels, which were scrambled with the primary scrambling codes or the secondary scrambling codes in the base station. Therefore, the receiver should be able to generate a plurality of scrambling codes to descramble the received downlink channels.
  • In FIG. 3, the I and Q components of the signals received at the mobile station are applied to descramblers 310 and 315, respectively. A scrambling code generator 300 simultaneously generates primary scrambling codes and secondary scrambling codes for respective channels, and provides the generated scrambling codes to the descramblers 310 and 315. The descramblers 310 and 315 multiply the received signals I+jQ by conjugate values of the scrambling codes provided from the scrambling code generator 300 to despread (descramble) the received signals, and provide the descrambled I and Q components to multipliers 320-326. The signals output from the descramblers 310 and 315 are applied to the multipliers 320-326 where the signals are multiplied by orthogonal codes for the corresponding channels, for despreading. Thereafter, the despread signals are multiplexed by multiplexers 330 and 335.
  • FIG. 4 illustrates a detailed structure of the scrambling code generator 300 of FIG. 3, which simultaneously generates several scrambling codes. In the base station for the mobile communication system, which uses the scrambling codes, the common control channels are normally scrambled with the primary scrambling codes and other channels are scrambled with either the primary scrambling codes or the secondary scrambling codes according to the system capacity. Therefore, the mobile station should be able to generate the secondary scrambling codes as well as the primary scrambling codes. In addition, since the signal scrambled with primary scrambling code and the signal scrambled with secondary scrambling code can be simultaneously received, it is necessary for the mobile station to be able to simultaneously generate the primary scrambling codes and the secondary scrambling codes.
  • Referring to FIG. 4, upon receipt of control information #1 and control information #2 of scrambling codes for the respective channels, Gold sequence generators 411 and 412 generate Gold codes corresponding to the control information #1 and #2. At this point, the I components of the generated Gold codes are output unchanged, and the Q components are delayed by the corresponding delays 421 and 422 for a specific chip period.
  • FIG. 5 illustrates a detailed structure of the Gold sequence generators of FIGS. 2 and 4. In general, a Gold sequence is generated by XORing two different m-sequences. In FIG. 5, an m-sequence generator polynomial of an upper shift register 500 is f(x)=x18+x7+1, and a generator polynomial of a lower shift register 510 is f(x)=x18+x10+x7+x5+1.
  • The number of Gold codes generated by the Gold sequence generator of FIG. 5 is 512*512=262,144. The Gold codes generated by the Gold sequence generator are divided into the primary scrambling codes and the secondary scrambling codes. Of the 261,144 Gold codes, 512 are the primary scrambling codes, and 511 Gold codes are associated with each primary scrambling code, constituting a set of the secondary scrambling codes.
  • The 512 primary scrambling codes are generated by setting 512 upper shift register initial values and XORing the output of upper shifter register 500 and the lower shift register 510. Here, the upper shift register 500 has a binary value of a decimal number of 0 to 511 as an initial value, and the lower shift register 510 normally has a value of '1' at every shift register as an initial value. The secondary scrambling codes are generated by providing i+512*k as an initial value of the upper register 500, where 'i' denotes a code number of the primary scrambling code and 'k' denotes a value of 1 to 511. Therefore, each primary scrambling code is associated with 511 secondary scrambling codes. Each base station uses one primary scrambling code, and uses one or more secondary scrambling codes as occasion demands.
  • The primary scrambling codes are necessarily used when scrambling a primary common control channel (P_CCPCH). Other downlink physical channels are scrambled with either the primary scrambling signal or a secondary scrambling code selected from the secondary scrambling code set, before transmission.
  • As described with reference to FIGS. 1 to 5, there can be used several scrambling codes at the request of the base station. Therefore, the base station should include a scrambling code generator, which can simultaneously generate several scrambling codes, and the mobile station should also have a scrambling code generator, which can generate several scrambling codes, in order to correctly receive the signals transmitted from the base station.
  • Referring again to FIG. 5, the Gold sequence generator cannot simultaneously generate several scrambling codes, and generates only one scrambling code at a time. Thus, to generate several scrambling codes, it is necessary to provide a number of the Gold sequence generators equal to the number of the scrambling codes.
  • In addition, the number of the scrambling codes generated by the Gold sequence generator of FIG. 5 is 262,144 in total. Each base station can perform communication even with one primary scrambling code and 511 secondary scrambling codes associated with the primary scrambling code. It is not difficult for the base station to store 262,144 scrambling codes, considering its large memory capacity. However, the mobile station, which performs communication while traveling between base stations, cannot know which primary scrambling code and secondary scrambling code are used by the base stations, the mobile station should store all the 262,144 scrambling codes. A storage area for storing the 262,144 scrambling codes will occupy a considerable storage area of the mobile station, considering the small memory capacity of the mobile station.
  • Further, in the case where the scrambling codes are generated using the Gold codes of FIG. 5, when there are an insufficient orthogonal codes for the primary scrambling codes, the base station should inform the mobile station of information about a secondary scrambling code which will be using, while transmitting the channel signals which were scrambled with the secondary scrambling codes. However, since the base station should transmit one of the numbers of 512 to 262,144 indicating the secondary scrambling code, the base station should transmit 18-bit information about the secondary scrambling codes.
  • Document titled , 'Text proposal for multiple scrambling codes' TSG- relates to a proposal for multiple scrambling codes. It is proposed that 512 of the scrambling codes are primary scrambling codes. For each primary scrambling code, there are 4 additional secondary scrambling codes defined. The secondary scrambling codes are generated by masking operation to minimize the complexity of the various scrambling code generation. A total of 262144 scrambling codes can be generated, but only 2560 codes are to be used as scrambling codes. The scrambling codes are divided into a set of primary scrambling codes, consisting of scrambling code 5xN, wherein N = 0,...,511 and 512 sets of secondary scrambling codes, where the i'th set of secondary scrambling codes consists of scrambling codes ix5 + 1, ...,ix5+4 where i = 0,..., 511. There is a one-to-one mapping between each primary scrambling code and a set of secondary scrambling codes such that the i'th primary scrambling code corresponds to the i'th set of secondary scrambling codes. The set of primary scrambling codes is further divided into 32 scrambling code groups, each consisting of 16 primary scrambling codes.
  • Document 'Multiple-Scrambling Code' TSG- relates to a new multi-scrambling code assignment and generation method. The problems of the current scrambling code assignment and generation method and new schemes minimizing the complexity are discussed. Since many scrambling codes are used for primary and secondary identifying of the cell and solving a code limitation, a rule is required to coordinate the used scrambling codes. Calculating every mask or having a complicated mask is not desirable, especially for the user equipment. Three possible options to improve the current schemes are discussed. It is suggested to use for all cells the same simple masking function for secondary scrambling codes so that it is not necessary to calculate and memorize both the user equipment and the base station.
  • It is the object of the present of the present invention to provide a method for effectively communication secondary scrambling codes, which are used to expand a general capacity in a mobile communication system.
  • This object by the subject matter of the independent claims.
  • Preferred embodiments are defined by the dependent claims.
  • The embodiments and/or examples of the following description which are not covered by the appended claims are considered as not being part of the present invention.
  • It is herein disclosed to provide a method for assigning a channel to a mobile station in a mobile communication system which uses primary scrambling codes and secondary scrambling codes wherein a base station transmits ID information of the secondary scrambling code and information about a channel orthogonal code to the mobile station while assigning a channel using the secondary scrambling code.
  • It is also herein disclosed to provide a method for generating a scrambling code in a mobile communication system which uses primary scrambling codes and secondary scrambling codes, wherein a user equipment analyses information transmitted from a base station, generates upon receipt of ID information of the secondary scrambling code, a mask using an ID of the primary scrambling code and the received ID of the secondary scrambling code, and generates the scrambling code using the mask.
  • To achieve the above, there is provide a method for transmitting a channel signal in a base station of a mobile communication system which scrambles a common channel signal using a primary scrambling code for identifying the base station. The method comprises determining an identifier (ID) of a secondary scrambling code, upon receipt of a dedicated channel assignment request from a mobile station; transmitting the determined ID of the secondary scrambling code to the mobile station and awaiting a response; upon receipt of a response message from the mobile station, generating a primary scrambling code and a secondary scrambling code using an ID of the primary scrambling code and said ID of the secondary scrambling code; and scrambling a common channel signal using the primary scrambling code, scrambling a dedicated channel signal using the secondary scrambling code, and transmitting the scrambled channel signals.
  • The above object and other aspects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
    • FIG. 1 is a diagram illustrating a downlink channel transmitter of a UMTS base station;
    • FIG. 2 is a diagram illustrating a detailed structure of the scrambling code generator of FIG. 1, for simultaneously generating several scrambling codes;
    • FIG. 3 is a diagram illustrating a downlink channel receiver of a UMTS mobile station;
    • FIG. 4 is a diagram illustrating a detailed structure of the scrambling code generator of FIG. 3, for simultaneously generating several scrambling codes;
