EP1105237B1 - Method for process monitoring during die casting or thixoforming of metals - Google Patents

Method for process monitoring during die casting or thixoforming of metals Download PDF

Info

Publication number
EP1105237B1
EP1105237B1 EP99944412A EP99944412A EP1105237B1 EP 1105237 B1 EP1105237 B1 EP 1105237B1 EP 99944412 A EP99944412 A EP 99944412A EP 99944412 A EP99944412 A EP 99944412A EP 1105237 B1 EP1105237 B1 EP 1105237B1
Authority
EP
European Patent Office
Prior art keywords
calculated
time
temperature
variation
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99944412A
Other languages
German (de)
French (fr)
Other versions
EP1105237A1 (en
Inventor
Christophe Bagnoud
Miroslaw Plata
Jürgen Wüst
Klaus Währisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to EP99944412A priority Critical patent/EP1105237B1/en
Publication of EP1105237A1 publication Critical patent/EP1105237A1/en
Application granted granted Critical
Publication of EP1105237B1 publication Critical patent/EP1105237B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Definitions

  • the invention relates to a method for process monitoring in die casting or thixoforms of metals in a vacuum in a mold.
  • the invention has for its object a method of the aforementioned To create the way with which the production of die-cast and thixoform parts continuously and reliably monitored under production conditions can be.
  • the temporal course leads to the achievement of the object according to the invention the temperature is continuously measured at at least one point in the system and by means of a program the temperature curve of the system in Real time is calculated, and that from the temperature curve of the system the temporal course of the heat flow and from the heat flow the temporal Course of the energy of the system and the amount of heat of solidification of the in the shape of solidified metal is calculated, at a specified time calculated values can be used as characteristic values for monitoring.
  • the amount of heat per unit time between the metal to be cast and exchanging the mold halves determines the rate of solidification of the part produced by die casting or thixoforming. Since the Characteristics of this exchange directly the mechanical properties of the die-cast or thixiform part is the monitoring of Solidification of the metal in the form to maintain a high quality standard essential.
  • the detection of the amount of solidification heat dissipated via the mold enables it u.a. determine whether the solidification is completely within the shape takes place whether pre-solidification occurs or what liquid-solid ratio is present in a thixomaterial.
  • the amount of latent heat depends on the liquid metal content Filling the mold cavity.
  • the amount of dispensed over the mold halves latent heat in turn depends on the metal to be cast or on the alloy used and can further by the temperature of the mold or the mold halves, by the pressure exerted, by the piston speed as well as the thickness of the lubricant layer.
  • the heat exchange that occurs during the various phases of solidification takes place is calculated using a program.
  • the calculations lie Based on temperature measurements on the mold, preferably the temperature measured in the mold wall and the temporal course of the temperature is calculated on the shaping surface of the mold.
  • the program takes into account inverse heat conduction and calculates the temperature in real time the shaping surface of the mold halves and the heat exchange between the solidifying metal and the shape. With those arranged in this way Temperature sensors can ensure the uniformity of the cooling process and the thermal equilibrium on the mold surface in the different successive phases of casting and cooling in Be monitored in real time. The sensors are therefore preferred in places arranged where the thermal equilibrium and solidification are good too are recorded.
  • a characteristic value for the amount of solidification heat dissipated at a specified time is preferably between about 20% and 100%, in particular between about 50% and 100% of the maximum amount of solidification heat.
  • the time course of the Heat exchange coefficients can be calculated.
  • the one at a particular Time calculated value for the heat exchange coefficient e.g. the maximum values in the solidification or cooling phase, or also the entire curve, can be used as additional parameters.
  • the time course of the solidification length can be derived from the time course of the temperature be calculated.
  • the solidification length is that of Mold surface understood from the measured thickness of the solidified metal.
  • the solidification length calculated at a specified time can be used as a further additional length Characteristic value can be used.
  • the calculated or measured characteristic values can be used for process monitoring are compared as actual values with corresponding target values, whereby it can be provided that in the event of an impermissibly large deviation of the actual values an alarm is triggered by the setpoints within a tolerance range and if the tolerance range of the die casting or thixoforming process is exceeded is interrupted.
  • the setpoint for the amount of solidification heat removed is, for example given as the mean with a standard deviation.
  • the standard deviation can be set as the first tolerance limit, for example Exceeded by the actual value triggers an alarm.
  • Deviations of the actual values from the target values are in real time recorded so that appropriate corrective action can be taken quickly can be.
  • a particularly interesting field of application of the method lies in Die casting and thixoforming, in particular of aluminum and magnesium alloys, for example for the production of safety components for the Vehicle industry.
  • the examination results shown in FIG. 8 show that with the monitoring method according to the invention with regard to the solidification process a high quality standard can be achieved. deviations are displayed immediately online.
  • the calculated values can, for example via a RS232 interface to a programmable machine, which controls the die casting machine.
  • the data are checked, if necessary displayed and finally archived. Fall the calculated Values for the amount of solidification in the tolerance range R, see above an alarm can be triggered directly by the machine. With more deviating Values that fall within the range S can, for example, be automatic Production stop can be triggered.
  • Process monitoring can be carried out at various points in the mold halves Temperature sensors are arranged. The calculations are preferred carried out individually for the individual temperature sensors and also individually recorded as monitoring results. In this way it is possible to locate specific production problems on the mold. The recorded Monitoring results are conveniently archived and can later be used, for example, to prove the production quality of a particular Die-cast or thixiform part can be used.
  • a die casting system 10 has a filling chamber 12 with a filling chamber cavity 14 on. That from a furnace 18 via a feed line 20 for everyone Shot in the filling chamber cavity 14 filled with liquid metal a piston 16 via a sprue 22 from the filling chamber cavity 14 in one of a fixed mold half 24 and a movable mold half 26 formed mold cavity 28 shot.
  • the mold cavity 28 has one or more ventilation channels 30 which possibly combined into a collecting channel.
  • a control insert 32 with a control pin 34 arranged in the fixed Mold half 24 .
  • the control bolt 34 has a locking head 36 for opening or closing the ventilation channel 30.
  • the shift of the Control bolt 34 is carried out by means of an actuating cylinder 38. When this is done The mold is filled via the locking head 36 of the control bolt 34 the ventilation channel 30 is closed at the end of the mold cavity 28.
  • a vacuum line 40 connects to the control insert 32 Valves 42 connected to a vacuum container, not shown in the drawing is. Before the metal is shot into the mold cavity 28 this evacuates and the time course of the pressure in the mold cavity 28 over a pressure sensor 44 connected into the vacuum line 40 is measured.
  • Temperature sensors are located at different points in the two mold halves 24, 26 46 arranged. Not shown in the drawing is one with the Mold cavity related probe to measure relative Humidity.
  • the temperature sensors 46, the pressure sensor 44 and the one not shown Probe for measuring the relative humidity are connected to a program-controlled Computer 48 connected.
  • This computer transfers the measured and calculated parameters to a data acquisition device 50 for monitoring and archiving.
  • the triggering of an alarm or a production stop if tolerance values for individual or all characteristic values are exceeded takes place directly on the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Continuous Casting (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention relates to a method for process monitoring during die casting or vacuum thixoforming of metals in a mold, wherein the time lapse of temperature (T) is continuously measured on at least one point of the system and the temperature progression of the system is calculated in real time using a program. The time lapse of the heat flow (W) is calculated from the temperature progression of the system and the time lapse of the energy (U) of the system and the solidification heat portion (UE) of the metal solidified in the mold are calculated from the heat flow. At a given time, the calculated values are used as monitoring parameters.

