EP1111028B1 - Engine oil composition - Google Patents
Engine oil composition Download PDFInfo
- Publication number
- EP1111028B1 EP1111028B1 EP00850216.3A EP00850216A EP1111028B1 EP 1111028 B1 EP1111028 B1 EP 1111028B1 EP 00850216 A EP00850216 A EP 00850216A EP 1111028 B1 EP1111028 B1 EP 1111028B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- engine oil
- alkaline earth
- earth metal
- mass
- oil composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 74
- 239000010705 motor oil Substances 0.000 title claims description 66
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 55
- -1 alkaline earth metal sulfonate Chemical class 0.000 claims description 49
- 239000002199 base oil Substances 0.000 claims description 26
- 229920000193 polymethacrylate Polymers 0.000 claims description 25
- 125000003118 aryl group Chemical group 0.000 claims description 24
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 239000003112 inhibitor Substances 0.000 claims description 20
- 239000003599 detergent Substances 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 239000002270 dispersing agent Substances 0.000 claims description 14
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical compound C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 229960001860 salicylate Drugs 0.000 claims description 13
- 239000000654 additive Substances 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000003607 modifier Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 230000001050 lubricating effect Effects 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 159000000007 calcium salts Chemical class 0.000 claims description 4
- 159000000003 magnesium salts Chemical group 0.000 claims description 4
- 239000006078 metal deactivator Substances 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 150000001412 amines Chemical group 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 26
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 23
- 238000001704 evaporation Methods 0.000 description 13
- 230000008020 evaporation Effects 0.000 description 13
- 239000010688 mineral lubricating oil Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 7
- 239000010689 synthetic lubricating oil Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Chemical group CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000004996 alkyl benzenes Chemical class 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000012990 dithiocarbamate Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- 229910000165 zinc phosphate Inorganic materials 0.000 description 4
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 2
- SZAQZZKNQILGPU-UHFFFAOYSA-N 2-[1-(2-hydroxy-3,5-dimethylphenyl)-2-methylpropyl]-4,6-dimethylphenol Chemical compound C=1C(C)=CC(C)=C(O)C=1C(C(C)C)C1=CC(C)=CC(C)=C1O SZAQZZKNQILGPU-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 238000006683 Mannich reaction Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003901 ceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002272 engine oil additive Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000000755 henicosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002818 heptacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 125000002819 montanyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001802 myricyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002465 nonacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002460 pentacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 125000002469 tricosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- UUGXDEDGRPYWHG-UHFFFAOYSA-N (dimethylamino)methyl 2-methylprop-2-enoate Chemical compound CN(C)COC(=O)C(C)=C UUGXDEDGRPYWHG-UHFFFAOYSA-N 0.000 description 1
- RAADJDWNEAXLBL-UHFFFAOYSA-N 1,2-di(nonyl)naphthalene Chemical compound C1=CC=CC2=C(CCCCCCCCC)C(CCCCCCCCC)=CC=C21 RAADJDWNEAXLBL-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- UDFARPRXWMDFQU-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CSCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 UDFARPRXWMDFQU-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- VRMHHVOBVLFRFB-UHFFFAOYSA-N 2-(2-cyanoethylsulfanylmethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1CSCCC#N VRMHHVOBVLFRFB-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- XQESJWNDTICJHW-UHFFFAOYSA-N 2-[(2-hydroxy-5-methyl-3-nonylphenyl)methyl]-4-methyl-6-nonylphenol Chemical compound CCCCCCCCCC1=CC(C)=CC(CC=2C(=C(CCCCCCCCC)C=C(C)C=2)O)=C1O XQESJWNDTICJHW-UHFFFAOYSA-N 0.000 description 1
- AKNMPWVTPUHKCG-UHFFFAOYSA-N 2-cyclohexyl-6-[(3-cyclohexyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(C2CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1CCCCC1 AKNMPWVTPUHKCG-UHFFFAOYSA-N 0.000 description 1
- MNZNJOQNLFEAKG-UHFFFAOYSA-N 2-morpholin-4-ylethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCN1CCOCC1 MNZNJOQNLFEAKG-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- BGWNOSDEHSHFFI-UHFFFAOYSA-N 2-tert-butyl-4-[(3-tert-butyl-4-hydroxy-5-methylphenyl)methylsulfanylmethyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CSCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 BGWNOSDEHSHFFI-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- BKZXZGWHTRCFPX-UHFFFAOYSA-N 2-tert-butyl-6-methylphenol Chemical compound CC1=CC=CC(C(C)(C)C)=C1O BKZXZGWHTRCFPX-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- GONPAIMDIMMKMK-UHFFFAOYSA-N 4-[3-carboxy-4-(3,5-ditert-butyl-4-hydroxyphenyl)butyl]sulfanyl-2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]butanoic acid Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC(CCSCCC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(O)=O)C(O)=O)=C1 GONPAIMDIMMKMK-UHFFFAOYSA-N 0.000 description 1
- VJOWMORERYNYON-UHFFFAOYSA-N 5-ethenyl-2-methylpyridine Chemical compound CC1=CC=C(C=C)C=N1 VJOWMORERYNYON-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 0 CN[N+](*(*)*)[N-] Chemical compound CN[N+](*(*)*)[N-] 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000158728 Meliaceae Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Natural products OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- URGQBRTWLCYCMR-UHFFFAOYSA-N [3-hydroxy-2,2-bis(hydroxymethyl)propyl] nonanoate Chemical compound CCCCCCCCC(=O)OCC(CO)(CO)CO URGQBRTWLCYCMR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000004327 boric acid Chemical group 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000005588 carbonic acid salt group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006388 chemical passivation reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- KPGRTCPQLMJHFQ-UHFFFAOYSA-N diethylaminomethyl 2-methylprop-2-enoate Chemical compound CCN(CC)COC(=O)C(C)=C KPGRTCPQLMJHFQ-UHFFFAOYSA-N 0.000 description 1
- WDNQRCVBPNOTNV-UHFFFAOYSA-N dinonylnaphthylsulfonic acid Chemical class C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 WDNQRCVBPNOTNV-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- FVBSDVQDRFRKRF-UHFFFAOYSA-N ditridecyl pentanedioate Chemical compound CCCCCCCCCCCCCOC(=O)CCCC(=O)OCCCCCCCCCCCCC FVBSDVQDRFRKRF-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002646 long chain fatty acid esters Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- RZRFZEDWURIJRY-UHFFFAOYSA-N morpholin-4-ylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCN1CCOCC1 RZRFZEDWURIJRY-UHFFFAOYSA-N 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical group 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000004929 pyrrolidonyl group Chemical group N1(C(CCC1)=O)* 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/044—Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/02—Petroleum fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/06—Well-defined hydrocarbons aromatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/36—Esters of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/38—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/08—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/10—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/12—Thio-acids; Thiocyanates; Derivatives thereof
- C10M135/14—Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
- C10M135/18—Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
- C10M2203/065—Well-defined aromatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/104—Aromatic fractions
- C10M2203/1045—Aromatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
- C10M2203/1065—Naphthenic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
- C10M2203/1085—Residual fractions, e.g. bright stocks used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
- C10M2205/0265—Butene used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
- C10M2207/2825—Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/285—Esters of aromatic polycarboxylic acids
- C10M2207/2855—Esters of aromatic polycarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- This invention relates to engine oil compositions, and more particularly to engine oil compositions which provide excellent fuel efficiency and viscosity at low temperatures and are less in evaporation loss.
- the fuel consumption reduction of automobile engines implemented since the oil crisis is still one of the important issues from the viewpoint of resource-and environment-protection.
- the fuel consumption reduction of automobiles has been put into practice by reducing the body weight of an automobile, improving combustion efficiency, and reducing the occurrence of friction in an engine.
- the reduction of fiction in engines has been implemented by improving the movable valve structures, reducing the number of piston rings, smoothing the abrasive surfaces of sliding parts, and using fuel efficient engine oils.
- Japanese Patent Laid-Open Publication No. 8-302378 discloses an engine oil composition which comprises a specific base oil, an alkaline earth metal salicylate-based detergent, zinc dialkyldithiophosphate, a polybutenylsuccinimide-based ashless dispersant, a phenol-based ashless oxidation inhibitor, a molybdenumdithiocarbamate-based friction modifier, a viscosity index improves, in a specific amount, respectively.
- US 5, 744, 430 relates to an engine oil composition having therein a base oil with a specified kinematic viscosity and with a specified total amount of aromatics, comprising an alkaline earth metal salicylate detergent, a zinc dialkyldithiophosphate, a succinimide ashless dispersant containing a polybutenyl group having a specified number-average molecular weight, a phenol ashless antioxidant, a molybdenum dithiocarbamate friction modifier, and a viscosity index improver in such an amount that the kinematic viscosity of said composition ranges from 5.6 to 12.5mm 2 /s at 100 °C
- WO 97/04049 relates to a composition and a method for producing partial synthetic transmission fluids having a -40 °C Brookfield viscosity no greater than 10,000, preferably no greater than 5,000 centipoise without the need to incorporate viscosity modifying amounts of high molecular weight polymeric viscosity modifiers.
