EP1117815A1 - Mar/sar elements flanking rsyn7-driven construct - Google Patents

Mar/sar elements flanking rsyn7-driven construct

Info

Publication number
EP1117815A1
EP1117815A1 EP99948468A EP99948468A EP1117815A1 EP 1117815 A1 EP1117815 A1 EP 1117815A1 EP 99948468 A EP99948468 A EP 99948468A EP 99948468 A EP99948468 A EP 99948468A EP 1117815 A1 EP1117815 A1 EP 1117815A1
Authority
EP
European Patent Office
Prior art keywords
promoter
plant
expression
construct
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99948468A
Other languages
German (de)
French (fr)
Inventor
Wesley B. Bruce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
Original Assignee
Pioneer Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc filed Critical Pioneer Hi Bred International Inc
Publication of EP1117815A1 publication Critical patent/EP1117815A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/822Reducing position variability, e.g. by the use of scaffold attachment region/matrix attachment region (SAR/MAR); Use of SAR/MAR to regulate gene expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8234Seed-specific, e.g. embryo, endosperm

Definitions

  • the present invention relates to genetic engineering, particularly to compositions and methods for altering the normal pattern of expression associated with a particular promoter-driven construct in plants using nuclear matrix attachment regions.
  • MAR matrix attachment region
  • MAR sequences also called scaffold attachment region, or SAR, sequences
  • SAR scaffold attachment region
  • MAR sequences serve to attach chromatin loop domains to the nuclear matrix fiber, forming the boundaries for these DNA loops (Gasser et al. (1989) Int. Rev. Cytol. 119:57-96; Laemmil etal. (1992) Curr. Opin. Genet. Dev. 2:275-285; Dorer and Henikoff (1994) Cell 77:993-1002). Their exact role in eukaryotic gene expression is not known, though several hypotheses have been proposed. Early models suggested that inco ⁇ oration of foreign DNA into the host genome occurs randomly in the absence of MAR sequences.
  • inco ⁇ oration occurs within a transcriptionally inactive chromatin domain
  • the foreign DNA takes on an inactive chromatin structure, thus reducing the potential for transcription of the foreign DNA.
  • inco ⁇ oration occurs within a transcriptionally active chromatin domain
  • the transgene takes on the active chromatin structure, thus increasing the potential for transcription of that DNA.
  • inco ⁇ oration into an active or inactive region results in the formation of an independent domain, which itself may assume an active or inactive chromatin state.
  • MAR sequences to enhance transgene expression. Little is known about other potential roles for those sequences such as their ability to alter normal patterns of expression. Such changes might include a modification of expression so that, when a transgene is operably linked to a promoter with a characteristic pattern of expression (i.e. constitutive) the addition of MAR elements alters this pattern of expression, generating a promoter that drives expression in a tissue-preferred or tissue localized manner.
  • heterologous DNA sequences in a plant host is dependent upon the presence of an operably linked promoter that is functional within the plant host. Choice of the promoter sequence will determine when and where within the organism the heterologous DNA sequence is expressed. When continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. In contrast, when gene expression in response to a stimulus is desired, inducible promoters are the regulatory element of choice. When expression in specific tissues or organs are desired, tissue-preferred promoters may be used.
  • promoters While a number of promoters are readily available and are frequently used in research involving recombinant DNA technology, these promoters are primarily limited to their native functional character or pattern of expression, i.e., constitutive, inducible, etc. Methods by which these promoters, or the pattern of expression exhibited by these promoters can be manipulated to generate an altogether different pattern of expression have thus far been unreliable. There is great value in the ability to manipulate the expression pattern of any promoter by simply genetically engineering into it the capacity to express a coding sequence behind its control in a wholly different manner.
  • this invention is drawn to the use of nuclear matrix attachment regions (MAR) DNA sequences to alter the normal pattern of expression associated with a particular promoter-driven construct and thereby generating a promoter capable of driving expression of a heterologous nucleotide sequence in a manner which satisfies the needs of an individual investigator.
  • MAR nuclear matrix attachment regions
  • a DNA construct comprising matrix attachment region (MAR) sequences having altered expression patterns is provided.
  • the invention further encompasses a method of altering the characteristic expression pattern associated with a promoter- driven construct by using MAR sequences.
  • One aspect of the present invention is a DNA construct comprising an expression cassette having, in the 5'-to-3' direction, a nucleotide sequence or gene of interest operably linked to the transcription initiation region or promoter, a transcription and translation termination region, and a matrix attachment region DNA sequence positioned either 5' to the transcription initiation region, 3' to the termination region, or in both 3' and 5' positions.
  • the expression cassette is flanked by the MAR DNA sequences positioned both 5' to the transcription initiation region and 3' to the termination region.
  • This DNA construct may be assembled within the backbone of any conventional vector.
  • a second aspect of the present invention is a method for modifying or altering the characteristic expression patterns associated with a particular promoter-driven construct in plants by flanking the construct with at least one matrix attachment region (MAR) DNA sequence.
  • This method comprises transforming a regenerative plant cell with the DNA construct of this invention using conventional transformation methods known in the art. More preferably the method comprises altering the native constitutive expression pattern of a promoter-driven construct to exhibit or be capable of expression in a tissue localized manner. Even more preferably the promoter-driven construct whose expression is altered comprises the small synthetic promoter, Rsyn7.
  • the present invention also provides for stably transformed plants, which comprise the DNA construct according to the invention, that exhibit tissue localized expression of a heterologous nucleotide sequence as a result of the attachment of the MAR DNA sequences to the 5' and 3' ends of the construct. Seeds of such plants are also provided.
  • Figure 1 schematically illustrates the plasmid comprising the DNA construct with its expression cassette flanked by maize matrix attachment regions according to the present invention.
  • This plasmid also contains the maize Adhl-intron 1 designated as INTADHlZM.
  • Figure 2 shows the effect of MAR elements on GUS expression of a Ta Peroxidase promoter.
  • Figure 3 shows the effect of MAR elements on the Rsyn7 promoter.
  • the present invention is drawn to a method and compositions for modifying or altering the characteristic expression patterns associated with a promoter-driven construct thereby controlling the expression of a heterologous nucleotide sequence operably linked to the promoter. This is accomplished by flanking a promoter-driven construct with matrix attachment region (MAR) DNA sequences prior to transfer to a plant host.
  • MAR matrix attachment region
  • the construct may be flanked at either, or both, the 5' and 3' ends of the construct.
  • the present invention provides a method wherein the expression of a coding sequence is altered so that expression patterns of the coding sequence operably linked to a promoter are modified.
  • a constitutive expression pattern associated with a promoter-driven construct is altered so that expression of a heterologous nucleotide sequence upon addition of flanking MAR sequences to the DNA construct becomes tissue localized.
  • tissue localized expression is intended as expression only in specific tissues of the plant.
  • a heterologous nucleotide sequence operably linked to the small synthetic promoter, Rsyn7 has been altered from a constitutive pattern of expression to expression only in specific tissues within the plant.
  • the coding sequence may be native or heterologous to the promoter.
  • heterologous is intended a sequence that is not naturally occurring with the promoter sequence. While this nucleotide sequence is heterologous to the promoter sequence it may be homologous, or native, or heterologous, or foreign, to the plant host.
  • matrix attachment region is intended a DNA sequence comprising about 100 to 1,000 bp, preferably about 200 to 700 bp more preferably about 300 to 500 bp, that putatively attaches transcriptionally active DNA loop domains to the proteinaceous network of filaments known as the nuclear matrix (Pienta et al. (1 91) Crit. Rev. Eukaryotic Gene Express. 7:355-385; Laemmil etal. (1992) Curr. Opin. Genet. Dev. 2:275-285).
  • MAR DNA sequences are isolated DNA fragments that bind to purified nuclear matrices, either by occupying free sites or by displacing resident MARs.
  • MAR sequences from plant or animal sources have been identified and are known in the art (for example, yeast and tobacco (Allen etal. (1993) Plant Cell 5:603-613; Spiker etal. (1995)7. Cell Biochem. 2 IB: 167); tobacco (Breyne et al. (1992) Plant Cell 4:463-471 ; Hall et al. (1991) Proc. Nat/. Acad. Sci. USA S5:9320-9324); soybean heat shock gene (Sch ⁇ ffl et al. (1993) Transgenic Res. 2:93-100); bean phaseolin gene (van der Geest et al.
  • any of these MAR D ⁇ A sequences can be used in the present invention. More preferably, a strong MAR sequence will be used.
  • strong MAR sequence is intended an isolated end-labeled D ⁇ A fragment whose binding affinity for the purified, insoluble nuclear matrix of the plant host cells during an incubation period is greater than that of other similarly isolated end-labeled D ⁇ A fragments, such that following centrifugation of the co-incubated nuclear material, it is found almost entirely within the insoluble pellet fraction along with the nuclear matrix. This contrasts with weaker MAR sequences, whose lesser affinity for the insoluble nuclear matrix results in a much smaller proportion of the end-labeled D ⁇ A fragment residing in the insoluble pellet fraction.
  • any identified strong MAR may be used in the present invention, more preferably the strong MAR is a maize MAR, more particularly the maize MAR from the maize ADH1 gene identified by Azramova et al. (1993) (PlantMol. Biol. 22:1135-1143).
  • the MAR sequence of choice is incorporated into a DNA construct containing a promoter operably linked to a heterologous nucleotide sequence of interest.
  • Fragments and variants of MAR nucleotide sequences are encompassed by the present invention.
  • fragment is intended a portion of the nucleotide sequence.
  • Fragments of a MAR nucleotide sequence may retain biological activity and hence bind to purified nuclear matrices and/or alter the expression patterns of coding sequences operably linked to a promoter.
  • Fragments of a MAR nucleotide sequence may range from at least about 100 to 1,000 bp, about 200 to 700 bp, more preferably about 300 to 500 bp nucleotides, or up to the number of nucleotides present in a full-length MAR.
  • variants is intended substantially similar sequences.
  • Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis.
  • variants of a particular nucleotide sequence of the invention will have at least 50%, 60%, 70%, generally at least 75%, 80%, 85%, preferably about 90% to 95% or more, and more preferably about 98% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters. Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm.
  • Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, Wisconsin, USA). Alignments using these programs can be performed using the default parameters.
  • the CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237- 244 (1988); Higgins et al.
  • Gapped BLAST in BLAST 2.0
  • PSI-BLAST in BLAST 2.0
  • PSI-BLAST in BLAST 2.0
  • nucleotide or protein sequences for determination of percent sequence identity to a MAR sequences is preferably made using the Clustal W program (Version 1.7 or later) with its default parameters or any equivalent program.
  • equivalent program is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the preferred program.
  • Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions.
  • stringent conditions are selected to be about 5°C lower than the thermal melting point for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1 °C to about 20 °C depending upon the desired degree of stringency as otherwise qualified herein.
  • Any promoter may be used to drive the coding sequence, so long as the addition of the MAR elements leads to an altered pattern of expression. Having recognized that MAR elements in combination with a promoter may change expression patterns of the coding sequence under the control of the promoter, other promoters and MAR elements can be tested.
  • the Rsyn7 promoter a small synthetic promoter.
  • MAR flanking matrix attachment region
  • the Rsyn7 promoter is described PCT Application Serial No. U.S. 99/03863, herein inco ⁇ orated by reference.
  • the Rsyn7 core promoter comprises a TATA motif and a GC rich "TATA to start of transcription" region having 64% or greater GC content.
  • the promoter when placed 5' and operably linked to a structural gene promotes constitutive expression that is non-tissue-preferred in transgenic plants.
  • the matrix attachment region (MAR) DNA sequences are a part of a DNA construct that comprises the Rsyn7 promoter operably linked to a heterologous nucleotide sequence of interest.
  • the MAR sequences may be placed at the 5', the 3', or more preferably located at both the 5' and the 3' ends of the DNA construct, effectively flanking the construct.
  • promoter regions useful for the pu ⁇ oses of this invention may be isolated and tested for altered expression patterns.
  • the promoter sequences used in the promoter-driven constructs of this invention can be modified to provide for a range of expression levels of the heterologous nucleotide sequence. Thus, less than the entire promoter regions may be utilized and the ability to drive tissue localized expression retained. However, it is recognized that expression levels of mRNA may be decreased with deletions of portions of the promoter sequences. Generally, at least about 20 nucleotides of a promoter sequence will be used to drive expression of a nucleotide sequence.
  • Enhancers may be utilized in combination with the promoter regions used in the promoter-driven constructs of the invention.
  • Enhancers are nucleotide sequences that act to increase the expression of a promoter region. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element, and the like.