Description

Die Erfindung betrifft ein Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen im Vakuum in einer Form.The invention relates to a method for process monitoring in die casting or thixoforms of metals in a vacuum in a mold.

Von der Automobilindustrie werden immer höhere Anforderungen an die Toleranzen und an die mechanischen Eigenschaften von Druckguss- und Thixoformteilen gestellt. Zur Erzielung dieser hohen Qualitätsanforderungen ist eine möglichst vollständige Überwachung der Verfahrensparameter sowie deren Reproduzierbarkeit von grosser Bedeutung. Ein wesentlicher Faktor, der direkt die mechanischen Eigenschaften eines durch Druckgiessen oder Thixoformen hergestellten Teiles bestimmt, ist der Erstarrungsverlauf des Metalls in der Form.The automotive industry is placing increasing demands on tolerances and the mechanical properties of die cast and thixiform parts posed. To achieve these high quality requirements is one monitoring the process parameters and their parameters as completely as possible Reproducibility is of great importance. An essential factor that is direct the mechanical properties of a die casting or thixoforming manufactured part is determined, the solidification course of the metal in the Shape.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit dem die Herstellung von Druckguss- und Thixoformteilen unter Produktionsbedingungen kontinuierlich und zuverlässig überwacht werden kann.The invention has for its object a method of the aforementioned To create the way with which the production of die-cast and thixoform parts continuously and reliably monitored under production conditions can be.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass der zeitliche Verlauf der Temperatur an mindestens einer Stelle des Systems kontinuierlich gemessen und mittels eines Programmes der Temperaturverlauf des Systems in Echtzeit berechnet wird, und dass aus dem Temperaturverlauf des Systems der zeitliche Verlauf des Wärmeflusses und aus dem Wärmefluss der zeitliche Verlauf der Energie des Systems sowie der Erstarrungswärmemenge des in der Form erstarrten Metalls berechnet wird, wobei zu einem festgelegten Zeitpunkt berechnete Werte als Kennwerte für die Überwachung verwendet werden. The temporal course leads to the achievement of the object according to the invention the temperature is continuously measured at at least one point in the system and by means of a program the temperature curve of the system in Real time is calculated, and that from the temperature curve of the system the temporal course of the heat flow and from the heat flow the temporal Course of the energy of the system and the amount of heat of solidification of the in the shape of solidified metal is calculated, at a specified time calculated values can be used as characteristic values for monitoring.

Die Wärmemenge, die pro Zeiteinheit zwischen dem zu vergiessenden Metall und den Formhälften ausgetauscht wird, bestimmt die Erstarrungsgeschwindigkeit des durch Druckgiessen oder Thixoformen hergestellten Teiles. Da die Charakteristiken dieses Austausches direkt die mechanischen Eigenschaften des Druckguss- oder Thixoformteiles mitbestimmen, ist die Überwachung der Erstarrung des Metalls in der Form zur Einhaltung eines hohen Qualitätsstandards unabdingbar.The amount of heat per unit time between the metal to be cast and exchanging the mold halves determines the rate of solidification of the part produced by die casting or thixoforming. Since the Characteristics of this exchange directly the mechanical properties of the die-cast or thixiform part is the monitoring of Solidification of the metal in the form to maintain a high quality standard essential.

