EP1121408B1 - Laundry detergent compositions with a combination of cyclic amine based copolymers and hydrophobically modified cellulose - Google Patents

Laundry detergent compositions with a combination of cyclic amine based copolymers and hydrophobically modified cellulose Download PDF

Info

Publication number
EP1121408B1
EP1121408B1 EP99954739A EP99954739A EP1121408B1 EP 1121408 B1 EP1121408 B1 EP 1121408B1 EP 99954739 A EP99954739 A EP 99954739A EP 99954739 A EP99954739 A EP 99954739A EP 1121408 B1 EP1121408 B1 EP 1121408B1
Authority
EP
European Patent Office
Prior art keywords
group
alkyl
hydroxyalkyl
oligomers
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99954739A
Other languages
German (de)
French (fr)
Other versions
EP1121408A1 (en
Inventor
Rajan Keshav Panandiker
Jennifer Ann Leupin
William Conrad Wertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1121408A1 publication Critical patent/EP1121408A1/en
Application granted granted Critical
Publication of EP1121408B1 publication Critical patent/EP1121408B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3915Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments

Definitions

  • the present invention relates to compositions, in either liquid or granular form, for use in laundry applications, wherein the compositions comprise certain cyclic amine based polymer, oligomer or copolymer materials in combination with hydrophobically modified carboxy methyl cellulose. This combination imparts appearance and integrity benefits to fabrics and textiles laundered in washing solutions formed from such compositions.
  • Short fibers are dislodged from woven and knit fabric/textile structures by the mechanical action of laundering. These dislodged fibers may form lint, fuzz or "pills" which are visible on the surface of fabrics and diminish the appearance of newness of the fabric. Further, repeated laundering of fabrics and textiles, especially with bleach-containing laundry products, can remove dye from fabrics and textiles and impart a faded, worn out appearance as a result of diminished color intensity, and in many cases, as a result of changes in hues or shades of color.
  • the present invention is directed to a detergent composition
  • a detergent composition comprising:
  • each T is independently selected from the group consisting of H, C 1 -C 12 alkyl, substituted alkyl, C 7 -C 12 alkylaryl, -(CH 2 ) h COOM, -(CH 2 ) h SO 3 M, CH 2 CH(OH)SO 3 M, -(CH 2 ) h OSO 3 M, , and -R 2 Q;
  • Cellulosic based polymer or oligomer materials which are suitable for use in laundry operations and provide the desired fabric appearance and integrity benefits can be characterized by the following general formula: wherein each R is selected from the group consisting of R 2 , R C , and wherein:
  • the cyclic amine based polymer, oligomer or copolymer materials defined above can be used, along with the hydrophobically modified cellulosic based polymers or oligomers, as a washing solution additive in either granular or liquid form. Alternatively, they can be admixed to granular detergents, dissolved in liquid detergent compositions or added to a fabric softening composition.
  • the ratio of the hydrophobically modified cellulosic to cyclic amine based polymer, oligomer or copolymer materials is within the range of 1000:1 to 1:1000 and is preferably between 100:1 to 50:1, more preferably between 50:1 to 1:1, even more preferably between 10:1 to 1:1.
  • the laundry detergent compositions herein comprise from 1% to 80% by weight of a detersive surfactant, from 0.01% to 80% by weight of an organic or inorganic detergency builder and from 0.01% to 5% by weight of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers based fabric treatment materials of the present invention.
  • the detersive surfactant and detergency builder materials can be any of those useful in conventional laundry detergent products.
  • Aqueous solutions of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the subject invention comprise from 0.01% to 80% by weight of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers fabric treatment materials dissolved in water and other ingredients such as stabilizers and pH adjusters.
  • the present invention relates to the laundering or treating of fabrics and textiles in aqueous washing or treating solutions formed from effective amounts of the detergent compositions described herein, or formed from the individual components of such compositions.
  • Laundering of fabrics and textiles in such washing solutions, followed by rinsing and drying, imparts fabric appearance benefits to the fabric and textile articles so treated.
  • Such benefits can include improved overall appearance, pill/fuzz reduction, antifading, improved abrasion resistance, and/or enhanced softness.
  • the a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers according to this invention imparts fabric appearance and integrity benefits that are greater than the benefits achieved by a corresponding amount of either component by itself.
  • wash solutions which comprise the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the present invention fabric appearance and integrity are enhanced.
  • the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers can be added to wash buttons by incorporating them into a detergent composition, a fabric softener or by adding them separately to the washing solution.
  • the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers are described herein primarily as liquid or granular detergent additives but the present invention is not meant to be so limited.
  • the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, detergent composition components, optional ingredients for such compositions and methods of using such compositions, are described in detail below. All percentages are by weight unless other specified.
  • An essential component of the compositions of the present invention comprises one or more cyclic amine based polymer, oligomer or copolymer.
  • Such materials have been found to impart a number of appearance benefits to fabrics and textiles laundered in aqueous washing solutions formed from detergent compositions which contain a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers fabric treatment materials.
  • Such fabric appearance benefits can include, for example, improved overall appearance of the laundered fabrics, reduction of the formation of pills and fuzz, protection against color fading, improved abrasion resistance, etc.
  • the cyclic amine based fabric treatment materials used in the compositions and methods herein can provide such fabric appearance benefits with acceptably little or no loss in cleaning performance provided by the laundry detergent compositions into which such materials are incorporated.
  • the cyclic amine based polymer, oligomer or copolymer component of the compositions herein may comprise combinations of these cyclic amine based materials.
  • a mixture of piperadine and epihalohydrin condensates can be combined with a mixture of morpholine and epihalohydrin condensates to achieve the desired fabric treatment results
  • the molecular weight of cyclic amine based fabric treatment materials can vary within the mixture as is illustrated in the Examples below.
  • an oligomer is a molecule consisting of only a few monomer units while polymers comprise considerably more monomer units.
  • oligomers are defined as molecules having an average molecular weight below about 1,000 and polymers are molecules having an average molecular weight of greater than about 1,000.
  • Copolymers are polymers or oligomers wherein two or more dissimilar monomer have been simultaneously or sequentially polymerized.
  • Copolymers of the present invention can include, for example, polymers or oligomers polymerized from a mixture of a primary cyclic amine based monomer, e.g., piperadine, and a secondary cyclic amine monomer, e.g., morpholine.
  • the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the detergent compositions herein will generally comprise from about 0.01% to 5% by the weight of the detergent composition. More preferably, the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers will comprise from 0.1% to 4% by weight of the detergent compositions, most preferably from 0.75% to 3%.
  • a washing solution additive i.e.
  • the concentration of mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers can comprise from 0.01% to 5,0% by weight of the additive material.
  • the laundry additive will also comprise from 1% to 80 % by weight of water.
  • Cyclic amine based polymer, oligomer or copolymer materials which are suitable for use in laundry operations and provide the desired fabric appearance and integrity benefits can be characterized by the general formula given in the Summary of the Invention.
  • Preferred compounds that fall within this general structure include compounds:
  • Preferred compounds to be used as the linking group R 2 include, but are not limited to: polyepoxides, ethylenecarbonate, propylenecarbonate, urea, ⁇ , ⁇ -unsaturated carboxylic acids, esters of ⁇ , ⁇ -unsaturated carboxylic acids, amides of ⁇ , ⁇ -unsaturated carboxylic acids, anhydrides of ⁇ , ⁇ -unsaturated carboxylic acids, di- or polycarboxylic acids, esters of di- or polycarboxylic acids, amides of di- or polycarboxylic acids, anhydrides of di- or polycarboxylic acids, glycidylhalogens, chloroformic esters, chloroacetic esters, derivatives of chloroformic esters, derivatives of chloroacetic esters, epihalohydrins, glycerol dichlorohydrins, bis-(halohydrins), polyetherdihalo-compounds, phosgene, poly
  • R 2 can also comprise a reaction product formed by reacting one or more of polyetherdiamines, alkylenediamines, polyalkylenepolyamines, alcohols, alkyleneglycols and polyalkyleneglycols with ⁇ , ⁇ -unsaturated carboxylic acids, esters of ⁇ , ⁇ -unsaturated carboxylic acids, amides of ⁇ , ⁇ -unsaturated carboxylic acids and anhydrides of ⁇ , ⁇ -unsaturated carboxylic acids provided that the reaction products contain at least two double bonds, two carboxylic groups, two amide groups or two ester groups.
  • cyclic amine based polymer, oligomer or copolymer materials for use herein include adducts of two or more compositions selected from the group consisting of piperazine, piperadine, epichlorohydrin, epichlorohydrin benzyl quat, epichlorohydrin methyl quat, morpholine and mixtures thereof.
  • cyclic amine based polymers can be linear or branched.
  • One specific type of branching can be intorduced using a polyfunctional crosslinking agent.
  • An example of such such polymer is exemplified below.
  • the essential component of the compositions of the present invention comprises one or more cellulosic based polymer or oligomer.
  • Such materials have been found to impart a number of appearance benefits to fabrics and textiles laundered in aqueous washing solutions formed from detergent compositions which contain such cellulosic based fabric treatment materials.
  • Such fabric appearance benefits can include, for example, improved overall appearance of the laundered fabrics, reduction of the formation of pills and fuzz, protection against color fading, improved abrasion resistance, etc.
  • the cellulosic based fabric treatment materials used in the compositions and methods herein can provide such fabric appearance benefits with acceptably little or no loss in cleaning performance provided by the laundry detergent compositions into which such materials are incorporated.
  • an oligomer is a molecule consisting of only a few monomer units while polymers comprise considerably more monomer units.
  • oligomers are defined as molecules having an average molecular weight below about 1,000 and polymers are molecules having an average molecular weight of greater than about 1,000.
  • One suitable type of cellulosic based polymer or oligomer fabric treatment material for use herein has an average molecular weight of from 5,000 to 2,000,000, preferably from 50,000 to 1,000,000.
  • the cellulosic based fabric treatment component of the detergent compositions herein will generally comprise from 0.1% to 5% by the weight of the detergent composition. More preferably, such cellulosic based fabric treatment materials will comprise from 0.5% to 4% by weight of the detergent compositions, most preferably from 0.75% to 3%. However, as discussed above, when used as a washing solution additive, i.e. when the cellulosic based fabric treatment component is not incorporated into a detergent composition, the concentration of the cellulosic based component can comprise from 0.1% to 80% by weight of the additive material.
  • the "Degree of Substitution” for group R H which is sometimes abbreviated herein “DS RH ", means the number of moles of group R H components that are substituted per anhydrous glucose unit, wherein an anhydrous glucose unit is a six membered ring as shown in the repeating unit of the general structure above.
  • the "Degree of Substitution" for group R C which is sometimes abbreviated herein "DS RC '' means the number of moles of group R C components, wherein Z is H or M, that are substituted per anhydrous glucose unit, wherein an anhydrous glucose unit is a six membered ring as shown in the repeating unit of the general structure above.