  • Modifications of the promoter sequences used in the promoter-driven constructs can provide for a range of expression of the heterologous nucleotide sequence. Thus, they may be modified to be weak promoters or strong promoters.
  • weak promoter is intended a promoter that drives expression of a coding sequence at a low level.
  • low level is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts.
  • a strong promoter drives expression of a coding sequence at a high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1,000 transcripts.
  • the coding sequence operably linked to a promoter to make up the promoter- driven construct may be used for varying the phenotype of the plants more particularly, specific tissues or organs within the plant, even more particularly the lateral root emergence sites, the glumes surrounding developing kernels, and the palea lemma of tassels in maize.
  • Various changes in phenotype are of interest including modifying the plant nutrient profiles, such as altering the fatty acid and oil composition, altering the starch or carbohydrate profile, altering the amino acid content, altering the vitamin content, altering the content of other essential/beneficial secondary products of the plant tissue, and the like.
  • phenotypes include the modification of plant growth, regulation, the enhancement of plant disease or pest resistance, improved attraction of beneficial organisms, improved repulsion of deleterious organisms, and the like. These results can be achieved by providing expression of heterologous or increased expression of endogenous products in the plant. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.
  • genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly.
  • General categories of genes of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting kernel size, sucrose loading, and the like.
  • Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Application Serial No. 08/838,763, filed April 10, 1997; and U.S. Patent Nos. 5,703,049, 5,885,801, and 5,885,802, herein inco ⁇ orated by reference. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Patent No.
  • BHL barley chymotrypsin inhibitor
  • U.S. Application Serial No. 08/740,682 filed November 1, 1996, and WO 98/20133, the disclosures of which are herein inco ⁇ orated by reference.
  • Other proteins include methionine- rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs , ed. Applewhite (American Oil Chemists Society, Champaign, Illinois), pp. 497-502; herein inco ⁇ orated by reference); corn (Pedersen et al. (1986) J. Biol. Chem. 267:6279; Kirihara et al.
  • Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like.
  • Such genes include, for example, Bacillus thuringiensis toxic protein genes (U.S. Patent Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al. (1986) Gene 45: 109); lectins (Van Damme et al. (1994) Plant Mol. Biol. 24:825); and the like.
  • Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262: 1432; and Mindrinos et al. (1994) Cell 75: 1089); and the like.
  • the heterologous nucleotide sequence operably linked to a promoter disclosed herein to form the promoter-driven construct may be an antisense sequence for a targeted gene.
  • antisense DNA nucleotide sequence is intended a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence.
  • expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene.
  • the antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing to the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene.
  • mRNA messenger RNA
  • the promoter-driven constructs may comprise antisense DNA sequences to reduce or inhibit expression of a native protein in the plant tissue of interest. It is recognized that modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, preferably 80%, more preferably 85% sequence identity to the corresponding antisensed sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.
  • the nucleotide sequences for the promoters may be operably linked with a nucleotide sequence whose expression is to be controlled to achieve a desired phenotypic response.
  • operably linked is intended the transcription or translation of the heterologous nucleotide sequence is under the influence of the promoter sequence.
  • the nucleotide sequences for the promoters operably linked to a heterologous nucleotide sequence of interest may be provided in promoter-driven constructs or expression cassettes for expression in the plant of interest.
  • promoter-driven constructs and expression cassettes are used interchangeably.
  • Such expression cassettes will comprise a transcriptional initiation region, such as the small synthetic promoter Rsyn7, operably linked to the nucleotide sequence whose expression is to be controlled.
  • a transcriptional initiation region such as the small synthetic promoter Rsyn7
  • Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the regulatory regions.
  • the expression cassette may additionally contain selectable marker genes.
  • the promoter-driven construct or expression cassette will include in the 5'-to- 3' direction of transcription, a transcriptional and translational initiation region, include sequences encoding introns (but not absolutely required), a heterologous nucleotide sequence of interest, and a transcriptional and translational termination region functional in plants.
  • the termination region may be native with the transcriptional initiation region comprising one of the promoter nucleotide sequences of the present invention, may be native with the DNA sequence of interest, or may be derived from another source.
  • Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau etal.
  • the expression cassette comprising the elements described above will additionally contain a matrix attachment region (MAR) DNA sequence located at the 5' end of the transcription initiation region, or at the 3' end of the translational termination region, or preferably at both the 5' and the 3' ends of the expression cassette or promoter-driven construct.
  • MAR matrix attachment region
  • the expression cassette comprising a promoter sequence operably linked to a heterologous nucleotide sequence may also contain at least one additional nucleotide sequence for a gene to be cotransformed into the organism.
  • the additional sequence(s) can be provided on another expression cassette.
  • heterologous nucleotide sequence of interest operably linked and under the control of a promoter may be optimized for enhanced expression in the transformed plant. That is, these nucleotide sequences can be synthesized using plant-preferred codons for improved expression. Methods are available in the art for synthesizing plant-preferred nucleotide sequences. See, for example, U.S. Patent Nos. 5,380,831, 5,436,391, and Murray etal. (1989) Nucleic Acids Res. 77:477-498, herein inco ⁇ orated by reference. Additional sequence modifications are known to enhance gene expression in a cellular host.
  • sequences encoding spurious polyadenylation signals include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression.
  • the G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell.
  • sequence is modified to avoid predicted hai ⁇ in secondary mRNA structures.
  • the promoter constructs or expression cassettes may additionally contain 5' leader sequences in the expression cassette construct.
  • leader sequences can act to enhance translation.
  • Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein etal. (1989) Proc. Natl. Acad Sci. USA 56:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986)); MDMV leader (Maize Dwarf Mosaic Virus) (Virology 754:9-20); human immunoglobulin heavy-chain binding protein (BiP) (Macej ak and S arnow ( 1991 )
  • the expression cassette may contain one or more than one gene or nucleic acid sequence to be transferred and expressed in the transformed plant. Alternatively, multiple expression cassettes, each comprising MAR sequences when so desired, may be provided. Generally, the expression cassette will comprise a selectable or screenable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, and 2,4-dichlorophenoxyacetate (2,4-D).
  • NEO neomycin phosphotransferase II
  • HPT hygromycin phosphotransferase
  • the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame.
  • adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like.
  • in vitro mutagenesis, primer repair, restriction, annealing, resection, ligation, PCR, or the like may be employed, where insertions, deletions or substitutions, e.g. transitions and transversions, may be involved.
  • the various fragments comprising the DNA construct may be introduced consecutively into an appropriate transformation vector by restriction enzyme cleavage of the vector and insertion of the particular fragment into the available site.
  • appropriate transformation vector is intended Agrobacterium-b&sed vectors, non- Agrobacte ⁇ um-based vectors, ballistic vectors, and vectors suitable for DNA- mediated transformation.
  • the vector will be a plasmid designed with a pair of unique restriction enzyme sites that flank the ends of the DNA construct.
  • pair of unique restriction enzyme sites is intended two recognition sites for a restriction enzyme, said sites not occurring elsewhere within the backbone of the transformation vector or within the DNA construct.
  • This flanking pair of unique restriction sites is selected and designed into the transformation vector, which is used for assembly of the DNA construct, to allow for intact isolation of the entire DNA construct as a linear fragment that is incapable of recircularizing by end-joining of the overhangs. All of these techniques are well known in the art and are particularly presented in Sambrook et ⁇ l. (1989) Molecular Cloning: A Laboratory Manual (2 nd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, N Y., herein inco ⁇ orated by reference.
  • the DNA construct of the present invention comprising a promoter region, a heterologous nucleotide sequence, transcription and translational initiation regions and transcription and translational termination regions, flanked at the 5' and 3' ends by MAR elements can be introduced into the genome of the desired plant host with a variety of techniques known in the art. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained.
  • the transformation vector and hence method of transformation chosen will depend on the type of plant or plant cell, i.e. monocot or dicot, targeted for transformation. Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e. , monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986) Biotechniques
  • plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having the desired phenotypic characteristic identified.
  • Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.
  • the present invention may be used for transformation of any plant species, including, but not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgar e), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracan ⁇ )), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (A
  • Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathy rus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. meld).
  • tomatoes Locopersicon esculentum
  • lettuce e.g., Lactuca sativa
  • green beans Phaseolus vulgaris
  • lima beans Phaseolus limensis
  • peas Lathy rus spp.
  • members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. meld).
  • Ornamentals include azalea ⁇ Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulchernma), and chrysanthemum.
  • Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus ellioti ⁇ ), ponderosa pine (Pinus ponderosa) , lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis).
  • pines such as loblolly pine (Pinus taeda), slash pine
  • plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.), more preferably corn and soybean plants, yet more preferably corn plants.
  • crop plants for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.
  • Example 1 Transformation of Maize With Promoter GUS Constructs The 5' flanking region of the maize ADHl-s gene was previously shown to harbor MAR/SAR-like activity based on in vitro binding (Avramova, Z and J L Bennetzen (1993) PMB 22 1135-1143, Avramova, Z et al (1995) Plant Cell 7 1667- 1680), in vivo hyperactivity to osmium tetroxide (A L Paul, R J Ferl, PMB 22 1145- 1151 (1993), effects on gene expression in transgenic cell lines (shown above) Using two promoter:: GUS constructs with different transgenic expression patterns, the effects of flanking these GUS genes with the maize 5' ADH1 MARS/SARS were observed on their expression patterns and levels in transgenic maize.
  • GUS synthetic promoter
  • :GUS wheat peroxidase
  • MAR-flanked promoter-driven constructs were introduced into immature maize embryos via particle bombardment at two doses with MARS-flanked selectable marker construct. Constructs without MARS elements were co-bombarded with a selectable marker gene also without MARS-flanking sequences. One TO plant from each of the 7-8 actively expressing lines for each construct was measured for GUS activity both quantitatively as well as histochemically in various tissues. Table 1 refers to the plasmids with the promoter-driven GUS constructs with and without MAR elements.
  • Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the Rsyn7 promoter operably linked to a nulceotide sequence encoding the GUS reporter protein flanked by MAR elements, and a selectable marker gene, such as PAT (Wohlleben et al. (1988) Gene 70:25-37) that confers resistance to the herbicide Bialaphos. Transformation is performed as follows. All media recipes are in the Appendix.
  • Target Tissue The ears are surface sterilized in 30% Chlorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water.
  • the immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned with the 2.5-cm target zone in preparation for bombardment.
  • a plasmid vector comprising a heterologous gene of interest operably linked to a promoter sequence of the present invention is constructed.
  • An expression cassette containing a heterologous gene of interest operably linked to the promoter sequences was cloned into a transformation vector comprising a PAT selectable marker gene.
  • Plasmid DNA is precipitated onto 1.1 ⁇ m (average diameter) tungsten pellets using a CaCl 2 precipitation procedure as follows:
  • Each reagent is added sequentially to the tungsten particle suspension, and mixed on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 ⁇ l 100% ethanol is added to the final tungsten particle pellet.
  • the tungsten/DNA particles are briefly sonicated and 10 ⁇ l spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.
  • sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total often aliquots taken from each tube of prepared particles/DN A.
  • the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established.
  • Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for GUS activity.
  • Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.
  • ## Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H 2 O in sequence. Bring up to volume with polished D-I H 2 O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