- An object of the present invention is to provide an engine oil composition which is reduced more in viscosity than conventional fuel efficient engine oils and provide excellent fuel efficiency and viscosity characteristics at low temperatures with less evaporation loss by blending suitable additives.
- an engine oil composition which comprises (A) a lubricant base oil having a kinematic viscosity at 100 ° C of 2 to 6 mm 2 /S, a viscosity index of 120 or more and a total aromatic content of 15 percent by mass or less and (B) a polymethacrylate-based viscosity index improver blended in such an amount that the composition has a kinematic viscosity at 100° C of 4.0 to 9.3 mm 2 /s, wherein the composition further comprises an alkaline earth metal-based detergent which is one or more metallic detergents selected from the group consisting of an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate.
- an engine oil composition which comprises (A) a lubricant base oil having a kinematic viscosity at 100 ° C of 2 to 6 mm 2 /S, a viscosity index of 120 or more and a total aromatics content of 15 percent by mass or less; (B) a polymethacrylate-based viscosity index improver blended in such an amount that the composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm 2 /s; and (C) molybdenumdithiocarbamate.
- the polymethacrylate-based viscosity index improver have preferably have an weight-average molecular weight of 180,000 or more.
- a lubricating base oil referred to as Component (A) in an engine oil composition according to the present invention has a kinematic viscosity at 100 ° C of which upper limit is 6 mm 2 /s, preferably 5 mm 2 /s and lower limit is 2 mm 2 /s, preferably 3 mm 2 /s.
- Lubricant base oils in excess of the upper limit would lead to increased fluid resistance resulting in increased loss caused by wear occurring at engine parts to be lubricated, while those of less than the lower limit would lead to insufficient oil-film formation, resulting in less lubricity and increased evaporation loss.
- Component (A) has necessarily a viscosity index of 120 or more. Such a viscosity index value is contributive to the production of an engine oil composition having excellent low-temperature viscosity characteristics. Base oils having a viscosity index of less than 120 would lead to a necessity to bring it down lower viscosity, resulting in the increased evaporation loss and viscosity of the resulting engine oil.
- the upper limit of aromatic content of Component (A) is 15 percent by mass, preferably 10 percent by mass, and most preferably 5 percent by mass. Base oils in excess of the upper limit would fail to achieve synergistic effects with each additive to be used in the present invention. No particular limitation is imposed on the lower limit of aromatic content. However, Component (A) has preferably a total aromatic content of 2 percent by mass or more because that having a total aromatic content of less than 2 percent by mass would not possibly exhibit solubility to various additives.
- total aromatic content used herein denotes an aromatic fraction content measured in accordance with ASTM D2549. Incorporated by the aromatic fraction are generally alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene, alkylated products thereof, compounds in which 4 or more benzene rings are condensed, and compounds having hetero-aromatics, such as pyridines, quinolines, phenols, and naphthols.
- Eligible base oils for the present invention are mineral lubricating oils, synthetic lubricating oils, and mixtures of two or more of these oils mixed in a suitable ratio.
- the base oils are exemplified by mineral lubricating oils, mixtures of mineral lubricating oils and non-aromatic containing synthetic lubricating oils, and mixtures of aromatic-containing synthetic lubricating oils and non-aromatics containing synthetic lubricating oils.
- mineral lubricating oil used herein denotes not only a single mineral lubricating oil but also a mixture of two or more mineral lubricating oils. Therefore, when using two more mineral lubricating oils as the base oil, there may be used not only a mixture of mineral lubricating oils each having a total aromatic content of 15 percent by mass or less but also a mixture of a mineral lubricating oil having a total aromatic content of 15 percent by mass and a mineral lubricating oil having a total aromatic content exceeding 15 percent by mass as long as the resulting base oil has a total aromatic content of 15 percent by mass or less.
- a mineral lubricating oil having a total aromatic content exceeding 15 percent by mass as long as the resulting base oil has a total aromatic content of 15 percent by mass or less.
- the mineral lubricating oil are those obtained by subjecting a lubricant fraction obtained by vacuum-distilling an atmospheric residue derived from the atmospheric distillation of crude oil to one or more refining processes such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, and hydrorefining.
- aromatic-containing synthetic lubricating oil examples include alkylnaphthalenes and alkylbenzenes.
- non-aromatic containing synthetic lubricating oil examples include polybutens and hydrides thereof; poly- ⁇ -olefins such as 1-octene oligomer and 1-decene oligomer, and hydrides thereof; diesters such as ditridecylglutarate, di-2-ethylhexyladipate, disodecyladipate, and di-2-ethylhexylcebacate; polyolesters such as trimethylolpropanecaprylate, trimethylolpropanepelargonate, pentaerythritol-2-ehylhexyanoate, and pentaerythritolpelargonate; and mixtures thereof.
- Each of these lubricating oil exhibits its peculiar viscosity-temperature characteristics, i.e., viscosity index.
- a lubricating oil used as a base oil of the present invention has a viscosity index of 120 or more, even though a lubricating base selected from the above has a viscosity index of less than 120, it may be used in combination with those having a viscosity index of 120 or more.
- Component (B) of an engine oil composition according to the present invention is a polymethacrylate-based viscosity index improver blended in such an amount that the resulting composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm 2 /s.
- the kinematic viscosity at 100 ° C of the resulting composition in excess of 9.3 mm 2 /S would not provide sufficient fuel efficiency, while that of less than 4.0 mm 2 /s would improve fuel efficiency caused by the reduced viscosity of the composition and viscosity at low temperatures but fail to have sufficient lubricity as an engine oil.
- the combination of a base oil with such a polymethacrylate-based viscosity index improver in an engine oil composition according to the present invention results in enhanced viscosity index improving effects, less thickening effects, and excellent pour point reduction effects.
- the polymethacrylate-based viscosity index improver is indispensable in an engine oil composition according to the present invention in order to provide it with excellent low temperature characteristics.
- polymethacrylate-based viscosity index improvers which may be used in the present invention are any type of non-dispersion type or dispersion type polymethacrylate compounds which are used as viscosity index improvers for a lubricating oil.
- the non-dispersion type polymethacrylate-based viscosity index improver may be a polymer of a compound represented by the formula
- R 1 is a straight or branched alkyl group such as methyl, ethyl, propyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl groups.
- dispersion type polymethacrylate-based viscosity index improver are copolymers obtained by copolymerizing one or more monomers selected from compounds represented by formula (1) with one or more nitrogen-containing monomers selected from compounds represented by formulae (2) and (3)
- R 2 and R 4 are each independently hydrogen or methyl.
- R 3 is a straight or branched alkylene group having 1 to 18 carbon atoms, such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, and octadecylene groups.
- e is an integer of 0 or 1.
- X1 and X2 are each independently an amino- or heterocyclic- residue having 1 or 2 nitrogen and 0 to 2 oxygen. Specific examples of X1 and X2 are dimethylamino, diethylamino, dipropylamino, dibutylamino, anilino, toluidino, xylidino, acetylamino, benzoilamino, morpholino, pyrolyl, pyridyl, methylpydidyl, pyrolidinyl, piperidinyl, quinonyl, pyrrolidonyl, pyrrolidono, imidazolino, and pyrazino groups.
- nitrogen-containing monomer represented by formula (2) or (3) are dimethylaminomethylmethacrylate, diethylaminomethylmethacrylate, dimethylaminoethylmethacrylate, diethylaminoethylmethacrylate, 2-methyl-5-vinylpyridine, morpholinomethylmethacrylate, morpholinoethylmethacrylate, N-vinylpyrrolidone, and mixtures thereof.
- the lower limit of the weight-average molecular weight of the polymethacrylate-based viscosity index improver which is effective in improving the performance of an engine oil, is preferably 180,000, more preferably 190,000.
- Polymethacrylate-based viscosity index improvers having a weight-average molecular weight of 180,000 or more can decrease the amount of other viscosity index improvers to be added so as to further improve low temperature viscosity, not only leading to an advantage in terms of cost but also an improvement in shear stability such that the initial performances of the resulting engine oil can be maintained.
- No particular limitation is imposed on the upper limit. When consideration is given to an easy treatment of the composition, it is preferably 500,000 or less and more preferably 400,000 or less.
- an engine oil composition according to the present invention contains the polymethacrylate-based viscosity index improver in such an amount that the composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm 2 /s.
- the content of a polymethacrylate-based viscosity index improver may be arbitrary selected. However, the content is preferably from 0.5 to 10 percent by mass based on the total weight of the composition.