Die Erfassung der über die Form abgeführten Erstarrungswärmemenge ermöglicht es u.a. festzustellen, ob die Erstarrung vollständig innerhalb der Form stattfindet, ob Vorerstarrungen auftreten oder welches Flüssig-Fest-Verhältnis in einem Thixomaterial vorliegt.The detection of the amount of solidification heat dissipated via the mold enables it u.a. determine whether the solidification is completely within the shape takes place whether pre-solidification occurs or what liquid-solid ratio is present in a thixomaterial.

Ein überwiegender Teil der Wärme, die während der Erstarrung ausgetauscht wird, stammt von der beim Erstarren frei werdenden latenten Wärme. Die Menge der latenten Wärme hängt ihrerseits stark vom Flüssigmetallanteil beim Füllen des Formhohlraumes ab. Die Menge der über die Formhälften abgegebenen latenten Wärme hängt wiederum vom zu vergiessenden Metall bzw. von der eingesetzten Legierung ab und kann weiter durch die Temperatur der Form bzw. der Formhälften, durch den ausgeübten Druck, durch die Kolbengeschwindigkeit sowie durch die Dicke der Schmiermittelschicht beeinflusst werden.Most of the heat exchanged during solidification comes from the latent heat released during solidification. The The amount of latent heat depends on the liquid metal content Filling the mold cavity. The amount of dispensed over the mold halves latent heat in turn depends on the metal to be cast or on the alloy used and can further by the temperature of the mold or the mold halves, by the pressure exerted, by the piston speed as well as the thickness of the lubricant layer.

Der Wärmeaustausch, der während den verschiedenen Phasen der Erstarrung stattfindet, wird mit Hilfe eines Programmes berechnet. Den Berechnungen liegen Temperaturmessungen an der Form zugrunde, wobei bevorzugt die Temperatur in der Formwand gemessen und der zeitliche Verlauf der Temperatur an der formgebenden Oberfläche der Form berechnet wird. Hierzu werden Sensoren verwendet, die in der Formwand der Formhälften in einem Abstand von beispielsweise 1 mm zur Oberfläche befestigt sind. Das Programm berücksichtigt die inverse Wärmeleitung und berechnet in Echtzeit die Temperatur an der formgebenden Oberfläche der Formhälften und den Wärmeaustausch zwischen dem erstarrenden Metall und der Form. Mit den in dieser Weise angeordneten Temperatursensoren kann die Gleichmässigkeit des Abkühlvorganges und das thermische Gleichgewicht an der Formoberfläche bei den verschiedenen aufeinanderfolgenden Phasen des Giessens und der Abkühlung in Echtzeit überwacht werden. Die Sensoren werden deshalb bevorzugt an Stellen angeordnet, wo das thermische Gleichgewicht und die Erstarrung gut zu erfassen sind.The heat exchange that occurs during the various phases of solidification takes place is calculated using a program. The calculations lie Based on temperature measurements on the mold, preferably the temperature measured in the mold wall and the temporal course of the temperature is calculated on the shaping surface of the mold. To do this Sensors used in the mold wall of the mold halves at a distance of, for example, 1 mm to the surface. The program takes into account inverse heat conduction and calculates the temperature in real time the shaping surface of the mold halves and the heat exchange between the solidifying metal and the shape. With those arranged in this way Temperature sensors can ensure the uniformity of the cooling process and the thermal equilibrium on the mold surface in the different successive phases of casting and cooling in Be monitored in real time. The sensors are therefore preferred in places arranged where the thermal equilibrium and solidification are good too are recorded.

Ein Kennwert für die zu einer festgelegten Zeit abgeführte Erstarrungswärmemenge liegt bevorzugt zwischen etwa 20% und 100%, insbesondere zwischen etwa 50% und 100% der maximalen Erstarrungswärmemenge.A characteristic value for the amount of solidification heat dissipated at a specified time is preferably between about 20% and 100%, in particular between about 50% and 100% of the maximum amount of solidification heat.

In der Praxis hat es sich als zweckmässig herausgestellt, als Kennwert beim Druckgiessen die Erstarrungswärmemenge bei einer festgelegten Zeit von 0.1 bis 2 s, vorzugsweise 0.3 bis 0.8 s und insbesondere etwa 0.5 s zu berechnen.In practice, it has proven to be useful as a characteristic value for Die casting the amount of solidification heat at a fixed time of 0.1 up to 2 s, preferably 0.3 to 0.8 s and in particular about 0.5 s.

Als weiterer Kennwert kann die unmittelbar vor jedem Schuss für die Formoberfläche berechnete Temperatur verwendet werden.As a further characteristic value, it can be used immediately before each shot for the mold surface calculated temperature can be used.