    • FIG. 5 is a diagram illustrating a detailed structure of the Gold sequence generators of FIGS. 2 and 4;
    • FIG. 6 is a diagram illustrating a scrambling code generator for simultaneously generating several scrambling codes according to an embodiment of the present invention;
    • FIGS. 7A and 7B are diagrams illustrating detailed structures of the Gold code generator for simultaneously generating several Gold codes according to an embodiment of the present invention;
    • FIG. 8 is a diagram illustrating structures of the masks shown in FIGS. 7A and 7B;
    • FIG. 9 is a flow chart illustrating the procedure for generating scrambling codes in the base station according to an embodiment of the present invention; and
    • FIG. 10 is a flow chart illustrating the procedure for generating scrambling codes in the mobile station according to an embodiment of the present invention.
  • A preferred embodiment of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
  • The terms "mobile station" or "MS" as used herein refer to a mobile terminal or user equipment (UE). Further, the term "primary scrambling code" refers to a code used for identification of the base stations (BS), and the term "secondary scrambling code" refers to a code used to expand the channel capacity of the base stations. In an exemplary embodiment of the present invention, it is assumed that the primary scrambling code is assigned to the channels (e.g., common control channel) transmitted in common to every mobile station from the base station, and the secondary scrambling code is assigned to the dedicated channel when there is an insufficient number of the primary scrambling codes. In addition, the primary scrambling code is generated by XORing the output of a first m-sequence generator which initial value is determined by the primary ID (i.e., an ID of the primary scrambling code) and an output of a second m-sequence generator, and the secondary scrambling code is generated by XORing the output signal which is made by masking the first shift registers value and mask value which is determined by the primary ID and a secondary ID (i.e., an ID of the secondary scrambling code) and an output of a second m-sequence.
  • Gold codes are typically used to constitute the above scrambling codes. The Gold codes are generated by summing two different m-sequences having a good correlation property. If there are two different m-sequences m1(t) and m2(t) each having a length L, the number of sets of the Gold codes generated from the m-sequences becomes L, and there is provided a good correlation property among L different Gold sequences. A set of the Gold sequences can be expressed by Equation (1) below. G = m 1 t + τ + m 2 t | 0 τ L 1
    Figure imgb0001
  • From Equation (1), a set of the Gold codes is equal to a set of all the sequences obtained by summing the cyclic-shifted m-sequence m1(t) and the m-sequence m2(t). Therefore, in the embodiment of the present invention, the sum of the m-sequence m1(t), which is cyclic-shifted by τ, and the m-sequence m2(t) will be called gτ. Then, the following relationship is given. g τ t = m 1 t + τ + m 2 t
    Figure imgb0002
  • In Equation (2), if a period of the m-sequences is 218-1, it is possible to cyclic-shift the m1(t) by a maximum of 218-1, and the number of the elements in the set of the Gold codes generated by the sum of the cyclic-shifted m1(t) and m2(t) is equal to 218-1 which is equal to a period by which the m1(t) can be cyclic-shifted.
  • A set of the Gold codes, to be used in the embodiment of the present invention, includes as elements the Gold codes determined by the sum of the m-sequence m1(t) having a generator polynomial shown in Equation (3) and the m-sequence m2(t) having a generator polynomial shown in Equation (4), and the number of the Gold codes is 218-1. f x = x 18 + x 7 + 1
    Figure imgb0003
    f x = x 18 + x 10 + x 7 + x 5 + 1
    Figure imgb0004
  • The embodiment of the present invention uses a mask to generate the Gold codes. Specifically, the present invention employs a method for simultaneously generating a number of the Gold codes equal to the number of the used masks. Here, the method for simultaneously generating several Gold codes can be implemented by applying a mask function on the memory values of a shift register for generating the cyclic-shifted m-sequence m1(t).
  • The conventional scrambling code generation method fixes an initial value of the m-sequence m2(t) and then uses a binary number of a scrambling code index for an initial value of the m-sequence m1(t), thereby generating different Gold sequences. Thereafter, different scrambling codes are generated using the different Gold sequences. The embodiment of the present invention, however, generates the different scrambling codes in a method different from the conventional scrambling code generation method.
  • A method for generating different scrambling codes according to the present invention fixes initial values of the m1(t) and the m2(t) and applies different masks on the m-sequence generated by the m1(t) so that the Gold codes generated by the masks should be different from one another. Every base station uses the same initial values for the m1(t) and m2(t). The reason for using the same initial values for the two m-sequences in every base station is as follows. That is, if each base station takes a mask using the different initial value and generates the Gold code, some Gold codes generated by different base stations may be equal to each other. For this reason, in the embodiment of the present invention, every base station uses the same initial values for the m-sequences m1(t) and m2(t), and generates the different scrambling codes by applying the different masks to the m1(t).
  • The embodiment of the present invention provides a generator for simultaneously generating several Gold codes using the above mask functions, and a mask structure applied to the generator. Further, the present invention provides a method for simultaneously generating several primary scrambling codes and several secondary scrambling codes using the above generator, and a method for generating the primary scrambling codes and the secondary scrambling codes when necessary, rather than storing the scrambling codes in a memory, in order to reduce the hardware complexity.
  • FIG. 6 illustrates a structure of a scrambling code generator for simultaneously generating several scrambling codes according to an embodiment of the present invention.
  • Referring to FIG. 6, the scrambling code generator is divided into a Gold code generator 601 and a scrambling code generation section. The Gold code generator 601 includes two shift registers for generating m-sequences, and a masking section for generating new m-sequences by receiving memory values of the upper shift register and mask coefficients. The scrambling code generation section receiving the generated Gold codes through the I and Q channels, outputs the I-channel components unchanged, and delays the Q-channel components for a specific chip period, thereby generating complex scrambling codes. The scrambling code generation section includes delays 631-63N.
  • The number of the Gold codes output from the Gold code generator 601 is equal to the number of the masks in the Gold code generator 601. The I-channel components of the different Gold codes generated through the respective masks are output unchanged, and the Q-channel components are delayed by the delays 631-63N for a specific chip period, thereby generating different scrambling codes.
  • FIGS. 7A and 7B illustrate the detailed structures of the Gold code generator 601 for simultaneously generating the different Gold codes according to an embodiment of the present invention.
  • Referring to FIG. 7A, shift registers 701 and 703 each include 18 memories and generate m-sequences m1(t) and m2(t), respectively. XOR gates 721, 722 and 731-73N perform XOR operation on the inputs. Masking sections 711-71N each operate with different mask coefficients, and thus, can simultaneously generate a number of different m-sequences equal to the number of the masking sections. In FIG. 7A, 'N' corresponds to the number of the masking sections and is a positive number. Herein, 'N' is set to the number of the scrambling codes required by the base station or the mobile station (i.e., a value which is set according to the serviceable channel capacity of the mobile communication system). The number of delays 631-63N of FIG. 6 is equal to the number of the masking sections 711-71N, and delay the Gold codes generated by the corresponding XOR gates 731-73N for a specific chip period, thereby to generate imaginary components of the scrambling codes.
  • FIGS. 7A and 7B show the most typical m-sequence generation methods. Specifically, FIG. 7A shows a structure of a Gold code generator using a Fibbomacci technique, and FIG. 7B shows a structure of a Gold code generator using a Galois technique. Although the two generators are different in structure, they are designed to generate the same Gold codes. The m-sequence generators of FIGS. 7A and 7B are different from each other in the structure of the shift registers which are the m-sequence generating sections, and similar to each other in other structures and functions. In FIG. 7A, reference numeral 701 denotes a shift register having a length of 18, in which a generator polynomial of the m-sequence m1(t) is f(x)=x18+x7+1. The generator polynomial of the m-sequence m1(t) has a feedback property shown by Equation (5) below, with respect to consecutive symbols of the generated codes. x 18 + i = x i + x i + 7 modulo 2 0 i 2 18 20
    Figure imgb0005
  • For the generator polynomial, f(x)=x18+x7+1, of the m-sequence m1(t), the conventional scrambling code generator uses a binary value of the number of the scrambling codes as an initial value of the generator polynomial. That is, since the number of the primary scrambling codes is 512 and the number of the secondary scrambling code sets, each comprised of 511 secondary scrambling codes associated with the corresponding primary scrambling code, is 512, the conventional scrambling code generator uses a binary value of the number of 0 to 262143 as an initial value to generate 512*512 (=262,144) different scrambling codes in total.
  • However, the scrambling code generators of FIGS. 7A and 7B set an initial value of the generator polynomial, f(x)=x18+x7+1, of the m-sequence m1(t) to a given 18-bit binary value. Here, the 18-bit binary value is a given 18-bit binary value excluding an initial value used for a generator polynomial, f(x)=x18+x10+x7+x5+1, of the m-sequence m2(t).
  • Every base station uses the same 18-bit binary value for the initial value of the generator polynomial, f(x) =x18+x7+1, of the m-sequence m1(t). The reason for setting the initial value of m1(t) the same in every base station is as follows. Different Gold codes should be generated using the masks. However, if each base station uses different initial values, it is possible that the same Gold code would be generated by more than one base station. In FIG. 7A, '1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0' is used for the initial value of the m-sequence m1(t).
