EP1121561A1 - Fuel injection system for the radial or slinger combustion chamber in a small gas turbine - Google Patents

Fuel injection system for the radial or slinger combustion chamber in a small gas turbine

Info

Publication number
EP1121561A1
EP1121561A1 EP99946177A EP99946177A EP1121561A1 EP 1121561 A1 EP1121561 A1 EP 1121561A1 EP 99946177 A EP99946177 A EP 99946177A EP 99946177 A EP99946177 A EP 99946177A EP 1121561 A1 EP1121561 A1 EP 1121561A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
compressor
radial
rotor shaft
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99946177A
Other languages
German (de)
French (fr)
Other versions
EP1121561B1 (en
Inventor
Alexander Böck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1121561A1 publication Critical patent/EP1121561A1/en
Application granted granted Critical
Publication of EP1121561B1 publication Critical patent/EP1121561B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means

Definitions

  • the invention relates to a fuel injection system for a radial or Slinger combustion chamber of a small gas turbine with a radial compressor or diagonal compressor upstream of the radial or Slinger combustion chamber and a turbine part connected to the latter via a rotor shaft running in the axial direction, the fuel being supplied by a in the impeller of the radial compressor / Diagonal compressor provided delivery pipe comes into a crossing part of the rotor shaft located in the area of the combustion chamber near the compressor and is supplied to the combustion chamber via supply bores running essentially in the radial direction.
  • a fuel injection system for a radial or Slinger combustion chamber of a small gas turbine with a radial compressor or diagonal compressor upstream of the radial or Slinger combustion chamber and a turbine part connected to the latter via a rotor shaft running in the axial direction the fuel being supplied by a in the impeller of the radial compressor / Diagonal compressor provided delivery pipe comes into a crossing part of the rotor shaft located in the area of the
  • the fuel is drilled through a bore that runs concentrically to the axis of rotation of the radial compressor (this term also includes the so-called diagonal compressors) or the rotor shaft in the compressor impeller or through a delivery pipe provided to the combustion chamber. It flows due to the rotary movement of the rotor shaft or the compressor impeller as a result of the centrifugal forces that arise as a result, the fuel as a thin film along the wall of the bore or the delivery pipe as far as directly below the primary zone of the combustion chamber. There, in the known state of the art, it is sprayed into the primary zone of the combustion chamber through a suitable tear-off edge or through individual radially arranged nozzles.
  • combustion chamber is sealed as well as possible to the rear space behind the compressor impeller, i.e. to the so-called compressor back space, since the combustion chamber is open to the rotor shaft because of the fuel injection just described. Because the pressure in the combustion chamber is always higher than in the back of the compressor due to the effect of the compressor stator, a small part of the combustion chamber air always flows as so-called combustion chamber leakage air in a region between the rotating and the non-rotating elements provided seal in the compressor rear space.
  • said ventilation can also take place to the rear, as it were, through the rotor shaft, which is hollow at least in sections, for example through a central outlet opening in the turbine disk on its rear side and from there into the thrust nozzle of the small gas turbine.
  • this combustion chamber leakage air can advantageously be used as cooling air for the rear of the turbine disk and also generates thrust by admixing it with the exhaust gas jet from the Kieingas turbine.
  • the object of the present invention is to provide a remedial measure for the problems described.
  • the features specified in the first claim contribute in their entirety to solving this problem, advantageous training and further developments form the content of the dependent claims.
  • the invention is explained in more detail with reference to three preferred exemplary embodiments shown in the attached figures, it being possible for all the features described in more detail to be essential to the invention. It shows
  • FIG. 1 shows a longitudinal section through a small gas turbine according to the invention, in which, in addition to the combustion chamber and the fuel injection system, the radial compressor and the turbine part are also shown
  • FIG. 2 shows the fuel injection system from FIG. 1 in an enlarged view
  • FIG. 3 shows a fuel injection system modified compared to FIG and FIG. 4 a modification of the fuel injection system shown in FIG. 3.
  • Reference number 1 denotes a Slinger combustion chamber of a small gas turbine, which - as shown in particular in FIG. 1 - has a radial compressor 2 upstream.
  • the so-called turbine part 5 of the small gas turbine or more precisely the turbine disk 5a of the turbine part 5 is connected to the compressor impeller 2a of this radial compressor 2 via a rotor shaft 4 running in the axial direction 3.
  • the compressor impeller 2a, the rotor shaft 4 and the turbine disk 5a rotate about the so-called central axis 19 of the small gas turbine.
  • the radial compressor 2 conveys an air flow to be supplied to the combustion chamber 1 in the direction of the arrow 6, which is required within the latter for the combustion of the fuel further supplied to the combustion chamber 1.
  • Part of this air flow also designated with reference number 6 for the sake of simplicity, does not, however, enter the combustion chamber 1 due to the different pressure conditions present in the different zones of the small gas turbine, but rather not on the combustion chamber 1 or on its side facing the radial compressor 2 in FIG. 1 specified (however in FIG. 2 with the reference number 25) end wall on the outside over a gap sealed by means of a seal 7 embodied here as a labyrinth seal (designated in FIG. 2 with the reference number 27) between rotating and non-rotating parts of the small gas turbine in the introduction to the description Defined so-called compressor back space 8.
  • This part of the air flow 6 entering the compressor back space 8 is referred to as combustion chamber leakage air 6a.
  • the compressor rear space 8 located on the back of the compressor impeller 2a must therefore be ventilated, i.e. the combustion chamber leak air 6a must also be removed from the compressor rear space 8.
  • the front end of the rotor shaft 4 facing the compressor impeller 2a is flange-like and represents a so-called crossing part 4b.
  • the rotor shaft 4 is connected to the compressor impeller 2a in a rotationally fixed manner via this flange-like crossing part 4b.
  • the combustion chamber leakage air 6a After the combustion chamber leakage air 6a has now reached the interior 4a of the rotor shaft 4 from the compressor rear space 8 via the ventilation bores 9 in the intersection part 4b, it is discharged from the latter via an exhaust pipe 4c provided in the end region of the rotor shaft 4 facing the turbine part 5, which penetrates the turbine disk 5a in a central outlet opening 10, ultimately discharged into the environment, more precisely via the thrust nozzle of the small gas turbine, not shown here.
  • the crossing point 4b of the rotor shaft 4 Via the crossing point 4b of the rotor shaft 4, however, not only the combustion chamber leakage air 6a is discharged from the compressor back space 8, but also the fuel to be burned in the combustion chamber 1