- an engine oil composition according to the present invention may be blended with molybdenumdithiocarbamate represented by formula (4) or mixtures thereof
- R 5 , R 6 , R 7 , and R 8 may be the same or different and are each independently an alkyl or alkylaryl group having 2 to 18 carbon atoms.
- Y 1 , Y 2 , Y 3 , and Y 4 are each independently sulfur or oxygen.
- the alkyl group includes primary, secondary, and tertiary alkyl groups which may be straight or branched. Specific examples of the alkyl group are ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, and tridecyl groups.
- molybdenumdithiocarbamate examples include molybdenumdiethyldithiocarbamate sulfide, molybudenumdipropyldithiocarbamate sulfide, molybdenumdibutyldithiocarbamate sulfide, molybdenumdipentyldithiocarbamate sulfide, molybdenumdihexyldithiocarbamate sulfide, molybdenumdioctyldithiocarbamate sulfide, molybdenumdidecyldithiocarbamate sulfide, molybdenumdidodecyldithiocarbamate sulfide, molybdenumditridecyldithiocarbamate sulfide, molybdenumdi(butylphenyl)dithiocarbamate sulfide
- the upper limit molybdenum content is 0.15 percent by mass, preferably 0.10 percent by mass, in terms of molybdenum concentration, based on the total mass of the composition.
- the content in excess of the upper limit would cause the formation of sludge when the engine oil is deteriorated.
- No particular limitation is imposed on the lower limit molybdenum content.
- the lower limit is preferably 0.02 percent by mass, more preferably 0.04 percent by mass in terms of molybdenum concentration, based on the total mass of the composition in order to obtain a sufficient friction reduction effect.
- an engine oil composition according to the present invention excels in fuel efficiency and low temperature viscosity and is less in evaporation loss by blending a specific base oil with a polymethacrylate-based viscosity index improver so as to obtain a specific viscosity. Furthermore, the use of a polymethacrylate-based viscosity index improver having a weight average molecular weight of 180, 000 or more can further improve fuel efficiency and low temperature viscosity. Higher level of fuel efficiency can be provided in an engine oil by adding thereto molybdenumdithiocarbamate.
- engine oil additives may be used singlely or in combination.
- additives which may be used in the present invention are alkaline earth metal-based detergents, ashless dispersants, corrosion inhibitors, ashless oxidation inhibitors, friction modifiers other than molybdenumdithiocarbamate, corrosion inhibitors, demulsifying agents, metal deactivators, and antifoamers.
- Eligible alkaline earth metal-based detergents are alkaline earth metal compounds which are added in a lubricating oil.
- Specific examples of such a detergent are one or more metallic detergents selected from alkaline earth metal sulfonates, alkaline earth metal phenates, and alkaline earth metal salicylates.
- Preferred alkaline earth metal sulfonates are alkaline earth metal salts, preferably magnesium salt and/or calcium salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound having a molecular weigh of 300 to 1,500, preferably 400 to 700. The latter is more preferred.
- the above-mentionedalkyl aromatic sulfonic acid may be a petroleum sulfonic acid and a synthetic sulfonic acid.
- the petroleum sulfonic acid may be mahogany acid obtained by sulfonating the alkyl aromatic compound contained in the lubricant fraction of mineral oil or by-produced upon the production of white oil.
- the synthetic sulfonic acid may be those obtained by sulfonating alkyl benzene having a straight or branched alkyl group, which may be by-produced from a plant for producing alkyl benzene used as material of detergents, or sulfonating dinonylnaphthalene.
- fuming sulfuric acid and sulfuric acid as a sulfonating agent.
- the alkaline earth metal phenate may be an alkaline earth metal salt, preferably magnesium salt and/or calcium salt of alkylphenol, alkylphenolsulfide, or a product resulting from Mannich reaction of the alkylphenol.
- R 9 , R 10 , R 11 , R 12 , R 13 , and R 14 may be the same or different and are each independently a straight or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms
- M 1 , M 2 , and M 3 are each independently an alkaline earth metal, preferably calcium and/or magnesium
- x is an integer of 1 or 2.
- R 9 , R 10 , R 11 , R 12 , R 13 , and R 14 are butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups, all of which may be straight or branched and primary, secondary or tertiary alkyl groups.
- the alkaline earth metal salicylate may be an alkaline earth metal salt, preferably magnesium salt and/or calcium salt of an alkyl salicylate. Specific examples are those represented by the formula wherein R 15 is a straight or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms, and M 4 is an alkaline earth metal, preferably calcium and/or magnesium.
- R 15 are butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups, all of which may be straight or branched and primary, secondary or tertiary alkyl groups.
- the alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate may be a neutral alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate obtained by directly reacting a compound such as the above-mentioned alkyl aromatic sulfonic acid, alkylphenol, alkylphenol sulfide and the Mannich reaction product thereof, and alkyl salicylic acid with an alkaline earth metal oxide or hydroxide of magnesium and/or calcium, or obtained by converting the compound into an alkali metal salt such as sodium salt or potassium salt and then substituting the alkali metal salt with an alkaline earth metal salt.
- a neutral alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate obtained by directly reacting a compound such as the above-mentioned alkyl aromatic sulfonic acid, alkylphenol, alkylphenol s
- the alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate may also be a basic alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate obtained by heating a neutral alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate in water containing an excess amount of an alkaline earth metal salt or an alkaline earth metal base; or an overbased alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate obtained by reacting a neutral alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate with the carbonic acid salt or boric acid salt of an alkaline earth metal in the presence of carbon dioxide.
- neutral alkaline earth metal salt there may be used the above-described neutral alkaline earth metal salt, basic alkaline earth metal salt, overbased alkaline earth metal salt, and mixtures thereof.
- metallic detergents are usually diluted with a light lubricating base oil. It is preferred to use metallic detergents containing metal in an amount of 1.0 to 20 percent by mass, preferably 2.0 to 16 percent by mass.
- total base number of the alkaline earth metal detergent used in the present invention.
- preferred metallic detergents are those having a total base number of 30 to 400 mgKOH/g, preferably 150 to 300 mgKOH/g.
- total base number used herein denotes a total base number measured by the perchloric acid potentiometric titration method in accordance with section 7 of JIS K2501 "Petroleum products and lubricants-Determination of neutralization number"
- the content of the alkaline earth metal detergent is within the range of 1.0 to 10.0 percent by mass, preferably 1.0 to 8.0 percent by mass, more preferably 1.5 to 5.0 percent by mass, based on the total mass of the composition.
- Preferred ashless dispersant are any type of polybutenylsuccinimides used in a lubricating oil.
- Specific examples of such dispersants are mono-type imides represented by formula (9), bis-type imides represented by formula (10), and those modified with organic acid or boric acid
- R 16 , R 17 , and R 18 are each independently a polybutenyl group having a number-average molecular weight of 900 to 3,500, preferably 1,000 to 3,000, and c is an integer of 2 to 5.
- the polybutenylsuccinimides may be obtained by reacting polybutenylsuccinate resulting from the reaction of a polybutene or chlorinated polybutene having a number-average molecular weight of 900 to 3,500, with maleic anhydride.
- the polyamine are diethyltriamine, triethylenetetraamine, tetraethylenepentamine, and pentaethylenehexamine.
- the upper limit content of the polybutenylsuccinimide is 0.20 percent by mass, preferably 0.10 percent by mass, in terms of nitrogen concentration, based on the total mass of the composition. Contents in excess of the upper limit would adversely affect rubber-made sealing materials of an engine. No particular limitation is imposed on the lower limit content of the polybutenylsuccinimide. However, the lower limit is preferably 0.05 percent by mass, more preferably 0.06 percent by mass, in terms of nitrogen concentration, based on the total mass of the composition such that a more sufficient fuel efficiency can be achieved.
- an engine oil composition may be blended with one or more of other ashless dispersants such as a long chain polyalkylamine, and an amide of a long chain fatty acid and a polyamine or with those in combination with the above-described polybutenylsuccinimide ashless dispersant.
- other ashless dispersants such as a long chain polyalkylamine, and an amide of a long chain fatty acid and a polyamine or with those in combination with the above-described polybutenylsuccinimide ashless dispersant.
- Wear inhibitors used in the present invention may be one or more dialkyldithio zinc phosphate selected from compounds represented by formula (11)
- R 19 , R 20 , R 21 , and R 22 are each independently a primary alkyl group having 2 to 18, preferably 4 to 12 carbon atoms or a secondary alkyl group having 3 to 18, preferably 3 to 10 carbon atoms.
- the primary alkyl group having 2 to 18 carbon atoms are those represented by the formula R 23 -CH 2 - (12).
- R 23 is a straight or branched alkyl group having 1 to 17, preferably 3 to 11 carbon atoms.
- R 23 are straight or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, and heptadecyl groups.
