EP1101938B1 - Closed electron drift plasma thrustor with orientable thrust vector - Google Patents

Closed electron drift plasma thrustor with orientable thrust vector Download PDF

Info

Publication number
EP1101938B1
EP1101938B1 EP99403313A EP99403313A EP1101938B1 EP 1101938 B1 EP1101938 B1 EP 1101938B1 EP 99403313 A EP99403313 A EP 99403313A EP 99403313 A EP99403313 A EP 99403313A EP 1101938 B1 EP1101938 B1 EP 1101938B1
Authority
EP
European Patent Office
Prior art keywords
coils
channels
main annular
plasma thruster
thruster according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99403313A
Other languages
German (de)
French (fr)
Other versions
EP1101938A1 (en
Inventor
Dominique Valentian
Eric Klinger
Michel Lyszyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP1101938A1 publication Critical patent/EP1101938A1/en
Application granted granted Critical
Publication of EP1101938B1 publication Critical patent/EP1101938B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Definitions

  • the invention relates to a steerable thrust vector electron drift plasma thruster comprising at least one main annular ionization and acceleration channel equipped with an anode and means for supplying ionizable gas, a circuit magnetic field for creating a magnetic field in said main annular channel, and a hollow cathode associated with means for supplying ionizable gas.
  • attitude control operations to be performed by offsetting the thrust vector from the center of gravity of the satellite or, on the contrary, to eliminate parasitic couples by aligning the thrust vector so as to follow the displacements of the center of gravity of the satellite induced by the thermal deformations and the exhaustion of the propellants.
  • the ionic bomb thrusters thus generally use a mechanical thrust steering device.
  • the electric field in a plasma thruster is determined by the radial magnetic field in the gap. If the radial magnetic field is varied in azimuth, the electric field is also varied. The deformation of the equipotentials then causes an angular deflection of the thrust vector.
  • the outer pole piece is divided into four sectors, each sector being mounted on a magnetic core with a coaxial coil.
  • the differential supply of the coils makes it possible to modify the azimuthal distribution of the magnetic field.
  • EP 0 800 196 A1 also discloses a thrust orientation system according to which four coils mounted on four magnetic cores in the shape of an arc allow the radial magnetic field to be varied in azimuth.
  • Another drawback is related to the significant yield drop when the ion beam (the thrust vector) is deflected.
  • a simple way of controlling the thrust vector may be to use several thrusters whose thrust is individually controlled.
  • the invention aims to remedy the aforementioned drawbacks and in particular to allow control of the thrust vector using a system that does not increase excessively the mass of the onboard assembly and its cost, and therefore does not include a complete set of multiple thrusters, while ensuring easy and effective control of the orientation of the thrust vector, with sufficiently large deviation angles, and without the creation of uncontrollable asymmetries.
  • a steerable thrust vector electron drift plasma propellant comprising at least one main ionization and acceleration annular channel equipped with an anode and means for supplying ionizable gas, a magnetic circuit for creating a magnetic field in said main annular channel, and a hollow cathode associated with gas supply means ionizable, characterized in that it comprises a plurality of main annular ionization and acceleration channels having non-parallel axes which converge on the downstream output side of said main annular channels, in that the magnetic circuit for creating a magnetic field comprises a first external downstream pole piece common to all the annular channels, a second external pole piece common to all the annular channels and arranged upstream of the first external downstream pole piece, a plurality of internal pole pieces in number equal to number of main annular channels and mounted on first cores arranged around the axes of the main annular channels, a plurality of first coils disposed respectively around the plurality of first cores, a plurality of second coils mounted on second core
  • the axes of the main annular channels of ionization and acceleration converge on the geometric axis of the thruster and can form with the geometric axis of the propeller angles between 5 ° and 20 °.
  • Each main annular ionization and acceleration channel comprises an anode associated with a distributor supplied with ionizable gas by means of a pipe connected by an insulator to a flow regulator.
  • the hollow cathode is fed by a pipe connected by an insulator to a pressure drop member.
  • the flow regulators and the pressure drop member are fed by a common pipe controlled by a solenoid valve.
  • the thruster comprises a power supply circuit for establishing the discharge between the hollow cathode and the anodes and the Discharge oscillators of the main annular channels are decoupled by filters placed between the cathode and the anodes.
  • the thruster comprises servocontrol loops comprising current sensors and a current regulator acting on the flow regulators and receiving a total discharge current setpoint and at least one deflection setpoint of thrust vector for control over at least one axis, the ion discharge and acceleration current being controlled by a magnetic field distribution determined by said magnetic circuit in which the plurality of first coils and the plurality of second coils are mounted series between the cathode and the negative terminal of the power supply circuit.
  • Flow controllers can be constituted by thermocapillaries controlled by servocontrol loops of the discharge currents or by microelectrovalves dosing thermal actuator, piezoelectric or magnetostrictive.
  • the current sensors can be galvanically isolated to measure the current of each of the anodes at a potential of several hundred volts.
  • the flow range in each main annular channel is between 50% and 120% of the nominal flow rate.
  • the number of second coils can be between 4 and 10.
  • the thruster may comprise two main annular channels, or three main annular channels distributed in a triangle around the axis of the thruster or four main annular channels distributed in a square around the axis of the thruster.
  • the number of second coils is a multiple of the number of main annular channels, the coils of each subset of second coils assigned to each channel are connected in series and the different subsets of second coils are mounted. in parallel, the impedances of the coils connected in series being equal.
  • the number of second coils is a multiple of the number of main annular ionization and acceleration channels and the coils of each of subassemblies of second coils assigned to the different channels are fed by a current vernier.
  • the thruster comprises a digital loop for controlling the orientation of the thrust vector, the total thrust and the thrust vector deflection instructions being given in digital form, and the thrust vector deviation instruction having priority on the total thrust instruction in case of incompatibility between the two instructions.
  • the thruster comprises a common base acting as a radiator and housing for the electrical and fluidic connections.
  • the means for regulating the flow rate of the ionizable gas supply receive two guidelines for a thrust vector deviation for a control along two axes.