This invention discloses to compositions and methods for altering the characteristic pattern of expression associated with a promoter. More particularly the constitutive expression pattern associated with the small synthetic promoter, Rsyn7 is modified so that expression of a heterologous nucleotide sequence operably linked to the Rsyn7 promoter is in a tissue localized manner. This modification of the Rsyn7 pattern of expression occurs as a result of the addition of matrix attachment region DNA sequences to the flanks or 5' and 3' ends of an expression cassette comprising the Rsyn7 promoter operably linked to a heterologous nucleotide sequence of interest. DNA constructs, transformed plant cells and transformed plants are provided.

Description

MAR/SAR ELEMENTS FLANKING RSYN7-DRIVEN CONSTRUCT
FIELD OF THE INVENTION
The present invention relates to genetic engineering, particularly to compositions and methods for altering the normal pattern of expression associated with a particular promoter-driven construct in plants using nuclear matrix attachment regions.
BACKGROUND OF THE INVENTION Extensive literature exists on the potential role of matrix attachment region (MAR) DNA sequences in the regulation of eukaryotic gene expression (see, for example, Mirkovitch etal. (1984) Cell 39:223-232; Stief etal. (1989) Nature
347:343-345; Bode etal. (1992) Science 255:195-197; Spiker and Thompson (1996) Plant Physiol. 770:15-21). MAR sequences (also called scaffold attachment region, or SAR, sequences) are examples of elements that are thought to play a role in the regulation of transcription. Early work established that MAR sequences must be incorporated into the host genome to have their effect (Stief et al. (1989) Nature 34 J :343-345). These regions of highly AT-rich DNA (more than 70%) have been shown to increase transgene expression in stably transformed animal cell lines (see, for example Stief etal. (1989) Nature 341:343-345; Phi-Van etal. (1990) Mo/. Cell. Biol. 70:2302-2307; Klehr and Bode (1991) Biochemistry 30:1264-1270; Poljak etal. (1994) Nucleic Acids Res. 22:4386-4394; Kalos and Fournier (1995) Mol. Cell. Biol. 75:198-207) and transformed plants (see, for example, van der Geest etal. (1994) Plant J. 6:413-423; Schόffl etal. (1993) Transgenic Res. 2:93-100; Allen etal. (1993) Plant Cell 5:603-613; Mlynarova et al. (\994) Plant Cell 6:417-426 and (1995) Plant Cell 7:599-609; and Spiker etal. (1995)7. CellBiochem. 2773:167). Decreased transformant-to-transformant variability in expression with the use of MAR sequences has been reported less frequently (see Stief et al. (1989) Nature 341:343-345; Breyne etal. (\992) Plant Cell 4:463-471; van der Geest etal. (1994) Plant J. (5:413-423; Mlynarova et al. (1994) Plant Cell (5:417-426). This position- independent expression has been attributed to insulation of foreign DNA inserts from position effects, possibly by protecting the DNA insert from interfering effects of adjacent chromatin enhancers or silencers, or by inhibiting methylation. Additionally, copy-number dependence (i.e., increased levels of expression with increased copies of the transgene) with the use of MAR sequences has been infrequently reported for transformed animal cell lines (see Stief etal. (1989) Nature 347:343-345) and transformed plants (van der Geest et al. (1994) Plant J. 6:413- 423).
MAR sequences serve to attach chromatin loop domains to the nuclear matrix fiber, forming the boundaries for these DNA loops (Gasser et al. (1989) Int. Rev. Cytol. 119:57-96; Laemmil etal. (1992) Curr. Opin. Genet. Dev. 2:275-285; Dorer and Henikoff (1994) Cell 77:993-1002). Their exact role in eukaryotic gene expression is not known, though several hypotheses have been proposed. Early models suggested that incoφoration of foreign DNA into the host genome occurs randomly in the absence of MAR sequences. Hence, if incoφoration occurs within a transcriptionally inactive chromatin domain, the foreign DNA takes on an inactive chromatin structure, thus reducing the potential for transcription of the foreign DNA. If incoφoration occurs within a transcriptionally active chromatin domain, the transgene takes on the active chromatin structure, thus increasing the potential for transcription of that DNA. If the foreign DNA is flanked by MAR sequences, however, incoφoration into an active or inactive region results in the formation of an independent domain, which itself may assume an active or inactive chromatin state.
The functional importance of the independent domain is that the foreign DNA insert is isolated from the effects of the chromatin around it, hence contributing to the suppression of gene silencing and position effects, and overall enhancement of expression. This model is oversimplified, however, as it cannot explain persistent variation in expression of low-copy transformants and inconsistencies in copy number-dependent transgene expression (see Spiker and Thompson (1996) Plant Physiol. 770:15-21). Others have proposed that MAR sequences form nucleation points for DNA unwinding (Bode et al. (1992) Science 225: 195-197); that MAR sequences form sites of nucleation for HMG proteins to displace HI histones, allowing highly coiled chromatin fibers to unwind (Kas et al. (1993) EMBO J. 12: 115-126); that MAR sequences stabilize chromosomal topology arising as a consequence of hyperacetylation of histone cores (Schlake etal. (1994) Biochemistry 33:4197-4206); and that MAR sequences stimulate transgene expression by reducing the severity of homology-dependent gene silencing (Spiker and Thompson (1996) Plant Physiol. 770: 15-21).
To date the predominant investigatory focus has been on the use of MAR sequences to enhance transgene expression. Little is known about other potential roles for those sequences such as their ability to alter normal patterns of expression. Such changes might include a modification of expression so that, when a transgene is operably linked to a promoter with a characteristic pattern of expression (i.e. constitutive) the addition of MAR elements alters this pattern of expression, generating a promoter that drives expression in a tissue-preferred or tissue localized manner.
Expression of heterologous DNA sequences in a plant host is dependent upon the presence of an operably linked promoter that is functional within the plant host. Choice of the promoter sequence will determine when and where within the organism the heterologous DNA sequence is expressed. When continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. In contrast, when gene expression in response to a stimulus is desired, inducible promoters are the regulatory element of choice. When expression in specific tissues or organs are desired, tissue-preferred promoters may be used.
While a number of promoters are readily available and are frequently used in research involving recombinant DNA technology, these promoters are primarily limited to their native functional character or pattern of expression, i.e., constitutive, inducible, etc. Methods by which these promoters, or the pattern of expression exhibited by these promoters can be manipulated to generate an altogether different pattern of expression have thus far been unreliable. There is great value in the ability to manipulate the expression pattern of any promoter by simply genetically engineering into it the capacity to express a coding sequence behind its control in a wholly different manner. Thus, this invention is drawn to the use of nuclear matrix attachment regions (MAR) DNA sequences to alter the normal pattern of expression associated with a particular promoter-driven construct and thereby generating a promoter capable of driving expression of a heterologous nucleotide sequence in a manner which satisfies the needs of an individual investigator.
SUMMARY OF THE INVENTION
A DNA construct comprising matrix attachment region (MAR) sequences having altered expression patterns is provided. The invention further encompasses a method of altering the characteristic expression pattern associated with a promoter- driven construct by using MAR sequences.
One aspect of the present invention is a DNA construct comprising an expression cassette having, in the 5'-to-3' direction, a nucleotide sequence or gene of interest operably linked to the transcription initiation region or promoter, a transcription and translation termination region, and a matrix attachment region DNA sequence positioned either 5' to the transcription initiation region, 3' to the termination region, or in both 3' and 5' positions. Preferably, the expression cassette is flanked by the MAR DNA sequences positioned both 5' to the transcription initiation region and 3' to the termination region. This DNA construct may be assembled within the backbone of any conventional vector. A second aspect of the present invention is a method for modifying or altering the characteristic expression patterns associated with a particular promoter-driven construct in plants by flanking the construct with at least one matrix attachment region (MAR) DNA sequence. This method comprises transforming a regenerative plant cell with the DNA construct of this invention using conventional transformation methods known in the art. More preferably the method comprises altering the native constitutive expression pattern of a promoter-driven construct to exhibit or be capable of expression in a tissue localized manner. Even more preferably the promoter-driven construct whose expression is altered comprises the small synthetic promoter, Rsyn7.
The present invention also provides for stably transformed plants, which comprise the DNA construct according to the invention, that exhibit tissue localized expression of a heterologous nucleotide sequence as a result of the attachment of the MAR DNA sequences to the 5' and 3' ends of the construct. Seeds of such plants are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 schematically illustrates the plasmid comprising the DNA construct with its expression cassette flanked by maize matrix attachment regions according to the present invention. This plasmid also contains the maize Adhl-intron 1 designated as INTADHlZM.
Figure 2 shows the effect of MAR elements on GUS expression of a Ta Peroxidase promoter.
Figure 3 shows the effect of MAR elements on the Rsyn7 promoter.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is drawn to a method and compositions for modifying or altering the characteristic expression patterns associated with a promoter-driven construct thereby controlling the expression of a heterologous nucleotide sequence operably linked to the promoter. This is accomplished by flanking a promoter-driven construct with matrix attachment region (MAR) DNA sequences prior to transfer to a plant host. The construct may be flanked at either, or both, the 5' and 3' ends of the construct.