Aus dem zeitlichen Verlauf der Temperatur kann der zeitliche Verlauf des Wärmeaustauschkoeffizienten berechnet werden. Der bei einer bestimmten Zeit berechnete Wert für den Wärmeaustauschkoeffizienten, z.B. die Maximalwerte in der Erstarrung- oder in der Kühlphase, oder auch der gesamte Kurvenverlauf, können als weitere zusätzliche Kennwerte verwendet werden.From the time course of the temperature, the time course of the Heat exchange coefficients can be calculated. The one at a particular Time calculated value for the heat exchange coefficient, e.g. the maximum values in the solidification or cooling phase, or also the entire curve, can be used as additional parameters.

Aus dem zeitlichen Verlauf der Energie des Systems kann die Differenz zwischen den Energiewerten zu Beginn der Formfüllung bei aufeinanderfolgenden Schüssen ebenfalls als zusätzlicher weiterer Kennwert dienen. From the time course of the energy of the system, the difference between the energy values at the beginning of the mold filling for successive Shots also serve as an additional characteristic.

Aus dem zeitlichen Verlauf der Temperatur kann der zeitliche Verlauf der Erstarrungslänge berechnet werden. Unter Erstarrungslänge wird die von der Formoberfläche aus gemessene Dicke des erstarrten Metalls verstanden. Die zu einer festgelegten Zeit berechnete Erstarrungslänge kann als weiterer zusätzlicher Kennwert verwendet werden.The time course of the solidification length can be derived from the time course of the temperature be calculated. The solidification length is that of Mold surface understood from the measured thickness of the solidified metal. The The solidification length calculated at a specified time can be used as a further additional length Characteristic value can be used.

Weitere mögliche Kennwerte sind der minimale Druck, der aus der Messung des zeitlichen Verlaufs des Druckes im Formhohlraum bestimmt wird, sowie die unmittelbar vor einem Schuss im Formhohlraum gemessene minimale relative Feuchtigkeit.Other possible characteristic values are the minimum pressure that results from the measurement the time course of the pressure in the mold cavity is determined, and the minimal relative measured immediately before a shot in the mold cavity Humidity.

Zur Prozessüberwachung können die berechneten oder gemessenen Kennwerte als Istwerte mit entsprechenden Sollwerten verglichen werden, wobei vorgesehen sein kann, dass bei unzulässig starker Abweichung der Istwerte von den Sollwerten innerhalb eines Toleranzbereiches ein Alarm ausgelöst und bei Überschreiten des Toleranzbereiches der Druckgiess- oder Thixoformvorgang unterbrochen wird.The calculated or measured characteristic values can be used for process monitoring are compared as actual values with corresponding target values, whereby it can be provided that in the event of an impermissibly large deviation of the actual values an alarm is triggered by the setpoints within a tolerance range and if the tolerance range of the die casting or thixoforming process is exceeded is interrupted.

Der Sollwert für die abgeführte Erstarrungswärmemenge wird beispielsweise als Mittelwert mit einer Standardabweichung angegeben. Die Standardabweichung kann beispielsweise als erste Toleranzgrenze festgelegt werden, deren Überschreiten durch den Istwert einen Alarm auslöst.The setpoint for the amount of solidification heat removed is, for example given as the mean with a standard deviation. The standard deviation can be set as the first tolerance limit, for example Exceeded by the actual value triggers an alarm.

Die Einhaltung der Kennwerte führt zu einem gleichmässig hohen Qualitätsstandard. Abweichungen der Istwerte von den Sollwerten werden in Echtzeit erfasst, so dass entsprechende Korrekturmassnahmen rasch durchgeführt werden können.Compliance with the characteristic values leads to a consistently high quality standard. Deviations of the actual values from the target values are in real time recorded so that appropriate corrective action can be taken quickly can be.

Ein besonderes interessantes Anwendungsgebiet des Verfahrens liegt beim Druckgiessen und Thixoformen insbesondere von Aluminium- und Magnesiumlegierungen, beispielsweise zur Herstellung von Sicherheitsbauteilen für die Fahrzeugindustrie.A particularly interesting field of application of the method lies in Die casting and thixoforming, in particular of aluminum and magnesium alloys, for example for the production of safety components for the Vehicle industry.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Versuchsergebnissen am Beispiel des Druckgiessens sowie anhand der Zeichnung; diese zeigt schematisch in

  • Fig. 1 den zeitlichen Verlauf des Wärmeflusses;
  • Fig. 2 den zeitlichen Temperaturverlauf während eines Druckgiesszyklus;
  • Fig. 3 den zeitlichen Verlauf der Energie während eines Druckgiesszyklus;
  • Fig. 4 den zeitlichen Verlauf der Erstarrungswärmemenge im Bereich A von Fig. 2;
  • Fig. 5 den zeitlichen Verlauf der Temperatur bei der Abkühlung der Form im Bereich B von Fig. 2;
  • Fig. 6 den zeitlichen Verlauf des Wärmeaustauschkoeffizienten bei der Abkühlung der Form im Bereich B von Fig. 2;
  • Fig. 7 den zeitlichen Verlauf des Drucks im Formhohlraum;
  • Fig. 8 die Erstarrungswärmemenge als Kennwert für drei verschiedene Aluminiumlegierungen bei zunehmender Schusszahl;
  • Fig. 9 eine Druckgiessanlage mit Prozessüberwachung.
Further advantages, features and details of the invention result from the following description of test results using the example of die casting and with reference to the drawing; this shows schematically in
  • 1 shows the time course of the heat flow;
  • 2 shows the temperature profile over time during a die casting cycle;
  • 3 shows the time course of the energy during a die casting cycle;
  • 4 shows the time course of the amount of solidification heat in area A of FIG. 2;
  • 5 shows the time course of the temperature when the mold is cooled in area B of FIG. 2;
  • FIG. 6 shows the course over time of the heat exchange coefficient during the cooling of the mold in region B of FIG. 2;
  • 7 shows the time course of the pressure in the mold cavity;
  • 8 shows the amount of solidification heat as a characteristic value for three different aluminum alloys with increasing number of shots;
  • 9 shows a die casting system with process monitoring.