  • the thruster comprises two main annular ionization and acceleration channels making it possible to perform a control along a first axis using means for regulating the flow rate of the ionizable gas supply, and it further comprises mechanical means of articulation of the base of the thruster around another axis.
  • the base of the thruster is articulated around the second axis with a maximum angle of 50 °.
  • the base of the thruster is articulated around said second axis on two bearings prestressed by at least one flexible membrane mounted on a fixed platform and directly fixed to the base, the center of gravity of the moving assembly. being located in the vicinity of the axis of rotation and the angle of rotation being controlled by an electric motor and a gearbox ensuring the angular locking.
  • Figures 1 to 3 show a plasma thruster with two main annular channels 124A, 124B arranged side by side and defining a substantially rectangular configuration.
  • the axes 241A, 241B of the two channels 124A, 124B are inclined at an angle 242 with respect to the geometric axis 752 of the thruster.
  • a single hollow cathode 140 is associated with the two main channels 124A, 124B.
  • a conventional single-channel main plasma thruster such as that shown in FIG. 16, comprises in principle four outer coils 31 associated with an outer pole piece 34.
  • Internal pole pieces 135A, 135B are mounted on first cores 138A, 138B arranged around the axes 241A, 241B of the main annular channels 124A, 124B, and are therefore equal in number to the number of annular channels 124A, 124B.
  • Internal coils or first coils 133A, 133B disposed around the first cores 138A, 138B are also equal in number to the number of annular channels 124A, 124B ( Figure 3).
  • the outer coils 131 are mounted on second cores 137 disposed in free spaces formed between the main annular channels 124A, 124B.
  • the cores 137 of the coils 131 are connected in their downstream part to the outer downstream pole piece 134.
  • Another upstream outer pole piece 311 comprising portions 311A, 311B arranged around the annular channels 124A, 124B is arranged upstream of the first pole piece external downstream 134 ( Figures 3 and 15).
  • the channels 124A, 124B and the magnetic circuit elements are integral with a base 175, preferably light alloy, which acts as a radiator.
  • the electrical and fluid connections are housed in cavities formed in this base.
  • the magnetic circuit can be produced for example in a manner similar to that described in US Pat. No. 5,359,258 or in a manner similar to that described in French patent application 98,10674 filed on August 25, 1998, and illustrated on Figures 3 and 15.
  • each annular channel such as 124A is delimited by insulating walls 122A, is open at its downstream end and has a frustoconical section at its upstream portion and cylindrical at its downstream part.
  • An annular anode 125A has a conical section shaped frustum open downstream.
  • the anode 125A may have slits 117A made in the solid portion 116A of the anode 125A to increase the area of contact with the plasma.
  • Injection holes 120A of an ionizable gas from an ionizable gas distributor 127A are formed in the wall of the anode 125A.
  • the distributor 127 A is supplied with ionizable gas via a pipe 126A.
  • the anode 125A may be supported with respect to the 122A ceramic material delimiting the channel 124A, for example by a solid column 114A circular section and by at least two columns 115A thinned flexible blades.
  • An isolator 300A is interposed between the pipe 126A and the anode 125A which is connected by an electrical connection 145A to the positive pole of the power supply of the anode-cathode discharge.
  • the inner pole piece 135A is extended by a central axial magnetic core 138A which is itself extended to the upstream portion of the thruster by a plurality of radial arms 352A connected to a second conical upstream inner pole piece 351A.
  • a second internal magnetic coil 132A can be placed in the upstream portion of the second inner pole piece 351 A, outside thereof.
  • the magnetic field of the internal coil 132A is channeled by radial arms 136 placed in the extension of the radial arms 352A, as well as by the outer pole piece 311A and the inner pole piece 351A.
  • a small gap 361 may be provided between the radial arms 352A and the radial arms 136.
  • Sheets of screen-insulating material 130A are disposed upstream of the annular channel 124A and superimposing material sheets 301A forming a screen are also interposed between the channel 124A and the inner coil 133A.
  • the screens 130A, 301A eliminate most of the flux radiated by the channel 124A to the coils 133A, 132A and the base 175.
  • the cathode 140 creates a plasma cloud which makes its positioning relatively insensitive with respect to one of the beams and moreover the axes 241A, 241B of the channels 124A, 124B being convergent, this leads to a crossing of the plasma beams which significantly decreases the impedance between the beams.
  • the two-channel thruster 124A, 124B of FIGS. 1 to 3 allows control of the thrust vector along an axis.
  • Three-channel thruster configurations 124A-124C such as those shown in FIGS. 5-8, provide two-axis thrust vector control.
  • each channel 124A-124C is surrounded by four outer coils 131 in a "diamond" configuration. Some coils 131 cooperate with two neighboring channels, so that the total number of external coils 131 is reduced to 7 instead of 12.
  • the number of ampere-turns of the outer coils 131 is adjusted according to the perimeter of the pole pieces to feed. This number of ampere-turns is identical for the four most central coils while the three outer coils 131 located near the vertices of the triangle defined by the channels 124A to 124C comprise two-thirds of the number of revolutions of the outer coils 131 .
  • the other main elements of the three-channel thruster 124A, 124B, 124C are similar to those of the two-channel thruster 124A, 124B, in particular with regard to the light alloy common base 175, the common cathode 140, the magnetic cores 138A at 138C of the internal coils 133A to 133C and the magnetic cores 137 of the external coils 131 interconnected by a network of ferromagnetic bars 136.
  • Figures 7 and 8 show a thruster with three main annular channels 124A, 124B, 124C which differs from the embodiment of Figures 5 and 6 only by the number and arrangement of the outer coils 131.
  • each main annular channel 124A, 124B, 124C is surrounded by five coils forming an irregular pentagon.
  • This irregular character is due to the angle of convergence of the channels, which is of the order of 10 °.
  • a regular pentagon could be obtained if the angle of convergence of the channels was greater, of the order of 37 °.
  • Some of the outer coils 131 play a role simultaneously for two or three channels 124A-124C, so that the total number of outer coils 131 is reduced to 10 instead of 15.
  • the common pole piece 134 averages the field.
  • FIGS. 7 and 8 The arrangement of FIGS. 7 and 8 is of interest for large thrusters, for which it is preferable to split the outer coils 131 in order to lighten the outer pole piece 134.
  • the outer pole piece 134 and the base 175 have the shape of an irregular hexagon with six outer coils 131 placed in the vicinity of the vertices of the hexagon and four outer coils 131 distributed in a star between the three channels 124A to 124C.
  • FIGS. 9 and 10 show a thruster with four main annular channels 124A, 124B, 124C, 124D disposed essentially in a square and associated with nine external coils 131.
  • Each channel 124A to 124D is surrounded by four external coils 131.
  • External coils 131 play a role vis-à-vis several channels. Only the coils 131 located near the corners of the pole piece 134 and the base 175 of substantially square shape, play a role vis-à-vis only one channel 124A to 124D. In this way, the number of external coils 131 can be reduced from 16 to 9.