  • Combustion chamber 1 supplied As is customary in small gas turbines with a singer combustion chamber, the fuel is ultimately directed to the combustion chamber 1 through a bore 11 in the compressor impeller 2a, which runs concentrically to the axis of rotation of the radial compressor 2 or the rotor shaft 4, or more precisely through a delivery pipe 12 then provided To this end mouths
  • I O in the starting area of the delivery pipe 12 on the left-hand side here is a fuel injection pipe 13 connected to a fuel pump (not shown) which, from a storage container (also not shown), requires the fuel for the operation of the small gas turbine
  • the fuel introduced in this way thus passes through the delivery pipe 12 (and in the exemplary embodiment according to FIGS. 1, 2 via a centrifugal siphon 14, which will be explained in more detail later) into a preferably central location in the intersection 4b of the rotor shaft 4, but away from the ventilation bores 9 provided distribution chamber 15, from which a plurality of supply bores 17 branching in 0 radial direction 16 branch off.
  • These supply bores 17, which are also provided in the intersection 4b and are arranged offset to the ventilation bores 9, so that the supply bores 17 and the ventilation bores 9 do not intersect the fuel ultimately gets into the combustion chamber 1
  • the fuel emerging from the 5 supply bores 17 can thus be distributed within the spray ring 18 over its entire circumference (and thus also over the circumference of the rotor shaft 4) before it is then better distributed and thus atomized into the actual combustion chamber 1 or into the primary zone the same arrives.
  • the spray ring 18 is essentially trough-shaped on its side facing the supply bores 17, i.e. it forms a rotor shaft 4 with its upper side, delimited by its collar 18a, which is on the right here and is exposed to the combustion chamber 1
  • splash ring pan 18b within which the fuel emerging from the supply bores 17 can initially be distributed evenly over the inner circumference of the spray ring 18 due to centrifugal force before it actually reaches the primary zone of the combustion chamber 1. The latter takes place after the so-called. 0 splash ring trough 18b is completely filled with fuel, so that the fuel initially exits the spray ring trough 18b via the collar 18a in the opposite direction to the centrifugal force and then again under the influence of centrifugal force along the end face of the collar 18a to the outermost corner region of the spray ring 18 trained tear edge 18c, from which the
  • centrifugal siphon 14 provided between the delivery pipe 12 and the distribution chamber 15 in the first exemplary embodiment according to FIG. 1, for the sake of clarity in particular reference is made to the enlarged illustration according to FIG. 2.
  • the meaning of this F ekkraftiphons 14 is to seal the initial area of the fuel injection system, namely the fuel injection pipe 13 and the delivery pipe 12 with respect to the combustion chamber 1, in particular to ensure excellent controllability of the entire fuel injection system of the Kieingas turbine even at low speeds thereof and in addition to ensure the best possible possibility of a windmill start often sought for small gas turbines
  • the fuel brought in through the injection pipe 13 exits the delivery pipe 12 again under the influence of centrifugal force onto the inner surface of a so-called distributor cone 20 and over it due to a baffle plate 21 provided in the intersection part 4b along the one between the free one End of the distributor cone 20 as well as the baffle plate 21, not specified in more detail, in the radial direction 16 outwards into an annular gap 22 surrounding the baffle plate 21 on the outside. From there, the fuel then moves inward along the side of the baffle plate 21 facing away from the distributor cone 20 in radial direction 16 , ie in the direction of the central axis 19 into the distribution chamber 15 already described
  • FIG. 2 more precisely a screw connection designated by reference numeral 23, via which the compressor impeller 2a is flanged to the rotor shaft 4 or to the intersection point 4b thereof. Furthermore, the flow path of the entry is already detailed in this FIG. The combustion chamber leakage air 6a explained in more detail than shown in FIG.
  • this combustion chamber leakage air 6a comes from the annulus designated by the reference number 24, that of the combustion chamber end wall 25, from a partition wall designated by the reference number 26 (this is the non-rotating part of the Kieingas turbine already mentioned several times) and the flange-like crossing point 4b of the rotor shaft 4 is limited, via the gap 27 between the partition wall 26 and the crossing part 4b, which is sealed by the seal 7 provided there as a labyrinth seal, but which does not allow complete sealing, into the compressor rear space 8.
  • the combustion chamber leakage air 6a mixes with a further air flow that comes in due to the different pressure conditions and can thereafter be provided through transition bores 29 in provided in the flange-like section 28 of the compressor impeller 2a that cooperates with the flange-like crossing part 4b the ventilation bores 9 already explained arrive, which in turn (in the exemplary embodiment according to FIGS. 1, 2, inclined with respect to the axial direction 3) open into the rotor inner space 4a.
  • no centrifugal siphon described in connection with FIG. 2 is provided, so that the delivery pipe 12, which is preferably soldered into a suitable receptacle in the crossing part 4b, opens directly into the distribution chamber 15.
  • the compressor impeller 2a is designed slightly differently, so that the ventilation bores 9, which branch off here from a chamber designated by the reference number 30, through which the delivery pipe 12 passes, run at least essentially in the axial direction 3.
  • the combustion chamber leakage air 6a which is to be discharged from the compressor rear space 8 and possibly mixed with a further air flow also enters this chamber 30 via a transition bore again identified by the reference number 29. Also seen in FIG.
  • a throttle point 32 is used in the supply bore (s) 17 for the fuel which is led through the supply bore 17 in the radial direction 16, here in the form of a suitably designed screwed-in throttle element.
  • a pressure gradient builds up under the influence of centrifugal force in the fuel injection system in the direction of the combustion chamber 1, which prevents combustion chamber air from pressing back into the delivery pipe 12.
  • the mechanical seal 31 shown in FIG. 3 is therefore not necessary here.
  • the splash ring 18 is shaped somewhat differently than in the exemplary embodiment according to FIGS. 1, 2. This different shape also depends on the different design of the compressor impeller 2a or the flange-like section 28 the same together, as can be seen in the exemplary embodiments according to FIGS. 3, 4, the screw connection designated by the reference number 23 in FIG. 2 has been replaced by a welded connection, however this and a large number of further details, in particular of a constructive nature, can be designed quite differently from the exemplary embodiments shown be without leaving the content of the claims. With the measures described, both uniform fuel injection into the combustion chamber 1 and optimal ventilation of the compressor rear space 8 are always obtained. These advantages are particularly evident when the rotational speeds of the rotor shaft 4 are low and, at the same time, relatively large amounts of fuel are to be supplied to the combustion chamber 1 . Reference symbol list:
  • combustion chamber 1 radial or Slinger combustion chamber, also called the combustion chamber