  • the requirement that Z be H or M is necessary to insure that there are a sufficient number of carboxy methyl groups such that the resulting polymer is soluble. It is understood that in addition to the required number of R C components wherein Z is H or M, there can be, and most preferably are, additional R C components wherein Z is a group other than H or M.
  • the detergent compositions herein comprise from 1% to 80% by weight of a detersive surfactant. Preferably such compositions comprise from 5% to 50% by weight of surfactant.
  • Detersive surfactants utilized can be of the anionic, nonionic, zwitterionic, ampholytic or cationic type or can comprise compatible mixtures of these types.
  • Detergent surfactants useful herein are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, U.S. Patent 3,919,678, Laughlin et al., issued December 30, 1975, U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980. Of all the surfactants, anionics and nonionics are preferred.
  • Useful anionic surfactants can themselves be of several different types.
  • water-soluble salts of the higher fatty acids i.e., "soaps”
  • alkali metal soaps such as the sodium, potassium, ammonium, and alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, and preferably from 12 to 18 carbon atoms.
  • non-soap anionic surfactants which are suitable for use herein include the water-soluble salts, preferably the alkali metal, and ammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • alkyl is the alkyl portion of acyl groups.
  • Especially valuable are linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from 11 to 13, abbreviated as C 11-13 LAS.
  • Preferred nonionic surfactants are those of the formula R 1 (OC 2 H 4 ) n OH, wherein R 1 is a C 10- C 16 alkyl group or a C 8 -C 12 alkyl phenyl group, and n is from 3 to 80.
  • Particularly preferred are condensation products of C 12 -C 15 alcohols with from 5 to 20 moles of ethylene oxide per mole of alcohol, e.g., C 12 -C 13 alcohol condensed with 6.5 moles of ethylene oxide per mole of alcohol.
  • the detergent compositions herein may also comprise from 0.1 % to 80% by weight of a detergent builder.
  • a detergent builder Preferably such compositions in liquid form will comprise from 1% to 10% by weight of the builder component.
  • compositions in granular form will comprise from 1% to 50% by weight of the builder component
  • Detergent builders are well known in the art and can comprise, for example, phosphate salts as well as various organic and inorganic nonphosphorus builders.
  • Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates.
  • Suitable polycarboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al., and U.S. Patent 4,246,495, issued March 27,1979 to Crutchfield et al.
  • Particularly preferred polycarboxylate builders are the oxydisuccinates and the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987.
  • nonphosphorus, inorganic builders include the silicates, aluminosilicates, berates and carbonates. Particularly preferred are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicates having a weight ratio of SiO 2 to alkali metal oxide of from 0.5 to 4.0, preferably from 1.0 to 2.4. Also preferred are aluminosilicates including zeolites. Such materials and their use as detergent builders are more fully discussed in Corkill et al., U. S. Patent No. 4,605,509. Also discussed in U. S. Patent No. 4,605,509 are crystalline layered silicates which are suitable for use in the detergent compositions of this invention.
  • the detergent compositions of the present invention can also include any number of additional optional ingredients.
  • additional optional ingredients include conventional detergent composition components such as enzymes and enzyme stabilizing agents, suds boosters or suds suppressers, anti-tarnish and anticorrosion agents, bleaching agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, organic and inorganic fillers, solvents, hydrotropes, optical brighteners, dyes and perfumes.
  • a preferred optional ingredients for incorporation into the detergent compositions herein comprises a bleaching agent, e.g., a peroxygen bleach.
  • a bleaching agent e.g., a peroxygen bleach.
  • peroxygen bleaching agents may be organic or inorganic in nature. Inorganic peroxygen bleaching agents are frequently utilized in combination with a bleach activator.
  • Useful organic peroxygen bleaching agents include percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, Issued November 20, 1984; European Patent Application EP-A-133,354, Banks et al., Published February 20, 1985; and U.S. Patent 4,412,934, Chung et al., Issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid (NAPAA) as described in U.S. Patent 4,634,551, Issued January 6, 1987 to Burns et al.
  • NAPAA 6-nonylamino-6-oxoperoxycaproic acid
  • Inorganic peroxygen bleaching agents may also be used, generally in particulate form, in the detergent compositions herein.
  • Inorganic bleaching agents are in fact preferred.
  • Such inorganic peroxygen compounds include alkali metal perborate and percarbonate materials.
  • sodium perborate e.g. mono- or tetra-hydrate
  • Suitable inorganic bleaching agents can also include sodium or potassium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach e.g., OXONE, manufactured commercially by DuPont
  • OXONE manufactured commercially by DuPont
  • inorganic peroxygen bleaches will be coated with silicate, borate, sulfate or water-soluble surfactants.
  • coated percarbonate particles are available from various commercial sources such as FMC, Solvay Interox. Tokai Denka and Degussa.
  • Inorganic peroxygen bleaching agents e.g., the perborates, the percarbonates, etc.
  • bleach activators which lead to the in situ production in aqueous solution (i.e., during use of the compositions herein for fabric laundering/bleaching) of the peroxy acid corresponding to the bleach activator.
  • Various non-limiting examples of activators are disclosed in U.S. Patent 4,915,854. Issued April 10, 1990 to Mao et al.; and U.S. Patent 4,412,934 Issued November 1, 1983 to Chung et al.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • R 1 N(R 5 )C(O)R 2 C(O)L or R 1 C(O)N(R 5 )R 2 C(O)L wherein R 1 is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to 6 carbon atoms, R 5 is H or alkyl, aryl, or alkaryl containing from about 1 to 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenol sulfonate.
  • bleach activators of the above formulae include (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl) oxybenzene-sul-fonate, (6-decanamidocaproyl)oxybenzenesulfonate and mixtures thereof as described in the hereinbefore referenced U.S. Patent 4,634,551.
  • Another class of useful bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al. in U.S. Patent 4,966, 723, Issued October 30, 1990, incorporated herein by reference. See also U.S. Patent 4,545,784, Issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • peroxygen bleaching agent will generally comprise from about 2% to 30% by weight of the detergent compositions herein. More preferably, peroxygen bleaching agent will comprise from 2% to 20% by weight of the compositions. Most preferably, peroxygen bleaching agent will be present to the extent of from 3% to 15% by weight of the Compositions herein. If utilized, bleach activators can comprise from 2% to 10% by weight of the detergent compositions herein. Frequently, activators are employed such that the molar ratio of bleaching agent to activator ranges from 1: 1 to 10:1, more preferably from 1.5:1 to 5:1.
  • a detersive enzyme component Another highly preferred optional ingredient in the detergent compositions herein is a detersive enzyme component.
  • Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
  • Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability, optimal thermostability, and stability to active detergents, builders and the like.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry detergent composition.
  • Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases, amylases and peroxidases.
  • Enzymes are normally incorporated into detergent compositions at levels sufficient to provide a "cleaning-effective amount".
  • cleaning-effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics.
  • typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition.
  • the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition. Higher active levels may be desirable in highly concentrates detergent formulations.
  • Cellulases usable herein include those disclosed in U.S. Patent No. 4,435,307, Barbesgoard et al., March 6, 1984, and GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful. See also WO 9117243 to Novo.
  • the enzyme-containing compositions herein may optionally also comprise from 0.001% to about 10%, preferably from 0.005% to 8%, most preferably from 0.01% to 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
  • Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
  • compositions of the present invention may also include dye transfer inhibiting agents such as polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof.
  • dye transfer inhibiting agents such as polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof.
  • dye transfer inhibiting agents such as polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof.
  • These agents typically comprise from 0.01% to 10% by weight of the composition,
  • polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures: wherein R 1 , R 2 , R 3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • any polymer backbone can be used as long as the amine oxide polymer formed Is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000.
  • poly(4-vinyipyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of 1:4.
  • PVNO poly(4-vinyipyridine-N-oxide)
  • the detergent compositions according to the present invention can be in liquid, paste or granular form. Such compositions can be prepared by combining the essential and optional components in the requisite concentrations in any suitable order and by any conventional means.
  • the forgoing description of uses for the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers defined herein are intended to be exemplary and other uses will be apparent to those skilled in the art and are intended to be within the scope of the present invention.
  • Granular compositions are generally made by combining base granule ingredients, e.g., surfactants, builders, water, etc., as a slurry, and spray drying the resulting slurry, to a low level of residual moisture (5-12%).
  • base granule ingredients e.g., surfactants, builders, water, etc.
  • the remaining dry ingredients e.g., granules of the essential mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, can be admixed in granular powder form with the spray dried granules in a rotary mixing drum.
  • liquid ingredients e.g., solutions of the essential mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, enzymes, binders and perfumes
  • Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l.
  • the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt.
  • Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations.
  • Liquid compositions according to the present invention can also be in "compact form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents.
  • Addition of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers to liquid detergent or other aqueous compositions of this invention may be accomplished by simply mixing into the liquid solutions the desired mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers
  • compositions heretofore disclosed may also be applied towards the production of particles that may be used as one of the component detergent granules in a granular detergent composition.
  • the present invention also provides a method for laundering fabrics in a manner which imparts fabric appearance benefits provided by the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers used herein.
  • Such a method employs contacting these fabrics with an aqueous washing solution formed from an effective amount of the detergent compositions hereinbefore described or formed from the individual components of such compositions.
  • Contacting of fabrics with washing solution will generally occur under conditions of agitation although the compositions of the present invention may also be used to form aqueous unagitated soaking solutions for fabnc cleaning and treatment.
  • Agitation is preferably provided in a washing machine for good cleaning. Washing is preferably followed by drying the wet fabric in a conventional clothes dryer.
  • An effective amount of a high density liquid or granular detergent composition in the aqueous wash solution in the washing machine is preferably from 500 to 7000 ppm, more preferably from 1000 to 3000 ppm.