- the secondary alkyl group having 3 to 18 carbon atoms are those represented by the formula
- R 24 and R 25 are each independently a straight or branched alkyl group having 1 to 16, preferably 1 to 8 carbon atoms to be selected such that the total carbon number of R 24 and R 25 is 2 to 17, preferably 2 to 9 carbon atoms.
- R 24 and R 25 are straight or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and hexadecyl groups.
- the upper limit content of the dialkyldithio zinc phosphate is 0.10 percent by mass, preferably 0.09 percent by mass, on an elementary basis, based on the total mass of the composition.
- the content in excess of the upper limit would accelerate the poisoning of a ternary catalyst adversely affecting exhaust gas.
- No particular limitation is imposed on the lower limit content of the dialkyldithio zinc phosphate.
- the lower limit is preferably 0.04 percent by mass, more preferably 0.06 percent by mass, on an elementary basis, based on the total mass of the composition.
- An engine oil composition may be blended with one or more of other friction modifies such as organic phosphates, fatty acids, fatty acid esters, aliphatic alcohols, or with those in combination with the above-described dialkyldithio zinc phosphates.
- other friction modifies such as organic phosphates, fatty acids, fatty acid esters, aliphatic alcohols, or with those in combination with the above-described dialkyldithio zinc phosphates.
- Preferred ashless oxidation inhibitors are phenolic ashless oxidation inhibitors used as oxidation inhibitors for a lubricating oil.
- Specific examples of the phenolic ashless oxidation inhibitors are 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-bis(2,6-di-tert-butylphenol), 4,4'-bis(2-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 4,4'-isopropylidenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-nonylphenol), 2,2'-isobutylidenebis(4,6-dimethylphenol), 2,2
- An engine oil composition may be blended with one or more of the above-described ashless dispersants or with one or more of amine-based ashless dispersants such as phenyl- ⁇ -nephtylamine, alkylphenyl- ⁇ -nephtylamine, and dialkyldiphenylamine.
- amine-based ashless dispersants such as phenyl- ⁇ -nephtylamine, alkylphenyl- ⁇ -nephtylamine, and dialkyldiphenylamine.
- the above-described phenolic ashless dispersants may be sued in combination with the amine-based ashless dispersants.
- the upper limit content of the above-described ashless oxidation inhibitors is 3.0 percent by mass, preferably 2.0 percent by mass. A content in excess of the upper limit would fail to achieve oxidation inhibition that balances the amount. No particular limitation is imposed on the lower limit content. However, the lower limit content of preferably 0.1 percent by mass, more preferably 0.3 percent by mass is contributive to reduce the friction coefficient of an engine oil after being deteriorated.
- An engine oil composition according to the present invention may be blended with friction modifiers other than the above-described molybdenumdithiocarbamates.
- friction modifiers may be molybdenumdithiophosphate, molybdenum disulfide, long-chain aliphatic amines, long-chain fatty acids, long-chain fatty acid esters, long-chain aliphatic alcohols.
- Additives other than those of the above-described which may be used in the present invention are corrosion inhibitors such as petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenylsuccinates, and polyalcohol esters; demulsifying agent, typical examples of which are polyalkylene glycol-based non-ionic surfactants such as polyoxyethylenealkyl ether, polyoxyethylenealkylphneyl ether, and polyoxyethylenealkylnaphthyl ether; metal diactivators such as imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothizole, benzotriazole and derivatives thereof, 1,3,4-thiadiazolepolysulfide, 1,3,4-thiadizolyl-2,5-bisdialkyldithiocarbamte, 2-(alkyldithio)benzoimidazole, and
- the corrosion inhibitors and demulsifying agents are each added in an amount of 0.1 to 15 percent by mass, the antifoamers are added in an amount of 0.0005 to 1 percent by mass, and the metal deactivators are added in an amount of 0.005 to 1 percent by mass, based on the total mass of the composition.
- An engine oil composition according to the present invention may be used preferably in motorcycle engines, automobile engines, diesel engines for land use, and marine diesel engines.
- the friction torque of the whole of an engine was measured by driving at 1,500 rpm, at an oil temperature of 80 ° C, and at a water temperature of 80 ° C.
- an engine oil has better fuel efficiency with the smaller value which indicates the smaller friction loss at each parts of the engine.
- the evaporation loss of each of the engine oils was measured after being heated at a temperature of 250 ° C and under a constant pressure for one hour. An engine oil with the smaller value is less consumed during actual running.
- Table 1 shows the above performance evaluation test results of the engine oils of Inventive Examples 1 - 3.
- Each of the engine oils was formulated so as to have the same kinematic viscosity at 100 ° C and high temperature high shear viscosity at 150 ° C. It is apparent from the results in Table 1 that the engine oils of Inventive Examples 1 - 3 had an excellent fuel efficiency, less evaporation loss, and an excellent low temperature viscosity. It was also apparent that these oils exhibited more excellent performances when being blended with a polymethacrylate-based viscosity index improver with a weight-average molecular weight of 250,000 than when being blended with that of a weight-average molecular weight of 150,000. Furthermore, it was apparent that the engine oils blend with molybdenumdithiocarbamate exhibited an excellent fuel efficiency.
- Table 1 also shows the above performance evaluation test results of the engine oils of Comparative Examples 1 - 3.
- the engine oil of Comparative Example 1 with the base oil having a viscosity index of 100 was inferior in fuel efficiency, evaporation loss, andlowtemperatureviscosity.
- the engine oil containing an olefin copolymer-based viscosity index improver (Comparative Examples 2) was inferior in fuel efficiency, evaporation loss, and low temperature viscosity.
- the engine oil of Comparative Example 3 with a kinematic viscosity of 9.3 or more was inferior in fuel efficiency even though being blended with molybdenumdithiocarbamate.
- the present invention can provide an engine oil composition which excels in fuel efficiency and low temperature characteristics and encounters less evaporation loss.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- Lubricants (AREA)
Description
- This invention relates to engine oil compositions, and more particularly to engine oil compositions which provide excellent fuel efficiency and viscosity at low temperatures and are less in evaporation loss.
- The fuel consumption reduction of automobile engines implemented since the oil crisis is still one of the important issues from the viewpoint of resource-and environment-protection. The fuel consumption reduction of automobiles has been put into practice by reducing the body weight of an automobile, improving combustion efficiency, and reducing the occurrence of friction in an engine. The reduction of fiction in engines has been implemented by improving the movable valve structures, reducing the number of piston rings, smoothing the abrasive surfaces of sliding parts, and using fuel efficient engine oils.
- Among these measures for reducing fuel consumption, the use of such fuel efficient engine oils has become general in the market because of their excellent balance of cost and performances. The engine oils are blended with effective additives such as friction modifiers. However, in order to make friction modifiers exhibit their performances sufficiently, it is important to carefully select a base oil and formulate the other engine oil additives.
- Japanese Patent Laid-Open Publication No.
8-302378 -
US 5, 744, 430 relates to an engine oil composition having therein a base oil with a specified kinematic viscosity and with a specified total amount of aromatics, comprising an alkaline earth metal salicylate detergent, a zinc dialkyldithiophosphate, a succinimide ashless dispersant containing a polybutenyl group having a specified number-average molecular weight, a phenol ashless antioxidant, a molybdenum dithiocarbamate friction modifier, and a viscosity index improver in such an amount that the kinematic viscosity of said composition ranges from 5.6 to 12.5mm2/s at 100 °C -
WO 97/04049 - Reducing the viscosity of an engine oil is considered to be one of the measure to provide an engine oil with good fuel efficiency. However, no particular examination or research has not sufficiently been done on a base oil or additives for a low viscosity engine oil.
- An object of the present invention is to provide an engine oil composition which is reduced more in viscosity than conventional fuel efficient engine oils and provide excellent fuel efficiency and viscosity characteristics at low temperatures with less evaporation loss by blending suitable additives.
- As a result of an extensive research and development, it was found that an engine oil composition which is reduced more in viscosity than conventional fuel efficient engine oils and provide excellent fuel efficiency and viscosity characteristics at low temperatures and is less in evaporation loss can be obtained by blending a specific base oil with an specific amount of a polymethacrylate-based viscosity index improver.BRIEF SUMMARY OF THE PRESENT INVENTION
- According to the present invention, there is provided an engine oil composition which comprises (A) a lubricant base oil having a kinematic viscosity at 100 ° C of 2 to 6 mm2/S, a viscosity index of 120 or more and a total aromatic content of 15 percent by mass or less and (B) a polymethacrylate-based viscosity index improver blended in such an amount that the composition has a kinematic viscosity at 100° C of 4.0 to 9.3 mm2/s, wherein the composition further comprises an alkaline earth metal-based detergent which is one or more metallic detergents selected from the group consisting of an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate.
- Furthermore, according to the present invention, there is provided an engine oil composition which comprises (A) a lubricant base oil having a kinematic viscosity at 100 ° C of 2 to 6 mm2/S, a viscosity index of 120 or more and a total aromatics content of 15 percent by mass or less; (B) a polymethacrylate-based viscosity index improver blended in such an amount that the composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm2/s; and (C) molybdenumdithiocarbamate.