Abstract

The invention relates to a fuel injection system for a radial or slinger combustion chamber in a small gas turbine, comprising a radial or diagonal compressor that is mounted upstream from a radial combustion chamber and part of a turbine that is connected to the compressor by a rotor shaft that extends in an axial direction. Fuel is fed into an intersecting segment of said rotor shaft located in an area close to the compressor of the combustion chamber by means of a feed pipe that is arranged in a wheel of the radial compressor and enters the combustion chamber via feed holes that extend in a substantially radial direction. The intersecting segment consists of ventilation holes that are arranged in an offset position with respect to the feed holes. Said ventilation holes enable the leaking air from the combustion chamber that enters the rear chamber of the compressor to enter the inner chamber of the at least partially hollow rotor shaft, whereby said air can be released into the surrounding atmosphere via a central outlet in the turbine disc. Said system also consists of an injection ring that fully surrounds the rotor shaft in the region of the intersecting segment and is arranged at least a short distance away from the rotor shaft, at least in the orifice region of the feed holes, and rotates with said shaft about the center axis of the small gas turbine.

Description

Brennstoffeinspritzsystem für eine Radial- oder Slinger-Brennkammer einer KleingasturbineFuel injection system for a radial or Slinger combustion chamber of a small gas turbine
Die Erfindung betrifft ein Brennstoffeinspritzsystem für eine Radial- oder Slinger-Brennkammer einer Kleingasturbine mit einem der Radial- oder Slinger-Brennkammer vorgelagerten Radialverdichter oder Diagonalverdichter und einem mit diesem über eine in Axialrichtung verlaufende Rotorwelle verbundenen Turbinenteil, wobei der Brennstoff durch ein im Laufrad des Radialverdichters / Diagonalverdichters vorgesehenes Förderrohr in ein im ver- dichternahen Bereich der Brennkammer liegendes Kreuzungsteil der Rotorwelle gelangt und über in diesem im wesentlichen in Radialrichtung verlaufende Zulieferbohrungen der Brennkammer zugeführt wird. Zum technischen Umfeld wird beispielshalber auf die US 5,526,640 verwiesen.The invention relates to a fuel injection system for a radial or Slinger combustion chamber of a small gas turbine with a radial compressor or diagonal compressor upstream of the radial or Slinger combustion chamber and a turbine part connected to the latter via a rotor shaft running in the axial direction, the fuel being supplied by a in the impeller of the radial compressor / Diagonal compressor provided delivery pipe comes into a crossing part of the rotor shaft located in the area of the combustion chamber near the compressor and is supplied to the combustion chamber via supply bores running essentially in the radial direction. With regard to the technical environment, reference is made, for example, to US Pat. No. 5,526,640.
Bei einer Radial-Brennkammer mit den oben genannten Merkmalen, die üblicherweise auch als Slinger-Brennkammer bezeichnet wird, wird der Brennstoff durch eine konzentrisch zur Drehachse des Radialverdichters (unter diesen Begriff sollen im weiteren auch die sog. Diagonalverdichter fallen) oder der Rotorwelle verlaufende Bohrung im Verdichter-Laufrad oder durch ein darin vorgesehenes Förderrohr zur Brennkammer geleitet. Dabei fließt aufgrund der Drehbewegung der Rotorwelle bzw. des Verdichter-Laufrades infolge der dadurch entstehenden Fliehkräfte der Brennstoff als dünner Film entlang der Wandung der Bohrung oder des Förderrohres bis direkt unter die Primärzone der Brennkammer. Dort wird er im bekannten Stand der Technik durch eine geeignete Abrisskante oder durch einzelne radial angeordnete Düsen in die Primärzone der Brennkammer abgespritzt.In the case of a radial combustion chamber with the features mentioned above, which is usually also referred to as a Slinger combustion chamber, the fuel is drilled through a bore that runs concentrically to the axis of rotation of the radial compressor (this term also includes the so-called diagonal compressors) or the rotor shaft in the compressor impeller or through a delivery pipe provided to the combustion chamber. It flows due to the rotary movement of the rotor shaft or the compressor impeller as a result of the centrifugal forces that arise as a result, the fuel as a thin film along the wall of the bore or the delivery pipe as far as directly below the primary zone of the combustion chamber. There, in the known state of the art, it is sprayed into the primary zone of the combustion chamber through a suitable tear-off edge or through individual radially arranged nozzles.
Bei allen Radial- oder Slinger-Brennkammem besteht das Problem, eine möglichst gute Abdichtung der Brennkammer zum rückseitigen Raum hinter dem Verdichter-Laufrad, d.h. zum sog. Verdichter-Rückraum herzustellen, da die Brennkammer wegen der soeben beschriebenen Brennstoffeinspritzung zur Rotorwelle hin offen ist. Da nämlich der Druck in der Brennkammer bedingt durch die Wirkung des Verdichter-Stators immer höher ist als im Verdichter-Rückraum, strömt stets ein geringer Teil der Brennkammerluft als sog. Brennkammer-Leckluft über eine in diesem Bereich zwischen den rotierenden und den nicht rotierenden Elementen vorgesehene Dichtung in den Verdichter-Rückraum.The problem with all radial or Slinger combustion chambers is that the combustion chamber is sealed as well as possible to the rear space behind the compressor impeller, i.e. to the so-called compressor back space, since the combustion chamber is open to the rotor shaft because of the fuel injection just described. Because the pressure in the combustion chamber is always higher than in the back of the compressor due to the effect of the compressor stator, a small part of the combustion chamber air always flows as so-called combustion chamber leakage air in a region between the rotating and the non-rotating elements provided seal in the compressor rear space.
Durch die Zuströmung von durch die besagte Dichtung abgedrosselter Brennkammer-Leckluft in den Verdichter-Rückraum entsteht dort ein Luftüberschuß, der abfließen muß. Dies kann über einen Spalt zwischen dem Verdichter-Laufrad und dem Verdichter-Leitkranz geschehen, wodurch jedoch eine Rezirkulation über den Verdichter-Leitkranz und die Brennkammer erfolgen kann. Daß dies negative Auswirkungen auf den Verdichterwir- kungsgrad und auf dessen Pumpgrenze hat, ist offensichtlich. Als Abhilfemaßnahme hierfür kann der Verdichter-Rückraum entlüftet werden, d.h. die sog. Brennkammer-Leckluft wird dann bspw. über zusätzliche Rohrleitungen in die Umgebung abgeblasen, was jedoch einen wünschenswerterweise zu vermeidenden Aufwand darstellt. Deshalb kann die besagte Entlüftung auch durch die zumindest abschnittsweise hohl ausgebildete Rotorwelle sozusagen nach hinten erfolgen, und zwar bspw. durch eine zentrale Austrittsöffnung in der Turbinenscheibe auf deren Rückseite und von dort in die Schubdüse der Kleingasturbine. Hierbei kann diese Brennkammer-Leckluft vorteilhafterweise als Kühlluft für die Rückseite der Turbinenscheibe benutzt werden und erzeugt außerdem noch Schub durch die Zumischung in den Abgasstrahl der Kieingasturbine.Due to the inflow of combustion chamber leakage air throttled by the said seal into the compressor rear space, there is an excess of air which must flow away. This can be done via a gap between the compressor impeller and the compressor guide ring, whereby, however, recirculation can take place via the compressor guide ring and the combustion chamber. It is obvious that this has negative effects on the compressor efficiency and on its surge limit. As a remedial measure for this, the compressor back space can be vented, ie the so-called combustion chamber leakage air is then blown off into the surroundings, for example via additional pipelines, which, however, represents an effort which should be avoided. Therefore, said ventilation can also take place to the rear, as it were, through the rotor shaft, which is hollow at least in sections, for example through a central outlet opening in the turbine disk on its rear side and from there into the thrust nozzle of the small gas turbine. In this case, this combustion chamber leakage air can advantageously be used as cooling air for the rear of the turbine disk and also generates thrust by admixing it with the exhaust gas jet from the Kieingas turbine.