  • In FIG. 7A, reference numeral 703 denotes a shift register having the same length as the shift register 701, in which a generator polynomial of the m-sequence m2(t) is f(x)=x18+x10+x7+X5+1. Every base station also uses the same initial value of the m-sequence m2(t). Herein, the initial value of the shift register 703 is set to '1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1'.
  • The memory values of the shift register 701 are applied to the masking sections 711-71N, which generate new m-sequences by operating the received m-sequence m1(t) with previously set mask coefficients.
  • The respective masking sections 711-71N have different mask structures. The masking sections 711-71N each have the function of multiplying the memory values received from the shift register 701 by the corresponding mask coefficients and then summing the multiplied values. Multiplication and summation performed on the memory values of the shift register 701 and the mask coefficients are binary operations.
  • FIG. 8 illustrates structures of the masks generated by the masking sections 711-71N. Referring to FIG. 8, a mask having the structure shown by 801 is used to generate a Gold code for generating the primary scrambling codes. The mask 801 has a length of 18 bits, wherein the left 9 bits (i.e., 9 bits from the MSB (Most Significant Bit) or the leftmost bit) are assigned for a primary ID 803 (which is a part indicating the binary value determined by binary converting the code number of the primary scrambling code) and the remaining 9 bits are assigned for null data 805. The 9 upper bits of the mask 801 are used to indicate the 512 primary scrambling codes. When generating the downlink scrambling codes, the base station or the mobile station of the mobile communication system converts a desired one of the numbers of 0 to 511 to a binary value and applies the converted binary value to the upper 9 bits of the mask 801, thereby to generate a Gold code.
  • For example, in order for the base station, which is assigned a code number 12 for the primary scrambling code, to generate the primary scrambling code corresponding to the code number 12, the base station applies '0,0,0,0,0,1,1,0,0' to the 9 upper bits of the mask 801 and then applies the mask 801 to the Gold code generator 701 of FIGS. 7A or 7B. As an another example, even when the mobile station located in the handoff area, which is in communication with the base station using the 12th primary scrambling code, generates an another primary scrambling code other than the 12th primary scrambling code in order to search a primary scrambling code for the handoff target base station, the scrambling code is generated in the same manner as described above. That is, when the mobile station generates the masks as many as the number of the primary scrambling codes desired to be generated and applies the generated masks to the Gold code generator 701 of FIG. 7A or 7B, it is possible to generate another desired primary scrambling code, while generating the 12th primary scrambling code.
  • A mask having the structure shown by 810 is used to generate a Gold code for generating the secondary scrambling code. The mask 810 has a length of 18 bits, wherein 9 bits from the MSB are assigned for a primary ID 812 (i.e., an ID of the primary scrambling code) which is a part indicating the primary scrambling code, and n bits out of the remaining 9 bits are assigned for a secondary ID 814 (i.e., an ID of the secondary scrambling code) which is a part indicating the secondary scrambling code, and (9-n) bits are assigned for null data 816. The primary ID part 812 of the mask 810 is identical to the primary ID part 803 of the mask 801 in structure and function. The reason for assigning n bits for the secondary ID part 814 of the mask 810 is to provide a flexibility to the number of the secondary scrambling codes to be used by the base station. Although the number 'n' of the secondary scrambling codes corresponding to each primary scrambling code is 511 in maximum, the base station may not actually use all of the secondary scrambling codes. Therefore, the mobile communication systems can adjust the value of 'n' according to the number of the secondary scrambling codes. In the embodiment of the present invention, it is assumed that 4 bits are used for the secondary ID (i.e., n=4).
  • The secondary ID part 814 of the mask 810 is identical to the primary ID part 812 in function. For example, when the base station which scrambles every channel with the 12th primary scrambling code has used up all the channel orthogonal codes associated with the 12th primary scrambling code, the base station determines to use the secondary scrambling codes. When it is determined to use the secondary scrambling codes, the base station selects one of the code numbers of the available secondary scrambling codes having the code number of 1 to 511 (in the embodiment, the code number is 1 to 16, since n=14), and applies the selected one to the 9 lower bits of the mask 810, thus completing the mask 810. The mask 810 is comprised of the primary ID 812 and the secondary ID 814. By applying the mask 810 to the masking section of the scrambling code generator of FIG. 6, it is possible to simultaneously generate the primary scrambling code and the secondary scrambling code. If it is assumed that a code number of the secondary scrambling code to be generated is '4', a mask coefficient value being input to the mask 810 becomes '0,0,0,0,0,1,1,0,0' for the primary ID and '0,0,0,0,0,0,1,0,0' for the secondary ID. As a result, the mask 810 becomes '0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0'. At this point, the coefficient value of the mask 810 is input on the assumption that the 511 secondary scrambling codes are all used. Therefore, if the mobile communication system uses m secondary scrambling codes, the binary value of the code number of the secondary scrambling code is applied to an n-bit expression part of the secondary scrambling code of the mask 810, where 'n' is larger by 1 than an integer of log2m. For example, when 16 secondary scrambling codes are used, the secondary ID is 4 bits in length.
  • The mask 801 and the mask 810 of FIG. 8 are shown by way of example only. As an alternative example, the positions of the 9-bit primary ID part 812 and the n-bit secondary ID part 814 can be exchanged. As shown in the two mask structures of FIG. 8, the mask for generating the Gold code for generating the primary scrambling code should necessarily include a binary value of the code number of 0 to 511 indicating the primary scrambling code, and the mask for generating the Gold code for generating the secondary scrambling code should necessarily include a binary value of the code number of 0 to 511 indicating the primary scrambling code number and an n-bit value representative of a code number of 1 to 511 indicating the secondary scrambling code. Further, if the secondary ID part 814 of the mask 810 is filled with the null data, the mask 810 becomes a mask for generating the primary scrambling code, which has the same structure as the mask 801. Various applications of the masks of FIG. 8 are shown in Table 1 below, in which the number of the secondary scrambling codes used in the base station is assumed to be 16. [Table 1]
    BS Index Secondary Scrambling Code Index Mask Remarks
    1 0 <0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,0,0> Primary Scrambling Code Mask
    4 <0,0,0,0,0,0,0,0,1, 0,1,0,0,0,0,0,0,0> Secondary Scrambling Code Mask
    13 <0,0,0,0,0,0,0,0,1, 1,1,0,1,0,0,0,0,0> Secondary Scrambling Code Mask
    243 0 <0,1,1,1,1,0,0,1,1, 0,0,0,0,0,0,0,0,0> Primary Scrambling Code Mask
    3 <0,1,1,1,1,0,0,1,1, 0,0,1,1,0,0,0,0,0> Secondary Scrambling Code Mask
    12 <0,1,1,1,1,0,0,1,1, 1,1,0,0,0,0,0,0,0> Secondary Scrambling Code Mask
  • The method for generating the Gold code by using the masks shown in FIG. 8 enables effective classification of the primary scrambling code and the secondary scrambling code. A downlink channel transmitter of the base station and a downlink channel receiver of the mobile station, which use the scrambling code generator of FIG. 6, require no separate storage for the primary scrambling codes and the secondary scrambling codes. The scrambling code generator of FIG. 6 using the masks can classify the primary scrambling codes depending on the binary value of the number of 0 to 511 being input to the mask 801. Further, since the secondary scrambling codes are classified according to a value of the primary scrambling code as shown in Table 1, there is no possibility that the same secondary scrambling codes are generated by the adjacent base stations. Therefore, it is possible to classify even the secondary scrambling codes according to the primary ID, being input to the mask, of the primary scrambling code of 0 to 511 and the secondary ID of the secondary scrambling code of 1 to 512. For classification of the primary scrambling codes and the secondary scrambling codes, the base station and the mobile station require no separate storages.
  • The output bits of the masking sections 711-71N in the Gold code generator of FIG. 7A are XORed with the output bits of the shift register 703 by the XOR gates 731-73N, thereby to generate different Gold codes. The Gold code generator of FIG. 7B also generates the different Gold codes in the same method as shown in FIG. 7A. The generated different Gold codes are used to generate different scrambling codes.
  • FIG. 9 illustrates an operation of the base station, which uses the scrambling code generator of FIG. 6.
  • Referring to FIG. 9, the base station determines in step 901 whether a channel assignment request has been received from the mobile station. The mobile station requests channel assignment in the following two cases. In a first case, the mobile station requests assignment of another channel, while performing communication with a presently assigned dedicated channel. In another case, the mobile station requests assignment of a dedicated channel for communication, in a state where there is no presently assigned channel. Herein, it will be assumed that the mobile station requests assignment of the dedicated channel for the first time.
  • Upon receipt of the channel assignment request from the mobile station in step 901, a radio resource controller (RRC) in the base station analyzes the number of subscribers being presently serviced and a capacity of the channels assigned to the subscribers in step 902, to determine whether the number of the channel orthogonal codes used together with the primary scrambling code is insufficient or not. That is, the base station determines in step 902 whether the mobile station can assign a channel using the primary scrambling code or has an insufficient number of the channel orthogonal codes to assign the channel using the primary scrambling code. If it is determined in step 902 that there is a channel orthogonal code to be assigned to the mobile station using the primary scrambling code, the RRC of the base station assigns to the mobile station a mask of a channel to be scrambled with the primary scrambling code and information about the assigned channel orthogonal code in step 903. At this point, since the primary scrambling code is used for the downlink common control channel, the base station may not transmit an ID of the primary scrambling code (i.e., primary ID).