The present invention provides a method wherein the expression of a coding sequence is altered so that expression patterns of the coding sequence operably linked to a promoter are modified. In one example, a constitutive expression pattern associated with a promoter-driven construct is altered so that expression of a heterologous nucleotide sequence upon addition of flanking MAR sequences to the DNA construct becomes tissue localized. For the puφoses of the invention "tissue localized expression" is intended as expression only in specific tissues of the plant. For example, a heterologous nucleotide sequence operably linked to the small synthetic promoter, Rsyn7 has been altered from a constitutive pattern of expression to expression only in specific tissues within the plant. In particular, for Rsyn7 driven constructs, expression has been localized in the lateral root emergence site, the glumes surrounding developing kernels, and the palea/lemma of tassels of maize. The coding sequence may be native or heterologous to the promoter. By "heterologous" is intended a sequence that is not naturally occurring with the promoter sequence. While this nucleotide sequence is heterologous to the promoter sequence it may be homologous, or native, or heterologous, or foreign, to the plant host.
By "matrix attachment region" is intended a DNA sequence comprising about 100 to 1,000 bp, preferably about 200 to 700 bp more preferably about 300 to 500 bp, that putatively attaches transcriptionally active DNA loop domains to the proteinaceous network of filaments known as the nuclear matrix (Pienta et al. (1 91) Crit. Rev. Eukaryotic Gene Express. 7:355-385; Laemmil etal. (1992) Curr. Opin. Genet. Dev. 2:275-285). By operational definition, MAR DNA sequences are isolated DNA fragments that bind to purified nuclear matrices, either by occupying free sites or by displacing resident MARs. A number of MAR sequences from plant or animal sources have been identified and are known in the art (for example, yeast and tobacco (Allen etal. (1993) Plant Cell 5:603-613; Spiker etal. (1995)7. Cell Biochem. 2 IB: 167); tobacco (Breyne et al. (1992) Plant Cell 4:463-471 ; Hall et al. (1991) Proc. Nat/. Acad. Sci. USA S5:9320-9324); soybean heat shock gene (Schόffl et al. (1993) Transgenic Res. 2:93-100); bean phaseolin gene (van der Geest et al.
(1994) Plant! 6:413-423); and chicken lysozyme gene (Stief et al. (1989) Nature 347:343-345); Phi-Van etal. (1990)Mo/. Cell. Biol. 10:2302-2307; Mlynarova etal.
(1995) Plant Cell 7:599-609). Any of these MAR DΝA sequences can be used in the present invention. More preferably, a strong MAR sequence will be used. By strong MAR sequence is intended an isolated end-labeled DΝA fragment whose binding affinity for the purified, insoluble nuclear matrix of the plant host cells during an incubation period is greater than that of other similarly isolated end-labeled DΝA fragments, such that following centrifugation of the co-incubated nuclear material, it is found almost entirely within the insoluble pellet fraction along with the nuclear matrix. This contrasts with weaker MAR sequences, whose lesser affinity for the insoluble nuclear matrix results in a much smaller proportion of the end-labeled DΝA fragment residing in the insoluble pellet fraction. Any identified strong MAR may be used in the present invention, more preferably the strong MAR is a maize MAR, more particularly the maize MAR from the maize ADH1 gene identified by Azramova et al. (1993) (PlantMol. Biol. 22:1135-1143). For the puφoses of the present invention, the MAR sequence of choice is incorporated into a DNA construct containing a promoter operably linked to a heterologous nucleotide sequence of interest.
Fragments and variants of MAR nucleotide sequences are encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence. Fragments of a MAR nucleotide sequence may retain biological activity and hence bind to purified nuclear matrices and/or alter the expression patterns of coding sequences operably linked to a promoter. Fragments of a MAR nucleotide sequence may range from at least about 100 to 1,000 bp, about 200 to 700 bp, more preferably about 300 to 500 bp nucleotides, or up to the number of nucleotides present in a full-length MAR.
By "variants" is intended substantially similar sequences. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis. Generally, variants of a particular nucleotide sequence of the invention will have at least 50%, 60%, 70%, generally at least 75%, 80%, 85%, preferably about 90% to 95% or more, and more preferably about 98% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters. Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Preferred, non- limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4: 11-17; the local homology algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 45:443-453; the search-for-similarity-method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 55:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, Wisconsin, USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237- 244 (1988); Higgins et al. (1989) CABIOS 5: 151-153; Coφet et al. (1988) Nucleic Acids Res. 76: 10881-90; Huang et al. (1992) CABIOS 8: 155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) /. Mol. Biol. 275:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison puφoses, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See http://www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection.
For puφoses of the present invention, comparison of nucleotide or protein sequences for determination of percent sequence identity to a MAR sequences is preferably made using the Clustal W program (Version 1.7 or later) with its default parameters or any equivalent program. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the preferred program. Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1 °C to about 20 °C depending upon the desired degree of stringency as otherwise qualified herein.
Any promoter, whether naturally occurring or synthetically produced, may be used to drive the coding sequence, so long as the addition of the MAR elements leads to an altered pattern of expression. Having recognized that MAR elements in combination with a promoter may change expression patterns of the coding sequence under the control of the promoter, other promoters and MAR elements can be tested. Of particular interest is the Rsyn7 promoter, a small synthetic promoter. In conjunction with flanking matrix attachment region (MAR) DNA sequences, the characteristic expression pattern associated with an Rsyn7 promoter-driven construct is modified.
The Rsyn7 promoter is described PCT Application Serial No. U.S. 99/03863, herein incoφorated by reference. The Rsyn7 core promoter comprises a TATA motif and a GC rich "TATA to start of transcription" region having 64% or greater GC content. The promoter when placed 5' and operably linked to a structural gene promotes constitutive expression that is non-tissue-preferred in transgenic plants.
The matrix attachment region (MAR) DNA sequences are a part of a DNA construct that comprises the Rsyn7 promoter operably linked to a heterologous nucleotide sequence of interest. The MAR sequences may be placed at the 5', the 3', or more preferably located at both the 5' and the 3' ends of the DNA construct, effectively flanking the construct.
Other promoter regions useful for the puφoses of this invention may be isolated and tested for altered expression patterns. The promoter sequences used in the promoter-driven constructs of this invention can be modified to provide for a range of expression levels of the heterologous nucleotide sequence. Thus, less than the entire promoter regions may be utilized and the ability to drive tissue localized expression retained. However, it is recognized that expression levels of mRNA may be decreased with deletions of portions of the promoter sequences. Generally, at least about 20 nucleotides of a promoter sequence will be used to drive expression of a nucleotide sequence.
It is recognized that to increase transcription levels enhancers may be utilized in combination with the promoter regions used in the promoter-driven constructs of the invention. Enhancers are nucleotide sequences that act to increase the expression of a promoter region. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element, and the like.
Modifications of the promoter sequences used in the promoter-driven constructs can provide for a range of expression of the heterologous nucleotide sequence. Thus, they may be modified to be weak promoters or strong promoters. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By "low level" is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts. Conversely, a strong promoter drives expression of a coding sequence at a high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1,000 transcripts.
The coding sequence operably linked to a promoter to make up the promoter- driven construct may be used for varying the phenotype of the plants more particularly, specific tissues or organs within the plant, even more particularly the lateral root emergence sites, the glumes surrounding developing kernels, and the palea lemma of tassels in maize. Various changes in phenotype are of interest including modifying the plant nutrient profiles, such as altering the fatty acid and oil composition, altering the starch or carbohydrate profile, altering the amino acid content, altering the vitamin content, altering the content of other essential/beneficial secondary products of the plant tissue, and the like. Other phenotypes include the modification of plant growth, regulation, the enhancement of plant disease or pest resistance, improved attraction of beneficial organisms, improved repulsion of deleterious organisms, and the like. These results can be achieved by providing expression of heterologous or increased expression of endogenous products in the plant. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.
Genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. General categories of genes of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting kernel size, sucrose loading, and the like.
Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Application Serial No. 08/838,763, filed April 10, 1997; and U.S. Patent Nos. 5,703,049, 5,885,801, and 5,885,802, herein incoφorated by reference. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Patent No. 5,850,016, and the chymotrypsin inhibitor from barley, described in Williamson et al. (1987) Eur. J. Biochem. 765:99-106, the disclosures of which are herein incoφorated by reference. Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide
(BHL) is derived from barley chymotrypsin inhibitor, U.S. Application Serial No. 08/740,682, filed November 1, 1996, and WO 98/20133, the disclosures of which are herein incoφorated by reference. Other proteins include methionine- rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs , ed. Applewhite (American Oil Chemists Society, Champaign, Illinois), pp. 497-502; herein incoφorated by reference); corn (Pedersen et al. (1986) J. Biol. Chem. 267:6279; Kirihara et al. (1988) Gene 77:359; both of which are herein incoφorated by reference); and rice (Musumura et al. (1989) Plant Mol. Biol. 72:123, herein incoφorated by reference). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors, and transcription factors.
Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example, Bacillus thuringiensis toxic protein genes (U.S. Patent Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al. (1986) Gene 45: 109); lectins (Van Damme et al. (1994) Plant Mol. Biol. 24:825); and the like.
Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262: 1432; and Mindrinos et al. (1994) Cell 75: 1089); and the like.
The quality of grain is reflected in traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, and levels of cellulose. In corn, modified hordothionin proteins are described in copending U.S. Application Serial No. 08/838,763, filed April 10, 1997, and U.S. Patent Nos. 5,703,049, 5,885,801, and 5,885,802.
Commercial traits can also be encoded on a gene or genes that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Patent No. 5,602,321. Genes such as β-Ketothiolase, PHBase (polyhydroxyburyrate synthase), and acetoacetyl-CoA reductase (see Schubert et al. (1988) J. Bacteriol. 770:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs). Exogenous products include plant enzymes and products as well as those from other sources including procaryotes and other eukaryotes. Such products include enzymes, cof actors, hormones, and the like. The level of proteins, particularly modified proteins having improved amino acid distribution to improve the nutrient value of the plant, can be increased. This is achieved by the expression of such proteins having enhanced amino acid content.
As noted, the heterologous nucleotide sequence operably linked to a promoter disclosed herein to form the promoter-driven construct may be an antisense sequence for a targeted gene. By "antisense DNA nucleotide sequence" is intended a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence. When delivered into a plant cell, expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene. The antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing to the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene. In this case, production of the native protein encoded by the targeted gene is inhibited to achieve a desired phenotypic response. Thus, the promoter-driven constructs may comprise antisense DNA sequences to reduce or inhibit expression of a native protein in the plant tissue of interest. It is recognized that modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, preferably 80%, more preferably 85% sequence identity to the corresponding antisensed sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.
The nucleotide sequences for the promoters may be operably linked with a nucleotide sequence whose expression is to be controlled to achieve a desired phenotypic response. By "operably linked" is intended the transcription or translation of the heterologous nucleotide sequence is under the influence of the promoter sequence. In this manner, the nucleotide sequences for the promoters operably linked to a heterologous nucleotide sequence of interest may be provided in promoter-driven constructs or expression cassettes for expression in the plant of interest. For the puφoses of this invention promoter-driven constructs and expression cassettes are used interchangeably.
Such expression cassettes will comprise a transcriptional initiation region, such as the small synthetic promoter Rsyn7, operably linked to the nucleotide sequence whose expression is to be controlled. Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.
The promoter-driven construct or expression cassette will include in the 5'-to- 3' direction of transcription, a transcriptional and translational initiation region, include sequences encoding introns (but not absolutely required), a heterologous nucleotide sequence of interest, and a transcriptional and translational termination region functional in plants. The termination region may be native with the transcriptional initiation region comprising one of the promoter nucleotide sequences of the present invention, may be native with the DNA sequence of interest, or may be derived from another source. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau etal. (1991) Mol. Gen. Genet. 262:141- 144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141- 149; Mogen et al. (1990) Plant Cell 2: 1261-1272; Munroe et al. (1990) Gene 91: 151- 158; Ballas etal. (1989) Nucleic Acids Res. 77:7891-7903; Joshi et al. (1987) Nucleic AcidRes. 75:9627-9639.
In accordance with the present invention the expression cassette comprising the elements described above will additionally contain a matrix attachment region (MAR) DNA sequence located at the 5' end of the transcription initiation region, or at the 3' end of the translational termination region, or preferably at both the 5' and the 3' ends of the expression cassette or promoter-driven construct.
The expression cassette comprising a promoter sequence operably linked to a heterologous nucleotide sequence may also contain at least one additional nucleotide sequence for a gene to be cotransformed into the organism. Alternatively, the additional sequence(s) can be provided on another expression cassette.
Where appropriate, the heterologous nucleotide sequence of interest operably linked and under the control of a promoter may be optimized for enhanced expression in the transformed plant. That is, these nucleotide sequences can be synthesized using plant-preferred codons for improved expression. Methods are available in the art for synthesizing plant-preferred nucleotide sequences. See, for example, U.S. Patent Nos. 5,380,831, 5,436,391, and Murray etal. (1989) Nucleic Acids Res. 77:477-498, herein incoφorated by reference. Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell.
When possible, the sequence is modified to avoid predicted haiφin secondary mRNA structures.
The promoter constructs or expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein etal. (1989) Proc. Natl. Acad Sci. USA 56:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986)); MDMV leader (Maize Dwarf Mosaic Virus) (Virology 754:9-20); human immunoglobulin heavy-chain binding protein (BiP) (Macej ak and S arnow ( 1991 )
Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling and Gehrke (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie etal. (1989) Molecular Biology of RNA, pages 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 57:382-385). See also Della-Cioppa et al. (1987) Plant Physiol. 84:965- 968. Other methods known to enhance translation can also be utilized, for example, introns, and the like. The expression cassette may contain one or more than one gene or nucleic acid sequence to be transferred and expressed in the transformed plant. Alternatively, multiple expression cassettes, each comprising MAR sequences when so desired, may be provided. Generally, the expression cassette will comprise a selectable or screenable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, and 2,4-dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christopherson et al. (1992) Proc. Natl. Acad Sci. USA 59:6314- 6318; Yao etal. (1992) Cell 77:63-72; Reznikoff ( 1992) Mol. Microbiol. 6:2419- 2422; Barkley etal. (1980) The Operon pp. 177-220; Hu etal. (1987) Cell 48:555- 566; Brown etal. (1987) Cell 49:603-612; Figge etal. (1988) Cell 52:713-722;
Deuschle etα/. (1989) Proc. Natl. Acad Aci. USA 56:5400-5404; Fuerst etα/. (1989) Proc. Natl. Acad Sci. USA 56:2549-2553; Deuschle etal. (1990) Science 245:480- 483; Gossen (1993) Ph D Thesis, University of Heidelberg; Reines etal. (1993) Proc. Natl. Acad. Sci. USA 90:1917-1921; Labow etal. (\990)Mol. Cell. Biol. 10:3343- 3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 59:3952-3956; Baim et al. (1991) Proc. Natl. Acad. Sci. USA 55:5072-5076; Wyborski etal. (1991) Nuc. Acids Res. 79:4647-4653; Hillenand-Wissman (1989) Topics in Mol. andStruc. Biol. 70:143-162; Degenkolb etal. (1991) Antimicrob. Agents Chemother. 35: 1591-1595; Kleinschnidt etα/. (1988) Biochemistry 27:1094-1104; Gatz etα/. (1992) Plant J. 2:397-404; Bonin (1993) Ph.D Thesis, University of Heidelberg; Gossen et al. (1992) Proc. Natl. Acad Sci. USA 59:5547-5551; Oliva etα/. (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka eta/. (1985) Handbook of Exp. Pharmacology 78; Gill etal. (1988) Nature 334:721-724. Such disclosures are herein incoφorated by reference. The above list of selectable marker genes are not meant to be limiting. Any marker gene can be used in the present invention.
In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this puφose, in vitro mutagenesis, primer repair, restriction, annealing, resection, ligation, PCR, or the like may be employed, where insertions, deletions or substitutions, e.g. transitions and transversions, may be involved.
The various fragments comprising the DNA construct (promoters, nucleotide sequences of interest, terminators, markers, and the like) may be introduced consecutively into an appropriate transformation vector by restriction enzyme cleavage of the vector and insertion of the particular fragment into the available site. By appropriate transformation vector is intended Agrobacterium-b&sed vectors, non- Agrobacteήum-based vectors, ballistic vectors, and vectors suitable for DNA- mediated transformation. More preferably, the vector will be a plasmid designed with a pair of unique restriction enzyme sites that flank the ends of the DNA construct. By pair of unique restriction enzyme sites is intended two recognition sites for a restriction enzyme, said sites not occurring elsewhere within the backbone of the transformation vector or within the DNA construct. This flanking pair of unique restriction sites is selected and designed into the transformation vector, which is used for assembly of the DNA construct, to allow for intact isolation of the entire DNA construct as a linear fragment that is incapable of recircularizing by end-joining of the overhangs. All of these techniques are well known in the art and are particularly presented in Sambrook et αl. (1989) Molecular Cloning: A Laboratory Manual (2nd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, N Y., herein incoφorated by reference.