  • the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers hereinbefore described as components of the laundry detergent compositions herein may also be used to treat and condition fabrics and textiles in the absence of the surfactant and builder components of the detergent composition embodiments of this invention.
  • a fabric conditioning composition comprising only the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers themselves, or comprising an aqueous solution of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, may be added during the rinse cycle of a conventional home laundering operation in order to impart the desired fabric appearance and integrity benefits hereinbefore described.
  • compositions of the present invention can comprise at least 1%, preferably from 10%, more preferably from 20% to 80%, more preferably to 60% by weight, of the composition of one or more fabric softener actives.
  • the polycationic condensate is prepared by reacting imidazole and epichlorohydrin. To a round bottomed flask equipped with a magnatic stirrer, condenser and a thermometer are added imidazole (0.68 moles) and 95 mL water. The solution is heated to 50°C followed by dropwise addition of epichlorohydrin (0.68 moles). After all the epichlorohydrin is added, the temperature is raised to 80°C until all the alkylating agent is consumed. The condensate produced had molecular weight of 12,500.
  • the reaction product is characterized as follows: water content 58% pH 5.6 chloride content 1.593 mmole/g
  • the reaction product is characterized as follows: water content 58.6% pH 2.86 chloride content 3.694 mmole/g Mn (GPC) 340 Mw (GPC) 940 Mn/Mw 2.8+/0.1
  • the carboxylation of cellulose to produce CMC is a procedure that is well known to those skilled in the art.
  • One method of producing the modified CMC materials is to add during the CMC making process the material, or materials, to be substituted.
  • An example of such as procedure is given below.
  • This same procedure can be utilized with the other substituent materials described herein by replacing the hexylchloride with the substituent material, or materials, of interest, for example, cetylchloride.
  • the amount of material that should be added to the CMC making process to achieve the desired degree of substitution will be easily calculated by those skilled in the art in light of the following Examples.
  • This example illustrates the preparation of a hydrophobically modified carboxymethyl cellulose and is representative of preparation of all of the cellulose ether derivatives.
  • Heavy duty granular detergent compositions are prepared containing a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers. These granular detergent compositions all have the following basic formula: Component Wt.
  • liquid detergent compositions are prepared a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers. These liquid detergent compositions all have the following basic formula: Component Wt.
  • granular detergent compositions are prepared containing a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers.
  • Such granular detergent compositions all have the following basic formula:
  • a detergent agglomerate which may be used as a particulate component in a detergent composition is prepared according to the following formulas and ranges.
  • the granule may be manufactured by agglomeration methods known to those skilled in the art; some of which are described in the present application.
  • Ex. 15A Ex. 15B Component Wt % Wt % Cyclic Amine Based Polymers or Oligomers 2-7 8-10 Hydrophobically Modified Cellulosic Based Polymers or Oligomers 20-70 80-90 Zeolite Builder 0-70 0 Dispersant/Binder 2-6 0 Water and Misc. Balance Balance 100% 100%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to compositions, in either liquid or granular form, for use in laundry applications, wherein the compositions comprise certain cyclic amine based polymer, oligomer or copolymer materials in combination with hydrophobically modified carboxy methyl cellulose. This combination imparts appearance and integrity benefits to fabrics and textiles laundered in washing solutions formed from such compositions.
  • BACKGROUND OF THE INVENTION
  • It is, of course, well known that alternating cycles of using and laundering fabrics and textiles, such as articles of worn clothing and apparel, will inevitably adversely affect the appearance and integrity of the fabric and textile items so used and laundered. Fabrics and textiles simply wear out over time and with use. Laundering of fabrics and textiles is necessary to remove soils and stains which accumulate therein and thereon during ordinary use. However, the laundering operation itself, over many cycles, can accentuate and contribute to the deterioration of the integrity and the appearance of such fabrics and textiles.
  • Deterioration of fabric integrity and appearance can manifest itself in several ways. Short fibers are dislodged from woven and knit fabric/textile structures by the mechanical action of laundering. These dislodged fibers may form lint, fuzz or "pills" which are visible on the surface of fabrics and diminish the appearance of newness of the fabric. Further, repeated laundering of fabrics and textiles, especially with bleach-containing laundry products, can remove dye from fabrics and textiles and impart a faded, worn out appearance as a result of diminished color intensity, and in many cases, as a result of changes in hues or shades of color.
  • Given the foregoing, there is clearly an ongoing need to identify materials which could be added to laundry detergent products that would associate themselves with the fibers of the fabrics and textiles laundered using such detergent products and thereby reduce or minimize the tendency of the laundered fabric/textiles to deteriorate in appearance. Any such detergent product additive material should, of course, be able to benefit fabric appearance and integrity without unduly interfering with the ability of the laundry detergent to perform its fabric cleaning function. The present invention is directed to the use of a mixture of certain cyclic amine based polymer, oligomer or copolymer materials and hydrophobically modified cellulose in laundry applications that perform in this desired manner.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a detergent composition comprising:
  • a) from 1% to 80% by weight of surfactants selected from the group consisting of nonionic, anionic, cationic, amphoteric zwitterionic surfactants and mixtures thereof; and
  • b) at least 0.01%, preferably at least 0.1%, most preferably at least 0.5% and less than 50%, preferably less than 25.0%, most preferably less than 5.0%, by weight, of a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers,
  • wherein the ratio of the hydrophobically modified cellulose to cyclic amine based polymer, oligomer or copolymer is within the range of 1000 : 1 to 1: 1000,
  • The cyclic amine based polymer, oligomer or copolymer materials which are suitable for use in laundry operations and provide the desired fabric appearance and integrity benefits can be characterized by the following general formula:
    Figure 00020001
    wherein;
    each T is independently selected from the group consisting of H, C1-C12 alkyl, substituted alkyl, C7-C12alkylaryl,
       -(CH2)hCOOM, -(CH2)hSO3M, CH2CH(OH)SO3M, -(CH2)hOSO3M,
    Figure 00020002
    Figure 00020003
    , and -R2Q;
    • wherein W comprises at least one cyclic constituent selected from the group consisting of:
      Figure 00030001
      and
      Figure 00030002
         in addition to the at least one cyclic constituent, W may also comprise an aliphatic or substituted aliphatic moiety of the general structure;
      Figure 00030003
    • each B is independently C1-C12 alkylene, C1-C12 substituted alkylene, C3-C12 alkenylene, C8-C12 dialkylarylene, C8-C12 dialkylarylenediyl, and -(R5O)nR5-;
    • each D is independently C2-C6 alkylene;
    • each Q is independently selected from the group consisting of hydroxy, C1-C18 alkoxy, C2-C18 hydroxyalkoxy, amino. C1-C18 alkylamino, dialkylamino, trialkylamino groups, heterocyclic monoamino groups and diamino groups;
    • each R1 is independently selected from the group consisting of H, C1-C8 alkyl and C1-C8 hydroxyalkyl;
    • each R2 is independently selected from the group consisting of C1-C12 alkylene, C1C12 alkenylene, -CH2-CH(OR1)-CH2, C8-C12 alkarylene, C4-C12 dihydroxyalkylene, poly(C2-C4 alkyleneoxy)alkylene. H2CH(OH)CH2OR2OCH2CH(OH)CH2-, and C3-C12 hydrocarbyl moieties;
      provided that when R2 is a C3-C12 hydrocarbyl moiety the hydrocarbyl moiety can comprise from 2 to 4 branching moieties of the general structure:
      Figure 00030004
    • each R3 is independently selected from the group consisting of H, O, R2, C1-C20 hydroxyalkyl, C1-C20 alkyl, substituted alkyl, C6-C11 aryl, substituted aryl, C7-C11 alkylaryl, C1-C20, aminoalkyl,
      -(CH2)hCOOM, -(CH2)hSO3M, CH2CH(OH)SO3M, -(CH2)hOSO3M,
      Figure 00040001
    • each R4 is independently selected from the group consisting of H, C1-C22 alkyl, C1-C22 hydroxyalkyl, aryl and C7-C22 alkylaryl;
    • each R5 is independently selected from the group consisting of C2-C8 alkylene, C2-C8 alkyl substituted alkylene; and
      A is a compatible monovalent or di or polyvalent anion;
      M is a compatible cation;
      b = number necessary to balance the charge;
      each x is independently from 3 to 1000;
      each c is independently 0 or 1;
      each h is independently from 1 to 8;
      each q is independently from 0 to 6;
      each n is independently from 1 to 20;
      each r is independently from 0 to 20; and
      each t is independently from 0 to 1.
  • Cellulosic based polymer or oligomer materials which are suitable for use in laundry operations and provide the desired fabric appearance and integrity benefits can be characterized by the following general formula:
    Figure 00050001
       wherein each R is selected from the group consisting of R2, RC, and
    Figure 00050002
       wherein:
    • each R2 is independently selected from the group consisting of H and C1-C4 alkyl;
    • each Rc is
      Figure 00050003
       wherein each Z is independently selected from the group consisting of M, R2, RC, and RH;
    • each RH is independently selected from the group consisting af C5 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, C1-C20 alkoxy-2-hydroxyalkyl, C7-C20 alkylaryloxy-2-hydroxyalkyl, (R4)2N-alkyl, (R4)2N-2-hydroxyalkyl, (R4)3 N-alkyl, (R4)3 N-2-hydroxyalkyl, C6-C12 aryloxy-2-hydroxyalkyl,
      Figure 00050004
      and
      Figure 00050005
    • each R4 is independently selected from the group consisting of H, C1-C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, piperidinoalkyl, morpholinoalkyl, cycloalkylaminoalkyl and hydroxyalkyl;
    • each R5 is independently selected from the group consisting of H, C1 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, (R4)2N-alkyl, and (R4)3 N-alkyl;
       wherein:
    • M is a suitable cation selected from the group consisting of Na, K, 1/2Ca, and 1/2Mg; each x is from 0 to 5;
    • each y is from 1 to 5; and
    provided that:
    • the Degree of Substitution for group RH is between 0.0005 and 0.1, more preferably between 0.005 and 0.05, and most preferably between 0.01 and 0.05;
    • the Degree of Substitution for group RC wherein Z is H or M is between 0.2 and 2.0, more preferably between 0.3 and 1.0, and most preferably between 0.4 and 0.7;
    • if any RH bears a positive charge, it is balanced by a suitable anion; and
    • two R4's on the same nitrogen can together form a ring structure selected from the group consisting of piperidine and morpholine.
  • The cyclic amine based polymer, oligomer or copolymer materials defined above can be used, along with the hydrophobically modified cellulosic based polymers or oligomers, as a washing solution additive in either granular or liquid form. Alternatively, they can be admixed to granular detergents, dissolved in liquid detergent compositions or added to a fabric softening composition.
  • The ratio of the hydrophobically modified cellulosic to cyclic amine based polymer, oligomer or copolymer materials is within the range of 1000:1 to 1:1000 and is preferably between 100:1 to 50:1, more preferably between 50:1 to 1:1, even more preferably between 10:1 to 1:1.
  • The laundry detergent compositions herein comprise from 1% to 80% by weight of a detersive surfactant, from 0.01% to 80% by weight of an organic or inorganic detergency builder and from 0.01% to 5% by weight of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers based fabric treatment materials of the present invention. The detersive surfactant and detergency builder materials can be any of those useful in conventional laundry detergent products.
  • Aqueous solutions of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the subject invention comprise from 0.01% to 80% by weight of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers fabric treatment materials dissolved in water and other ingredients such as stabilizers and pH adjusters.