In den Fig. 1 bis 7 ist der zeitliche Verlauf der von einem programmgesteuerten Rechner aufgrund der Temperatur- und Druckmessungen berechneten Parameter dargestellt. Es bedeuten:

t
Zeit
To
berechnete Temperatur an der formgebenden Oberfläche
T
gemessene Temperatur in der Formwand, 1 mm unter der Oberfläche
Tv
Oberflächentemperatur der Form unmittelbar vor dem Schuss
U
Energie
ΔU
Energiedifferenz zwischen Beginn der Formfüllung und nach Abkühlung der Form
UE
Erstarrungswärmemenge
Ue1s,i
Soll- bzw. Istwert der Erstarrungswärmemenge bei der Zeit t1 = 0.5 s
W
Wärmefluss
h
Wärmeaustauschkoeffizient
p
Druck im Formhohlraum
rH
relative Feuchtigkeit im Formhohlraum
n
Schusszahl
1 to 7 show the course over time of the parameters calculated by a program-controlled computer on the basis of the temperature and pressure measurements. It means:
t
time
T o
calculated temperature on the forming surface
T
measured temperature in the mold wall, 1 mm below the surface
T v
Surface temperature of the mold immediately before the shot
U
energy
.DELTA.U
Energy difference between the start of mold filling and after the mold has cooled
U E
Solidification heat
U e1s, i
Setpoint or actual value of the amount of solidification heat at time t 1 = 0.5 s
W
heat flow
H
Heat transfer coefficient
p
Pressure in the mold cavity
rh
relative humidity in the mold cavity
n
number of shots

Fig. 8 zeigt das Ergebnis einer Versuchsreihe mit drei verschiedenen Aluminiumlegierungen. Es wurden 128 gleiche Teile auf derselben Druckgussmaschine gegossen, nämlich 79 Teile aus der Legierung 1, 35 Teile aus der Legierung 2 und 14 Teile aus der Legierung 3. In der Darstellung ist der Sollwert für die zur Zeit t1 = 0.5 s abgeführte Erstarrungswärmemenge UE1s als Mittelwert mit der Standardabweichung eingezeichnet. Die Standardabweichung definiert einen ersten Grenzwert, der mit einem zweiten Grenzwert einen Toleranzbereich R einschliesst. Der zweite Grenzwert grenzt den Toleranzbereich R gegen den Fehlerbereich S ab. Fallen zwei aufeinanderfolgende Istwerte UE1i für die Erstarrungswärmemenge in den Toleranzbereich R, wie dies bei den Schüssen 76 bis 79 (Bereich X) der Fall ist, so wird ein Alarm ausgelöst und die entsprechende Korrektur eingeleitet. Im Fall der Schüsse im Bereich X -- diese zeigen einen zu hohen Wert UE1i -- war die Oberflächentemperatur Tv der Form unmittelbar vor dem Schuss um etwa 30°C tiefer als der Mittelwert der vorangehenden Schüsse. Für die Schüsse 123 bis 125 (Bereich Y) lagen die Istwerte UE1i für die abgeführte Erstarrungswärmemenge im Fehlerbereich S. Der Grund war eine zu tiefe Schmelzetemperatur, was zu Vorerstarrungen ausserhalb der Form und in der Folge zu einem niedrigeren Wert für die in der Form abgeführte Erstarrungswärmemenge führte. In diesem Fall ist ein Produktionsunterbruch und die Durchführung von Korrekturmassnahmen angezeigt. 8 shows the result of a series of tests with three different aluminum alloys. 128 identical parts were cast on the same die casting machine, namely 79 parts made of alloy 1, 35 parts made of alloy 2 and 14 parts made of alloy 3. In the illustration, the setpoint for the amount of heat of solidification U removed at the time t 1 = 0.5 s is shown E1s plotted as the mean with the standard deviation. The standard deviation defines a first limit value, which includes a tolerance range R with a second limit value. The second limit delimits the tolerance range R from the error range S. If two successive actual values U E1i for the amount of solidification heat fall within the tolerance range R, as is the case with sections 76 to 79 (area X), an alarm is triggered and the corresponding correction is initiated. In the case of the shots in the area X - these show an excessively high value U E1i - the surface temperature T v of the mold immediately before the shot was about 30 ° C. lower than the average value of the previous shots. For shots 123 to 125 (area Y), the actual values U E1i for the amount of solidification heat dissipated were in the error area S. The reason was that the melt temperature was too low, which led to pre-solidification outside the mold and subsequently to a lower value for the mold dissipated heat of solidification led. In this case, an interruption in production and the implementation of corrective measures is advisable.