- The polymethacrylate-based viscosity index improver have preferably have an weight-average molecular weight of 180,000 or more.
- The present invention is described below in more detail.
- A lubricating base oil referred to as Component (A) in an engine oil composition according to the present invention has a kinematic viscosity at 100 ° C of which upper limit is 6 mm2/s, preferably 5 mm2/s and lower limit is 2 mm2/s, preferably 3 mm2/s. Lubricant base oils in excess of the upper limit would lead to increased fluid resistance resulting in increased loss caused by wear occurring at engine parts to be lubricated, while those of less than the lower limit would lead to insufficient oil-film formation, resulting in less lubricity and increased evaporation loss.
- Component (A) has necessarily a viscosity index of 120 or more. Such a viscosity index value is contributive to the production of an engine oil composition having excellent low-temperature viscosity characteristics. Base oils having a viscosity index of less than 120 would lead to a necessity to bring it down lower viscosity, resulting in the increased evaporation loss and viscosity of the resulting engine oil.
- The upper limit of aromatic content of Component (A) is 15 percent by mass, preferably 10 percent by mass, and most preferably 5 percent by mass. Base oils in excess of the upper limit would fail to achieve synergistic effects with each additive to be used in the present invention. No particular limitation is imposed on the lower limit of aromatic content. However, Component (A) has preferably a total aromatic content of 2 percent by mass or more because that having a total aromatic content of less than 2 percent by mass would not possibly exhibit solubility to various additives.
- The term "total aromatic content" used herein denotes an aromatic fraction content measured in accordance with ASTM D2549. Incorporated by the aromatic fraction are generally alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene, alkylated products thereof, compounds in which 4 or more benzene rings are condensed, and compounds having hetero-aromatics, such as pyridines, quinolines, phenols, and naphthols.
- Eligible base oils for the present invention are mineral lubricating oils, synthetic lubricating oils, and mixtures of two or more of these oils mixed in a suitable ratio.
- For instance, the base oils are exemplified by mineral lubricating oils, mixtures of mineral lubricating oils and non-aromatic containing synthetic lubricating oils, and mixtures of aromatic-containing synthetic lubricating oils and non-aromatics containing synthetic lubricating oils.
- The term "mineral lubricating oil" used herein denotes not only a single mineral lubricating oil but also a mixture of two or more mineral lubricating oils. Therefore, when using two more mineral lubricating oils as the base oil, there may be used not only a mixture of mineral lubricating oils each having a total aromatic content of 15 percent by mass or less but also a mixture of a mineral lubricating oil having a total aromatic content of 15 percent by mass and a mineral lubricating oil having a total aromatic content exceeding 15 percent by mass as long as the resulting base oil has a total aromatic content of 15 percent by mass or less.
- Furthermore, when using a mixture of a mineral lubricating oil and a non-aromatic containing synthetic lubricating oil, there may be used a mineral lubricating oil having a total aromatic content exceeding 15 percent by mass as long as the resulting base oil has a total aromatic content of 15 percent by mass or less.
- Specific examples of the mineral lubricating oil are those obtained by subjecting a lubricant fraction obtained by vacuum-distilling an atmospheric residue derived from the atmospheric distillation of crude oil to one or more refining processes such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, and hydrorefining.
- Specific examples of the aromatic-containing synthetic lubricating oil are alkylnaphthalenes and alkylbenzenes.
- Specific examples of the non-aromatic containing synthetic lubricating oil are polybutens and hydrides thereof; poly-α-olefins such as 1-octene oligomer and 1-decene oligomer, and hydrides thereof; diesters such as ditridecylglutarate, di-2-ethylhexyladipate, disodecyladipate, and di-2-ethylhexylcebacate; polyolesters such as trimethylolpropanecaprylate, trimethylolpropanepelargonate, pentaerythritol-2-ehylhexyanoate, and pentaerythritolpelargonate; and mixtures thereof.
- Each of these lubricating oil exhibits its peculiar viscosity-temperature characteristics, i.e., viscosity index. As long as a lubricating oil used as a base oil of the present invention has a viscosity index of 120 or more, even though a lubricating base selected from the above has a viscosity index of less than 120, it may be used in combination with those having a viscosity index of 120 or more.
- Component (B) of an engine oil composition according to the present invention is a polymethacrylate-based viscosity index improver blended in such an amount that the resulting composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm2/s. The kinematic viscosity at 100 ° C of the resulting composition in excess of 9.3 mm2/S would not provide sufficient fuel efficiency, while that of less than 4.0 mm2/s would improve fuel efficiency caused by the reduced viscosity of the composition and viscosity at low temperatures but fail to have sufficient lubricity as an engine oil.
- The combination of a base oil with such a polymethacrylate-based viscosity index improver in an engine oil composition according to the present invention results in enhanced viscosity index improving effects, less thickening effects, and excellent pour point reduction effects. The polymethacrylate-based viscosity index improver is indispensable in an engine oil composition according to the present invention in order to provide it with excellent low temperature characteristics.
- Whereas, when using known polyolefin copolymer-based viscosity index improver, the same effects as the present invention can not be achieved.
- The polymethacrylate-based viscosity index improvers which may be used in the present invention are any type of non-dispersion type or dispersion type polymethacrylate compounds which are used as viscosity index improvers for a lubricating oil.
-
- In formula (1), R1 is a straight or branched alkyl group such as methyl, ethyl, propyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl groups.
- Specific examples of the dispersion type polymethacrylate-based viscosity index improver are copolymers obtained by copolymerizing one or more monomers selected from compounds represented by formula (1) with one or more nitrogen-containing monomers selected from compounds represented by formulae (2) and (3)
- In formulae (2) and (3), R2 and R4 are each independently hydrogen or methyl. R3 is a straight or branched alkylene group having 1 to 18 carbon atoms, such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, and octadecylene groups. e is an integer of 0 or 1. X1 and X2 are each independently an amino- or heterocyclic- residue having 1 or 2 nitrogen and 0 to 2 oxygen. Specific examples of X1 and X2 are dimethylamino, diethylamino, dipropylamino, dibutylamino, anilino, toluidino, xylidino, acetylamino, benzoilamino, morpholino, pyrolyl, pyridyl, methylpydidyl, pyrolidinyl, piperidinyl, quinonyl, pyrrolidonyl, pyrrolidono, imidazolino, and pyrazino groups.
- Specific examples of the nitrogen-containing monomer represented by formula (2) or (3) are dimethylaminomethylmethacrylate, diethylaminomethylmethacrylate, dimethylaminoethylmethacrylate, diethylaminoethylmethacrylate, 2-methyl-5-vinylpyridine, morpholinomethylmethacrylate, morpholinoethylmethacrylate, N-vinylpyrrolidone, and mixtures thereof.
- Regardless of how much weight-average molecular weight the polymethacrylate-based viscosity index improver has, it can improve the low temperature viscosity characteristics. However, the lower limit of the weight-average molecular weight of the polymethacrylate-based viscosity index improver, which is effective in improving the performance of an engine oil, is preferably 180,000, more preferably 190,000. Polymethacrylate-based viscosity index improvers having a weight-average molecular weight of 180,000 or more can decrease the amount of other viscosity index improvers to be added so as to further improve low temperature viscosity, not only leading to an advantage in terms of cost but also an improvement in shear stability such that the initial performances of the resulting engine oil can be maintained. No particular limitation is imposed on the upper limit. When consideration is given to an easy treatment of the composition, it is preferably 500,000 or less and more preferably 400,000 or less.
- As described above, an engine oil composition according to the present invention contains the polymethacrylate-based viscosity index improver in such an amount that the composition has a kinematic viscosity at 100 ° C of 4.0 to 9.3 mm2/s. As long as the kinematic viscosity at 100 ° C of an engine oil composition is within this range, the content of a polymethacrylate-based viscosity index improver may be arbitrary selected. However, the content is preferably from 0.5 to 10 percent by mass based on the total weight of the composition.