  • FIGS. 11 to 13 a propellant according to the invention with two channels 124A, 124B is shown essentially similar to the thruster of FIGS. 1 to 3. However, in the case of FIGS. 11 to 13, the thruster is in addition equipped with means of uniaxial mechanical orientation.
  • the two main annular channels 124A, 124B and their associated six outer coils 131 provide smooth and easy control of the orientation of the vector pushed along a first axis, with an angle that can be between 5 ° and 20 °.
  • the uniaxial mechanical orientation means make it possible to control the orientation of the thrust vector along a second axis, with an important angle 783, for example of the order of 50 °.
  • a uniaxial mechanical orientation system is much simpler, lighter and more robust than a two-axis mechanical orientation system.
  • the center of gravity 751 of the thruster may be located on the axis of rotation 782 of the orientation device, which then dispenses to implement a locking device.
  • the angular locking can indeed be obtained directly by means of an irreversible rotation control mechanism comprising for example an electric motor 177 and a reducer 179.
  • the axis of rotation 782 of the cradle 175 of the mechanically-oriented thruster may be embodied by two angular contact bearings 178 capable of withstanding the dynamic forces during the launching of the thruster.
  • At least one of the angular contact bearings 178 may be mounted on an elastic membrane 781 to ensure a constant and independent preload of thermal gradients preventing jamming, as described for example in European Patent 0 325 073.
  • the elastic membrane 781 is itself mounted on a fixed base 176.
  • the electrical connections are provided by flexible cables and the supply of ionizable gas by elastic conduits.
  • the two-channel thruster 124A, 124B with uniaxial mechanical orientation is particularly useful when it comes to pointing the thrust vector at a large angle on one axis and at a lower angle on the other.
  • the control of the thrust vector is obtained by separately supplying to the propulsion fluid several main annular ionization and acceleration channels 124A to 124D included in a common magnetic circuit 134, connected to a cathode single hollow 140 and a single power supply 190 ( Figure 4).
  • a current sensor is located on the current return line (at a potential near the ground, because equal to the cathode potential minus the voltage drop in the coils)
  • the current differential between two wires can be measured by placing a Hall sensor on the axis of two coiled-in solenoids, each solenoid being traversed by the current of an anode.
  • FIG. 4 shows the wiring diagram of a three-channel thruster 124A-124C (thus three anodes 125A-125C). Each anode 125A to 125C is connected to the common supply via a filter consisting of an L-C circuit (911A to 911C). This makes it possible to decouple the oscillation frequencies between each channel which may be slightly different because of the different flow rates.
  • FIG. 4 The diagram of Figure 4 is naturally applicable to a four-channel embodiment 124A to 124D such as that of Figures 9 and 10. In this case, it is only added an additional branch whose elements are assigned the letter D.
  • a chamber In each branch corresponding to a channel 124A to 124D, a chamber comprises an anode 125A to 125D and a distributor 127A to 127D, supplied with ionizable gas by means of a line 118A to 118D, from an isolator (300A to 300D) and a flow regulator (185A to 185D), connected by a common supply pipe section 126 controlled by a solenoid valve 187.
  • the common channel 126 also feeds the hollow cathode 140 by means of a pressure drop member 186 and an isolator 300.
  • the discharge is established between the hollow cathode 140 and the anodes 125A to 125D by means of a power supply circuit 191
  • the discharge oscillations of the different channels are decoupled by filters 911 A to 911 D placed between the different anodes 125A to 125D and the cathode 140.
  • the discharge current of each anode is controlled by a servo control loop comprising a sensor. current 193A to 193D, preferably electrically isolated, a regulator 192 receiving a setpoint 922 of thrust vector deflection for one-axis control, or two setpoints 922 of thrust vector deflection for a two-axis control, and a setpoint 921 current total discharge.
  • the discharge current and the acceleration of the ions are controlled by the magnetic field distribution determined by the external downstream pole piece 134 common to all the channels, the upstream external pole piece 311 common to all the channels, the external coils 131 mounted on cores 137 and inner pole pieces 135A-135D mounted on cores 138A-138D provided with coils 133A-133D.
  • the ends of all the pole pieces have coaxial core profiles at axes 241A through 241D of channels 124A through 124D.
  • the internal coils 133A to 133D and external coils 131 are connected in series between the cathode and the negative terminal of the power supply circuit 191 while the various cores are connected upstream by the ferromagnetic bars 136.
  • the control circuits make it possible to define in each channel 124A to 124D a flow range typically between 50% and 120% of the nominal flow rate.
  • control circuits are possible.
  • the number of external coils 131 is a multiple of the number of main annular channels 124A to 124D, the coils of each subset of coils 131 assigned to each channel 124A to 124D are connected in series and the different Subsets of coils 131 are connected in parallel, the impedances of the coils connected in series being equal.
  • the number of external coils 131 is a multiple of the number of annular channels 124A to 124D and the coils each of the subsets of coils 131 allocated to the different channels are fed by a current vernier.
  • a digital loop for controlling the orientation of the thrust vector is provided, the commands for total thrust and deflection of the thrust vector being given in digital form, and the thrust reference of the thrust vector takes precedence. on the total thrust instruction in case of incompatibility between the two instructions.
  • the multi-channel thruster according to the invention is capable of providing the same thrust control capability as a single thruster mounted on a turntable allowing a travel of 3 °.
  • additional mass of ionizable gas embedded on a satellite such as a telecommunications satellite of 150 kg
  • the additional onboard mass is greater at 12kg.
  • a thruster according to the invention to a single plate but multiple channels, it is necessary to embark a additional mass of ionizable gas such as xenon of the order of 2kg which is very significantly lower than the additional mass induced by the devices of the prior art with two orientation plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne un propulseur à plasma à dérive fermée d'électrons à vecteur poussée orientable, comprenant au moins un canal annulaire principal d'ionisation et d'accélération équipé d'une anode et de moyens d'alimentation en gaz ionisable, un circuit magnétique de création d'un champ magnétique dans ledit canal annulaire principal, et une cathode creuse associée à des moyens d'alimentation en gaz ionisable.The invention relates to a steerable thrust vector electron drift plasma thruster comprising at least one main annular ionization and acceleration channel equipped with an anode and means for supplying ionizable gas, a circuit magnetic field for creating a magnetic field in said main annular channel, and a hollow cathode associated with means for supplying ionizable gas.