Die in Fig. 8 gezeigten Untersuchungsergebnisse lassen erkennen, dass mit dem erfindungsgemässen Überwachungsverfahren bezüglich des Erstarrungsvorganges ein hoher Qualitätsstandard erreicht werden kann. Abweichungen werden unmittelbar online angezeigt. Die berechneten Werte können beispielsweise über eine RS232-Schnittstelle an einen programmierbaren Automaten, der die Druckgussmaschine steuert, weitergegeben werden. Die Daten werden kontrolliert, ggf. angezeigt und schliesslich archiviert. Fallen die berechneten Werte für die Erstarrungswärmemenge in den Toleranzbereich R, so kann vom Automaten direkt ein Alarm ausgelöst werden. Bei stärker abweichenden Werten, die in den Bereich S fallen, kann beispielsweise ein automatischer Produktionsstopp ausgelöst werden.The examination results shown in FIG. 8 show that with the monitoring method according to the invention with regard to the solidification process a high quality standard can be achieved. deviations are displayed immediately online. The calculated values can, for example via a RS232 interface to a programmable machine, which controls the die casting machine. The data are checked, if necessary displayed and finally archived. Fall the calculated Values for the amount of solidification in the tolerance range R, see above an alarm can be triggered directly by the machine. With more deviating Values that fall within the range S can, for example, be automatic Production stop can be triggered.

Zur Prozessüberwachung können an verschiedenen Stellen in den Formhälften Temperatursensoren angeordnet werden. Die Berechnungen werden bevorzugt für die einzelnen Temperatursensoren einzeln durchgeführt und auch einzeln als Überwachungsergebnisse aufgezeichnet. Auf diese Weise ist es möglich, spezifische Produktionsprobleme an der Form zu lokalisieren. Die aufgezeichneten Überwachungsergebnisse werden zweckmässigerweise archiviert und können später beispielsweise zum Nachweis der Produktionsqualität eines bestimmten Druckguss- oder Thixoformteiles herangezogen werden.Process monitoring can be carried out at various points in the mold halves Temperature sensors are arranged. The calculations are preferred carried out individually for the individual temperature sensors and also individually recorded as monitoring results. In this way it is possible to locate specific production problems on the mold. The recorded Monitoring results are conveniently archived and can later be used, for example, to prove the production quality of a particular Die-cast or thixiform part can be used.

Die Prozessüberwachung wird aus der nachfolgenden Beschreibung von Fig. 9 verständlich.Process monitoring is shown in the following description of FIG. 9 understandable.

Eine Druckgiessanlage 10 weist eine Füllkammer 12 mit einem Füllkammerhohlraum 14 auf. Das aus einem Ofen 18 über eine Zuleitung 20 für jeden Schuss in den Füllkammerhohlraum 14 eingefüllte flüssige Metall wird mit einem Kolben 16 über einen Angusskanal 22 aus dem Füllkammerhohlraum 14 in einen aus einer feststehenden Formhälfte 24 und einer beweglichen Formhälfte 26 gebildeten Formhohlraum 28 eingeschossen. A die casting system 10 has a filling chamber 12 with a filling chamber cavity 14 on. That from a furnace 18 via a feed line 20 for everyone Shot in the filling chamber cavity 14 filled with liquid metal a piston 16 via a sprue 22 from the filling chamber cavity 14 in one of a fixed mold half 24 and a movable mold half 26 formed mold cavity 28 shot.

Der Formhohlraum 28 weist einen oder mehrere Entlüftungskanäle 30 auf, die ggf. zu einem Sammelkanal zusammengefasst sind. In der feststehenden Formhälfte 24 ist ein Steuerungseinsatz 32 mit einem Steuerungsbolzen 34 angeordnet. Der Steuerungsbolzen 34 weist einen Verschlusskopf 36 zum Öffnen bzw. Schliessen des Entlüftungskanals 30 auf. Die Verschiebung des Steuerungsbolzens 34 erfolgt mittels eines Betätigungszylinders 38. Bei erfolgter Formfüllung wird über den Verschlusskopf 36 des Steuerungsbolzens 34 der Entlüftungskanal 30 am Ende des Formhohlraumes 28 verschlossen.The mold cavity 28 has one or more ventilation channels 30 which possibly combined into a collecting channel. In the fixed Mold half 24 is a control insert 32 with a control pin 34 arranged. The control bolt 34 has a locking head 36 for opening or closing the ventilation channel 30. The shift of the Control bolt 34 is carried out by means of an actuating cylinder 38. When this is done The mold is filled via the locking head 36 of the control bolt 34 the ventilation channel 30 is closed at the end of the mold cavity 28.

An den Steuerungseinsatz 32 schliesst eine Vakuumleitung 40 an, die über Ventile 42 mit einem in der Zeichnung nicht dargestellten Vakuumbehälter verbunden ist. Vor dem Einschiessen des Metalls in den Formhohlraum 28 wird dieser evakuiert und der zeitliche Verlauf des Drucks im Formhohlraum 28 über einen in die Vakuumleitung 40 geschalteten Drucksensor 44 gemessen.A vacuum line 40 connects to the control insert 32 Valves 42 connected to a vacuum container, not shown in the drawing is. Before the metal is shot into the mold cavity 28 this evacuates and the time course of the pressure in the mold cavity 28 over a pressure sensor 44 connected into the vacuum line 40 is measured.