  • However, if it is determined in step 902 that there is an insufficient number of channel orthogonal codes used together with the primary scrambling code, the RRC of the base station determines to use the secondary scrambling code in step 904, in order to accept a new channel assignment request from the mobile station. After determining to use the secondary scrambling code, the base station generates a mask in order to generate the secondary scrambling code in step 905. Applied to the generated mask are binary values of the primary ID and the secondary ID. The secondary ID is determined as a value between 1 and m in step 904, and the mask is generated in step 905. The generated mask may become a mask comprised of the primary ID and the secondary ID like the mask 810 of FIG. 8. Further, herein, 'm' is assumed to be 16 (for n=4).
  • After generating the mask for the newly generated scrambling code, the base station transmits, in step 906, ID information of the secondary scrambling code to be newly generated and information about the assigned channel orthogonal code to the mobile station which will receive the scrambled channel with the newly generated secondary scrambling code. Here, the scrambling code information being transmitted to the mobile station is the secondary ID, and the primary ID is not transmitted. That is, since the mobile station knows the primary scrambling code being used in the base station through the common control channel, the mobile station can generate the secondary scrambling code, even though only the secondary ID is received. The information being transmitted to the mobile station is transmitted over the common control channel scrambled with the primary scrambling code. Here, the downlink common control channel may be a paging channel (PCH) or a forward access channel (FACH). When the secondary scrambling code is generated in the conventional method, it is necessary to transmit information indicating use of the above secondary scrambling code and information including the code number of the newly generated scrambling code of 512 to 262,144. Therefore, conventionally, 18 bits are required in transmitting the secondary ID in order to inform the mobile station of the secondary scrambling code. However, when the base station and the mobile station use the scrambling code generator of FIG. 6 according to the present invention, the information transmitted from the base station to the mobile station may include only the information indicating use of the secondary scrambling code and the n-bit secondary ID. When the mask 810 of FIG. 8 is used, the secondary ID information has a length of 1 to 9 bits, and in the embodiment of the present invention, it is assumed that the secondary ID has a length of 4 bits.
  • After transmitting the secondary scrambling code information of the mask 810, the base station awaits an acknowledgement (ACK) from the mobile station in step 907. Upon receipt of ACK from the mobile station, the base station generates in step 908 the secondary scrambling code using the mask 810 generated in the step 905. That is, the base station newly generates the secondary scrambling code while generating the primary scrambling code, by applying the mask to the scrambling code generator of FIG. 6. Thereafter, in step 909, the base station transmits the channels scrambled with the primary scrambling code and the channels scrambled with the secondary scrambling code to the mobile station.
  • Unlike the case of FIG. 9, reference will now be made to another case where the mobile station requests assignment of a new channel during communication with the base station and at this time, there is no channel orthogonal code used together with the primary scrambling code. In this case, the base station assigns the channel code scrambled with the secondary scrambling code to the mobile station, and transmits the secondary ID in the same method as shown in FIG. 9. However, unlike the case of FIG. 9, the secondary ID is transmitted over the dedicated channel, which was used by the mobile station in communication with the base station before assignment request of the new channel. That is, the base station transmits the secondary scrambling code information while assigning the channel to the mobile station presently in service, and the secondary scrambling code information is transmitted over the channel presently in service.
  • FIG. 10 illustrates an operation of the mobile station in association with the operation of the base station shown in FIG. 9.
  • Referring to FIG. 10, the mobile station requests assignment of a new channel in step 1001, and awaits a response from the base station in step 1002. That is, when the mobile station requests assignment of a new channel, the base station analyzes a capacity of the available channels, generates a response message according to the analysis results, and transmits the generated response message to the mobile station. Upon receipt of the response message from the base station, the mobile station analyzes the response message received from the base station, in step 1002. The received message includes information about whether the base station will assign a channel scrambled with the primary scrambling code to the mobile station or assign a channel scrambled with the secondary scrambling code to the mobile station. When the base station assigns the channel scrambled with the secondary scrambling code to the mobile station, the received message further includes information about the secondary scrambling code.
  • If it is determined in step 1002 that the received message indicates that the base station assigns a channel scrambled with the primary scrambling code to the mobile station, the mobile station generates the primary scrambling code in the scrambling code generator of FIG. 6, and descrambles the downlink channel with the generated primary scrambling code in step 1003, thereby to receive the downlink channel signal transmitted from the base station.
  • However, if it is determined in step 1002 that the received message indicates that the base station assigns a channel scrambled with the secondary scrambling code to the mobile station, the mobile station transmits an ACK message to the base station in step 1004. Thereafter, in step 1005, the mobile station analyzes the secondary ID included in the message received in step 1002. Subsequently, in step 1006, the mobile station generates a mask for generating the secondary scrambling code, the mask having the mask structure 810 shown in FIG. 8.
  • In step 1007, the mobile station simultaneously generates the secondary scrambling code and the primary scrambling code for descrambling the common control channel scrambled with the primary scrambling code before transmission, by using the mask generated in step 1006 and the scrambling code generator of FIG. 6. Thereafter, in step 1008, the mobile station descrambles the channels scrambled with the respective scrambling codes using the generated primary scrambling code and secondary scrambling code.
  • As described above, when all the channel orthogonal codes used for the primary scrambling code of the base station are used up, the base station should use the secondary scrambling code. In this case, if the conventional Gold code generator of FIG. 5 is used, it is necessary to provide a number of the Gold code generators equal to the number of the necessary secondary scrambling codes. However, when the Gold code generator of FIG. 7A or 7B according to the present invention is used, it is possible to simultaneously generate the primary scrambling code and the secondary scrambling code by using a mask for generating the primary scrambling code and a mask for generating the secondary scrambling code in a single Gold code generator. To generate the secondary scrambling codes, the number of masks provided is equal to the number of the secondary scrambling codes. It is also possible to generate the secondary scrambling code using an assigned mask, when necessary.
  • In the mobile communication system, the base station can use the primary scrambling code for the downlink common control channel, and use the primary scrambling code or the secondary scrambling code for the downlink dedicated channel according to the states of the channel orthogonal codes, which can be assigned using the primary scrambling code. In this case, if the mobile station uses the conventional Gold code generator of FIG. 5, the mobile station should include one descrambler for descrambling the signals received over the downlink common control channel and the downlink dedicated channel using the primary scrambling code, and another descrambler for descrambling the signal received over the other downlink dedicated channel with the secondary scrambling code. However, when the mobile station uses the Gold code generator of FIG. 7A or 7B according to the present invention, it is possible to simultaneously generate the different scrambling codes by using a number of masks equal to the number of the necessary scrambling codes.
  • As an another example of the mobile station, if the mobile station exists in the handoff area in a mobile communication environment, it is necessary to generate a scrambling code for searching the primary scrambling code of the handoff target base station as well as the scrambling code for descrambling the primary scrambling code of the base station to which the mobile station belongs. Since the process for searching the primary scrambling code of the target base station should be performed in the state where the mobile station continues communication with the base station to which it belongs, the mobile station should necessarily include the function of simultaneously generating several scrambling codes. However, when the conventional Gold code generator of FIG. 5 is used, it is necessary to provide the Gold code generators as many as the number of the scrambling codes to be generated. However, when the Gold code generator of FIG. 7A or 7B according to the present invention is used, it is possible to implement the descrambler of the mobile station, which can simultaneously generate the scrambling codes, which need descrambling.
  • As described above, the novel descrambling code generator for the base station transmitter and the mobile station receiver of the mobile communication system can simultaneously generate a plurality of scrambling codes using a single code generator. Further, by using the novel scrambling code generator, the base station transmitter or the mobile station receiver can generate the scrambling codes without a separate storage, thereby reducing its hardware complexity. In addition, by generating the Gold code for generating the scrambling code using the mask, one scrambling code generator can simultaneously generate different scrambling codes. In addition, when transmitting information about the secondary scrambling code in order to expand the channel capacity, the base station transmits an ID of the secondary scrambling code (i.e., secondary ID), and the mobile station can generate the secondary scrambling code by receiving the secondary ID. Therefore, it is possible to readily generate the secondary scrambling code by reducing an amount of the information for generating the secondary scrambling code.
  • While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as defined by the appended claims.