The DNA construct of the present invention comprising a promoter region, a heterologous nucleotide sequence, transcription and translational initiation regions and transcription and translational termination regions, flanked at the 5' and 3' ends by MAR elements can be introduced into the genome of the desired plant host with a variety of techniques known in the art. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained. The transformation vector and hence method of transformation chosen will depend on the type of plant or plant cell, i.e. monocot or dicot, targeted for transformation. Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e. , monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986) Biotechniques
4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 53:5602-5606, Agrobacterium-mediated transformation (Townsend et al., U.S. Pat No. 5,563,055), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al. , U.S. Patent No. 4,945,050; Tomes et al, U.S. Patent No. 5,879,918; Tomes et al. , U.S. Patent No. 5,886,244; Bidney et al, U.S. Patent No. 5,932,782; Tomes et al. (1995) "Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment, " in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer- Verlag, Berlin); and McCabe et al. (1988) Biotechnology 6:923-926). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Paniculate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 57:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P: 175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 5:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 55:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); Tomes, U.S. Patent No. 5,240,855; Buising et al, U.S. Patent Nos. 5,322,783 and 5,324,646; Tomes et al. (1995) "Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment, " in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg (Springer- Verlag, Berlin) (maize); Klein et al. (1988) Plant Physiol. 97:440-444 (maize); Fromm et al. (1990) Biotechnology 5:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 377:763-764; Bowen et al. , U.S. Patent No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 54:5345- 5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 54:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 72:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 74:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incoφorated by reference. Following transformation of plant cells, regeneration of fertile transformed plants can be accomplished using an appropriate method for the plant host chosen from a variety of procedures well known in the art. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84, herein incoφorated by reference. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.
The present invention may be used for transformation of any plant species, including, but not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgar e), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracanά)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton
(Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers.
Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathy rus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. meld). Ornamentals include azalea {Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulchernma), and chrysanthemum. Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotiϊ), ponderosa pine (Pinus ponderosa) , lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). Preferably, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.), more preferably corn and soybean plants, yet more preferably corn plants.
The following experiments are offered by way of illustration and not by way of limitation
EXPERIMENTAL
Example 1 Transformation of Maize With Promoter GUS Constructs The 5' flanking region of the maize ADHl-s gene was previously shown to harbor MAR/SAR-like activity based on in vitro binding (Avramova, Z and J L Bennetzen (1993) PMB 22 1135-1143, Avramova, Z et al (1995) Plant Cell 7 1667- 1680), in vivo hyperactivity to osmium tetroxide (A L Paul, R J Ferl, PMB 22 1145- 1151 (1993), effects on gene expression in transgenic cell lines (shown above) Using two promoter:: GUS constructs with different transgenic expression patterns, the effects of flanking these GUS genes with the maize 5' ADH1 MARS/SARS were observed on their expression patterns and levels in transgenic maize. The two constructs used included a synthetic promoter:: GUS, that confers nearly constitutive activity throughout transgenic maize plants and the wheat peroxidase: :GUS that predominantly limits high levels of GUS activity in root tissue of transgenic maize. A diagram showing the fragment from the plasmid PHP7917 containing MAR flanked Rsyn7::GUS construct is given in Figure 1.
MAR-flanked promoter-driven constructs were introduced into immature maize embryos via particle bombardment at two doses with MARS-flanked selectable marker construct. Constructs without MARS elements were co-bombarded with a selectable marker gene also without MARS-flanking sequences. One TO plant from each of the 7-8 actively expressing lines for each construct was measured for GUS activity both quantitatively as well as histochemically in various tissues. Table 1 refers to the plasmids with the promoter-driven GUS constructs with and without MAR elements.
Table 1. GUS Constructs.
Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the Rsyn7 promoter operably linked to a nulceotide sequence encoding the GUS reporter protein flanked by MAR elements, and a selectable marker gene, such as PAT (Wohlleben et al. (1988) Gene 70:25-37) that confers resistance to the herbicide Bialaphos. Transformation is performed as follows. All media recipes are in the Appendix.
Preparation of Target Tissue The ears are surface sterilized in 30% Chlorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned with the 2.5-cm target zone in preparation for bombardment.
Preparation of DNA
A plasmid vector comprising a heterologous gene of interest operably linked to a promoter sequence of the present invention is constructed. An expression cassette containing a heterologous gene of interest operably linked to the promoter sequences was cloned into a transformation vector comprising a PAT selectable marker gene. Plasmid DNA is precipitated onto 1.1 μm (average diameter) tungsten pellets using a CaCl2 precipitation procedure as follows:
100 μl prepared tungsten particles in water 10 μl (1 μg) DNA in TrisEDTA buffer (1 μg total) 100 μl 2.5 M CaCl2
10 μl 0.1 M spermidine
Each reagent is added sequentially to the tungsten particle suspension, and mixed on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μl spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment. Particle Gun Treatment
The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total often aliquots taken from each tube of prepared particles/DN A.
Subsequent Treatment
Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for GUS activity.
Example 2: Effect of MAR Elements on GUS Expression of Ta
Peroxidase Promoter in Transgenic Maize Various tissues (as indicated) from VT-staged to maize plants from independent events were harvested and measured for GUS activity. The data are sorted with ascending root activity. Overall the ADH1 5' MAR element contributed little to increasing activity levels and did not affect the TA peroxidase promoter site of expression in any dramatic way. See Figure 2.
Example 3 : Effects of MAR Elements on the Small Synthetic Promoter,
Rsyn7, in Various Tissues of TO Transgenic Maize Tissues were harvested and processed as described in Example 2. The data was sorted with ascending root activity. Based on histochemical data, the No-MAR- Rsyn7 shows generally high constitutive activity. The MAR-Rsyn7 showed a significant reduction in overall activity (note scale differences between the two graphs). Much of the differences seen between the MAR- and the No-MAR-Rsyn7 was observed in the histochemical staining whereby the predominate activity due to the presence of the MAR sequences occurs in the cortical/epidermal cell sites as lateral root emerging sites, less activity in leaf/stems and more activity detected in the glumes of developing ears. These staining patterns were observed in 6/8 of the mature TO plant events assayed. See Figure 3.
The effect on the constitutive Rsyn7: :GUS was more striking in the histochemical staining analysis resulting in limited but intense expression at lateral root emerging sites of primary and adventitious roots and strong expression in the glumes of the developing kernel as well as the kernel pericaφ with much less expression elsewhere in the aerial portion of the plant.
APPENDIX
272 V
Directions:
@ = Add after bringing up to volume
Dissolve ingredients in polished D-I H2O in sequence
Adjust to pH 5.6
Bring up to volume with polished D-I H2O after adjusting pH
Sterilize and cool to 60 °C.
## = Dissolve 0.100 g of Nicotmic Acid; 0.020 g of Thiamine.HCL; 0.100 g of
Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H2O in sequence. Bring up to volume with polished D-I H2O. Make in 400 ml portions.
Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.
Total Volume (L) = 1.00
288 J
Directions:
@ = Add after bringing up to volume Dissolve ingredients in polished D-I H2O in sequence Adjust to pH 5.6
Bring up to volume with polished D-I H2O after adjusting pH Sterilize and cool to 60°C. Add 3.5g/L of Gelrite for cell biology.
## = Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H2O in sequence. Bring up to volume with polished D-I H2O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.
Total Volume (L) = 1.00 560 R
Directions:
@ = Add after bringing up to volume
# = Add after sterilizing and cooling to temp.
Dissolve ingredients in D-I H2O in sequence
Adjust to pH 5.8 with KOH
Bring up to volume with D-I H2O
Sterilize and cool to room temp.
Total Volume (L) = 1.00
560 Y
Directions:
@ = Add after bringing up to volume
# = Add after sterilizing and cooling to temp.
Dissolve ingredients in D-I H2O in sequence
Adjust to pH 5.8 with KOH
Bring up to volume with D-I H2O
Sterilize and cool to room temp.
** Autoclave less time because of increased sucrose**
Total Volume (L) = 1.00
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incoφorated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for puφoses of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims

WHAT IS CLAIMED
1 A DNA construct comprising a promoter-driven construct wherein said promoter-driven construct comprises (a) a Rsyn7 promoter,
(b) a nucleotide sequence operably linked to said promoter,
(c) a transcription and translation termination region, and
(d) matrix attachment region DNA sequences flanking the combined elements (a), (b), and (c)
2 The DNA construct of claim 1, wherein said matrix attachment region DNA sequences are maize matrix attachment region DNA sequences
3 The DNA construct of claim 2, wherein said maize matrix attachment region DNA sequences are from the 5' region of the maize ADHl gene
4 A plant having stably incorporated into its genome the DNA construct of claim 1
5 The plant of claim 4, wherein said plant is a monocot
6 The plant of claim 5, wherein said monocot is maize
7 The plant of claim 4, wherein said plant is a dicot
8 Seed of the plant of claim 4
9 A plant cell having stably incoφorated into its genome the DNA construct of claim 1
10 The plant cell of claim 9, wherein said plant cell is from a monocotyledonous plant
11. The plant cell of claim 10, wherein said monocotyledonous plant is maize.
12. The plant cell of claim 9, wherein said plant cell is from a dicotyledonous plant.
13. A method for altering the expression pattern associated with a promoter-driven construct, said method comprising a recombinantly engineering a DNA construct comprising a promoter-driven construct comprising a promoter, a heterologous DNA sequence operably linked to said promoter, and a transcription and translation termination region, said DNA construct further comprising matrix attachment region (MAR) DNA sequences at the 5' and 3' ends of said DNA construct wherein said MAR sequences alter the expression pattern of said promoter.
14. The method of claim 13, wherein said matrix attachment region DNA sequences are maize matrix attachment region DNA sequences.
15. The method of claim 13, wherein said promoter is a constitutive promoter or a tissue-preferred promoter.
16. The method of claim 13, wherein said expression pattern is altered from constitutive expression to tissue localized expression.
17. The method of claim 14, wherein said maize matrix attachment region
DNA sequences are from the 5' region of the maize ADHl gene.
18. The method of claim 15, wherein said constitutive promoter is the small synthetic Rsyn7 promoter.
19. A method for selectively expressing a nucleotide sequence in a tissue localized manner, said method comprising: (a) recombinantly engineering a DNA construct comprising a promoter-driven construct, said promoter-driven construct comprising a Rsyn7 promoter, a heterologous nucleotide sequence operably linked to said promoter, and a transcription and translational termination region, said DNA construct further comprising, matrix attachment region DNA sequences at one or both the 5' and 3' ends of said promoter-driven construct; and
(b) stably introducing into the genome of a plant cell said DNA construct; and
(c) regenerating a plant from said plant cell whereby expression of said heterologous nucleotide sequence alters the phenotype of the tissues where expression is occurring.
20. The method of claim 19, wherein said matrix attachment region DNA sequences are maize matrix attachment region DNA sequences.
21. The method of claim 19, wherein said nucleotide sequence encodes a gene involved in regulation of growth of root tissue.
22. The method of claim 19, wherein said nucleotide sequence encodes a gene involved in regulation of growth of Glumes.
23. The method of claim 20, wherein said matrix attachment region DNA sequences are from the 5' region of the maize ADHl gene.
EP99948468A 1998-09-29 1999-09-27 Mar/sar elements flanking rsyn7-driven construct Withdrawn EP1117815A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10228898P 1998-09-29 1998-09-29
PCT/US1999/022308 WO2000018938A1 (en) 1998-09-29 1999-09-27 Mar/sar elements flanking rsyn7-driven construct
US102288P 2008-10-02