  • In its method aspect, the present invention relates to the laundering or treating of fabrics and textiles in aqueous washing or treating solutions formed from effective amounts of the detergent compositions described herein, or formed from the individual components of such compositions. Laundering of fabrics and textiles in such washing solutions, followed by rinsing and drying, imparts fabric appearance benefits to the fabric and textile articles so treated. Such benefits can include improved overall appearance, pill/fuzz reduction, antifading, improved abrasion resistance, and/or enhanced softness. It has been surprisingly determined that the a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers according to this invention imparts fabric appearance and integrity benefits that are greater than the benefits achieved by a corresponding amount of either component by itself.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As noted, when fabric or textiles are laundered in wash solutions which comprise the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the present invention fabric appearance and integrity are enhanced. The mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers can be added to wash buttons by incorporating them into a detergent composition, a fabric softener or by adding them separately to the washing solution. The mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers are described herein primarily as liquid or granular detergent additives but the present invention is not meant to be so limited. The mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, detergent composition components, optional ingredients for such compositions and methods of using such compositions, are described in detail below. All percentages are by weight unless other specified.
  • A) Cyclic amine Based Polymer, Oligomer or Copolymer Materials
  • An essential component of the compositions of the present invention comprises one or more cyclic amine based polymer, oligomer or copolymer. Such materials have been found to impart a number of appearance benefits to fabrics and textiles laundered in aqueous washing solutions formed from detergent compositions which contain a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers fabric treatment materials. Such fabric appearance benefits can include, for example, improved overall appearance of the laundered fabrics, reduction of the formation of pills and fuzz, protection against color fading, improved abrasion resistance, etc. The cyclic amine based fabric treatment materials used in the compositions and methods herein can provide such fabric appearance benefits with acceptably little or no loss in cleaning performance provided by the laundry detergent compositions into which such materials are incorporated.
  • The cyclic amine based polymer, oligomer or copolymer component of the compositions herein may comprise combinations of these cyclic amine based materials. For example, a mixture of piperadine and epihalohydrin condensates can be combined with a mixture of morpholine and epihalohydrin condensates to achieve the desired fabric treatment results Moreover, the molecular weight of cyclic amine based fabric treatment materials can vary within the mixture as is illustrated in the Examples below.
  • As will be apparent to those skilled in the art, an oligomer is a molecule consisting of only a few monomer units while polymers comprise considerably more monomer units. For the present invention, oligomers are defined as molecules having an average molecular weight below about 1,000 and polymers are molecules having an average molecular weight of greater than about 1,000. Copolymers are polymers or oligomers wherein two or more dissimilar monomer have been simultaneously or sequentially polymerized. Copolymers of the present invention can include, for example, polymers or oligomers polymerized from a mixture of a primary cyclic amine based monomer, e.g., piperadine, and a secondary cyclic amine monomer, e.g., morpholine.
  • The mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers of the detergent compositions herein will generally comprise from about 0.01% to 5% by the weight of the detergent composition. More preferably, the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers will comprise from 0.1% to 4% by weight of the detergent compositions, most preferably from 0.75% to 3%. However, as discussed above, when used as a washing solution additive, i.e. when mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers is not incorporated into a detergent composition, the concentration of mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers can comprise from 0.01% to 5,0% by weight of the additive material. The laundry additive will also comprise from 1% to 80 % by weight of water.
  • Cyclic amine based polymer, oligomer or copolymer materials which are suitable for use in laundry operations and provide the desired fabric appearance and integrity benefits can be characterized by the general formula given in the Summary of the Invention.
  • Preferred compounds that fall within this general structure include compounds:
    • wherein each R1 is H; and
    • at least one W is selected from the group consisting of:
      Figure 00090001
      Figure 00090002
      and
      Figure 00090003
  • Even more preferred compounds for the fabric appearance and integrity benefits are those:
    • wherein each R1 is H; and
    • at least one W is selected from the group consisting of:
      Figure 00090004
      and
      Figure 00090005
  • And most preferred compounds for the fabric appearance and integrity benefits are those:
    • wherein each R1 is H; and
    • at least one W is selected from the group consisting of:
      Figure 00100001
  • Preferred compounds to be used as the linking group R2 include, but are not limited to: polyepoxides, ethylenecarbonate, propylenecarbonate, urea, α, β-unsaturated carboxylic acids, esters of α, β-unsaturated carboxylic acids, amides of α, β-unsaturated carboxylic acids, anhydrides of α, β-unsaturated carboxylic acids, di- or polycarboxylic acids, esters of di- or polycarboxylic acids, amides of di- or polycarboxylic acids, anhydrides of di- or polycarboxylic acids, glycidylhalogens, chloroformic esters, chloroacetic esters, derivatives of chloroformic esters, derivatives of chloroacetic esters, epihalohydrins, glycerol dichlorohydrins, bis-(halohydrins), polyetherdihalo-compounds, phosgene, polyhalogens, functionalized glycidyl ethers and mixtures thereof. Moreover, R2 can also comprise a reaction product formed by reacting one or more of polyetherdiamines, alkylenediamines, polyalkylenepolyamines, alcohols, alkyleneglycols and polyalkyleneglycols with α, β-unsaturated carboxylic acids, esters of α, β-unsaturated carboxylic acids, amides of α, β-unsaturated carboxylic acids and anhydrides of α, β-unsaturated carboxylic acids provided that the reaction products contain at least two double bonds, two carboxylic groups, two amide groups or two ester groups.
  • Additionally preferred cyclic amine based polymer, oligomer or copolymer materials for use herein include adducts of two or more compositions selected from the group consisting of piperazine, piperadine, epichlorohydrin, epichlorohydrin benzyl quat, epichlorohydrin methyl quat, morpholine and mixtures thereof.
  • These cyclic amine based polymers can be linear or branched. One specific type of branching can be intorduced using a polyfunctional crosslinking agent. An example of such such polymer is exemplified below.
    Figure 00110001
  • B) Hydrophobically Modified Cellulosic Based Polymers or Oligomers
  • The essential component of the compositions of the present invention comprises one or more cellulosic based polymer or oligomer. Such materials have been found to impart a number of appearance benefits to fabrics and textiles laundered in aqueous washing solutions formed from detergent compositions which contain such cellulosic based fabric treatment materials. Such fabric appearance benefits can include, for example, improved overall appearance of the laundered fabrics, reduction of the formation of pills and fuzz, protection against color fading, improved abrasion resistance, etc. The cellulosic based fabric treatment materials used in the compositions and methods herein can provide such fabric appearance benefits with acceptably little or no loss in cleaning performance provided by the laundry detergent compositions into which such materials are incorporated.
  • As will be apparent to those skilled in the art, an oligomer is a molecule consisting of only a few monomer units while polymers comprise considerably more monomer units. For the present invention, oligomers are defined as molecules having an average molecular weight below about 1,000 and polymers are molecules having an average molecular weight of greater than about 1,000. One suitable type of cellulosic based polymer or oligomer fabric treatment material for use herein has an average molecular weight of from 5,000 to 2,000,000, preferably from 50,000 to 1,000,000.
  • The cellulosic based fabric treatment component of the detergent compositions herein will generally comprise from 0.1% to 5% by the weight of the detergent composition. More preferably, such cellulosic based fabric treatment materials will comprise from 0.5% to 4% by weight of the detergent compositions, most preferably from 0.75% to 3%. However, as discussed above, when used as a washing solution additive, i.e. when the cellulosic based fabric treatment component is not incorporated into a detergent composition, the concentration of the cellulosic based component can comprise from 0.1% to 80% by weight of the additive material.
  • One suitable group of cellulosic based polymer or oligomer materials for use herein is characterized by the following formula:
    Figure 00120001
       wherein each R is selected from the group consisting of R2, RC, and
    Figure 00120002
       wherein:
    • each R2 is independently selected from the group consisting of H and C1-C4 alkyl;
    • each RC is
      Figure 00120003
      , wherein each Z is independently selected from the group consisting of M, R2, RC, and RH;
    • each RH is independently selected from the group consisting of C5 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, C1-C20 alkoxy-2-hydroxyalkyl, C7-C20 alkylaryloxy-2-hydroxyalkyl, (R4)2N-alkyl, (R4)N-2-hydroxyalkyl, C6-C12 aryloxy-2-hydroxyalkyl,
      Figure 00120004
      and
      Figure 00120005
    • each R4 is independently selected from the group consisting of H, C1-C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, piperidinoalkyl, morpholinoalkyl, cycloalkylaminoalkyl and hydroxyalkyl;
    • each R5 is independently selected from the group consisting of H, C1 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, and (R4)2N-alkyl;
    wherein:
    • M is a suitable cation selected from the group consisting of Na, K, 1/2Ca, and 1/2Mg; each x is from 0 to 5;
    • each y is from 1 to 5; and
    provided that:
    • the Degree of Substitution for group RH is between 0.0005 and 0.1, more preferably between 0.005 and 0.05, and most preferably between 0.01 and 0.05;
    • the Degree of Substitution for group RC wherein Z is H or M is between 0.2 and 2.0, more preferably between 0.3 and 1.0, and most preferably between 0.4 and 0.7;
    • if any RH bears a positive charge, it is balanced by a suitable anion; and
    • two R4's on the same nitrogen can together form a ring structure selected from the group consisting of piperidine and morpholine.
  • The "Degree of Substitution" for group RH, which is sometimes abbreviated herein "DSRH", means the number of moles of group RH components that are substituted per anhydrous glucose unit, wherein an anhydrous glucose unit is a six membered ring as shown in the repeating unit of the general structure above.
  • The "Degree of Substitution" for group RC, which is sometimes abbreviated herein "DSRC'' means the number of moles of group RC components, wherein Z is H or M, that are substituted per anhydrous glucose unit, wherein an anhydrous glucose unit is a six membered ring as shown in the repeating unit of the general structure above. The requirement that Z be H or M is necessary to insure that there are a sufficient number of carboxy methyl groups such that the resulting polymer is soluble. It is understood that in addition to the required number of RC components wherein Z is H or M, there can be, and most preferably are, additional RC components wherein Z is a group other than H or M.
  • The production of materials according to the present invention is further defined in the Examples below.
  • C) Detersive Surfactant
  • The detergent compositions herein comprise from 1% to 80% by weight of a detersive surfactant. Preferably such compositions comprise from 5% to 50% by weight of surfactant. Detersive surfactants utilized can be of the anionic, nonionic, zwitterionic, ampholytic or cationic type or can comprise compatible mixtures of these types. Detergent surfactants useful herein are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, U.S. Patent 3,919,678, Laughlin et al., issued December 30, 1975, U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980. Of all the surfactants, anionics and nonionics are preferred.