Claims (6)

  1. A channel code communication method executed by a base station in a CDMA, Code Division Multiple Access, mobile communication system, comprising the steps of:
    transmitting to a mobile station a signal spread with an orthogonal code assigned to a primary scrambling code being a code identifying the base station,
    characterized by:
    transmitting (906) to the mobile station a secondary scrambling code identifier which is information about a secondary scrambling code, over a downlink common control channel that is transmitted by using the primary scrambling code, when a number of orthogonal codes associated with the primary scrambling code to assign a channel using the primary scrambling code is insufficient, wherein the secondary scrambling code identifier is to be used by the mobile station to generate the secondary scrambling code by combining a primary scrambling code identifier of the primary scrambling code, which is information about the primary scrambling code, and the secondary scrambling code identifier; and
    transmitting to the mobile station a data signal scrambled with the secondary scrambling code.
  2. The channel code communication method as claimed in claim 1, wherein the secondary scrambling code identifier is comprised of 4 bits.
  3. The channel code communication method as claimed in claim 1, wherein the secondary scrambling code identifier is transmitted over a dedicated channel presently used by the mobile station.
  4. A channel code communication method executed by a mobile station in a CDMA, Code Division Multiple Access, mobile communication system, comprising the steps of:
    acquiring (1001) a primary scrambling code identifier, which is information about a primary scrambling code, the primary scrambling code being a code indentifying a base station;
    receiving a secondary scrambling code identifier, which is information about a secondary scrambling code, over a downlink common control channel, that is transmitted by using the primary scrambling code from the base station when a number of orthogonal codes associated with the primary scrambling code to assign a channel using the primary scrambling code is insufficient;
    generating a secondary scrambling code by combining the primary scrambling code identifier and the received secondary scrambling code identifier; and
    despreading (1008) a data signal received from the base station and scrambled with the generated secondary scrambling code.
  5. The channel code communication method as claimed in claim 4, wherein the secondary scrambling code identifier is comprised of 4 bits.
  6. The channel code communication method as claimed in claim 4, wherein the secondary scrambling code identifier is received over a downlink dedicated channel presently used by the mobile station.
EP00952052.9A 1999-08-17 2000-08-17 Communicating a scrambling code identifier in a mobile communication system Expired - Lifetime EP1121818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05005497.2A EP1549087B1 (en) 1999-08-17 2000-08-17 Generating a primary and a secondary scrambling code