In den beiden Formhälften 24, 26 sind an verschiedenen Stellen Temperatursensoren 46 angeordnet. In der Zeichnung nicht dargestellt ist eine mit dem Formhohlraum in Verbindung stehende Sonde zur Messung der relativen Feuchtigkeit.Temperature sensors are located at different points in the two mold halves 24, 26 46 arranged. Not shown in the drawing is one with the Mold cavity related probe to measure relative Humidity.

Die Temperatursensoren 46, der Drucksensor 44 und die nicht dargestellte Sonde zur Messung der relativen Feuchtigkeit sind an einen programmgesteuerten Rechner 48 angeschlossen. Dieser Rechner übergibt die gemessenen und berechneten Parameter einem Datenerfassungsgerät 50 zur Überwachung und Archivierung. Die Auslösung eines Alarmes oder eines Produktionsstopps bei der Überschreitung von Toleranzwerten für einzelne oder alle Kennwerte erfolgt direkt über den Rechner.The temperature sensors 46, the pressure sensor 44 and the one not shown Probe for measuring the relative humidity are connected to a program-controlled Computer 48 connected. This computer transfers the measured and calculated parameters to a data acquisition device 50 for monitoring and archiving. The triggering of an alarm or a production stop if tolerance values for individual or all characteristic values are exceeded takes place directly on the computer.

Claims (12)

  1. Method of process monitoring during the die casting or thixoforming of metals in vacuo in a mould, characterised in that the variation of the temperature (T) with time is measured continuously at least at one point of the system and the changes in the temperature of the system are calculated in real time by means of a program and that the variation of the heat flow (W) with time is calculated from the changes in the temperature of the system and the variation of the energy (U) of the system and of the amount of solidification heat (UE) of the metal solidified in the mould with time are calculated from the heat flow, calculated values being used as monitoring parameters at a specified time.
  2. Method according to claim 1, characterised in that the temperature (T) in the mould wall is measured and the variation of the temperature (To) on the shaping surface of the mould with time is calculated.
  3. Method according to claim 1 or claim 2, characterised in that a parameter for the amount of solidification heat (Ue1) removed at a specified time (t1) during die casting is between 20 % and 100 %, preferably between 50 % and 100 % of the maximum amount of solidification heat (UEmax).
  4. Method according to one of claims 1 to 3, characterised in that the amount of solidification heat (UE1) at a specified time (t1) of 0.1 to 2 s, preferably 0.3 to 0.8 s and, in particular, approximately 0.5 s is calculated as a parameter during die casting.
  5. Method according to one of claims 1 to 4, characterised in that the temperature (Tv) calculated for the mould surface immediately before each shot is used as a further parameter.
  6. Method according to one of claims 1 to 5, characterised in that the variation of the coefficient of heat exchange (h) with time is calculated from the variation of the temperature (T) with time and the coefficient of heat exchange is used as a further parameter.
  7. Method according to one of claims 1 to 6, characterised in that, from the variation of the energy (U) of the system with time, the difference (ΔU) between the energy values at the beginning of mould filling upon successive shots is used as a further parameter.
  8. Method according to one of claims 1 to 7, characterised in that the variation of the solidification length with time is calculated from the variation of the temperature (T) with time and the solidification length calculated at a specified time is used as a further parameter.
  9. Method according to one of claims 1 to 8, characterised in that the variation of the pressure (p) in the mould with time is measured and the minimum pressure (pmin) is used as a further parameter.
  10. Method according to one of claims 1 to 9, characterised in that the minimum relative humidity (rH) in the mould immediately before a shot is measured and is used as a further parameter.
  11. Method according to one of claims 1 to 10. characterised in that the parameters calculated or measured serve as actual values and are compared with corresponding setpoints.
  12. Method according to claim 11, characterised in that an alarm is triggered if the actual values deviate in an impermissible manner from the setpoints within a tolerance range and the die-casting or thixoforming process is interrupted if the tolerance range is exceeded.
EP99944412A 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals Expired - Lifetime EP1105237B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99944412A EP1105237B1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98810846A EP0982089A1 (en) 1998-08-27 1998-08-27 Process for die-casting or thixoforming control
EP98810846 1998-08-27
EP99944412A EP1105237B1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals
PCT/EP1999/006002 WO2000012246A1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals

Publications (2)

Publication Number Publication Date
EP1105237A1 EP1105237A1 (en) 2001-06-13
EP1105237B1 true EP1105237B1 (en) 2002-05-29

Family

ID=8236284

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98810846A Withdrawn EP0982089A1 (en) 1998-08-27 1998-08-27 Process for die-casting or thixoforming control
EP99944412A Expired - Lifetime EP1105237B1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP98810846A Withdrawn EP0982089A1 (en) 1998-08-27 1998-08-27 Process for die-casting or thixoforming control

Country Status (9)