  • Useful anionic surfactants can themselves be of several different types. For example, water-soluble salts of the higher fatty acids, i.e., "soaps", are useful anionic surfactants in the compositions herein. This includes alkali metal soaps such as the sodium, potassium, ammonium, and alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, and preferably from 12 to 18 carbon atoms.
  • Additional non-soap anionic surfactants which are suitable for use herein include the water-soluble salts, preferably the alkali metal, and ammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group. (Included in the term "alkyl" is the alkyl portion of acyl groups.) Especially valuable are linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from 11 to 13, abbreviated as C11-13 LAS.
  • Preferred nonionic surfactants are those of the formula R1(OC2H4)nOH, wherein R1 is a C10-C16 alkyl group or a C8-C12 alkyl phenyl group, and n is from 3 to 80. Particularly preferred are condensation products of C12-C15 alcohols with from 5 to 20 moles of ethylene oxide per mole of alcohol, e.g., C12-C13 alcohol condensed with 6.5 moles of ethylene oxide per mole of alcohol.
  • Additional suitable surfactants, including polyhydroxy fatty acid amides and amine based surfactants, are disclosed in co-pending PCT Application WO98/14300, Published March 25, 1999, entitled Laundry Detergent Compositions with Cyclic Amine Based Polymers to Provide Appearance and Integrity Benefits to Fabrics Laundered Therewith, which was filed on September 15, 1997, in the name of Panandiker et al.
  • D) Detergent Builder
  • The detergent compositions herein may also comprise from 0.1 % to 80% by weight of a detergent builder. Preferably such compositions in liquid form will comprise from 1% to 10% by weight of the builder component. Preferably such compositions in granular form will comprise from 1% to 50% by weight of the builder component Detergent builders are well known in the art and can comprise, for example, phosphate salts as well as various organic and inorganic nonphosphorus builders.
  • Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates. Suitable polycarboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al., and U.S. Patent 4,246,495, issued March 27,1979 to Crutchfield et al. Particularly preferred polycarboxylate builders are the oxydisuccinates and the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987.
  • Examples of suitable nonphosphorus, inorganic builders include the silicates, aluminosilicates, berates and carbonates. Particularly preferred are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicates having a weight ratio of SiO2 to alkali metal oxide of from 0.5 to 4.0, preferably from 1.0 to 2.4. Also preferred are aluminosilicates including zeolites. Such materials and their use as detergent builders are more fully discussed in Corkill et al., U. S. Patent No. 4,605,509. Also discussed in U. S. Patent No. 4,605,509 are crystalline layered silicates which are suitable for use in the detergent compositions of this invention.
  • E) Optional Detergent Ingredients
  • In addition to the surfactants, builders and mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers hereinbefore described, the detergent compositions of the present invention can also include any number of additional optional ingredients. These include conventional detergent composition components such as enzymes and enzyme stabilizing agents, suds boosters or suds suppressers, anti-tarnish and anticorrosion agents, bleaching agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, organic and inorganic fillers, solvents, hydrotropes, optical brighteners, dyes and perfumes.
  • A preferred optional ingredients for incorporation into the detergent compositions herein comprises a bleaching agent, e.g., a peroxygen bleach. Such peroxygen bleaching agents may be organic or inorganic in nature. Inorganic peroxygen bleaching agents are frequently utilized in combination with a bleach activator.
  • Useful organic peroxygen bleaching agents include percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, Issued November 20, 1984; European Patent Application EP-A-133,354, Banks et al., Published February 20, 1985; and U.S. Patent 4,412,934, Chung et al., Issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid (NAPAA) as described in U.S. Patent 4,634,551, Issued January 6, 1987 to Burns et al.
  • Inorganic peroxygen bleaching agents may also be used, generally in particulate form, in the detergent compositions herein. Inorganic bleaching agents are in fact preferred. Such inorganic peroxygen compounds include alkali metal perborate and percarbonate materials. For example, sodium perborate (e.g. mono- or tetra-hydrate) can be used. Suitable inorganic bleaching agents can also include sodium or potassium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used. Frequently inorganic peroxygen bleaches will be coated with silicate, borate, sulfate or water-soluble surfactants. For example, coated percarbonate particles are available from various commercial sources such as FMC, Solvay Interox. Tokai Denka and Degussa.
  • Inorganic peroxygen bleaching agents, e.g., the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during use of the compositions herein for fabric laundering/bleaching) of the peroxy acid corresponding to the bleach activator. Various non-limiting examples of activators are disclosed in U.S. Patent 4,915,854. Issued April 10, 1990 to Mao et al.; and U.S. Patent 4,412,934 Issued November 1, 1983 to Chung et al. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical and preferred. Mixtures thereof can also be used. See also the hereinbefore referenced U.S. 4,634,551 for other typical bleaches and activators useful herein.
  • Other useful amido-derived bleach activators are those of the formulae: R1N(R5)C(O)R2C(O)L   or   R1C(O)N(R5)R2C(O)L wherein R1 is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenol sulfonate.
  • Preferred examples of bleach activators of the above formulae include (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl) oxybenzene-sul-fonate, (6-decanamidocaproyl)oxybenzenesulfonate and mixtures thereof as described in the hereinbefore referenced U.S. Patent 4,634,551.
  • Another class of useful bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al. in U.S. Patent 4,966, 723, Issued October 30, 1990, incorporated herein by reference. See also U.S. Patent 4,545,784, Issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • If utilized, peroxygen bleaching agent will generally comprise from about 2% to 30% by weight of the detergent compositions herein. More preferably, peroxygen bleaching agent will comprise from 2% to 20% by weight of the compositions. Most preferably, peroxygen bleaching agent will be present to the extent of from 3% to 15% by weight of the Compositions herein. If utilized, bleach activators can comprise from 2% to 10% by weight of the detergent compositions herein. Frequently, activators are employed such that the molar ratio of bleaching agent to activator ranges from 1: 1 to 10:1, more preferably from 1.5:1 to 5:1.
  • Additional suitable bleaching agents and bleach activators are disclosed in co-pending PCT Application WO98/14300, Published March 25, 1999, entitled Laundry Detergent Compositions with Cyclic Amine Based Polymers to Provide Appearance and Integrity Benefits to Fabrics Laundered Therewith, which was filed on September 15, 1997, in the name of Panandiker et al.
  • Another highly preferred optional ingredient in the detergent compositions herein is a detersive enzyme component. Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration. Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability, optimal thermostability, and stability to active detergents, builders and the like. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • "Detersive enzyme", as used herein, means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry detergent composition. Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases, amylases and peroxidases.
  • Enzymes are normally incorporated into detergent compositions at levels sufficient to provide a "cleaning-effective amount". The term "cleaning-effective amount" refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics. In practical terms for current commercial preparations, typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition. Stated otherwise, the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition. Higher active levels may be desirable in highly concentrates detergent formulations.
  • Cellulases usable herein include those disclosed in U.S. Patent No. 4,435,307, Barbesgoard et al., March 6, 1984, and GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful. See also WO 9117243 to Novo.
  • The enzyme-containing compositions herein may optionally also comprise from 0.001% to about 10%, preferably from 0.005% to 8%, most preferably from 0.01% to 6%, by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes. Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
  • The compositions of the present invention may also include dye transfer inhibiting agents such as polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. These agents typically comprise from 0.01% to 10% by weight of the composition, preferably from 0.01% to 5%, and more preferably from 0.05% to 2%.
  • More specifically, the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-AX-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units; A is one of the following structures: -NC(O)-, -C(O)O-, -S-, -O-, -N=; x is 0 or 1; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups. Preferred, polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • The N-O group can be represented by the following general structures:
    Figure 00190001
    wherein R1, R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides has a pKa <10, preferably pKa <7, more preferred pKa <6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed Is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation. The polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000.
  • The most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinyipyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of 1:4. This preferred class of materials can be referred to as "PVNO".
  • Further suitable dye transfer Inhibitors can be found in U. S. Pat. No. 5,466,802, issued Nov. 14, 1995 to Panandiker et al.
  • F) Detergent Composition Preparation
  • The detergent compositions according to the present invention can be in liquid, paste or granular form. Such compositions can be prepared by combining the essential and optional components in the requisite concentrations in any suitable order and by any conventional means. The forgoing description of uses for the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers defined herein are intended to be exemplary and other uses will be apparent to those skilled in the art and are intended to be within the scope of the present invention.
  • Granular compositions, for example, are generally made by combining base granule ingredients, e.g., surfactants, builders, water, etc., as a slurry, and spray drying the resulting slurry, to a low level of residual moisture (5-12%). The remaining dry ingredients, e.g., granules of the essential mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, can be admixed in granular powder form with the spray dried granules in a rotary mixing drum. The liquid ingredients, e.g., solutions of the essential mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, enzymes, binders and perfumes, can be sprayed onto the resulting granules to form the finished detergent composition. Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l. In such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt.
  • Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations. Liquid compositions according to the present invention can also be in "compact form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents. Addition of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers to liquid detergent or other aqueous compositions of this invention may be accomplished by simply mixing into the liquid solutions the desired mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers
  • The methods and compositions heretofore disclosed may also be applied towards the production of particles that may be used as one of the component detergent granules in a granular detergent composition.
  • G) Fabric Laundering Method
  • The present invention also provides a method for laundering fabrics in a manner which imparts fabric appearance benefits provided by the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers used herein. Such a method employs contacting these fabrics with an aqueous washing solution formed from an effective amount of the detergent compositions hereinbefore described or formed from the individual components of such compositions. Contacting of fabrics with washing solution will generally occur under conditions of agitation although the compositions of the present invention may also be used to form aqueous unagitated soaking solutions for fabnc cleaning and treatment.