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR9934014 1999-08-17
KR10-1999-0034014A KR100429545B1 (en) 1999-08-17 1999-08-17 Method for communicating scrambling code id in mobile communication system
PCT/KR2000/000916 WO2001013655A1 (en) 1999-08-17 2000-08-17 Method for communicating scrambling code id in mobile communication system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP05005497.2A Division EP1549087B1 (en) 1999-08-17 2000-08-17 Generating a primary and a secondary scrambling code
EP05005497.2A Division-Into EP1549087B1 (en) 1999-08-17 2000-08-17 Generating a primary and a secondary scrambling code

Publications (3)

Publication Number Publication Date
EP1121818A1 EP1121818A1 (en) 2001-08-08
EP1121818A4 EP1121818A4 (en) 2004-05-19
EP1121818B1 true EP1121818B1 (en) 2018-10-03

Family

ID=19607606

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00952052.9A Expired - Lifetime EP1121818B1 (en) 1999-08-17 2000-08-17 Communicating a scrambling code identifier in a mobile communication system
EP05005497.2A Expired - Lifetime EP1549087B1 (en) 1999-08-17 2000-08-17 Generating a primary and a secondary scrambling code

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05005497.2A Expired - Lifetime EP1549087B1 (en) 1999-08-17 2000-08-17 Generating a primary and a secondary scrambling code

Country Status (14)

Country Link
US (2) US7221695B1 (en)
EP (2) EP1121818B1 (en)
JP (2) JP3992981B2 (en)
KR (1) KR100429545B1 (en)
CN (2) CN1206870C (en)
AU (1) AU762032B2 (en)
BR (1) BRPI0007011B1 (en)
CA (1) CA2346845C (en)
ID (1) ID29477A (en)
IL (2) IL142489A0 (en)
PL (1) PL347327A1 (en)
RU (1) RU2214695C2 (en)
WO (1) WO2001013655A1 (en)
ZA (1) ZA200102906B (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434262B1 (en) * 1999-08-17 2004-06-04 엘지전자 주식회사 Multi scrambling code generation method for down link
KR100429545B1 (en) * 1999-08-17 2004-04-28 삼성전자주식회사 Method for communicating scrambling code id in mobile communication system
US7895616B2 (en) * 2001-06-06 2011-02-22 Sony Corporation Reconstitution of program streams split across multiple packet identifiers
US8099099B2 (en) * 2003-02-19 2012-01-17 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
US7412209B2 (en) * 2004-04-12 2008-08-12 The Directv Group, Inc. Shifted channel characteristics for mitigating co-channel interference
US7529291B2 (en) * 2004-04-13 2009-05-05 Raytheon Company Methods and structures for rapid code acquisition in spread spectrum communications
CN1770906B (en) * 2004-11-05 2010-04-14 上海华为技术有限公司 Same frequency hard handoff method
CN1783762B (en) * 2004-11-29 2010-04-07 世意法(北京)半导体研发有限责任公司 Data processing method, radio communication transmitter and radio communication receiver
CN100391305C (en) * 2004-12-17 2008-05-28 华为技术有限公司 High-speed downlink packet access channel resource distributing method
US8325826B2 (en) 2005-03-09 2012-12-04 Qualcomm Incorporated Methods and apparatus for transmitting signals facilitating antenna control
KR20060110426A (en) * 2005-04-19 2006-10-25 삼성전자주식회사 Method and apparatus of data transmission and reception in a digital broadcasting system and system thereof
CN101047939B (en) * 2006-04-10 2010-05-12 华为技术有限公司 Method and device for controling license code in high speed downlink packet access
US7720485B2 (en) * 2006-07-14 2010-05-18 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
US8225186B2 (en) 2006-07-14 2012-07-17 Qualcomm Incorporated Ecoding and decoding methods and apparatus for use in a wireless communication system
JP4822971B2 (en) * 2006-07-28 2011-11-24 富士通株式会社 Radio base station apparatus and despreading apparatus
US20080080432A1 (en) * 2006-10-02 2008-04-03 Jianmin Lu Carrying Mobile Station Specific Information in the Reverse Access Channel in a Wireless Communications System
JP4444259B2 (en) * 2006-10-03 2010-03-31 株式会社エヌ・ティ・ティ・ドコモ Downlink scrambling method and base station apparatus
KR100945859B1 (en) * 2006-11-01 2010-03-05 한국전자통신연구원 Method and apparatus for creating common physical channel
WO2008054126A1 (en) * 2006-11-01 2008-05-08 Electronics And Telecommunications Research Institute Method and apparauts for creating common physical channel
US8320360B2 (en) * 2006-11-06 2012-11-27 Motorola Mobility Llc Method and apparatus for fast cell search
US7965689B2 (en) * 2007-05-14 2011-06-21 Motorola Mobility, Inc. Reference sequence construction for fast cell search
KR100921769B1 (en) 2007-07-12 2009-10-15 한국전자통신연구원 Method for generating downlink frame, and method for searching cell
KR20090009693A (en) 2007-07-20 2009-01-23 한국전자통신연구원 Method for generating downlink frame, and method for searching cell
EP2053568A1 (en) * 2007-09-28 2009-04-29 Gemplus Method for generating masks in a communicating object and corresponding communicating object
US8848913B2 (en) * 2007-10-04 2014-09-30 Qualcomm Incorporated Scrambling sequence generation in a communication system
US8787181B2 (en) * 2008-01-14 2014-07-22 Qualcomm Incorporated Resource allocation randomization
CN101521941B (en) * 2008-02-25 2011-11-23 华为技术有限公司 Method, system and device for assigning response channel
US8687568B2 (en) * 2008-03-14 2014-04-01 Qualcomm Incorporated Method and apparatus for scrambling for discrimination of semi persistent scheduling grants
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
US8923249B2 (en) * 2008-03-26 2014-12-30 Qualcomm Incorporated Method and apparatus for scrambling sequence generation in a communication system
CN101765182B (en) * 2008-12-23 2012-07-18 中兴通讯股份有限公司 Method for redirecting user terminal
KR100991957B1 (en) 2009-01-20 2010-11-04 주식회사 팬택 Apparatus and method for scrambling sequence generation in a broadband wireless communication system
KR101350898B1 (en) * 2009-03-12 2014-01-13 에스케이텔레콤 주식회사 Scramble code usage system and method using a repeater
KR101343363B1 (en) 2009-03-19 2013-12-20 에스케이텔레콤 주식회사 Scramble code replacement system and method in telecommunication network
CN102474860B (en) * 2009-08-07 2015-10-21 日本电气株式会社 Mobile communication system, base station and communication means
GB2479713A (en) * 2010-04-12 2011-10-26 Faiz Alam A transmitter needs to identify itself only if it transmits to a receiver that is intentionally common
JP2012070111A (en) * 2010-09-22 2012-04-05 Fuji Xerox Co Ltd Communication system
US8805271B2 (en) * 2011-09-21 2014-08-12 Telefonaktiebolaget L M Ericsson (Publ) System and method for configuring a repeater
US10405042B2 (en) * 2016-03-11 2019-09-03 DISH Technologies L.L.C. Television broadcast dynamic recording calibration
CN110831013B (en) * 2018-08-07 2023-06-02 黎光洁 Co-frequency multi-system coexistence method