-
- In formula (4), R5, R6, R7, and R8 may be the same or different and are each independently an alkyl or alkylaryl group having 2 to 18 carbon atoms. Y1, Y2, Y3, and Y4 are each independently sulfur or oxygen. The alkyl group includes primary, secondary, and tertiary alkyl groups which may be straight or branched. Specific examples of the alkyl group are ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, and tridecyl groups. Specific examples of the molybdenumdithiocarbamate are molybdenumdiethyldithiocarbamate sulfide, molybudenumdipropyldithiocarbamate sulfide, molybdenumdibutyldithiocarbamate sulfide, molybdenumdipentyldithiocarbamate sulfide, molybdenumdihexyldithiocarbamate sulfide, molybdenumdioctyldithiocarbamate sulfide, molybdenumdidecyldithiocarbamate sulfide, molybdenumdidodecyldithiocarbamate sulfide, molybdenumditridecyldithiocarbamate sulfide, molybdenumdi(butylphenyl)dithiocarbamate sulfide, molybdenumdi(nonylphenyl)dithiocarbamate sulfide, oxymolybdenumdiethyldithiocarbamate sulfide, oxymolybdenumdipropyldithiocarbamate sulfide, oxymolybdenumdibutyldithiocarbamate sulfide, oxymolybdenumdipentyldithiocarbamate sulfide, oxymolybdenumdihexyldithiocarbamate sulfide, oxymolybdenumdioctyldithiocarbamate sulfide, oxymolybdenumdidecyldithiocarbamate sulfide, oxymolybdenumdidodecyldithiocarbamate sulfide, oxymolybdenumditridecyldithiocarbamate sulfide, oxymolybdenumdi(butylphenyl)dithiocarbamate sulfide, and oxymolybdenumdi(nonylphenyl)dithiocarbamate sulfide. Mixtures of these compounds may also be used.
- The upper limit molybdenum content is 0.15 percent by mass, preferably 0.10 percent by mass, in terms of molybdenum concentration, based on the total mass of the composition. The content in excess of the upper limit would cause the formation of sludge when the engine oil is deteriorated. No particular limitation is imposed on the lower limit molybdenum content. However, the lower limit is preferably 0.02 percent by mass, more preferably 0.04 percent by mass in terms of molybdenum concentration, based on the total mass of the composition in order to obtain a sufficient friction reduction effect.
- As described above, an engine oil composition according to the present invention excels in fuel efficiency and low temperature viscosity and is less in evaporation loss by blending a specific base oil with a polymethacrylate-based viscosity index improver so as to obtain a specific viscosity. Furthermore, the use of a polymethacrylate-based viscosity index improver having a weight average molecular weight of 180, 000 or more can further improve fuel efficiency and low temperature viscosity. Higher level of fuel efficiency can be provided in an engine oil by adding thereto molybdenumdithiocarbamate.
- For the purpose of enhancing these various performances and other various performances required for an engine oil composition, known engine oil additives may be used singlely or in combination.
- Examples of such known additives which may be used in the present invention are alkaline earth metal-based detergents, ashless dispersants, corrosion inhibitors, ashless oxidation inhibitors, friction modifiers other than molybdenumdithiocarbamate, corrosion inhibitors, demulsifying agents, metal deactivators, and antifoamers.
- Eligible alkaline earth metal-based detergents are alkaline earth metal compounds which are added in a lubricating oil. Specific examples of such a detergent are one or more metallic detergents selected from alkaline earth metal sulfonates, alkaline earth metal phenates, and alkaline earth metal salicylates.
- Preferred alkaline earth metal sulfonates are alkaline earth metal salts, preferably magnesium salt and/or calcium salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound having a molecular weigh of 300 to 1,500, preferably 400 to 700. The latter is more preferred.
- The above-mentionedalkyl aromatic sulfonic acid may be a petroleum sulfonic acid and a synthetic sulfonic acid.
- The petroleum sulfonic acid may be mahogany acid obtained by sulfonating the alkyl aromatic compound contained in the lubricant fraction of mineral oil or by-produced upon the production of white oil. The synthetic sulfonic acid may be those obtained by sulfonating alkyl benzene having a straight or branched alkyl group, which may be by-produced from a plant for producing alkyl benzene used as material of detergents, or sulfonating dinonylnaphthalene. Although not restricted, there may be used fuming sulfuric acid and sulfuric acid as a sulfonating agent.
- The alkaline earth metal phenate may be an alkaline earth metal salt, preferably magnesium salt and/or calcium salt of alkylphenol, alkylphenolsulfide, or a product resulting from Mannich reaction of the alkylphenol. Specific examples are those represented by the formulae
- Specific examples of R9, R10, R11, R12, R13, and R14 are butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups, all of which may be straight or branched and primary, secondary or tertiary alkyl groups.
- The alkaline earth metal salicylate may be an alkaline earth metal salt, preferably magnesium salt and/or calcium salt of an alkyl salicylate. Specific examples are those represented by the formula
- Specific examples of R15 are butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, and triacontyl groups, all of which may be straight or branched and primary, secondary or tertiary alkyl groups.
- Moreover, the alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate may be a neutral alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate obtained by directly reacting a compound such as the above-mentioned alkyl aromatic sulfonic acid, alkylphenol, alkylphenol sulfide and the Mannich reaction product thereof, and alkyl salicylic acid with an alkaline earth metal oxide or hydroxide of magnesium and/or calcium, or obtained by converting the compound into an alkali metal salt such as sodium salt or potassium salt and then substituting the alkali metal salt with an alkaline earth metal salt. The alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate may also be a basic alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate obtained by heating a neutral alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate in water containing an excess amount of an alkaline earth metal salt or an alkaline earth metal base; or an overbased alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate obtained by reacting a neutral alkaline earth metal sulfonate, alkaline earth metal phenate or alkaline earth metal salicylate with the carbonic acid salt or boric acid salt of an alkaline earth metal in the presence of carbon dioxide.
- In the present invention, there may be used the above-described neutral alkaline earth metal salt, basic alkaline earth metal salt, overbased alkaline earth metal salt, and mixtures thereof.
- Commercially available metallic detergents are usually diluted with a light lubricating base oil. It is preferred to use metallic detergents containing metal in an amount of 1.0 to 20 percent by mass, preferably 2.0 to 16 percent by mass.
- No particular limitation is imposed on the total base number of the alkaline earth metal detergent used in the present invention. However, preferred metallic detergents are those having a total base number of 30 to 400 mgKOH/g, preferably 150 to 300 mgKOH/g. The term "total base number" used herein denotes a total base number measured by the perchloric acid potentiometric titration method in accordance with section 7 of JIS K2501 "Petroleum products and lubricants-Determination of neutralization number"
- Although not restricted, the content of the alkaline earth metal detergent is within the range of 1.0 to 10.0 percent by mass, preferably 1.0 to 8.0 percent by mass, more preferably 1.5 to 5.0 percent by mass, based on the total mass of the composition.
-
- In formulae (9) and (10), R16, R17, and R18 are each independently a polybutenyl group having a number-average molecular weight of 900 to 3,500, preferably 1,000 to 3,000, and c is an integer of 2 to 5.
- No particular limitation is imposed on a method for producing the polybutenylsuccinimides. For instance, the polybutenylsuccinimides may be obtained by reacting polybutenylsuccinate resulting from the reaction of a polybutene or chlorinated polybutene having a number-average molecular weight of 900 to 3,500, with maleic anhydride. Specific examples of the polyamine are diethyltriamine, triethylenetetraamine, tetraethylenepentamine, and pentaethylenehexamine.
- The upper limit content of the polybutenylsuccinimide is 0.20 percent by mass, preferably 0.10 percent by mass, in terms of nitrogen concentration, based on the total mass of the composition. Contents in excess of the upper limit would adversely affect rubber-made sealing materials of an engine. No particular limitation is imposed on the lower limit content of the polybutenylsuccinimide. However, the lower limit is preferably 0.05 percent by mass, more preferably 0.06 percent by mass, in terms of nitrogen concentration, based on the total mass of the composition such that a more sufficient fuel efficiency can be achieved.
- Alternatively, an engine oil composition may be blended with one or more of other ashless dispersants such as a long chain polyalkylamine, and an amide of a long chain fatty acid and a polyamine or with those in combination with the above-described polybutenylsuccinimide ashless dispersant.
-
- In formula (11), R19, R20, R21, and R22 are each independently a primary alkyl group having 2 to 18, preferably 4 to 12 carbon atoms or a secondary alkyl group having 3 to 18, preferably 3 to 10 carbon atoms.
- The primary alkyl group having 2 to 18 carbon atoms are those represented by the formula
R23-CH2- (12).
- In formula (12), R23 is a straight or branched alkyl group having 1 to 17, preferably 3 to 11 carbon atoms. Specific examples of R23 are straight or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, and heptadecyl groups.
-
- In formula (13), R24 and R25 are each independently a straight or branched alkyl group having 1 to 16, preferably 1 to 8 carbon atoms to be selected such that the total carbon number of R24 and R25 is 2 to 17, preferably 2 to 9 carbon atoms. Specific examples of R24 and R25 are straight or branched alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and hexadecyl groups.
- The upper limit content of the dialkyldithio zinc phosphate is 0.10 percent by mass, preferably 0.09 percent by mass, on an elementary basis, based on the total mass of the composition. The content in excess of the upper limit would accelerate the poisoning of a ternary catalyst adversely affecting exhaust gas. No particular limitation is imposed on the lower limit content of the dialkyldithio zinc phosphate. In order to maintain the friction coefficient after the deterioration of an engine oil, lower i.e., to maintain fuel efficiency longer, the lower limit is preferably 0.04 percent by mass, more preferably 0.06 percent by mass, on an elementary basis, based on the total mass of the composition.