Ein Nachteil dieser Lösung ist jedoch, daß die Brennkammer-Leckluft eine sog. Kreuzungsstelle mit dem ebenfalls in der Rotorwelle vorgesehen und weiter oben bereits kurz beschriebenen Brennstoffeinspritzsystem besitzt, weshalb im bekannten Stand der Technik für dieses Brennstoffeinspritzsystem lediglich mehrere in der Brennkammer in Radialrichtung mündende Einzeldüsen vorgesehen sind. Diese sind jedoch für die Regelbarkeit des Brennstoff-Massenstromes sowie für die Zerstäubung desselben bei niedrigen Drehzahlen der Kleingasturbine ungeeignet. Zwar wird bei hohen Drehzahlen die Brennkammer durch die sich ausbildende radiale Brennstoffsäule gegen die zentrale Brennstoffbohrung abgedichtet, d.h. hier brächte man aufgrund der Brennstoffsäule keine speziellen Abdichtmaßnahmen vorzusehen, jedoch läßt sich dann kaum ein bei Kleingasturbinen oftmals erwünschter Windmilling-Start realisieren, da bei niedrigen Drehzahlen die dabei auftretende Fliehkraft nicht ausreicht, um die benötigte Brennstoffmenge gegen den dort herrschenden Druck in die Brennkammer zu fördern.A disadvantage of this solution, however, is that the combustion chamber leakage air has a so-called crossing point with the fuel injection system, which is also provided in the rotor shaft and has already been briefly described above, which is why in the known prior art for this fuel injection system, only a plurality of individual nozzles opening in the combustion chamber in the radial direction are provided. However, these are unsuitable for the controllability of the fuel mass flow and for the atomization of the same at low speeds of the small gas turbine. At high speeds, the combustion chamber is sealed against the central fuel hole by the radial fuel column that forms, i.e. There would be no special sealing measures to be provided due to the fuel column, however, a windmilling start, which is often desired in small gas turbines, can then hardly be realized, since at low speeds the centrifugal force occurring is not sufficient to introduce the required amount of fuel into the combustion chamber against the pressure prevailing there promote.
Eine Abhilfemaßnahme für diese geschilderte Problematik aufzuzeigen, ist Aufgabe der vorliegenden Erfindung. Zur Lösung dieser Aufgabe tragen die im ersten Patentanspruch angegebenen Merkmale in ihrer Gesamtheit bei, vorteilhafte Aus- und Weiterbildungen sind Inhalt der Unteransprüche. Näher erläutert wird die Erfindung anhand dreier in den beigefügten Figuren dargestellter bevorzugter Ausführungsbeispiele, wobei sämtliche näher beschriebenen Merkmale erfindungswesentlich sein können. Dabei zeigtThe object of the present invention is to provide a remedial measure for the problems described. The features specified in the first claim contribute in their entirety to solving this problem, advantageous training and further developments form the content of the dependent claims. The invention is explained in more detail with reference to three preferred exemplary embodiments shown in the attached figures, it being possible for all the features described in more detail to be essential to the invention. It shows
Fig.1 einen Längsschnitt durch eine erfindungsgemäße Kleingasturbine, in welchem neben der Brennkammer sowie dem Brennstoffeinspritzsystem auch der Radialverdichter sowie das Turbinenteil dargestellt sind, Fig.2 das Brennstoffeinspritzsystem aus Fig.1 in vergrößerter Darstellung, Fig.3 ein gegenüber Fig.2 abgewandeltes Brennstoffeinspritzsystem, sowie Fig.4 eine Abwandlung des in Fig.3 dargestellten Brennstoffeinspritzsyste- mes.1 shows a longitudinal section through a small gas turbine according to the invention, in which, in addition to the combustion chamber and the fuel injection system, the radial compressor and the turbine part are also shown, FIG. 2 shows the fuel injection system from FIG. 1 in an enlarged view, FIG. 3 shows a fuel injection system modified compared to FIG and FIG. 4 a modification of the fuel injection system shown in FIG. 3.
Mit der Bezugsziffer 1 ist eine Slinger-Brennkammer einer Kleingasturbine bezeichnet, der - wie insbesondere Fig.1 zeigt - ein Radialverdichter 2 vorgelagert ist. Mit dem Verdichter-Laufrad 2a dieses Radialverdichters 2 ist über eine in Axialrichtung 3 verlaufende Rotorwelle 4 das sog. Turbinenteil 5 der Kleingasturbine bzw. genauer die Turbinenscheibe 5a des Turbinenteiles 5 verbunden. Das Verdichter-Laufrad 2a, die Rotorwelle 4 und die Turbinenscheibe 5a rotieren dabei um die sog. Zentralachse 19 der Kleingasturbine.Reference number 1 denotes a Slinger combustion chamber of a small gas turbine, which - as shown in particular in FIG. 1 - has a radial compressor 2 upstream. The so-called turbine part 5 of the small gas turbine or more precisely the turbine disk 5a of the turbine part 5 is connected to the compressor impeller 2a of this radial compressor 2 via a rotor shaft 4 running in the axial direction 3. The compressor impeller 2a, the rotor shaft 4 and the turbine disk 5a rotate about the so-called central axis 19 of the small gas turbine.
Der Radialverdichter 2 fördert gemäß Pfeilrichtung 6 einen der Brennkammer 1 zuzuführenden Luftstrom, der innerhalb dieser zur Verbrennung des des- weiteren der Brennkammer 1 zugeführten Brennstoffes benötigt wird. Ein Teil dieses der Einfachheit halber ebenfalls mit der Bezugsziffer 6 bezeichneten Luftstromes gelangt aufgrund der in den verschiedenen Zonen der Kleingasturbine vorliegenden unterschiedlichen Druckverhältnisse jedoch nicht in die Brennkammer 1 hinein, sondern an dieser bzw. an deren dem Radialverdichter 2 zugewandten, in Fig. 1 nicht näher bezeichneten (jedoch in Fig.2 mit der Bezugsziffer 25 bezeichneten ) Stirnwand außenseitig vorbei über einen mittels einer hier als Labyrinthdichtung ausgebildeten Dichtung 7 abgedichteten Spalt (in Fig.2 mit der Bezugsziffer 27 bezeichnet) zwischen rotierenden und nicht rotierenden Teilen der Kleingasturbine in den in der Beschreibungseinleitung bereits definierten sog. Verdichter-Rückraum 8. Dieser in den Verdichter-Rückraum 8 gelangende Teil des Luftstromes 6 wird als Brennkammer-Leckluft 6a bezeichnet.The radial compressor 2 conveys an air flow to be supplied to the combustion chamber 1 in the direction of the arrow 6, which is required within the latter for the combustion of the fuel further supplied to the combustion chamber 1. Part of this air flow, also designated with reference number 6 for the sake of simplicity, does not, however, enter the combustion chamber 1 due to the different pressure conditions present in the different zones of the small gas turbine, but rather not on the combustion chamber 1 or on its side facing the radial compressor 2 in FIG. 1 specified (however in FIG. 2 with the reference number 25) end wall on the outside over a gap sealed by means of a seal 7 embodied here as a labyrinth seal (designated in FIG. 2 with the reference number 27) between rotating and non-rotating parts of the small gas turbine in the introduction to the description Defined so-called compressor back space 8. This part of the air flow 6 entering the compressor back space 8 is referred to as combustion chamber leakage air 6a.