Art antérieurPrior art

L'orientation du vecteur poussée des propulseurs ioniques ou des propulseurs à dérive fermée d'électrons permet d'effectuer des opérations de contrôle d'attitude en dépointant le vecteur poussée du centre de gravité du satellite ou au contraire d'éliminer les couples parasites en alignant le vecteur poussée de manière à suivre les déplacements du centre de gravité du satellite induits par les déformations thermiques et l'épuisement des ergols.The orientation of the thrust vector of ionic thrusters or closed-electron drift thrusters allows attitude control operations to be performed by offsetting the thrust vector from the center of gravity of the satellite or, on the contrary, to eliminate parasitic couples by aligning the thrust vector so as to follow the displacements of the center of gravity of the satellite induced by the thermal deformations and the exhaustion of the propellants.

Cette nécessité a été reconnue dès les années 1970. Les mécanismes de contrôle du vecteur poussée étant par nature assez complexes, de nombreuses tentatives ont été effectuées pour remplacer ce contrôle de poussée mécanique par un contrôle électrostatique ou électromagnétique.This need has been recognized since the 1970s. Since the control mechanisms of the thrust vector are inherently quite complex, numerous attempts have been made to replace this mechanical thrust control with electrostatic or electromagnetic control.

Dans le cas des propulseurs ioniques à bombardement, la déviation électrostatique a pu paraître la plus adaptée. La technique la plus couramment utilisée a consisté à diviser chaque trou de grille accélératrice en quatre secteurs dont le potentiel peut être contrôlé indépendamment, l'angle de déviation pouvant atteindre 3°. Toutefois, aucune réalisation industrielle n'a été effectuée avec ce type de technique.In the case of ionic thrusters to bombardment, electrostatic deflection may have seemed the most suitable. The most commonly used technique has been to divide each accelerator gate hole into four sectors whose potential can be controlled independently, the deflection angle being up to 3 °. However, no industrial realization has been carried out with this type of technique.

Les propulseurs ioniques à bombardement utilisent ainsi généralement un dispositif d'orientation de poussée mécanique.The ionic bomb thrusters thus generally use a mechanical thrust steering device.

A titre d'exemple, on peut citer les propulseurs Hughes XIPS 13 sur le satellite HS 601 HP et les propulseurs RIT 10 et UK 10 sur le satellite expérimental ARTEMIS.By way of example, mention may be made of the Hughes XIPS 13 thrusters on the HS 601 HP satellite and the RIT 10 and UK 10 thrusters on the ARTEMIS experimental satellite.

En ce qui concerne les propulseurs à dérive fermée d'électrons, la déviation électromagnétique a paru la plus adaptée. En effet, le champ électrique dans un propulseur à plasma est déterminé par le champ magnétique radial dans l'entrefer. Si on fait varier en azimut le champ magnétique radial on fait varier également le champ électrique. La déformation des équipotentielles provoque alors une déviation angulaire du vecteur poussée.With regard to closed-electron drift thrusters, electromagnetic deflection seemed the most suitable. Indeed, the electric field in a plasma thruster is determined by the radial magnetic field in the gap. If the radial magnetic field is varied in azimuth, the electric field is also varied. The deformation of the equipotentials then causes an angular deflection of the thrust vector.