- An engine oil composition may be blended with one or more of other friction modifies such as organic phosphates, fatty acids, fatty acid esters, aliphatic alcohols, or with those in combination with the above-described dialkyldithio zinc phosphates.
- Preferred ashless oxidation inhibitors are phenolic ashless oxidation inhibitors used as oxidation inhibitors for a lubricating oil. Specific examples of the phenolic ashless oxidation inhibitors are 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-bis(2,6-di-tert-butylphenol), 4,4'-bis(2-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 4,4'-isopropylidenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-nonylphenol), 2,2'-isobutylidenebis(4,6-dimethylphenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-4(N,N'-dimethylamino-p-cresol, 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylpheno 1), 4,4'-thiobis(2-methyl-6-tert-butylphenol), 4,4'-thiobis(3-methyl-6-tert-butylphenol), 2,2'-thiobis(4-methyl-6-tert-butylphenol), bis(3-methyl-4-hydroxy-5-tert-butylbenzyl)sulfide, bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, 2,2'-thio-diethylenebis[3-(3,5-di-tert-butyl-4-hy droxyphenyl)propionate], tridecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)pro pionate, pentaerythrityl-tetraquis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)pr opionate, and mixtures thereof.
- An engine oil composition may be blended with one or more of the above-described ashless dispersants or with one or more of amine-based ashless dispersants such as phenyl-α-nephtylamine, alkylphenyl-α -nephtylamine, and dialkyldiphenylamine. Alternatively, the above-described phenolic ashless dispersants may be sued in combination with the amine-based ashless dispersants.
- The upper limit content of the above-described ashless oxidation inhibitors is 3.0 percent by mass, preferably 2.0 percent by mass. A content in excess of the upper limit would fail to achieve oxidation inhibition that balances the amount. No particular limitation is imposed on the lower limit content. However, the lower limit content of preferably 0.1 percent by mass, more preferably 0.3 percent by mass is contributive to reduce the friction coefficient of an engine oil after being deteriorated.
- An engine oil composition according to the present invention may be blended with friction modifiers other than the above-described molybdenumdithiocarbamates. Such friction modifiers may be molybdenumdithiophosphate, molybdenum disulfide, long-chain aliphatic amines, long-chain fatty acids, long-chain fatty acid esters, long-chain aliphatic alcohols.
- Additives other than those of the above-described which may be used in the present invention are corrosion inhibitors such as petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenylsuccinates, and polyalcohol esters; demulsifying agent, typical examples of which are polyalkylene glycol-based non-ionic surfactants such as polyoxyethylenealkyl ether, polyoxyethylenealkylphneyl ether, and polyoxyethylenealkylnaphthyl ether; metal diactivators such as imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothizole, benzotriazole and derivatives thereof, 1,3,4-thiadiazolepolysulfide, 1,3,4-thiadizolyl-2,5-bisdialkyldithiocarbamte, 2-(alkyldithio)benzoimidazole, and β -(o-carboxybenzylthio)propionnitrile; and antifoamers such as slicone, fluorosilicone, and fluoroalkyl ether.
- When adding these additive to an engine oil composition according to the present invention, the corrosion inhibitors and demulsifying agents are each added in an amount of 0.1 to 15 percent by mass, the antifoamers are added in an amount of 0.0005 to 1 percent by mass, and the metal deactivators are added in an amount of 0.005 to 1 percent by mass, based on the total mass of the composition.
- An engine oil composition according to the present invention may be used preferably in motorcycle engines, automobile engines, diesel engines for land use, and marine diesel engines.
- The invention will be further described by way of the following examples which are provided for illustrative purposes only. The performances of engine oils used in inventive examples and comparative examples were evaluated by the following performance evaluating tests.
- The friction torque of the whole of an engine was measured by driving at 1,500 rpm, at an oil temperature of 80 ° C, and at a water temperature of 80 ° C. In general, an engine oil has better fuel efficiency with the smaller value which indicates the smaller friction loss at each parts of the engine.
- The evaporation loss of each of the engine oils was measured after being heated at a temperature of 250 ° C and under a constant pressure for one hour. An engine oil with the smaller value is less consumed during actual running.
- This test evaluates the cranking performance of each of the engine oils. Engine oils with the smaller value has better low temperature viscosity characteristics.
- Table 1 shows the above performance evaluation test results of the engine oils of Inventive Examples 1 - 3. Each of the engine oils was formulated so as to have the same kinematic viscosity at 100 ° C and high temperature high shear viscosity at 150 ° C. It is apparent from the results in Table 1 that the engine oils of Inventive Examples 1 - 3 had an excellent fuel efficiency, less evaporation loss, and an excellent low temperature viscosity. It was also apparent that these oils exhibited more excellent performances when being blended with a polymethacrylate-based viscosity index improver with a weight-average molecular weight of 250,000 than when being blended with that of a weight-average molecular weight of 150,000. Furthermore, it was apparent that the engine oils blend with molybdenumdithiocarbamate exhibited an excellent fuel efficiency.
- Table 1 also shows the above performance evaluation test results of the engine oils of Comparative Examples 1 - 3. The engine oil of Comparative Example 1 with the base oil having a viscosity index of 100 was inferior in fuel efficiency, evaporation loss, andlowtemperatureviscosity. The engine oil containing an olefin copolymer-based viscosity index improver (Comparative Examples 2) was inferior in fuel efficiency, evaporation loss, and low temperature viscosity. The engine oil of Comparative Example 3 with a kinematic viscosity of 9.3 or more was inferior in fuel efficiency even though being blended with molybdenumdithiocarbamate.
Table 1 Inventive Example 1 Inventive Example 2 Inventive Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Base oil I1) Mass % 85.9 85.9 84.3 79.7 82.3 Base oil II 2) mass % 4.2 Base oil III3) mass % 85.9 Viscosity index improver I 4) mass % 4.0 Viscosity index improver II 5) mass % 4.0 4.0 4.0 6.0 Viscosity index improver III 6) mass % 6.0 MoDTC7) mass % 1.6 1.6 Additive Package 8) mass % 10.1 10.1 10.1 10.1 10.1 10.1 Kinematic viscosity (100°C) mm2/s 8.25 8.33 8.32 8.39 8.24 9.45 High temperature high shear Viscosity (150°C) mPa·s 2.62 2.63 2.61 2.62 2.61 2.75 Engine motoring friction torque Test N·m (○) 19.6 (○) 19.4 (⊚) 18.1 (×) 20.2 (×) 20.2 (×) 20.1 NOACK Evaporation Mass % (○) 14 (○) 14 (○) 14 (×) 22 (×) 17 (○) 14 CCS viscosity (-25°C) mPa·s (○) 3250 (○) 3200 (○) 3270 (×) 4630 (×) 4960 (○) 3300 1) hydrocracking mineral oil : 4.2 mm2/s of kinematic viscosity at 100° C, 3.1 mass % of total aromatics content, 125 of viscosity index
2) hydrocracking mineral oil : 2.6 mm2/s of kinematic viscosity at 100° C, 2.1 mass % of total aromatics content, 104 of viscosity index
3) solvent-refined mineral oil : 4.5 mm2/s of kinematic viscosity at 100° C, 25.3 mass % of total aromatics content, 100 of viscosity index
4) Polymethacrylate-based viscosity index improver: 150,000 of weight-average molecular weight
5) Polymethacrylate-based viscosity index improver: 250,000 of weight-average molecular weight
6) Olefin copolymer-based viscosity index improver: 250,000 of weight-average molecular weight
7) Molybdenumdithiocarbamate represented by the formula
Y is Oxygen or sulfur,
4.8 mass % of molybdenum concentration
8) Additive mixtures containing calcium sulfonate, calcium salicylate, dialkyldithio zinc phosphate, succinimide-based ashless dispersant, phenol-based oxidation inhibitor, antifoamer, and corrosion inhibitor - As described above, the present invention can provide an engine oil composition which excels in fuel efficiency and low temperature characteristics and encounters less evaporation loss.
Claims (10)
- An engine oil composition which comprises (A) a lubricating base oil having a kinematic viscosity at 100 °C of 2 to 6 mm2/s, a viscosity index of 120 or more, and a total aromatic content of 5 percent by mass or less and (B) a polymethacrylate-based viscosity index improver having a weight-average molecular weight of 180,000 or more, blended in such amount that the composition has a kinematic viscosity at 100°C of 4.0 to 9.3 mm2/s.,
wherein the composition further comprises an alkaline earth metal-based detergent which is one or more metallic detergents selected from the group consisting of an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate. - An engine oil composition which comprises (A) a lubricating base oil having a kinematic viscosity at 100°C of 2 to 6 mm2/s, a viscosity index of 120 or more, and a total aromatics content of 5 percent by mass or less, (B) a polymethacrylate-based viscosity index improver having a weight-average molecular weight of 180,000 or more, blended in such amount that the composition has a kinematic viscosity at 100 °C of 4.0 to 9.3 mm2/s, and (C) molybdenumdithiocarbamate.