Der sich rückseitig des Verdichter-Laufrades 2a befindende Verdichter- Rückraum 8 muß folglich belüftet werden, d.h. die Brennkammer-Leckluft 6a muß aus dem Verdichter-Rückraum 8 auch wieder abgeführt werden. Dies erfolgt über die zumindest bereichsweise, hier jedoch vollständig hohl ausgeführte Rotorwelle 4, bzw. genauer über deren Innenraum 4a. Wie ersichtlich ist das vordere dem Verdichter-Laufrad 2a zugewandte Ende der Rotor- welle 4 flanschartig ausgebildet und stellt dabei ein sog. Kreuzungsteil 4b dar. Durch dieses flanschartige Kreuzungsteil 4b gehen mehrere (hier bevorzugt über dem Umfang des Kreuzungsteiles 4b gleichmäßig verteilt drei) Entlüftungsbohrungen 9 hindurch, die somit eine Verbindung zwischen dem Rotorwellen-Innenraum 4a sowie letztendlich dem Verdichter-Rückraum 8 herstellen. Im übrigen ist über dieses flanschartige Kreuzungsteil 4b die Rotorwelle 4 mit dem Verdichter-Laufrad 2a drehfest verbunden.The compressor rear space 8 located on the back of the compressor impeller 2a must therefore be ventilated, i.e. the combustion chamber leak air 6a must also be removed from the compressor rear space 8. This takes place via the rotor shaft 4, which is at least partially, but completely hollow, or more precisely via its interior 4a. As can be seen, the front end of the rotor shaft 4 facing the compressor impeller 2a is flange-like and represents a so-called crossing part 4b. Through this flange-like crossing part 4b, several (here preferably three evenly distributed over the circumference of the crossing part 4b) vent holes 9 through, which thus establish a connection between the rotor shaft interior 4a and ultimately the compressor rear space 8. Otherwise, the rotor shaft 4 is connected to the compressor impeller 2a in a rotationally fixed manner via this flange-like crossing part 4b.
Nachdem nun also die Brennkammer-Leckluft 6a aus dem Verdichter- Rückraum 8 über die Entlüftungsbohrungen 9 im Kreuzungsteil 4b in den Innenraum 4a der Rotorwelle 4 gelangt ist, wird sie aus diesem über ein im dem Turbinenteil 5 zugewandten Endbereich der Rotorwelle 4 vorgesehenes Abführrohr 4c, welches die Turbinenscheibe 5a in einer zentralen Austrittsöffnung 10 durchdringt, letztendlich in die Umgebung abgeführt, und zwar genauer über die hier nicht figürlich dargestellte Schubdüse der Kleingastur- bine. Über das Kreuzungstell 4b der Rotorwelle 4 wird jedoch nicht nur die Brennkammer-Leckluft 6a aus dem Verdichter-Ruckraum 8 abgeführt, sondern gleichzeitig der in der Brennkammer 1 zu verbrennende Brennstoff derAfter the combustion chamber leakage air 6a has now reached the interior 4a of the rotor shaft 4 from the compressor rear space 8 via the ventilation bores 9 in the intersection part 4b, it is discharged from the latter via an exhaust pipe 4c provided in the end region of the rotor shaft 4 facing the turbine part 5, which penetrates the turbine disk 5a in a central outlet opening 10, ultimately discharged into the environment, more precisely via the thrust nozzle of the small gas turbine, not shown here. Via the crossing point 4b of the rotor shaft 4, however, not only the combustion chamber leakage air 6a is discharged from the compressor back space 8, but also the fuel to be burned in the combustion chamber 1
5 Brennkammer 1 zugeführt Wie an Kleingasturbinen mit S nger- Brennkammem üblich wird namhch der Brennstoff durch eine konzentrisch zur Drehachse des Radialverdichters 2 oder der Rotorwelle 4 verlaufende Bohrung 11 im Verdichter-Laufrad 2a bzw genauer durch ein dann vorgesehenes Forderrohr 12 letztendlich zur Brennkammer 1 geleitet Hierzu mundet5 Combustion chamber 1 supplied As is customary in small gas turbines with a singer combustion chamber, the fuel is ultimately directed to the combustion chamber 1 through a bore 11 in the compressor impeller 2a, which runs concentrically to the axis of rotation of the radial compressor 2 or the rotor shaft 4, or more precisely through a delivery pipe 12 then provided To this end mouths
I O im hier linksseitigen Anfangsbereich des Forderrohres 12 ein mit einer nicht gezeigten Brennstoffpumpe, die aus einem ebenfalls nicht gezeigten Vor- ratsbehalter den Brennstoff für den Betrieb der Kleingasturbine fordert, verbundenes Brennstoff-Einspritzrohrchen 13I O in the starting area of the delivery pipe 12 on the left-hand side here is a fuel injection pipe 13 connected to a fuel pump (not shown) which, from a storage container (also not shown), requires the fuel for the operation of the small gas turbine
1 Der hierüber eingebrachte Brennstoff gelangt somit durch das Forderrohr 12 (und beim Ausfuhrungsbeispiel nach den Figuren 1 , 2 über einen an spaterer Stelle noch naher erläuterten Fliehkraftsiphon 14) in eine bevorzugt zentral im Kreuzungstell 4b der Rotorwelle 4, dabei jedoch abseits der Entluf- tungsbohrungen 9 vorgesehene Verteilerkammer 15, von welcher mehrere in 0 Radialnchtung 16 verlaufende Zulieferbohrungen 17 abzweigen Über diese ebenfalls im Kreuzungstell 4b vorgesehenen Zulieferbohrungen 17, die versetzt zu den Entluftungsbohrungen 9 angeordnet sind, so daß sich die Zulieferbohrungen 17 und die Entluftungsbohrungen 9 nicht schneiden, kann daher der Brennstoff letztendlich in die Brennkammer 1 gelangen Bevorzugt1 The fuel introduced in this way thus passes through the delivery pipe 12 (and in the exemplary embodiment according to FIGS. 1, 2 via a centrifugal siphon 14, which will be explained in more detail later) into a preferably central location in the intersection 4b of the rotor shaft 4, but away from the ventilation bores 9 provided distribution chamber 15, from which a plurality of supply bores 17 branching in 0 radial direction 16 branch off. These supply bores 17, which are also provided in the intersection 4b and are arranged offset to the ventilation bores 9, so that the supply bores 17 and the ventilation bores 9 do not intersect the fuel ultimately gets into the combustion chamber 1
25 sind dabei drei derartige Zulieferbohrungen 17 gleichmäßig über dem Umfang des Kreuzungsteiles 4b verteilt vorgesehen25 three such supply bores 17 are provided evenly distributed over the circumference of the intersection part 4b
Wurden nun die Zulieferbohrungen 17 direkt in der Brennkammer 1 munden, ergäbe sich insbesondere bei niedrigen Drehzahlen der Kieingasturbine eineIf the supply bores 17 were now mouthed directly in the combustion chamber 1, this would result in an especially at low speeds of the Kieingasurbine
30 nicht ausreichende Zerstäubung des Brennstoffes Daher ist die Rotorwelle 4 im Bereich des Kreuzungsteiles 4b vollständig von einem sog. Spritzring 18 umgeben, der zumindest im Mündungsbereich der Zulieferbohrungen 17 geringfügig von der Rotorwelle 4 beabstandet ist, und der zusammen mit der Rotorwelle 4 um die Zentralachse 19 der Kleingasturbine rotiert. Der aus den 5 Zulieferbohrungen 17 austretende Brennstoff kann sich somit innerhalb des Spritzringes 18 über dessen gesamtem Umfang (und somit auch über den Umfang der Rotorwelle 4) verteilen, ehe er dann besser verteilt und somit zerstäubt in die eigentliche Brennkammer 1 bzw. in die Primärzone derselben gelangt.30 insufficient atomization of the fuel. Therefore, the rotor shaft 4 in the area of the intersection part 4b completely surrounded by a so-called splash ring 18, which is at least slightly spaced from the rotor shaft 4 at least in the mouth area of the supply bores 17 and which rotates together with the rotor shaft 4 about the central axis 19 of the small gas turbine. The fuel emerging from the 5 supply bores 17 can thus be distributed within the spray ring 18 over its entire circumference (and thus also over the circumference of the rotor shaft 4) before it is then better distributed and thus atomized into the actual combustion chamber 1 or into the primary zone the same arrives.
I OI O