Cette solution est présentée par exemple dans le document US-A-5 359 258.This solution is presented for example in the document US-A-5,359,258.

Dans un tel cas, la pièce polaire externe est divisée en quatre secteurs, chaque secteur étant monté sur un noyau magnétique avec une bobine coaxiale. L'alimentation différentielle des bobines permet de modifier la répartition azimutale du champ magnétique.In such a case, the outer pole piece is divided into four sectors, each sector being mounted on a magnetic core with a coaxial coil. The differential supply of the coils makes it possible to modify the azimuthal distribution of the magnetic field.

Cette disposition n'a toutefois jamais été utilisée sur un propulseur opérationnel.This provision has however never been used on an operational thruster.

On connaît aussi par le document EP 0 800 196 A1 un système d'orientation de poussée selon lequel quatre bobines montées sur quatre noyaux magnétiques en forme d'arc de cercle permettent de faire varier le champ magnétique radial en azimut.EP 0 800 196 A1 also discloses a thrust orientation system according to which four coils mounted on four magnetic cores in the shape of an arc allow the radial magnetic field to be varied in azimuth.

Si les différentes techniques de contrôle électromagnétique du vecteur poussée d'un propulseur à dérive fermée d'électrons permettent d'obtenir des angles de déviation jusqu'à 3°, elles présentent une série d'inconvénients dus à la physique même de ces propulseurs. En particulier, le fait d'augmenter localement le champ électrique change la position de la zone d'érosion. Le profil d'usure, au lieu d'être axisymétrique sera ainsi plus prononcé d'un côté (le déplacement du centre de gravité d'un satellite est déterministe). Dans la mesure où il faut changer la consigne de pointage du faisceau, l'interface entre le plasma et la paroi usée du canal ne sera pas symétrique. Il en résultera une usure plus prononcée du côté préalablement soumis à une usure modérée mais surtout un déplacement du seuil d'usure, ce qui peut fortement perturber le fonctionnement.If the various electromagnetic control techniques of the thrust vector of a closed-drift electron propellant make it possible to obtain deflection angles of up to 3 °, they present a series of disadvantages due to the very physics of these thrusters. In particular, locally increasing the electric field changes the position of the erosion zone. The wear profile, instead of being axisymmetric will thus be more pronounced on one side (the displacement of the center of gravity of a satellite is deterministic). Since it is necessary to change the aiming point of the beam, the interface between the plasma and the used wall of the channel will not be symmetrical. This will result in a more pronounced wear on the side previously subjected to moderate wear but especially a displacement of the wear threshold, which can greatly disrupt the operation.

Il faut aussi noter qu'un essai de durée de vie est difficile à spécifier avec un dispositif de contrôle électromagnétique. En effet, dès lors que la durée de vie risque d'être fonction de la loi de commande du vecteur poussée, il devient quasiment impossible de démontrer que la loi de commande du vecteur poussée utilisée en essai de durée de vie est plus sévère qu'une loi aléatoire rencontrée en fonctionnement réel.It should also be noted that a life test is difficult to specify with an electromagnetic control device. Indeed, since the service life may be a function of the thrust vector control law, it becomes almost impossible to demonstrate that the law of thrust vector control used in lifetime testing is more severe than a random law encountered in actual operation.

Un autre inconvénient est lié à la chute de rendement importante lorsque le faisceau d'ions (le vecteur poussée) est dévié.Another drawback is related to the significant yield drop when the ion beam (the thrust vector) is deflected.

En effet, dans un propulseur axisymétrique, rien ne s'oppose au mouvement de dérive des électrons dans le canal annulaire sous l'effet des champs croisés électrique et magnétique (d'où le nom de propulseurs à dérive fermée d'électrons).Indeed, in an axisymmetric thruster, nothing is opposed to the electron drift movement in the annular channel under the effect of electric and magnetic cross fields (hence the name of drift propellants closed electrons).

Si l'on décale les parois du canal vis-à-vis des pièces polaires, on constate une diminution du rendement qui est due à l'augmentation des collisions électrons-parois.If we shift the walls of the channel vis-à-vis the pole pieces, there is a decrease in efficiency that is due to the increase in electron-wall collisions.

Le même effet se produit si l'on augmente localement le champ magnétique. Il sera aggravé par une usure asymétrique.The same effect occurs if the magnetic field is increased locally. It will be aggravated by asymmetrical wear.

Un moyen simple de contrôler le vecteur poussée peut consister à utiliser plusieurs propulseurs dont on contrôle individuellement la poussée.A simple way of controlling the thrust vector may be to use several thrusters whose thrust is individually controlled.

Il est alors très facile de fixer la direction et l'amplitude du vecteur poussée résultant et la durée de vie devient indépendante de la loi d'orientation de poussée. Un tel procédé présente cependant l'inconvénient d'être très coûteux dès lors qu'il faut au moins trois propulseurs et trois alimentations électriques.It is then very easy to fix the direction and amplitude of the resulting thrust vector and the service life becomes independent of the thrust orientation law. Such a method however has the disadvantage of being very expensive when it takes at least three thrusters and three power supplies.