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295540A (en) 1988-05-24 1989-11-29 Canon Inc Code division multiple access system
DE69027464T2 (en) * 1989-03-09 1997-02-20 Oki Electric Ind Co Ltd Method for scrambling / descrambling data using word-to-word processing
EP0445354A3 (en) * 1990-03-08 1992-05-27 Oki Electric Industry Co., Ltd. Apparatus for scrambling/descrambling data by word-by-word processing
AU8959191A (en) 1990-10-23 1992-05-20 Omnipoint Corporation Method and apparatus for establishing spread spectrum communications
US5204874A (en) * 1991-08-28 1993-04-20 Motorola, Inc. Method and apparatus for using orthogonal coding in a communication system
US5353352A (en) 1992-04-10 1994-10-04 Ericsson Ge Mobile Communications Inc. Multiple access coding for radio communications
US5550809A (en) * 1992-04-10 1996-08-27 Ericsson Ge Mobile Communications, Inc. Multiple access coding using bent sequences for mobile radio communications
JP3003839B2 (en) * 1993-11-08 2000-01-31 エヌ・ティ・ティ移動通信網株式会社 CDMA communication method and apparatus
KR950026145A (en) * 1994-02-23 1995-09-18 구자홍 Unique number scramble device of cellular mobile communication terminal and theft prevention method using the device
JP2581440B2 (en) * 1994-05-11 1997-02-12 日本電気株式会社 Scramble communication method
RU2090004C1 (en) 1994-10-18 1997-09-10 Иван Леонидович Кирьяшкин Data transmission system
EP0729240B1 (en) * 1995-02-24 2001-10-24 Roke Manor Research Limited Code division multiple access cellular mobile radio systems
JPH08331120A (en) * 1995-06-02 1996-12-13 Oki Electric Ind Co Ltd Scramble code generation circuit
US5844894A (en) * 1996-02-29 1998-12-01 Ericsson Inc. Time-reuse partitioning system and methods for cellular radio telephone systems
JPH09322218A (en) * 1996-03-29 1997-12-12 Casio Comput Co Ltd Transmission reception system or device and method used for it
JPH09298490A (en) * 1996-04-30 1997-11-18 Yozan:Kk Spread spectrum communication system
JPH09327059A (en) 1996-06-07 1997-12-16 N T T Ido Tsushinmo Kk Cell selection method in cdma mobile communication system, its base station equipment and mobile station equipment
JP2800797B2 (en) * 1996-08-12 1998-09-21 日本電気株式会社 Spread spectrum communication system
JP2815007B2 (en) * 1996-12-05 1998-10-27 日本電気株式会社 Variable rate CDMA spreading circuit
US5923650A (en) * 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
SE9801241L (en) * 1997-04-09 1998-10-10 Daewoo Telecom Ltd PC CDMA multibärfrekvenssystem
CN1202050A (en) * 1997-06-09 1998-12-16 株式会社鹰山 Spread spectrum communication method and system
DE69825370T2 (en) * 1997-07-17 2004-12-16 Matsushita Electric Industrial Co., Ltd., Kadoma CDMA radio communication device
US5956368A (en) * 1997-08-29 1999-09-21 Telefonaktiebolaget Lm Ericsson Downlink channel handling within a spread spectrum communications system
US5930366A (en) * 1997-08-29 1999-07-27 Telefonaktiebolaget L M Ericsson Synchronization to a base station and code acquisition within a spread spectrum communication system
SE9703161L (en) * 1997-09-02 1999-03-03 Ericsson Telefon Ab L M Procedure for telecommunications
JP3329705B2 (en) * 1997-09-02 2002-09-30 松下電器産業株式会社 PN code generator and mobile radio communication system
US6173005B1 (en) * 1997-09-04 2001-01-09 Motorola, Inc. Apparatus and method for transmitting signals in a communication system
US6810030B1 (en) * 1997-10-17 2004-10-26 Lucent Technology Dynamic and smart spreading for wideband CDMA
US6094228A (en) * 1997-10-28 2000-07-25 Ciardullo; Daniel Andrew Method for transmitting data on viewable portion of a video signal
EP0963070B1 (en) 1997-11-19 2012-04-11 Ntt Mobile Communications Network Inc. Device for generating a plurality of code series simultaneously and CDMA radio receiver comprising the device
JP3492177B2 (en) * 1997-12-15 2004-02-03 松下電器産業株式会社 CDMA mobile communication equipment
JP3856261B2 (en) * 1998-03-18 2006-12-13 ソニー株式会社 Synchronous detection device
EP1699141B1 (en) * 1998-03-26 2007-08-08 Mitsubishi Denki Kabushiki Kaisha Spread spectrum communication method
KR100293934B1 (en) * 1998-04-13 2001-07-12 윤종용 Apparatus and method for transmitting message using common channel in cdma system
JP3028800B2 (en) * 1998-05-01 2000-04-04 日本電気株式会社 CDMA cellular system and spreading code detection method in CDMA cellular system
US6324159B1 (en) * 1998-05-06 2001-11-27 Sirius Communications N.V. Method and apparatus for code division multiple access communication with increased capacity through self-noise reduction
US6542484B1 (en) * 1998-05-15 2003-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Code allocation for radiocommunication systems
US6504830B1 (en) * 1998-06-15 2003-01-07 Telefonaktiebolaget Lm Ericsson Publ Method, apparatus, and system for fast base synchronization and sector identification
US6278699B1 (en) * 1998-06-22 2001-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization techniques and systems for spread spectrum radiocommunication
JP2000022682A (en) * 1998-06-26 2000-01-21 Sony Corp Receiver device, equipment and method for radio transmission
FI981546A (en) * 1998-07-03 2000-01-04 Nokia Networks Oy Procedure for data communication and mobile telephone systems
US6442152B1 (en) * 1998-07-13 2002-08-27 Samsung Electronics, Co., Ltd. Device and method for communicating packet data in mobile communication system
RU2190937C2 (en) * 1998-08-05 2002-10-10 Самсунг Электроникс Ко., Лтд. Device and method for adding diversified signals in common channel of code-division multiple-access communication system
US6526091B1 (en) * 1998-08-17 2003-02-25 Telefonaktiebolaget Lm Ericsson Communication methods and apparatus based on orthogonal hadamard-based sequences having selected correlation properties
US6724813B1 (en) * 1998-10-14 2004-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Implicit resource allocation in a communication system
US6141374A (en) * 1998-10-14 2000-10-31 Lucent Technologies Inc. Method and apparatus for generating multiple matched-filter PN vectors in a CDMA demodulator
GB9823467D0 (en) * 1998-10-28 1998-12-23 Koninkl Philips Electronics Nv Radio communication system
US6339646B1 (en) * 1998-11-03 2002-01-15 Telefonaktiebolaget Lm Ericsson Slotted mode code usage in a cellular communications system
US6567666B2 (en) * 1998-12-02 2003-05-20 Infineon Technologies North America Corp. Forward link inter-generation soft handoff between 2G and 3G CDMA systems
JP2000201101A (en) * 1999-01-07 2000-07-18 Fujitsu Ltd Spread spectrum communication system and its mobile unit
US6836469B1 (en) * 1999-01-15 2004-12-28 Industrial Technology Research Institute Medium access control protocol for a multi-channel communication system
US6567482B1 (en) * 1999-03-05 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient synchronization in spread spectrum communications
JP2002544706A (en) * 1999-05-10 2002-12-24 シリウス コミュニカション エヌ.ヴイ. Method and apparatus for fast software reconfigurable code division multiple access communication
US6385264B1 (en) * 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
ES2219356T3 (en) * 1999-07-07 2004-12-01 Samsung Electronics Co., Ltd. CHANNEL ASSIGNMENT AND PROCEDURE FOR COMMON CHANNEL OF PACKAGES IN A MULTIPLE ACCESS SYSTEM BY DISTRIBUTION OF WIDE CODE (AMRC).
US7123579B1 (en) * 1999-08-04 2006-10-17 Lg Electronics Inc. Method of transmitting non-orthogonal physical channels in the communications system
KR100429545B1 (en) * 1999-08-17 2004-04-28 삼성전자주식회사 Method for communicating scrambling code id in mobile communication system
KR100434262B1 (en) * 1999-08-17 2004-06-04 엘지전자 주식회사 Multi scrambling code generation method for down link
US6455822B1 (en) * 2000-10-11 2002-09-24 Mega Dynamics Ltd. Heat sink for a PTC heating element and a PTC heating member made thereof
US7130303B2 (en) * 2001-03-15 2006-10-31 Lucent Technologies Inc. Ethernet packet encapsulation for metropolitan area ethernet networks
US7586972B2 (en) * 2002-11-18 2009-09-08 The Aerospace Corporation Code division multiple access enhanced capacity system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL347327A1 (en) 2002-03-25
ZA200102906B (en) 2001-10-10
EP1121818A1 (en) 2001-08-08
US20050169349A1 (en) 2005-08-04
RU2214695C2 (en) 2003-10-20
EP1549087A2 (en) 2005-06-29
AU762032B2 (en) 2003-06-19
WO2001013655A1 (en) 2001-02-22
CA2346845A1 (en) 2001-02-22
CN1674466B (en) 2011-12-07
JP2005253104A (en) 2005-09-15
IL142489A0 (en) 2002-03-10
CN1320340A (en) 2001-10-31
CN1674466A (en) 2005-09-28
ID29477A (en) 2001-08-30
EP1549087A3 (en) 2006-01-04
CA2346845C (en) 2005-11-01
KR20010018182A (en) 2001-03-05
AU6481300A (en) 2001-03-13
EP1549087B1 (en) 2019-06-12
JP3992981B2 (en) 2007-10-17
IL142489A (en) 2006-06-11
KR100429545B1 (en) 2004-04-28
BR0007011A (en) 2001-07-10
JP2003507944A (en) 2003-02-25
JP4744173B2 (en) 2011-08-10
US7221695B1 (en) 2007-05-22
EP1121818A4 (en) 2004-05-19
US7869454B2 (en) 2011-01-11
BRPI0007011B1 (en) 2016-08-16
CN1206870C (en) 2005-06-15