Wie aus Fig.2 ersichtlich ist, ist der Spritzring 18 auf seiner den Zulieferbohrungen 17 zugewandten Seite im wesentlichen wannenförmig ausgebildet, d.h. er bildet eine von seinem hier rechtsseitigen, zur Brennkammer 1 hin offenliegenden Bund 18a begrenzte, der Rotorwelle 4 mit ihrer OberseiteAs can be seen from FIG. 2, the spray ring 18 is essentially trough-shaped on its side facing the supply bores 17, i.e. it forms a rotor shaft 4 with its upper side, delimited by its collar 18a, which is on the right here and is exposed to the combustion chamber 1
15 zugewandte und bezüglich der Rotorwelle 4 umlaufende sog. Spritzring- Wanne 18b, innerhalb derer sich der aus den Zulieferbohrungen 17 austretende Brennstoff fliehkraftbedingt zunächst gleichmäßig über dem Innen- Umfang des Spritzringes 18 verteilen kann, ehe er tatsächlich in die Primärzone der Brennkammer 1 gelangt. Letztgenanntes erfolgt, nachdem die sog. 0 Spritzring-Wanne 18b vollständig mit Brennstoff befüllt ist, so daß der Brennstoff über den Bund 18a zunächst entgegengerichtet zur Fliehkraft aus der Spritzring-Wanne 18b austritt und danach abermals unter Fliehkrafteinfluß entlang der Stirnseite des Bundes 18a zur im äußersten Eckbereich des Spritzringes 18 ausgebildeten Abrißkante 18c gelangt, von welcher aus der15 facing and rotating with respect to the rotor shaft 4 so-called splash ring pan 18b, within which the fuel emerging from the supply bores 17 can initially be distributed evenly over the inner circumference of the spray ring 18 due to centrifugal force before it actually reaches the primary zone of the combustion chamber 1. The latter takes place after the so-called. 0 splash ring trough 18b is completely filled with fuel, so that the fuel initially exits the spray ring trough 18b via the collar 18a in the opposite direction to the centrifugal force and then again under the influence of centrifugal force along the end face of the collar 18a to the outermost corner region of the spray ring 18 trained tear edge 18c, from which the
25 Brennstoff dann fein zerstäubt in die Brennkammer 1 abspritzt.25 fuel then sprayed into the combustion chamber 1 atomized.
Im folgenden wir nun der beim ersten Ausführungsbeispiel nach Fig.1 zwischen dem Förderrohr 12 sowie der Verteilerkammer 15 vorgesehene Fliehkraftsiphon 14 beschrieben, wobei der Übersichtlichkeit halber insbesondere 30 auf die vergrößerte Darstellung nach Fig. 2 verwiesen wird. Der Sinn dieses F ehkraftsiphons 14 liegt darin, den Anfangsbereich des Brennstoffeinspπtz- systemes, nämlich das Brennstoff-Einspntzrohrchen 13 sowie das Forderrohr 12 gegenüber der Brennkammer 1 abzudichten, insbesondere um eine ausgezeichnete Regelbarkeit des gesamten Brennstoffeinspπtzsystemes der Kieingasturbine auch bei niedrigen Drehzahlen derselben zu gewährleisten und um darüber hinaus die Möglichkeit eines bei Kleingasturbinen oftmals angestrebten Windmillstarts bestmöglich sicherzustellenIn the following we will now describe the centrifugal siphon 14 provided between the delivery pipe 12 and the distribution chamber 15 in the first exemplary embodiment according to FIG. 1, for the sake of clarity in particular reference is made to the enlarged illustration according to FIG. 2. The meaning of this F ekkraftiphons 14 is to seal the initial area of the fuel injection system, namely the fuel injection pipe 13 and the delivery pipe 12 with respect to the combustion chamber 1, in particular to ensure excellent controllability of the entire fuel injection system of the Kieingas turbine even at low speeds thereof and in addition to ensure the best possible possibility of a windmill start often sought for small gas turbines
Wie Fig.2 zeigt, gelangt der über das Einspπtzrohrchen 13 herangeführte Brennstoff aus dem Forderrohr 12 austretend abermals unter Fliehkraftein- fluß auf die innere Oberflache eines sog Verteilerkonus 20 und über diesen aufgrund einer im Kreuzungsteil 4b vorgesehenen Prallplatte 21 entlang derselben über einen zwischen dem freien Ende des Verteilerkonus 20 sowie der Prallplatte 21 vorgesehenen nicht naher bezeichneten Spalt in Radialnchtung 16 nach außen in einen die Prallplatte 21 außenseitig umgebenden Ringspalt 22 Von diesem aus gelangt der Brennstoff dann entlang der dem Verteilerkonus 20 abgewandten Seite der Prallplatte 21 in Radialnchtung 16 betrachtet nach innen, d h in Richtung der Zentralachse 19 in die bereits beschriebene Verteilerkammer 15As shown in FIG. 2, the fuel brought in through the injection pipe 13 exits the delivery pipe 12 again under the influence of centrifugal force onto the inner surface of a so-called distributor cone 20 and over it due to a baffle plate 21 provided in the intersection part 4b along the one between the free one End of the distributor cone 20 as well as the baffle plate 21, not specified in more detail, in the radial direction 16 outwards into an annular gap 22 surrounding the baffle plate 21 on the outside. From there, the fuel then moves inward along the side of the baffle plate 21 facing away from the distributor cone 20 in radial direction 16 , ie in the direction of the central axis 19 into the distribution chamber 15 already described
Im übrigen erkennt man in Fig.2 genauer eine mit der Bezugsziffer 23 bezeichnete Schraubverbindung, über welche das Verdichter-Laufrad 2a an die Rotorwelle 4 bzw an das Kreuzungstell 4b derselben angeflanscht ist Ferner ist in dieser Fig.2 auch der Stromungsweg der eingangs bereits ausführlich erläuterten Brennkammer-Leckluft 6a detaillierter als in Fig.1 dargestellt Wie dargestellt und wie bereits erwähnt gelangt diese Brennkammer-Leckluft 6a aus dem mit der Bezugsziffer 24 bezeichneten Ringraum, der von der Brennkammer-Stirnwand 25, von einer mit der Bezugsziffer 26 bezeichneten Trennwand (hierbei handelt es sich um das bereits mehrfach genannte nicht rotierende Teil der Kieingasturbine) und dem flanschartigen Kreuzungstell 4b der Rotorwelle 4 begrenzt wird, über den Spalt 27 zwischen der Trennwand 26 und dem Kreuzungsteil 4b, der zwar von der dort vorgesehenen als Labyrinthdichtung ausgebildeten Dichtung 7 abgedichtet wird, welche jedoch keine vollständige Abdichtung ermöglicht, in den Verdichter-Rückraum 8.Furthermore, one can see in FIG. 2 more precisely a screw connection designated by reference numeral 23, via which the compressor impeller 2a is flanged to the rotor shaft 4 or to the intersection point 4b thereof. Furthermore, the flow path of the entry is already detailed in this FIG The combustion chamber leakage air 6a explained in more detail than shown in FIG. 1 As shown and as already mentioned, this combustion chamber leakage air 6a comes from the annulus designated by the reference number 24, that of the combustion chamber end wall 25, from a partition wall designated by the reference number 26 ( this is the non-rotating part of the Kieingas turbine already mentioned several times) and the flange-like crossing point 4b of the rotor shaft 4 is limited, via the gap 27 between the partition wall 26 and the crossing part 4b, which is sealed by the seal 7 provided there as a labyrinth seal, but which does not allow complete sealing, into the compressor rear space 8.
In diesem Verdichter-Rückraum 8 vermischt sich die Brennkammer-Leckluft 6a mit einem weiteren aufgrund der unterschiedlichen Druckverhältnisse hierhinein gelangenden Luftstrom und kann danach durch im flanschartig ausgebildeten, mit dem flanschartigen Kreuzungsteil 4b zusammenwirken- den Abschnitt 28 des Verdichter-Laufrades 2a vorgesehene Übertrittsbohrungen 29 in die bereits erläuterten Entlüftungsbohrungen 9 gelangen, die ihrerseits (beim Ausführungsbeispiel nach Fig.1 ,2 gegenüber der Axialrichtung 3 geneigt verlaufend) im Rotorweilen-Innenraum 4a münden.In this compressor rear chamber 8, the combustion chamber leakage air 6a mixes with a further air flow that comes in due to the different pressure conditions and can thereafter be provided through transition bores 29 in provided in the flange-like section 28 of the compressor impeller 2a that cooperates with the flange-like crossing part 4b the ventilation bores 9 already explained arrive, which in turn (in the exemplary embodiment according to FIGS. 1, 2, inclined with respect to the axial direction 3) open into the rotor inner space 4a.