Country Link
US (1) US6557617B1 (en)
EP (2) EP0982089A1 (en)
AT (1) ATE218081T1 (en)
CA (1) CA2341264A1 (en)
DE (1) DE59901565D1 (en)
DK (1) DK1105237T3 (en)
ES (1) ES2176025T3 (en)
PT (1) PT1105237E (en)
WO (1) WO2000012246A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886807B2 (en) * 2007-06-15 2011-02-15 Die Therm Engineering L.L.C. Die casting control method
JP4889783B2 (en) * 2009-11-17 2012-03-07 日信工業株式会社 Gravity casting method
DE102010053125A1 (en) * 2010-12-01 2012-06-06 Volkswagen Ag Method for producing a series of cast components and device for producing a cast component
DE102012220513B4 (en) * 2012-11-12 2023-02-16 Bayerische Motoren Werke Aktiengesellschaft Method and device for producing a die-cast part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187154A (en) * 1981-05-15 1982-11-17 Toyota Motor Corp Method and device for inspecting quality of product produced by die casting machine
US4493362A (en) * 1982-05-27 1985-01-15 Ex-Cell-O Corporation Programmable adaptive control method and system for die-casting machine
EP0126174B1 (en) * 1983-05-20 1989-10-04 John Mickowski Process for monitoring and controlling intermittently working molding and casting devices and apparatus for performing said process
US4976305A (en) * 1987-12-01 1990-12-11 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for controlling die temperature in low-pressure casting process
US5407000A (en) * 1992-02-13 1995-04-18 The Dow Chemical Company Method and apparatus for handling molten metals
DE4444092C2 (en) * 1994-10-12 1997-02-13 Werner Kotzab Method and arrangement for tempering an injection mold with at least one heated nozzle or a hot runner
US5772933A (en) 1994-10-12 1998-06-30 Kotzab; Werner Method for tempering an injection mold having at least one heated nozzle or hot runner
US5758707A (en) * 1995-10-25 1998-06-02 Buhler Ag Method for heating metallic body to semisolid state
US6148899A (en) * 1998-01-29 2000-11-21 Metal Matrix Cast Composites, Inc. Methods of high throughput pressure infiltration casting

Also Published As

Publication number Publication date
DE59901565D1 (en) 2002-07-04
PT1105237E (en) 2002-09-30
ES2176025T3 (en) 2002-11-16
WO2000012246A1 (en) 2000-03-09
US6557617B1 (en) 2003-05-06
EP0982089A1 (en) 2000-03-01
CA2341264A1 (en) 2000-03-09
ATE218081T1 (en) 2002-06-15
EP1105237A1 (en) 2001-06-13
DK1105237T3 (en) 2002-09-23

Similar Documents

Publication Publication Date Title
DE69808295T2 (en) METHOD AND DEVICE FOR CONTROLLING THE SURFACE TEMPERATURE OF A BLOCK DURING THE MOLDING AND PARTICULARLY DURING THE POURING
DE69124657T2 (en) Process for assessing the quality of die castings
DE69308263T2 (en) Estimation of the metal temperature from the wear of the dip tube due to immersion in molten metal
EP1105237B1 (en) Method for process monitoring during die casting or thixoforming of metals
DE3887162T2 (en) Casting and calibration system.
EP1080809B1 (en) Method for controlling the distribution of quantity of liquid metal
EP1072340B1 (en) Method of process control of injection molding or semiliquid die casting of metals
DE10140657C1 (en) Device for measuring the pressures in a mold filled with a melt used in vacuum die casting machines comprises measuring channels arranged in direct contact with the hollow space of the mold
DE4103243A1 (en) METHOD FOR CONTROLLING THE POURING OF A LIQUID FROM A VESSEL IN INDIVIDUAL CASTING MOLDS AND DEVICE FOR IMPLEMENTING THE METHOD
EP0331612B1 (en) Method upon a casting plant for producing strands
DE4208940C2 (en) Method and device for controlling the holding pressure during injection molding
DE3424028C2 (en) Method for analyzing the composition of a two-phase brass melt
DE4203337A1 (en) Process for the continuous casting of metals
DE3009697C2 (en)
EP2460605B1 (en) Method for producing a series of cast components and device for producing a cast component
DE60212877T2 (en) DEVICE FOR PRODUCING METAL CASTING PARTS
EP1365873B1 (en) Method for determining the characteristics of an oscillation system in an oscillating continuous casting mould
CH646352A5 (en) Apparatus for regulating the secondary cooling in a continuous-casting installation with batchwise smelt supply via a tundish
DE2821352A1 (en) PROCEDURE AND APPROPRIATE EQUIPMENT FOR PREDICTING METALLOGRAPHIC STRUCTURES
DE69000282T2 (en) METHOD AND DEVICE FOR THE PRODUCTION OF THICK METAL PRODUCTS BY MEANS OF CONTINUOUS CASTING.
EP2266726A2 (en) Method for controlling the fluid cooling of strand cast moulds
DE102019201249B4 (en) Method for setting an initial condition for forming process conditions
DE3706636C2 (en)
DE19915269A1 (en) Procedure for determining the friction between the continuous shell and the mold during continuous casting
DE102023106056A1 (en) LOW-PRESSURE CASTING VESSEL AND METHOD FOR DETERMINING THE STATUS OF A LOW-PRESSURE CASTING VESSEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20010327

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20010327

REF Corresponds to:

Ref document number: 218081

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59901565

Country of ref document: DE

Date of ref document: 20020704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020802

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20020820

Year of fee payment: 4

Ref country code: DK

Payment date: 20020820

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20020826

Year of fee payment: 4

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020703

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021009

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176025

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030730

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030806

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030814

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030818

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030819

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030820

Year of fee payment: 5

Ref country code: AT

Payment date: 20030820

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030828

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030901

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040816

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040817

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040817

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20040831