Publications (1)

Publication Number Publication Date
EP1117815A1 true EP1117815A1 (en) 2001-07-25

Family

ID=22289099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99948468A Withdrawn EP1117815A1 (en) 1998-09-29 1999-09-27 Mar/sar elements flanking rsyn7-driven construct

Country Status (5)

Country Link
US (1) US6388066B1 (en)
EP (1) EP1117815A1 (en)
AU (1) AU762382B2 (en)
CA (1) CA2343080A1 (en)
WO (1) WO2000018938A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408844B1 (en) * 2000-07-29 2003-12-06 한국산업기술평가원 Expression vector using for animal cell
US7129062B2 (en) * 2001-01-26 2006-10-31 Selexis Sa Matrix attachment regions and methods for use thereof
US8772021B2 (en) * 2005-03-04 2014-07-08 Celltrion, Inc. Expression vector for animal cell comprising at least one copy of MAR DNA sequences at the 3′ terminal of transcription termination region of a gene and method for the expression of foreign gene using the vector
US8497258B2 (en) 2005-11-12 2013-07-30 The Regents Of The University Of California Viscous budesonide for the treatment of inflammatory diseases of the gastrointestinal tract
EA201790757A1 (en) 2011-09-22 2017-07-31 Эмджен Инк. BONDING ANTIGEN CD27L PROTEINS
UY34813A (en) 2012-05-18 2013-11-29 Amgen Inc ANTIGEN UNION PROTEINS DIRECTED AGAINST ST2 RECEIVER
UY35148A (en) 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
US9580486B2 (en) 2013-03-14 2017-02-28 Amgen Inc. Interleukin-2 muteins for the expansion of T-regulatory cells
WO2014144817A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Inhibitory polypeptides specific to wnt inhibitors
NZ713636A (en) 2013-05-30 2022-07-01 Kiniksa Pharmaceuticals Ltd Oncostatin m receptor antigen binding proteins
AU2014318017B2 (en) 2013-09-05 2020-02-06 Amgen Inc. Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles
IL283764B2 (en) 2015-04-10 2024-01-01 Amgen Inc Interleukin-2 muteins for the expansion of t-regulatory cells
AU2016252773B2 (en) 2015-04-24 2022-06-02 Genentech, Inc. Multispecific antigen-binding proteins
KR102645625B1 (en) 2015-09-22 2024-03-07 제넨테크, 인크. Expression of Fc-containing proteins
JP6932693B2 (en) 2015-10-08 2021-09-08 ザイムワークス,インコーポレイテッド Antigen-Binding Polypeptide Constructs Containing Kappa and Lambda Light Chains and Their Use
MX2018004831A (en) 2015-11-02 2018-08-01 Genentech Inc Methods of making fucosylated and afucosylated forms of a protein.
CN115073581A (en) 2016-05-04 2022-09-20 美国安进公司 Interleukin-2 muteins for expansion of T regulatory cells
BR112018076816A2 (en) 2016-06-24 2019-09-03 Pioneer Hi Bred Int hybrid regulatory element, hybrid promoter, DNA construct, expression cassette, host cell, transgenic plant, method for creating a hybrid regulatory element, and method for targeted expression of a polynucleotide sequence in a plant or plant cell
WO2019000105A1 (en) 2017-06-30 2019-01-03 Zymeworks Inc. Stabilized chimeric fabs
CN114555634A (en) 2019-08-13 2022-05-27 美国安进公司 Interleukin-2 muteins for expansion of regulatory T cells
KR20220114595A (en) 2019-12-17 2022-08-17 암젠 인크 Dual Interleukin-2/TNF Receptor Agonists for Use in Therapy
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants
CA3191387A1 (en) 2020-09-30 2022-04-07 Nobell Foods, Inc. Recombinant milk proteins and food compositions comprising the same
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
ATE217319T1 (en) * 1992-10-05 2002-05-15 Univ North Carolina State METHOD FOR INCREASE EXPRESSION AND REDUCING EXPRESSION VARIABILITY OF FOREIGN GENES IN PLANT CELLS
AU6679094A (en) 1993-04-19 1994-11-08 Sandoz Ltd. Genetic stabilizing elements
US5888774A (en) * 1994-12-19 1999-03-30 Cangene Corporation Recombinant DNA molecules and expression vectors for erythropoietin
US5773695A (en) 1996-01-26 1998-06-30 North Carolina State University Plant nuclear scaffold attachment region and method for increasing gene expression in transgenic cells
US6072050A (en) * 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
AU729929B2 (en) * 1996-06-11 2001-02-15 Pioneer Hi-Bred International, Inc. A synthetic plant core promoter and upstream regulatory element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0018938A1 *

Also Published As

Publication number Publication date
AU6163799A (en) 2000-04-17
US6388066B1 (en) 2002-05-14
CA2343080A1 (en) 2000-04-06
AU762382B2 (en) 2003-06-26
WO2000018938A1 (en) 2000-04-06

Similar Documents

Publication Publication Date Title
AU762382B2 (en) MAR/SAR elements flanking RSYN7-driven construct
EP1699931B1 (en) Maize metallothionein 2 promoter and methods of use
US6504083B1 (en) Maize Gos-2 promoters
EP2675900B1 (en) Root-preferred promoter and methods of use
US8962916B2 (en) Viral promoter, truncations thereof, and methods of use
US8338662B2 (en) Viral promoter, truncations thereof, and methods of use
US7544857B2 (en) Brachytic2 (Br2) promoter from maize and methods of use
US8895716B2 (en) Viral promoter, truncations thereof, and methods of use
US8395022B2 (en) Viral promoter, truncations thereof, and methods of use
US8350121B2 (en) Viral promoter, truncations thereof, and methods of use
CA2627308A1 (en) Maize promoter active in silks, stalk nodes, roots and leaf sheaths
AU2001290847A1 (en) Compositions and methods for stable transformation using MU bacteriophage cleaved donor complex
US8344206B2 (en) Viral promoter, truncations thereof, and methods of use
US20050223432A1 (en) ODP2 promoter and methods of use
US20090205078A1 (en) Maize Leaf- and Stalk-Preferred Promoter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MADDOCK, SHEILA E.

Inventor name: BRUCE, WESLEY, B.

17Q First examination report despatched

Effective date: 20020522

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050112