Similar Documents

Publication Publication Date Title
EP1121818B1 (en) Communicating a scrambling code identifier in a mobile communication system
EP1429484B1 (en) Apparatus and method for generating scrambling code in UMTS mobile communication system
US6982946B2 (en) Partly orthogonal multiple code trees
AU761470B2 (en) Apparatus and method for generating multiple scrambling codes in asynchronous mobile communication system
US7088688B2 (en) Apparatus and method for randomly controlling time slot of sub-frame in an NB-TDD CDMA system
US6512753B1 (en) Device and method for spreading channels in mobile communication system
US6862314B1 (en) Receiver architecture for a multi scrambling code transmission CDMA technique
US20040264419A1 (en) Reception apparatus and method using a post-descrambling scheme in a mobile communication system for code division multiple access
JPH0629946A (en) Spread spectrum mode communication equipment
JPH05227125A (en) Communication equipment of spread spectrum system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20040401

17Q First examination report despatched

Effective date: 20040824

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAMSUNG ELECTRONICS CO., LTD.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60049873

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04Q0007200000

Ipc: H04B0007260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04J 13/18 20110101ALI20180320BHEP

Ipc: H04J 13/16 20110101ALI20180320BHEP

Ipc: H04J 13/10 20110101ALI20180320BHEP

Ipc: H04J 13/12 20110101ALI20180320BHEP

Ipc: H04J 13/00 19740701ALI20180320BHEP

Ipc: H04B 7/26 19740701AFI20180320BHEP

INTG Intention to grant announced

Effective date: 20180420

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KANG, HEE-WON

Inventor name: HWANG, SUNG-OH

Inventor name: YANG, KYEONG-CHEOL

Inventor name: KIM, JAE-YOEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1049762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60049873

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181003

RIC2 Information provided on ipc code assigned after grant

Ipc: H04J 13/00 20110101ALI20180320BHEP

Ipc: H04B 7/26 20060101AFI20180320BHEP

Ipc: H04J 13/10 20110101ALI20180320BHEP

Ipc: H04J 13/18 20110101ALI20180320BHEP

Ipc: H04J 13/16 20110101ALI20180320BHEP

Ipc: H04J 13/12 20110101ALI20180320BHEP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1049762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60049873

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190722

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190723

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190817

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60049873

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003