Objet et description succincte de l'inventionObject and brief description of the invention

L'invention vise à remédier aux inconvénients précités et notamment à permettre un contrôle du vecteur poussée à l'aide d'un système qui n'augmente pas exagérément la masse de l'ensemble embarqué et son coût, et par suite ne comprenne pas un ensemble complet de propulseurs multiples, tout en permettant d'assurer une commande aisée et efficace de l'orientation du vecteur poussée, avec des angles de déviation suffisamment importants, et sans qu'il soit créé de dissymétries non contrôlables.The invention aims to remedy the aforementioned drawbacks and in particular to allow control of the thrust vector using a system that does not increase excessively the mass of the onboard assembly and its cost, and therefore does not include a complete set of multiple thrusters, while ensuring easy and effective control of the orientation of the thrust vector, with sufficiently large deviation angles, and without the creation of uncontrollable asymmetries.

Ces but sont atteints grâce à un propulseur à plasma à dérive fermée d'électrons à vecteur poussée orientable, comprenant au moins un canal annulaire principal d'ionisation et d'accélération équipé d'une anode et de moyens d'alimentation en gaz ionisable, un circuit magnétique de création d'un champ magnétique dans ledit canal annulaire principal, et une cathode creuse associée à des moyens d'alimentation en gaz ionisable, caractérisé en ce qu'il comprend une pluralité de canaux annulaires principaux d'ionisation et d'accélération présentant des axes non parallèles qui convergent du côté de la sortie aval desdits canaux annulaires principaux, en ce que le circuit magnétique de création d'un champ magnétique comprend une première pièce polaire aval externe commune à tous les canaux annulaires, une deuxième pièce polaire externe commune à tous les canaux annulaires et disposée en amont de la première pièce polaire aval externe, une pluralité de pièces polaires internes en nombre égal au nombre de canaux annulaires principaux et montées sur des premiers noyaux disposés autour des axes des canaux annulaires principaux, une pluralité de premières bobines disposées respectivement autour de la pluralité de premiers noyaux, une pluralité de deuxièmes bobines montées sur des deuxièmes noyaux disposés dans des espaces libres ménagés entre les canaux annulaires principaux, lesdits deuxièmes noyaux des deuxièmes bobines étant reliés entre eux dans leur partie amont par des barres ferromagnétiques et étant reliés dans leur partie aval à ladite première pièce polaire aval externe, et en ce qu'il comprend des moyens pour réguler le débit de l'alimentation en gaz ionisable de chaque canal annulaire principal et des moyens de contrôle du courant de décharge et d'accélération des ions dans les canaux annulaires principaux.These objects are achieved by means of a steerable thrust vector electron drift plasma propellant comprising at least one main ionization and acceleration annular channel equipped with an anode and means for supplying ionizable gas, a magnetic circuit for creating a magnetic field in said main annular channel, and a hollow cathode associated with gas supply means ionizable, characterized in that it comprises a plurality of main annular ionization and acceleration channels having non-parallel axes which converge on the downstream output side of said main annular channels, in that the magnetic circuit for creating a magnetic field comprises a first external downstream pole piece common to all the annular channels, a second external pole piece common to all the annular channels and arranged upstream of the first external downstream pole piece, a plurality of internal pole pieces in number equal to number of main annular channels and mounted on first cores arranged around the axes of the main annular channels, a plurality of first coils disposed respectively around the plurality of first cores, a plurality of second coils mounted on second cores arranged in free spaces arranged between the main ring channels blades, said second cores of the second coils being interconnected in their upstream portion by ferromagnetic bars and being connected in their downstream portion to said first outer downstream pole piece, and in that it comprises means for regulating the flow rate of the supply of ionizable gas from each main annular channel and means for controlling the discharge current and acceleration of the ions in the main annular channels.

Les axes des canaux annulaires principaux d'ionisation et d'accélération convergent sur l'axe géométrique du propulseur et peuvent former avec l'axe géométrique du propulseur des angles compris entre 5° et 20°.The axes of the main annular channels of ionization and acceleration converge on the geometric axis of the thruster and can form with the geometric axis of the propeller angles between 5 ° and 20 °.

Chaque canal annulaire principal d'ionisation et d'accélération comprend une anode associée à un distributeur alimenté en gaz ionisable au moyen d'une canalisation reliée par un isolateur à un régulateur de débit.Each main annular ionization and acceleration channel comprises an anode associated with a distributor supplied with ionizable gas by means of a pipe connected by an insulator to a flow regulator.

La cathode creuse est alimentée par une canalisation reliée par un isolateur à un organe de perte de charge.The hollow cathode is fed by a pipe connected by an insulator to a pressure drop member.

Les régulateurs de débit et l'organe de perte de charge sont alimentés par une canalisation commune contrôlée par une électrovanne.The flow regulators and the pressure drop member are fed by a common pipe controlled by a solenoid valve.

Le propulseur comprend un circuit d'alimentation électrique pour établir la décharge entre la cathode creuse et les anodes et les oscillateurs de décharge des canaux annulaires principaux sont découplés par des filtres placés entre la cathode et les anodes.The thruster comprises a power supply circuit for establishing the discharge between the hollow cathode and the anodes and the Discharge oscillators of the main annular channels are decoupled by filters placed between the cathode and the anodes.