Beim Ausführungsbeispiel nach Fig.3 ist kein in Verbindung mit Fig.2 beschriebener Fliehkraftsiphon vorgesehen, so daß das bevorzugt in eine geeignete Aufnahme im Kreuzungsteil 4b eingelötete Förderrohr 12 direkt in der Verteilerkammer 15 mündet. Auch ist hier das Verdichter-Laufrad 2a geringfügig anders konzipiert, so daß die Entlüftungsbohrungen 9, die hier von einer mit der Bezugsziffer 30 bezeichneten Kammer, durch welche das Förderrohr 12 hindurch tritt, abzweigen, zumindest im wesentlichen in Axial- richtung 3 verlaufen. In diese Kammer 30 hinein gelangt die aus dem Verdichter-Rückraum 8 abzuführende und ggf. mit einem weiteren Luftstrom vermengte Brennkammer-Leckluft 6a im übrigen über eine abermals mit der Bezugsziffer 29 bezeichnete Übertrittsbohrung. Ferner erkennt man in Fig.3 eine am stromaufwärtigen Ende des Förderrohres 12 vorgesehene, das Brennstoff-Einspritzröhrchen 13 umgebende druckfederbelastete Gleitringdichtung 31 , mit Hilfe derer der Innenraum des Förderrohres 12 gegenüber der Umgebung abgedichtet ist. Beim Ausführungsbeispiel nach Fig.4 ist in der bzw. den Zulieferbohrung(en) 17 eine Drosselstelle 32 für den durch die Zulieferbohrung 17 in Radialrichtung 16 nach außen geführten Brennstoff eingesetzt, hier in Form eines geeignet gestalteten eingeschraubten Drosselelementes. In dieser Drosselstelle 32 baut sich unter Fliehkrafteinfluß im Brennstoffeinspritzsystem ein Druckgradient in Richtung zur Brennkammer 1 auf, der verhindert, daß Brennkammerluft in das Förderrohr 12 zurück drückt. Daher ist hier die in Fig.3 dargestellte Gleitringdichtung 31 nicht erforderlich.In the embodiment according to FIG. 3, no centrifugal siphon described in connection with FIG. 2 is provided, so that the delivery pipe 12, which is preferably soldered into a suitable receptacle in the crossing part 4b, opens directly into the distribution chamber 15. Here too, the compressor impeller 2a is designed slightly differently, so that the ventilation bores 9, which branch off here from a chamber designated by the reference number 30, through which the delivery pipe 12 passes, run at least essentially in the axial direction 3. The combustion chamber leakage air 6a which is to be discharged from the compressor rear space 8 and possibly mixed with a further air flow also enters this chamber 30 via a transition bore again identified by the reference number 29. Also seen in FIG. 3 is a compression spring-loaded mechanical seal 31 provided at the upstream end of the delivery pipe 12 and surrounding the fuel injection pipe 13, by means of which the interior of the delivery pipe 12 is sealed from the surroundings. In the exemplary embodiment according to FIG. 4, a throttle point 32 is used in the supply bore (s) 17 for the fuel which is led through the supply bore 17 in the radial direction 16, here in the form of a suitably designed screwed-in throttle element. In this throttle point 32, a pressure gradient builds up under the influence of centrifugal force in the fuel injection system in the direction of the combustion chamber 1, which prevents combustion chamber air from pressing back into the delivery pipe 12. The mechanical seal 31 shown in FIG. 3 is therefore not necessary here.
Bei den beiden Ausführungsbeispielen nach den Figuren 3, 4 ist der Spritzring 18 dabei etwas anders geformt als beim Ausführungsbeispiel nach den Figuren 1 , 2. Diese unterschiedliche Formgebung hängt auch mit der verschiedenartigen Gestaltung des Verdichter-Laufrades 2a bzw. des flan- schartigen Abschnittes 28 desselben zusammen, wobei wie ersichtlich bei den Ausführungsbeispielen nach den Figuren 3, 4 die in Fig.2 mit der Bezugsziffer 23 bezeichnete Schraubverbindung durch eine Schweißverbindung ersetzt wurde, jedoch kann dies sowie eine Vielzahl weiterer Details insbesondere konstruktiver Art durchaus abweichend von den gezeigten Ausführungsbeispielen gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen. Stets erhält man mit den beschriebenen Maßnahmen sowohl eine gleichmäßige Brennstoffeinspritzung in die Brennkammer 1 als auch eine optimale Entlüftung des Verdichter-Rückraumes 8. Besonders deutlich treten diese Vorteile bei niedrigen Drehzahlen der Rotorwelle 4 und gleich- zeitig relativ großen der Brennkammer 1 zuzuführenden Brennstoffmengen zum Vorschein. Bezugszeichenliste:In the two exemplary embodiments according to FIGS. 3, 4, the splash ring 18 is shaped somewhat differently than in the exemplary embodiment according to FIGS. 1, 2. This different shape also depends on the different design of the compressor impeller 2a or the flange-like section 28 the same together, as can be seen in the exemplary embodiments according to FIGS. 3, 4, the screw connection designated by the reference number 23 in FIG. 2 has been replaced by a welded connection, however this and a large number of further details, in particular of a constructive nature, can be designed quite differently from the exemplary embodiments shown be without leaving the content of the claims. With the measures described, both uniform fuel injection into the combustion chamber 1 and optimal ventilation of the compressor rear space 8 are always obtained. These advantages are particularly evident when the rotational speeds of the rotor shaft 4 are low and, at the same time, relatively large amounts of fuel are to be supplied to the combustion chamber 1 . Reference symbol list:
1 Radial- oder Slinger-Brennkammer, auch nur Brennkammer genannt1 radial or Slinger combustion chamber, also called the combustion chamber
2 Radialverdichter 2a Verdichter-Laufrad2 radial compressors 2a compressor impeller
3 Axialrichtung3 axial direction
4 Rotorwelle4 rotor shaft
4a Innenraum von 44a interior of 4
4b (flanschartiges) Kreuzungsteil von 4 4c Abführrohr4b (flange-like) crossing part of 4 4c discharge pipe
5 Turbinenteil5 turbine part
5a Turbinenscheibe5a turbine disc
6 der Brennkammer zugeführter Luftstrom, von 2 gefördert 6a Brennkammer-Leckluft 7 Dichtung im Spalt zwischen rotierenden und nicht rotierenden Teilen6 Air flow supplied to the combustion chamber, promoted by 2 6a Combustion chamber leakage air 7 Seal in the gap between rotating and non-rotating parts
8 Verdichter-Rückraum8 compressor back space
9 Entlüftungsbohrung (in 4b)9 vent hole (in 4b)
10 (zentrale) Austrittsöffnung (in 5a)10 (central) outlet opening (in FIG. 5a)
11 (zentrale) Bohrung in 2a, die 12 aufnimmt 12 Förderrohr (für Brennstoff, in 2a verlaufend)11 (central) bore in 2a, which receives 12 12 delivery pipe (for fuel, trending in 2a)
13 Brennstoff-Einspritzröhrchen13 fuel injection tubes
14 Fliehkraftsiphon14 centrifugal siphon
15 Verteilerkammer (für Brennstoff, in 4b)15 distribution chamber (for fuel, in 4b)
16 Radialrichtung 17 Zulieferbohrung (für Brennstoff, in 4b)16 radial direction 17 supply bore (for fuel, in 4b)
18 Spritzring18 thrower
18a Bund von 1818a bunch of 18
18b Spritzring-Wanne18b splash ring pan
18c Abrißkante 19 Zentralachse (der Kleingasturbine)18c tear-off edge 19 central axis (of the small gas turbine)
20 Verteilerkonus20 distributor cone
21 Prallplatte21 baffle plate
22 Ringspalt22 Annular gap
23 Schraubverbindung 24 Ringraum23 screw connection 24 annulus
25 Brennkammer-Stirnwand25 combustion chamber end wall
26 Trennwand26 partition
27 Spalt27 gap
28 Abschnitt von 1 a 29 Übertrittsbohrung28 section of 1 a 29 crossover hole
30 Kammer30 chamber
31 Gleitringdichtung31 Mechanical seal
32 Drosselstelle 32 throttling point