  • Agitation is preferably provided in a washing machine for good cleaning. Washing is preferably followed by drying the wet fabric in a conventional clothes dryer. An effective amount of a high density liquid or granular detergent composition in the aqueous wash solution in the washing machine is preferably from 500 to 7000 ppm, more preferably from 1000 to 3000 ppm.
  • H) Fabric Conditioning and Softening
  • The mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers hereinbefore described as components of the laundry detergent compositions herein may also be used to treat and condition fabrics and textiles in the absence of the surfactant and builder components of the detergent composition embodiments of this invention. Thus, for example, a fabric conditioning composition comprising only the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers themselves, or comprising an aqueous solution of the mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, may be added during the rinse cycle of a conventional home laundering operation in order to impart the desired fabric appearance and integrity benefits hereinbefore described.
  • Additional suitable fabric softening agents are disclosed in co-pending PCT Application WO98/14300, Published March 25, 1999, entitled Laundry Detergent Compositions with Cyclic Amine Based Polymers to Provide Appearance and Integrity Benefits to Fabrics Laundered Therewith, which was filed on September 15, 1997, in the name of Panandiker et al.
  • The compositions of the present invention can comprise at least 1%, preferably from 10%, more preferably from 20% to 80%, more preferably to 60% by weight, of the composition of one or more fabric softener actives.
  • EXAMPLES
  • The following examples illustrate the compositions and methods of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention.
  • EXAMPLE 1 Synthesis of the adduct of imidazole and epichlorochydin (Ratio of imidazole:epichlorohydrin 1:1):
  • The polycationic condensate is prepared by reacting imidazole and epichlorohydrin. To a round bottomed flask equipped with a magnatic stirrer, condenser and a thermometer are added imidazole (0.68 moles) and 95 mL water. The solution is heated to 50°C followed by dropwise addition of epichlorohydrin (0.68 moles). After all the epichlorohydrin is added, the temperature is raised to 80°C until all the alkylating agent is consumed. The condensate produced had molecular weight of 12,500.
  • EXAMPLE 2 Synthesis of the adduct of imidazole and epichlorohydin (Ratio of imidazole:epichlorohydrin 1.4:1)
  • To a round bottomed flask equipped with a magnatic stirrer, condenser and a thermometer are added imidazole (0.68 moles) and 95 mL water. The solution is heated to 50°C followed by dropwise addition of epichlorohydrin (0.50 moles). After all the epichlorohydrin is added, the temperature is raised to 80°C until all the alkylating agent is consumed. The condensate produced had molecular weight of 2000.
  • EXAMPLE 3 Synthesis of the adduct of piperazine, morpholine and epichlorohydin (Ratio 1.8/0.8/2.0)
  • Into a round bottom flask equipped with stirrer, thermometer, dropping funnel and reflux condenser 154.8 g (1.8 mole) of piperazine and 69.6 g (0.8 mole) of morpholine and 220 ml of water are added. After a clear solution at 40°C is obtained, the solution is heated to 55-65°C and with vigorous stirring 185 g (2 mole) of epichlorohydrin is added at such a rate, that the temperature does not exceed 80°C. After all the epichlorohydrin is added the reaction mixture is heated to 85°C until all of the alkylating agents is consumed (negative Preussmann test after 4 hours). 108.8 g (0.68 mole) of 25% NaOH and 40 g of water are added and the reaction mixture is stirred for another hour at 85°C. Then an additional 47 g of water is added and the mixture is allowed to cool to room temperature.
  • EXAMPLE 4 Synthesis of the adduct of piperazine/morpholine/epi, in a ratio of 1.8/0.8/2.0
  • Into a round bottom flask equipped with stirrer, thermometer, dropping funnel and reflux condenser 154.8 g (1.8 mole) of piperazine and 69.6 g (0.8 mole) of morpholine and 220 ml of water are added. After a clear solution at 40°C is obtained, the solution is heated to 55-65°C-and with vigorous stirring 185 g (2 mole) of epichlorohydrin is added at such a rate, that the temperature does not exceed 80°C. After all the epichlorohydrin is added the reaction mixture is heated to 85°C until all of the alkylating agents has been consumed (negative Preussmann test after 4 hours). 108.8 g (0.68 mole) of 25% NaOH and 40 g of water is added and the reaction mixture is stirred for another hour at 85°C. Then an additional 47 g of water are added and the mixture is allowed to cool to room temperature.
  • EXAMPLE 5 Adduct of piperazine/morpholine/epi from Example 4,100% oxidized
  • 233.6 g (equivalent to 1,292 mole oxidizabie nitrogen atoms) of the material from Example 4 above is mixed with 22.1 g (0.276) of 50% NaOH and then heated to 55-65°C. At that temperature 102.4 g (1,421 mole) ofH2O2 (47.2%) is added dropwise over a period of 3.5 hours. After the addition is complete, the reaction mixture is held at the same temperature for 3 more hours and is then stirred at room temperature overnight. Pt/C was added, unreacted H2O2 destroyed and the solution then filtered.
  • The reaction product is characterized as follows:
    water content 58%
    pH 5.6
    chloride content 1.593 mmole/g
  • EXAMPLE 6 Synthesis of the adduct of imidazole/piperazine/epi, in a ratio 1.0/3.0/4.0
  • 68.8g (1.0 mole) of limidazole and 260.6 g (3.0 mole) of piperazine are dissolved in 700.2 g of water and at a temperature of 50-60°C, 370 g (4.0 mole) of epichlorhydrin is added dropwise. After the addition is complete, the reaction mixture is stirred for additional 5 hours at 80°C.
  • EXAMPLE 7 Adduct of imidazole/piperazine/epi from Example 6, 100% oxidized
  • To 237 g of the product from Example 6 above (equivalent to 1,022 mole of oxidizable nitrogen atoms) 80.7 g (1.12 mole) of a 47.2% solution of H2O2 in water is added over a period of 5 hours at 40°C. After that, the mixture is heated to 50-60°C until the theoretical amount of H2O2 has been consumed. Unreacted H2O2 is destroyed by using Pt/C and the solution is then filtered.
  • The reaction product is characterized as follows:
    water content 58.6%
    pH 2.86
    chloride content 3.694 mmole/g
    Mn (GPC) 340
    Mw (GPC) 940
    Mn/Mw 2.8+/0.1
  • EXAMPLE 8 Synthesis of hydrophobically modified CMC Materials
  • The carboxylation of cellulose to produce CMC is a procedure that is well known to those skilled in the art. One method of producing the modified CMC materials is to add during the CMC making process the material, or materials, to be substituted. An example of such as procedure is given below. This same procedure can be utilized with the other substituent materials described herein by replacing the hexylchloride with the substituent material, or materials, of interest, for example, cetylchloride. The amount of material that should be added to the CMC making process to achieve the desired degree of substitution will be easily calculated by those skilled in the art in light of the following Examples.
  • EXAMPLE 9 Synthesis of Hexylether of CMC
  • This example illustrates the preparation of a hydrophobically modified carboxymethyl cellulose and is representative of preparation of all of the cellulose ether derivatives.
  • Cellulose (20 g), sodium hydroxide (10 g), water (30 g), and ethanol (150 g) are charged into a 500 ml glass reactor. The resulting alkali cellulose is stirred 45 minutes at 25°C. Then monochloroacetic acid (15 g) and hexylchoride (1 g) are added and the temperature raised over time to 95°C and held at 95°C for 150 minutes. The reaction is cooled to 70°C, and then cooled to 25°C. Neutralization is accomplished by the addition of a sufficient amount of nitric acid/acetic acid to achieve a slurry pH of between 8 and 9. The slurry is filtered to obtain a hexylether of CMC.
  • EXAMPLE 10 Cellulosic Polymers Used in Test Detergent Compositions
  • Representative modified cellulosic polymers for use in the liquid and granular detergent compositions described below are characterized in Tables 10 A and 10 B. The General Polymer Parameters are common to all of the polymers, while the specific chemical structure of the materials tested are listed under the Specific Polymer Parameters.
    General Polymer Parameters
    Molecular Parameters Description
    Polymer Backbone Carboxymethylcellulose
    Degree of Carboxymethylation DSRC = 0.3 - 2.0; preferred DSRC = 0.5 - 0.70.
    Distribution of Carboxymethyls Even and random distribution of carboxylmethyls along the backbone
    molecular Weight Mw: 5,000 - 2,000000. Preferred: medium (approx 250.000 g/mol)
    Type of Modification Ether modification (in addition to carboxymethylation). Mixed cellulose ether
    Level of Modification DSRH = 0.001 to 0.1
    Table Specific Polymer Parameters
    ID Polymer Type of Modification Types of Chemistry
    A Hexyl CMC Hexyl ether Chlorohexane added to CMC making process
    B Decyl CMC Decyl ether Chlorodecane added to CMC making process
    C C12-C13 alkoxy-2 hydroxypropyl CMC C12-C13 alkoxy-2 hydroxypropyl ether C12-C13 alkyl glycidyl ether added to CMC making process
    D Hexadecyl CMC Hexadecyl ether Chlorohexadecane added to CMC making process
    E Chloride salt of 3-trimethylammonio-2-hydroxypropyl ether of CMC chloride salt of 3-trimethylammonio-2-hydroxypropyl ether 2,3-epoxypropyltrimethyl ammonium chloride added to the CMC making process
    F [-(C(O)-CH(C16H33)-C(O)CH2(C16H33)] ester of CMC or 1,3-dioxo-2-hexadecyloctadecyl ester of CMC Cetyl Ketene Dimer added to CMC making process.
    CMC = Carboxymethylcellulose
  • EXAMPLE 11
  • The following are idealized chemical structures for certain cyclic amine based polymers, oligomers or copolymers of this invention. Side reactions expected to occur during the condensation are not shown.
    Figure 00270001
    Figure 00280001
    Figure 00290001
    Figure 00300001
    Figure 00310001
    Figure 00320001
    Figure 00330001
  • EXAMPLE 12 Granular Detergent Test Composition Preparation
  • Several heavy duty granular detergent compositions are prepared containing a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers. These granular detergent compositions all have the following basic formula:
    Component Wt. %
    C12 Linear alkyl benzene sulfonate 9.31
    C14-15 alkyl ether (0.35 EO) sulfate 12.74
    Zeolite Builder 27.79
    Sodium Carbonate 27.31
    PEG 4000 1.60
    Dispersant 2.26
    C12-13 Alcohol Ethoxylate (9 EO) 1.5
    Sodium Perborate 1.03
    Soil Release Polymer 0.41
    Enzymes 0.59
    Cyclic Amine Based Polymers or Oligomers 3.0
    Hydrophobically Modified Cellulosic Based Polymers or Oligomers 1.0
    Perfume, Brightener, Suds Suppressor Other Minors, Moisture, Sulfate Balance
    100%
  • EXAMPLE 13 Liquid Detergent Test Composition Preparation
  • Several heavy duty liquid detergent compositions are prepared a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers. These liquid detergent compositions all have the following basic formula:
    Component Wt. %
    C12-15 alkyl ether (2.5) sulfate 38
    C12 glucose amide 6.86
    Citric Acid 4.75
    C12-14 Fatty Acid 2.00
    Enzymes 1.02
    MEA 1.0
    Propanediol 0.36
    Borax 6.58
    Dispersant 1.48
    Na Toluene Sulfonate 6.25
    Cyclic Amine Based Polymers or Oligomers 1.0
    Hydrophobically Modified Cellulosic Based Polymers or Oligomers 0.1
    Dye, Perfume, Brighteners, Preservatives, Suds Suppressor, Other Minors, Water Balance
    100%
  • EXAMPLE 14 Granular Detergent Test Composition Preparation
  • Several granular detergent compositions are prepared containing a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers. Such granular detergent compositions all have the following basic formula:
    Example Comparative
    Component Wt. % wt%
    Na C12 Linear alkyl benzene sulfonate 9.40 9.40
    Na C14-15 alkyl sulfonate 11.26 11.26
    Zeolite Builder 27.79 27.79
    Sodium Carbonate 27.31 27.31
    PEG 4000 1.60 1.60
    Dispersant. Na polyacrylate 2.26 2.26
    C12-13 alkyl ethoxylate (E9) 1.5 1.5
    Sodium Perborate 1.03 1.03
    Cyclic Amine Based Polymers or Oligomers 0.8 0
    Hydrophobically Modified Cellulosic Based Polymers or Oligomers 0.3 0
    Other Adjunct ingredients Balance Balance
    100% 100%
  • EXAMPLE 15
  • A detergent agglomerate which may be used as a particulate component in a detergent composition is prepared according to the following formulas and ranges. The granule may be manufactured by agglomeration methods known to those skilled in the art; some of which are described in the present application.
    Ex. 15A Ex. 15B
    Component Wt % Wt %
    Cyclic Amine Based Polymers or Oligomers 2-7 8-10
    Hydrophobically Modified Cellulosic Based Polymers or Oligomers 20-70 80-90
    Zeolite Builder 0-70 0
    Dispersant/Binder 2-6 0
    Water and Misc. Balance Balance
    100% 100%