Pour contrôler les courants de décharge des anodes, le propulseur comprend des boucles d'asservissement comprenant des capteurs de courant et un régulateur de courant agissant sur les régulateurs de débit et recevant une consigne de courant de décharge total et au moins une consigne de déviation de vecteur poussée pour un contrôle selon au moins un axe, le courant de décharge et d'accélération des ions étant contrôlé par une distribution de champ magnétique déterminée par ledit circuit magnétique dans lequel la pluralité de premières bobines et la pluralité de deuxièmes bobines sont montées en série entre la cathode et la borne négative du circuit d'alimentation électrique.To control the discharge currents of the anodes, the thruster comprises servocontrol loops comprising current sensors and a current regulator acting on the flow regulators and receiving a total discharge current setpoint and at least one deflection setpoint of thrust vector for control over at least one axis, the ion discharge and acceleration current being controlled by a magnetic field distribution determined by said magnetic circuit in which the plurality of first coils and the plurality of second coils are mounted series between the cathode and the negative terminal of the power supply circuit.

Les régulateurs de débit peuvent être constitués par des thermocapillaires contrôlés par des boucles d'asservissement des courants de décharge ou encore par des microélectrovannes de dosage à actuateur thermique, piézoélectrique ou magnétostrictif.Flow controllers can be constituted by thermocapillaries controlled by servocontrol loops of the discharge currents or by microelectrovalves dosing thermal actuator, piezoelectric or magnetostrictive.

Les capteurs de courant peuvent être à isolation galvanique pour mesurer le courant de chacune des anodes à un potentiel de plusieurs centaines de volts.The current sensors can be galvanically isolated to measure the current of each of the anodes at a potential of several hundred volts.

Avantageusement, la plage de débit dans chaque canal annulaire principal est comprise entre 50 % et 120% du débit nominal.Advantageously, the flow range in each main annular channel is between 50% and 120% of the nominal flow rate.

Le nombre de deuxièmes bobines peut être compris entre 4 et 10.The number of second coils can be between 4 and 10.

Selon divers modes de réalisation possibles, le propulseur peut comprendre deux canaux annulaires principaux, ou trois canaux annulaires principaux répartis en triangle autour de l'axe du propulseur ou encore quatre canaux annulaires principaux répartis en carré autour de l'axe du propulseur.According to various possible embodiments, the thruster may comprise two main annular channels, or three main annular channels distributed in a triangle around the axis of the thruster or four main annular channels distributed in a square around the axis of the thruster.

Selon un mode particulier de réalisation, le nombre des deuxièmes bobines est un multiple du nombre de canaux annulaires principaux, les bobines de chaque sous ensemble de deuxièmes bobines attribué à chaque canal sont montées en série et les différents sous-ensembles de deuxièmes bobines sont montés en parallèles, les impédances des bobines montées en série étant égales.According to a particular embodiment, the number of second coils is a multiple of the number of main annular channels, the coils of each subset of second coils assigned to each channel are connected in series and the different subsets of second coils are mounted. in parallel, the impedances of the coils connected in series being equal.

Selon un autre mode particulier de réalisation, le nombre des deuxièmes bobines est un multiple du nombre de canaux annulaires principaux d'ionisation et d'accélération et les bobines de chacun des sous-ensembles de deuxièmes bobines attribués aux différents canaux sont alimentées par un vernier de courant.According to another particular embodiment, the number of second coils is a multiple of the number of main annular ionization and acceleration channels and the coils of each of subassemblies of second coils assigned to the different channels are fed by a current vernier.

Selon un mode particulier de réalisation, le propulseur comprend une boucle numérique d'asservissement de l'orientation du vecteur poussée, les consignes de poussée totale et de déviation du vecteur poussée étant données sous forme numérique, et la consigne de déviation du vecteur poussée ayant priorité sur la consigne de poussée totale en cas d'incompatibilité entre les deux consignes.According to a particular embodiment, the thruster comprises a digital loop for controlling the orientation of the thrust vector, the total thrust and the thrust vector deflection instructions being given in digital form, and the thrust vector deviation instruction having priority on the total thrust instruction in case of incompatibility between the two instructions.

Avantageusement, le propulseur comprend une embase commune jouant le rôle de radiateur et de logement pour les connexions électriques et fluidiques.Advantageously, the thruster comprises a common base acting as a radiator and housing for the electrical and fluidic connections.

Selon un mode de réalisation, les moyens pour réguler le débit de l'alimentation en gaz ionisable reçoivent deux consignes de déviation de vecteur poussée pour un contrôle selon deux axes.According to one embodiment, the means for regulating the flow rate of the ionizable gas supply receive two guidelines for a thrust vector deviation for a control along two axes.

Selon un mode de réalisation particulier, le propulseur comprend deux canaux annulaires principaux d'ionisation et d'accélération permettant d'effectuer un contrôle selon un premier axe à l'aide des moyens pour réguler le débit de l'alimentation en gaz ionisable, et il comprend en outre des moyens mécaniques d'articulation de l'embase du propulseur autour d'un autre axe.According to a particular embodiment, the thruster comprises two main annular ionization and acceleration channels making it possible to perform a control along a first axis using means for regulating the flow rate of the ionizable gas supply, and it further comprises mechanical means of articulation of the base of the thruster around another axis.

Dans ce cas, l'embase du propulseur est articulée autour du second axe avec un angle maximum de 50°.In this case, the base of the thruster is articulated around the second axis with a maximum angle of 50 °.