- The engine oil composition according to claim 1 or 2, wherein said polymethacrylate-based viscosity index improver is a copolymer obtained by copolymerizing one or more monomers selected from the group consisting of compounds represented by formula (1) with one or more nitrogen-containing monomers selected from the group consisting of compound represented by the formulae:
- The engine oil composition according to claim 2, wherein said molybdenumdithiocarbamate is contained in an amount of 0.02 to 0.15 percent by mass in terms of molybdenum concentration, based on the total mass of the composition.
- The engine oil composition according to claim 2, wherein said molybdenumdithiocarbamate is represented by the formula:
- The engine oil composition according to claim 2, which further comprises additives selected from the group consisting of alkaline earth metal detergent, ashless dispersants, wear inhibitors, ashless oxidation inhibitors, friction modifiers other than molybdenumdithiocarbamate, corrosion inhibitors, demulsifying agents, metal deactivators and antifoamers.
- The engine oil composition according to claim 1 or 2, wherein said total aromatic content is 2 percent by mass or more.
- The engine oil composition according to claim 1, wherein the alkaline earth metal-based detergent is a magnesium salt and/or calcium salt thereof.
- The engine oil composition according to claim 1, which further comprises additives selected from the group consisting of ashless dispersants, wear inhibitors, ashless oxidation inhibitors, friction modifiers, corrosion inhibitors, demulsifying agents, metal deactivators and antifoamers.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36544599A JP2001181664A (en) | 1999-12-22 | 1999-12-22 | Engine oil composition |
JP36544599 | 1999-12-22 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1111028A1 EP1111028A1 (en) | 2001-06-27 |
EP1111028A9 EP1111028A9 (en) | 2001-12-19 |
EP1111028B1 true EP1111028B1 (en) | 2017-11-22 |
Family
ID=18484282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00850216.3A Expired - Lifetime EP1111028B1 (en) | 1999-12-22 | 2000-12-20 | Engine oil composition |
Country Status (3)
Country | Link |
---|---|
US (1) | US20010027169A1 (en) |
EP (1) | EP1111028B1 (en) |
JP (1) | JP2001181664A (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4749613B2 (en) * | 2001-07-12 | 2011-08-17 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition for internal combustion engines |
US20030166474A1 (en) * | 2002-01-31 | 2003-09-04 | Winemiller Mark D. | Lubricating oil compositions with improved friction properties |
US20030166476A1 (en) * | 2002-01-31 | 2003-09-04 | Winemiller Mark D. | Lubricating oil compositions with improved friction properties |
US6852679B2 (en) * | 2002-02-20 | 2005-02-08 | Infineum International Ltd. | Lubricating oil composition |
US20040224858A1 (en) * | 2003-05-06 | 2004-11-11 | Ethyl Corporation | Low sulfur, low ash, and low phosphorus lubricant additive package using overbased calcium phenate |
JP4507158B2 (en) * | 2003-07-25 | 2010-07-21 | 財団法人石油産業活性化センター | Gasoline engine oil composition with excellent environmental compatibility and fuel efficiency |
JP2005239840A (en) * | 2004-02-25 | 2005-09-08 | Nof Corp | Lubricating oil base oil for internal combustion engine and lubricating oil composition comprising the same |
WO2006043709A1 (en) | 2004-10-22 | 2006-04-27 | Nippon Oil Corporation | Lubricant composition for transmission |
US20060116297A1 (en) * | 2004-12-01 | 2006-06-01 | The Lubrizol Corporation | Engine flush process and composition |
JP2006199857A (en) | 2005-01-21 | 2006-08-03 | Showa Shell Sekiyu Kk | Gasoline engine oil composition excellent in low fuel expense |
JP2007045850A (en) | 2005-08-05 | 2007-02-22 | Tonengeneral Sekiyu Kk | Lube oil composition |
KR100680371B1 (en) | 2005-12-06 | 2007-02-08 | 현대자동차주식회사 | Automatic transmission fluid |
JP5557413B2 (en) * | 2006-02-15 | 2014-07-23 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition for internal combustion engines |
JP5226507B2 (en) * | 2006-03-31 | 2013-07-03 | 出光興産株式会社 | Lubricating oil composition for internal combustion engines |
JP5213310B2 (en) * | 2006-04-20 | 2013-06-19 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP2008024845A (en) * | 2006-07-21 | 2008-02-07 | Cosmo Sekiyu Lubricants Kk | Engine oil |
JP5565999B2 (en) * | 2007-01-31 | 2014-08-06 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP5518468B2 (en) * | 2007-03-30 | 2014-06-11 | Jx日鉱日石エネルギー株式会社 | Hydraulic oil for shock absorber |
KR101396804B1 (en) | 2007-03-30 | 2014-05-20 | 제이엑스 닛코닛세키에너지주식회사 | Lubricant base oil, method for production thereof, and lubricant oil composition |
JP2009167278A (en) * | 2008-01-15 | 2009-07-30 | Nippon Oil Corp | Lubricant composition |
EP2474601B1 (en) | 2007-12-05 | 2015-02-11 | Nippon Oil Corporation | Lubricant oil composition |
JP5551599B2 (en) * | 2008-09-19 | 2014-07-16 | 出光興産株式会社 | Lubricating oil composition for internal combustion engines |
JP5829374B2 (en) * | 2009-06-04 | 2015-12-09 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997004049A1 (en) * | 1995-07-17 | 1997-02-06 | Exxon Chemical Patents Inc. | Partial synthetic transmission fluids with improved low temperature properties |
US5646099A (en) * | 1995-07-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Automatic transmission fluids of improved viscometric properties |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744430A (en) * | 1995-04-28 | 1998-04-28 | Nippon Oil Co., Ltd. | Engine oil composition |
JPH0931483A (en) * | 1995-07-20 | 1997-02-04 | Tonen Corp | Lubricant composition |
JP3608597B2 (en) * | 1996-12-27 | 2005-01-12 | 東燃ゼネラル石油株式会社 | Lubricating oil composition for internal combustion engines |
JP4201902B2 (en) * | 1998-12-24 | 2008-12-24 | 株式会社Adeka | Lubricating composition |
-
1999
- 1999-12-22 JP JP36544599A patent/JP2001181664A/en active Pending
-
2000
- 2000-12-18 US US09/739,433 patent/US20010027169A1/en not_active Abandoned
- 2000-12-20 EP EP00850216.3A patent/EP1111028B1/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997004049A1 (en) * | 1995-07-17 | 1997-02-06 | Exxon Chemical Patents Inc. | Partial synthetic transmission fluids with improved low temperature properties |
US5646099A (en) * | 1995-07-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Automatic transmission fluids of improved viscometric properties |
Also Published As
Publication number | Publication date |
---|---|
EP1111028A9 (en) | 2001-12-19 |
US20010027169A1 (en) | 2001-10-04 |
JP2001181664A (en) | 2001-07-03 |
EP1111028A1 (en) | 2001-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6642189B2 (en) | Engine oil compositions | |
EP1111028B1 (en) | Engine oil composition | |
JP5565999B2 (en) | Lubricating oil composition | |
JP3504405B2 (en) | Diesel engine oil composition | |
US6569819B2 (en) | Lubricant compositions | |
JP5557413B2 (en) | Lubricating oil composition for internal combustion engines | |
EP3626805B1 (en) | Internal combustion engine lubricating oil composition | |
CN108884405B (en) | Lubricating oil composition | |
JP2002012884A (en) | Engine oil composition | |
JP2007045850A (en) | Lube oil composition | |
KR20170063575A (en) | Lubricating oil composition | |
US11649413B2 (en) | Lubricating oil composition for internal combustion engine | |
EP3636730B1 (en) | Internal combustion engine lubricating oil composition | |
EP1559772A1 (en) | Lubricating oil | |
US20160083669A1 (en) | Fuel-efficient engine oil composition | |
JP5311748B2 (en) | Lubricating oil composition | |
JP4643030B2 (en) | Diesel engine oil composition | |
JP4749613B2 (en) | Lubricating oil composition for internal combustion engines | |
JP6572597B2 (en) | Lubricating oil composition for 4-cycle engine | |
JP4038388B2 (en) | Engine oil composition | |
CN110546246A (en) | Lubricating oil composition for internal combustion engine | |
WO2016159215A1 (en) | Lubricating oil composition for four stroke engine | |
JP2016193991A (en) | Lubricant composition for 4-cycle engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20011130 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20061121 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170622 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60049748 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60049748 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181220 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181214 Year of fee payment: 19 Ref country code: GB Payment date: 20181217 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60049748 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191220 |