Claims (10)

  1. A detergent composition characterized by:
    a) from 1% to 80% by weight of surfactants selected from the group consisting of nonionic, anionic, cationic, amphoteric zwitterionic surfactants and mixtures thereof; and
    b) at least 0.01%, preferably at least 0.1%, most preferably at least 0.5% and no more than 50%, preferably no more than 25.0%, most preferably no more than 5.0%, by weight, of a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers, wherein the ratio of the hydrophobically modified Cellulose to cyclic amine based polymer, oligomer or copolymer is within the range of 1000:1 to 1:1000.
  2. The detergent composition of claim 1, wherein the hydrophobically modified cellulosic based polymers or oligomers are of the general formula:
    Figure 00370001
       wherein each R is selected from the group consisting of R2, RC, and
    Figure 00370002
       wherein:
    each R2 is independently selected from the group consisting of H and C1-C4 alkyl;
    each RC is
    Figure 00370003
    wherein each Z is independently selected from the group consisting of M, R2, RC, and RH;
    each RH is independently selected from the group consisting of C5 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, C1-C20 alkoxy-2-hydroxyalkyl, C7-C20 alkylaryloxy-2-hydroxyalkyl, (R4)2N-alkyl, (R4)2N-2-hydroxyalkyl, C6-C12 aryloxy-2-hydroxyalkyl,
    Figure 00380001
    and
    Figure 00380002
    each R4 is independently selected from the group consisting of H, C1-C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, piperidinoalkyl, morpholinoalkyl, cycloalkylaminoalkyl and hydroxyalkyl;
    each R5 is independently selected from the group consisting of H, C1 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, and (R4)2N-alkyl ;
       wherein:
    M is suitable cation selected from the group consisting of Na, .K. 1/2Ca. and 1/2Mg;
    each x is from 0 to 5;
    each y is from 1 to 5; and
    provided that:
    the Degree of Substitution for group RH is between 0.0005 and 0.1, more preferably between 0.005 and 0.05, and most preferably between 0.01 and 0.05;
    the Degree of Substitution for group RC wherein Z is H or M is between 0.2 and 2.0, more preferably between 0.3 and 1.0, and most preferably between 0.4 and 0.7;
    if any RH bears a positive charge, it is balanced by a suitable anion; and
    two R4's on the same nitrogen can together form a ring structure selected from the group consisting of piperidine and morpholine.
  3. The detergent composition of any of claims 1-2, wherein the cyclic amine based polymers, oligomers or copolymers are of the general formula:
    Figure 00380003
    wherein;
    each T is independently selected from the group consisting of H, C1-C12 alkyl, substituted alkyl, C7-C12 alkylaryl,
       -(CH2)hCOOM, -(CH2)hSO3M, CH2CH(OH)SO3M, -(CH2)hOSO3M,
    Figure 00390001
    Figure 00390002
    and -R2Q;
    wherein W is characterized by at least one cyclic constituent selected from the group consisting of:
    Figure 00390003
    and
    Figure 00390004
       in addition to the at least one cyclic constituent, W may also comprise an aliphatic or substituted aliphatic moiety of the general structure;
    Figure 00390005
    each B is independently C1-C12 alkylene, C1-C12 substituted alkylene, C3-C12 alkenylene, C8-C12 dialkylarylene, C8-C12 dialkylarylenediyl, and -(R5O)nR5-;
    each D is independently C2-C6 alkylene;
    each Q is independently selected from the group consisting of hydroxy; C1-C18 alkoxy, C2-C18 hydroxyalkoxy, amino, C1-C18 alkylamino, dialkylamino, trialkylamino groups, heterocyclic monoamino groups and diamino groups;
    each R1 is independently selected from the group consisting of H, C1-C8 alkyl and C1-C8 hydroxyalkyl;
    each R2 is independently selected from the group consisting of C1-C12 alkylene, C1-C12 alkenylene, -CH2-CH(OR1)-CH2, C8-C12 alkarylene, C4-C12 dihydroxyalkylene, poly(C2-C4 alkyleneoxy)alkylene, H2CH(OH)CH2OR2OCH2CH(OH)CH2-, and C3-C12 hydrocarbyl moieties;
    provided that when R2 is a C3-C12 hydrocarbyl moiety the hydrocarbyl moiety can comprise from 2 to 4 branching moieties of the general structure:
    Figure 00400001
    each R3 is independently selected from the group consisting of.H, O, R2, C1-C20 hydroxyalkyl, C1-C20 alkyl, substituted alkyl, C6-C11 aryl, substituted aryl, C7-C11 alkylaryl, C1-C20 aminoalkyl,
    -(CH2)hCOOM, -(CH2)hSO3M, CH2CH(OH)SO3M; -(CH2)hOSO3M,
    Figure 00400002
    each R4 is independently selected from the group consisting of H, C1-C22 alkyl, C1-C22 hydroxyalkyl, aryl and C7-C22 alkylaryl;
    each R5 is independently selected from the group consisting of C2-C8-alkylene, C2-C8 alkyl substituted alkylene; and
    A is a compatible monovalent or di or polyvalent anion;
    M is a compatible cation;
    b = number necessary to balance the charge;
    each x is independently from 3 to 1000;
    each c is independently 0 or 1;
    each h is independently from 1 to 8;
    each q is independently from 0 to 6;
    each n is independently from 1 to 20;
    each r is independently from 0 to 20; and
    each t is independently from 0 to 1.
  4. The detergent composition of claim 3, wherein each R1 is H and at least one W is selected from the group consisting of:
    Figure 00410001
    Figure 00410002
    and
    Figure 00410003
  5. The detergent composition of any of claims 3-4, wherein each R1 is H and at least one W is selected from the group consisting of:
    Figure 00410004
    and
    Figure 00410005
  6. The detergent composition of any of claims 3-5 wherein each R1 is H and at least one W is selected from the group consisting of:
    Figure 00420001
  7. The detergent composition of any of claims 1-6, wherein each RH is independently selected from the group consisting of C5 -C20 alkyl, C5-C7 cycloalkyl, C7-C20 alkylaryl, C7-C20 arylalkyl, substituted alkyl, hydroxyalkyl, C1-C20 alkoxy-2-hydroxyalkyl, C7-C20 alkylaryloxy-2-hydroxyalkyl, (R4)2N-alkyl, (R4)2N-2-hydroxyalkyl, (R4)3 N-alkyl, (R4)3 N-2-hydroxyalkyl, and C6-C12 aryloxy-2-hydroxyalkyl.
  8. A laundry additive composition characterized by:
    a) from 1% to 80% by weight of water; and
    b) from 0.01% to 5.0%, preferably from 0.1% to 4.0%, by weight of a mixture of cyclic amine based polymers, oligomers or copolymers and hydrophobically modified cellulosic based polymers or oligomers.
  9. The detergent composition of any of claims 1-7 wherein the composition further is characterized by an inorganic peroxygen bleaching compound, which is preferably selected from the group consisting of alkali metal salts of perborate, percarbonate and mixtures thereof, and a bleach activator, which is preferably nonanoyloxybenzene sulfonate.
  10. The detergent composition of any of claims 1-7 , wherein the composition further is characterized by a cellulase enzyme.
EP99954739A 1998-10-13 1999-10-06 Laundry detergent compositions with a combination of cyclic amine based copolymers and hydrophobically modified cellulose Expired - Lifetime EP1121408B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10397898P 1998-10-13 1998-10-13
US103978P 1998-10-13
US14805399P 1999-08-10 1999-08-10
US148053P 1999-08-10
PCT/US1999/023146 WO2000022078A1 (en) 1998-10-13 1999-10-06 Laundry detergent compositions with a combination of cyclic amine based polymers and hydrophobically modified carboxy methyl cellulose