Claims

Patentansprüche claims
1 . Brennstoffeinspritzsystem für eine Radial- oder Slinger-Brennkammer einer Kleingasturbine mit einem der Radial- oder Slinger- Brennkammer (1 ) vorgelagerten Radialverdichter (2) oder Diagonalverdichter und einem mit diesem über eine in Axialrichtung (3) ver- laufende Rotorwelle (4) verbundenen Turbinenteil (5), wobei der Brennstoff durch ein im Laufrad (2a) des Radialverdichters / Diagonalverdichters vorgesehenes Förderrohr (12) in ein im verdichternahen Bereich der Brennkammer (1) liegendes Kreuzungsteil (4b) der Rotorwelle (4) gelangt und über in diesem im wesentlichen in Ra- dialrichtung (16) verlaufende Zulieferbohrungen (17) der Brennkammer (1 ) zugeführt wird, und wobei im Kreuzungsteil (4b) versetzt zu den Zulieferbohrungen (17) angeordnete Entluftungsbohrungen (9) vorgesehen sind, über welche die in den Verdichter-Rückraum (8) gelangende Brennkam- mer-Leckluft (6a) in den Innenraum (4a) der zumindest abschnittsweise hohl ausgebildeten Rotorwelle (4) gelangt, um über diese durch eine insbesondere zentrale Austrittsöffnung (10) in der Turbinenscheibe (5a) in die Umgebung abgeführt zu werden, mit einem die Rotorwelle (4) im Bereich des Kreuzungsteiles (4b) vollständig umgebenden Spritzring (18), der zumindest im Mündungsbereich der Zulieferbohrungen (17) geringfügig von der Rotorwelle (4) beabstandet ist und zusammen mit dieser um die Zentralachse (19) der Kleingasturbine rotiert. Brennstoffeinspritzsystem nach Anspruch 1 , wobei der Spritzring (18) auf der den Zulieferbohrungen (17) zugewandten Seite wannenförmig ausgebildet und zur Brennkammer (1) hin mit einer Abrißkante (18c) versehen ist.1 . Fuel injection system for a radial or Slinger combustion chamber of a small gas turbine with a radial compressor (2) or diagonal compressor upstream of the radial or Slinger combustion chamber (1) and a turbine part connected to the latter via a rotor shaft (4) running in the axial direction (3) (5), the fuel passing through a delivery pipe (12) provided in the impeller (2a) of the radial compressor / diagonal compressor into a crossing part (4b) of the rotor shaft (4) located in the region of the combustion chamber (1) near the compressor and essentially passing through it Supply bores (17) which run in the radial direction (16) are fed to the combustion chamber (1), and in the intersection part (4b) offset ventilation bores (9) are provided in the intersection part (4b) via which the bores into the compressor rear space (8) Combustion chamber leakage air (6a) enters the interior (4a) of the rotor shaft (4), which is hollow at least in sections, in order to pass through the se to be discharged into the environment through a particularly central outlet opening (10) in the turbine disc (5a), with a spray ring (18) completely surrounding the rotor shaft (4) in the area of the crossing part (4b), which is at least in the mouth area of the supply bores ( 17) is slightly spaced from the rotor shaft (4) and rotates together with it about the central axis (19) of the small gas turbine. The fuel injection system according to claim 1, wherein the spray ring (18) is trough-shaped on the side facing the supply bores (17) and is provided with a tear-off edge (18c) towards the combustion chamber (1).
Brennstoffeinspritzsystem nach Anspruch 1 oder 2, wobei im oder stromauf des Kreuzungsteil(es) (4b) ein den Zulieferbohrungen (17) vorgelagerter Fliehkraftsiphon (14) vorgesehen ist.Fuel injection system according to Claim 1 or 2, wherein a centrifugal siphon (14) upstream of the supply bores (17) is provided in or upstream of the crossing part (es) (4b).
Brennstoffeinspritzsystem nach einem der vorangegangenen Ansprüche, wobei die insbesondere drei, über dem Umfang des Kreuzungsteiles (4b) gleichmäßig verteilten Zulieferbohrungen (17) jeweils mit einer Drosselstelle (32) versehen sind. Fuel injection system according to one of the preceding claims, wherein the in particular three supply bores (17), which are uniformly distributed over the circumference of the crossing part (4b), are each provided with a throttle point (32).
EP99946177A 1998-10-12 1999-09-15 Fuel injection system for the radial or slinger combustion chamber in a small gas turbine Expired - Lifetime EP1121561B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19846976 1998-10-12
DE19846976A DE19846976A1 (en) 1998-10-12 1998-10-12 Fuel injection system for radial or slinger combustion chamber of small gas turbine with radial or diagonal compressor located in front of combustion chamber to which is connected turbine part via axially running rotor shaft
PCT/EP1999/006838 WO2000022350A1 (en) 1998-10-12 1999-09-15 Fuel injection system for the radial or slinger combustion chamber in a small gas turbine

Publications (2)

Publication Number Publication Date
EP1121561A1 true EP1121561A1 (en) 2001-08-08
EP1121561B1 EP1121561B1 (en) 2003-10-22

Family

ID=7884197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99946177A Expired - Lifetime EP1121561B1 (en) 1998-10-12 1999-09-15 Fuel injection system for the radial or slinger combustion chamber in a small gas turbine

Country Status (3)

Country Link
EP (1) EP1121561B1 (en)
DE (2) DE19846976A1 (en)
WO (1) WO2000022350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7762072B2 (en) 2007-01-16 2010-07-27 Honeywell International Inc. Combustion systems with rotary fuel slingers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852768A1 (en) 1998-11-16 2000-05-18 Bmw Rolls Royce Gmbh Small gas turbine with a radial or Slinger combustion chamber
DE202005006522U1 (en) * 2005-04-23 2006-06-01 Priebe, Klaus-Peter Device for reducing of sealed gap losses has inter-engaging labyrinth seals for rotating component and casing, with gap width of labyrinth seal adjustable by movement of one half of seal
US7942006B2 (en) 2007-03-26 2011-05-17 Honeywell International Inc. Combustors and combustion systems for gas turbine engines
ES2322317B1 (en) * 2007-06-20 2010-03-31 Futur Investment Partners, S.A. AERONAUTICAL TURBOPROPULSOR.
RU2487258C1 (en) * 2012-03-01 2013-07-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Gas turbine engine gas generator
GB201509458D0 (en) 2015-06-01 2015-07-15 Samad Power Ltd Micro-CHP gas fired boiler with gas turbine assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1011066A (en) * 1948-11-30 1952-06-18 Combustion chamber
DE1152850B (en) * 1960-04-30 1963-08-14 Bmw Triebwerkbau Ges M B H Gas turbine, in particular small gas turbine
US3018625A (en) * 1960-06-27 1962-01-30 Continental Aviat & Eng Corp Internal combustion turbine engine
US3983694A (en) * 1974-10-29 1976-10-05 Eaton Corporation Cup-shaped fuel slinger
US4232526A (en) * 1978-12-26 1980-11-11 Teledyne Industries, Inc. High intensity slinger type combustor for turbine engines
US4429527A (en) * 1981-06-19 1984-02-07 Teets J Michael Turbine engine with combustor premix system
EP0198077B1 (en) * 1984-10-10 1992-01-15 PAUL, Marius A. Gas turbine engine
US5042256A (en) * 1986-07-28 1991-08-27 Teledyne Industries, Inc. Turbine shaft fuel pump
US5022228A (en) * 1988-12-22 1991-06-11 Allied-Signal Inc. Over the shaft fuel pumping system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0022350A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7762072B2 (en) 2007-01-16 2010-07-27 Honeywell International Inc. Combustion systems with rotary fuel slingers

Also Published As

Publication number Publication date
DE59907475D1 (en) 2003-11-27
EP1121561B1 (en) 2003-10-22
DE19846976A1 (en) 2000-04-13
WO2000022350A1 (en) 2000-04-20

Similar Documents

Publication Publication Date Title
DE2854835C2 (en) Electrostatic paint sprayer
DE69831109T2 (en) Cooling air supply system for the blades of a gas turbine
DE3520781A1 (en) METHOD AND DEVICE FOR BURNING LIQUID AND / OR SOLID FUELS IN POWDERED FORM
DE3712628A1 (en) SWIRL NOZZLE FOR A COOLING SYSTEM OF GASTRUBINE ENGINES
DE112012006100T5 (en) Method for preventing deformation in a gas turbine housing, flushing device for carrying out this method and gas turbine provided with this device
DE2131490A1 (en) Air mixing nozzle
EP0711593A1 (en) Process and device for preparing and/or treating particles
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
DE7601094U1 (en) CENTRIFUGE FOR SEPARATING SOLID PARTICLES FROM A LIQUID
EP1121561B1 (en) Fuel injection system for the radial or slinger combustion chamber in a small gas turbine
EP1259298B1 (en) Method and device for distributing liquid media
EP0118769A2 (en) Shrouded multistage turbine
EP0938624A1 (en) Turbofan aircraft engine
EP1423185A1 (en) Device and method for mixing a solid and a fluid
DE2511171C2 (en) Film evaporation combustion chamber
WO1983004282A1 (en) Central injection device for internal combustion engines
EP1001223B1 (en) Gas turbine with rotary fuel injection
DE1162135B (en) Combustion chamber for gas turbine systems
DE2414102A1 (en) EQUIPMENT FOR ATOMIZING A LIQUID OR PASTOES SUBSTANCE
DE2407995C2 (en) Carburetor device for a gasoline engine
EP3831498A1 (en) Bundling nozzle for spraying a fluid, arrangement with a bundling nozzle and method for producing a bundling nozzle
WO1990011877A1 (en) A concrete flow converter
EP0007942B1 (en) Atomizer, particularly for spraying a pressure casting mould
DE4213982C1 (en) Ceiling or wall air outlet with air feed pipe - which has internal nozzle tube, forming annular gap and radial air distributor with collar-like adjusting ring
EP0670752A1 (en) Device for coating small solid bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021010

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907475

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090929

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100915

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907475

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091006

Year of fee payment: 11