Publications (2)

Publication Number Publication Date
EP1121408A1 EP1121408A1 (en) 2001-08-08
EP1121408B1 true EP1121408B1 (en) 2005-02-23

Family

ID=26801057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99954739A Expired - Lifetime EP1121408B1 (en) 1998-10-13 1999-10-06 Laundry detergent compositions with a combination of cyclic amine based copolymers and hydrophobically modified cellulose

Country Status (11)

Country Link
EP (1) EP1121408B1 (en)
JP (1) JP2002527576A (en)
CN (1) CN1163576C (en)
AR (1) AR020794A1 (en)
AT (1) ATE289627T1 (en)
AU (1) AU1101700A (en)
BR (1) BR9914520B1 (en)
CA (1) CA2346293C (en)
DE (1) DE69923855T2 (en)
ES (1) ES2238854T3 (en)
WO (1) WO2000022078A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833347B1 (en) 1997-12-23 2004-12-21 The Proctor & Gamble Company Laundry detergent compositions with cellulosic polymers to provide appearance and integrity benefits to fabrics laundered therewith
US6835707B1 (en) * 1998-10-13 2004-12-28 The Procter & Gamble Company Laundry detergent compositions with a combination of cyclic amine based polymers and hydrophobically modified carboxy methyl cellulose
CN100430462C (en) 1999-01-13 2008-11-05 宝洁公司 Detergent compositions comprising a cellulose polymer
US6803355B1 (en) 1999-02-10 2004-10-12 The Procter & Gamble Company Laundry detergent compositions with fabric enhancing component
EP1151071A1 (en) * 1999-02-10 2001-11-07 The Procter & Gamble Company Laundry detergent compositions with fabric enhancing component
WO2006130575A2 (en) * 2005-05-31 2006-12-07 The Procter & Gamble Company Polymer-containing detergent compositions and their use
JP2008540813A (en) * 2005-05-31 2008-11-20 ザ プロクター アンド ギャンブル カンパニー Detergent composition
AU2011220745B2 (en) * 2010-02-24 2016-12-01 Relypsa, Inc. Polyimidazoles for use as bile acid sequestrants
US8912135B2 (en) * 2011-05-20 2014-12-16 Rohm And Haas Company Method of promoting soil release from fabrics
JP2019099822A (en) * 2017-12-06 2019-06-24 花王株式会社 Liquid washing agent composition for textile product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643281A1 (en) * 1996-10-21 1998-04-23 Basf Ag Use of polycationic condensation products as a color-fixing additive for detergents and laundry aftertreatment agents
DE69723575T2 (en) * 1996-12-26 2004-05-13 The Procter & Gamble Company, Cincinnati DETERGENT COMPOSITIONS CONTAINING CELLULOSE POLYMERS
WO1999014299A1 (en) * 1997-09-15 1999-03-25 The Procter & Gamble Company Laundry detergent compositions with anionically modified, cyclic amine based polymers

Also Published As

Publication number Publication date
EP1121408A1 (en) 2001-08-08
BR9914520A (en) 2001-06-26
CN1163576C (en) 2004-08-25
WO2000022078A1 (en) 2000-04-20
DE69923855D1 (en) 2005-03-31
ES2238854T3 (en) 2005-09-01
ATE289627T1 (en) 2005-03-15
JP2002527576A (en) 2002-08-27
CN1330704A (en) 2002-01-09
AR020794A1 (en) 2002-05-29
DE69923855T2 (en) 2005-12-29
CA2346293C (en) 2009-01-06
CA2346293A1 (en) 2000-04-20
AU1101700A (en) 2000-05-01
BR9914520B1 (en) 2008-11-18

Similar Documents

Publication Publication Date Title
USRE39557E1 (en) Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith
EP1015543B1 (en) Laundry detergent compositions with cyclic amine based polymers to provide appearance and integrity benefits to fabrics laundered therewith
CA2365303C (en) Laundry detergent compositions with certain cationically charged dye maintenance polymers
US6369024B1 (en) Laundry detergent compositions with linear amine based polymers to provide appearance and integrity benefits to fabrics laundered therewith
US6833347B1 (en) Laundry detergent compositions with cellulosic polymers to provide appearance and integrity benefits to fabrics laundered therewith
WO1998029530A2 (en) Laundry detergent compositions with polyamide-polyamines
US6384011B1 (en) Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith
EP1121408B1 (en) Laundry detergent compositions with a combination of cyclic amine based copolymers and hydrophobically modified cellulose
US6733538B1 (en) Laundry detergent compositions with certain cationically charged dye maintenance polymers
US6251846B1 (en) Laundry detergent compositions with cyclic amine based polymers to provide appearance and integrity benefits to fabrics laundered therewith
US6228828B1 (en) Laundry detergent compositions with anionically modified, cyclic amine based polymers
US6803355B1 (en) Laundry detergent compositions with fabric enhancing component
US6835707B1 (en) Laundry detergent compositions with a combination of cyclic amine based polymers and hydrophobically modified carboxy methyl cellulose
CA2359808A1 (en) Laundry detergent compositions with fabric enhancing component
WO2001059054A1 (en) Laundry detergent compositions with a combination of a cyclic amine polymer and a dye transfer inhibitor
MXPA00002646A (en) Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: LAUNDRY DETERGENT COMPOSITIONS WITH A COMBINATION OF CYCLIC AMINE BASED COPOLYMERS AND HYDROPHOBICALLY MODIFIED CELLULOS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69923855

Country of ref document: DE

Date of ref document: 20050331

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2238854

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051006

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051124

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081023

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081018

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111005

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140925

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141028

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69923855

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151006

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503