Selon un aspect particulier, l'embase du propulseur est articulée autour dudit second axe sur deux roulements précontraints par au moins une membrane souple montée sur une plate-forme fixe et directement fixés à l'embase, le centre de gravité de l'ensemble mobile étant situé au voisinage de l'axe de rotation et l'angle de rotation étant contrôlé par un moteur électrique et un réducteur assurant le verrouillage angulaire.According to a particular aspect, the base of the thruster is articulated around said second axis on two bearings prestressed by at least one flexible membrane mounted on a fixed platform and directly fixed to the base, the center of gravity of the moving assembly. being located in the vicinity of the axis of rotation and the angle of rotation being controlled by an electric motor and a gearbox ensuring the angular locking.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation, donnés à titre d'exemples, en référence aux dessins annexés, sur lesquels :

  • la figure 1 est une vue schématique de côté montrant un premier exemple de propulseur à plasma selon l'invention, à deux canaux annulaires principaux,
  • la figure 2 est une vue de face prise de l'aval montrant le propulseur à plasma de la figure 1,
  • la figure 3 est une vue en perspective, avec coupe partielle, d'un mode particulier de réalisation du propulseur à plasma selon les figures 1 et 2,
  • la figure 4 est un schéma électrique et fluidique d'un deuxième exemple de propulseur à plasma selon l'invention, à trois canaux annulaires principaux,
  • la figure 5 est une vue schématique de côté montrant un exemple de propulseur à plasma selon l'invention, à trois canaux annulaires principaux répartis en triangle à sept bobines externes,
  • la figure 6 est une vue de face prise de l'aval montrant le propulseur à plasma de la figure 5,
  • la figure 6 A est un schéma montrant l'inclinaison des canaux du propulseur des figures 5 et 6,
  • la figure 7 est une vue schématique de côté montrant un autre exemple de propulseur à plasma selon l'invention, à trois canaux annulaires principaux répartis en triangle et à dix bobines externes,
  • la figure 8 est une vue de face prise de l'aval montrant le propulseur à plasma de la figure 7,
  • la figure 9 est une vue schématique de côté montrant un exemple de propulseur à plasma selon l'invention, à quatre canaux annulaires principaux répartis en carré et à neuf bobines externes,
  • la figure 10 est une vue de face prise de l'aval montrant le propulseur à plasma de la figure 9,
  • la figure 10A est un schéma montrant l'inclinaison des canaux du propulseur des figures 9 et 10,
  • la figure 11 est une vue schématique de côté montrant encore un autre exemple de propulseur à plasma selon l'invention, à deux canaux annulaires principaux et six bobines externes, équipé en outre d'un axe de pointage mécanique,
  • la figure 12 est une vue de face prise de l'aval montrant le propulseur à plasma de la figure 11,
  • la figure 13 est une vue de côté prise selon la flèche F de la figure 12 et montrant des détails de réalisation de l'axe de pointage mécanique,
  • la figure 14 est une vue en perpective avec coupe axiale, d'une anode pouvant être incorporée dans chacun des canaux annulaires principaux du propulseur selon l'invention,
  • la figure 15 est une vue en demi-coupe axiale, montrant un mode de réalisation possible d'un canal annulaire principal d'un propulseur selon l'invention, et
  • la figure 16 est une vue de côté montrant un propulseur à plasma de l'art antérieur, comprenant un seul canal annulaire principal et des moyens de pointage mécanique.
Other features and advantages of the invention will emerge from the following description of particular embodiments, given by way of example, with reference to the appended drawings, in which:
  • FIG. 1 is a schematic side view showing a first example of a plasma thruster according to the invention, with two main annular channels,
  • FIG. 2 is a front view taken downstream showing the plasma thruster of FIG. 1,
  • FIG. 3 is a perspective view, partly in section, of a particular embodiment of the plasma thruster according to FIGS. 1 and 2,
  • FIG. 4 is an electric and fluidic diagram of a second example of a plasma thruster according to the invention, with three main annular channels,
  • FIG. 5 is a schematic side view showing an example of a plasma thruster according to the invention, with three main annular channels distributed in a triangle with seven outer coils,
  • FIG. 6 is a front view taken downstream showing the plasma thruster of FIG. 5,
  • FIG. 6A is a diagram showing the inclination of the thruster channels of FIGS. 5 and 6,
  • FIG. 7 is a schematic side view showing another example of a plasma thruster according to the invention, with three main annular channels distributed in a triangle and with ten external coils,
  • FIG. 8 is a front view taken downstream showing the plasma thruster of FIG. 7,
  • FIG. 9 is a schematic side view showing an example of a plasma thruster according to the invention, with four main annular channels divided into squares and nine external coils,
  • FIG. 10 is a front view taken downstream showing the plasma thruster of FIG. 9,
  • FIG. 10A is a diagram showing the inclination of the thruster channels of FIGS. 9 and 10,
  • FIG. 11 is a schematic side view showing yet another example of a plasma thruster according to the invention, with two main annular channels and six external coils, furthermore equipped with a mechanical pointing axis,
  • FIG. 12 is a front view taken downstream showing the plasma thruster of FIG. 11,
  • FIG. 13 is a side view taken along the arrow F of FIG. 12 and showing details of the realization of the mechanical pointing axis,
  • FIG. 14 is a perspective view in axial section of an anode that can be incorporated into each of the main annular channels of the thruster according to the invention,
  • FIG. 15 is an axial half-sectional view, showing a possible embodiment of a main annular channel of a thruster according to the invention, and
  • Fig. 16 is a side view showing a plasma thruster of the prior art, comprising a single main annular channel and mechanical pointing means.

Description détaillée de modes particuliers de réalisation de l'inventionDETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS OF THE INVENTION

Dans la description qui suit de différents exemples de propulseurs à plasma à dérive fermée d'électrons munis de plusieurs canaux annulaires principaux d'ionisation et d'accélération, les éléments semblables des différents canaux annulaires principaux, ou associés aux différents canaux, porteront les mêmes références, mais suivies de la lettre A, B, C ou D selon qu'il s'agit d'un premier, d'un deuxième, d'un troisième ou d'un quatrième canal annulaire d'un même propulseur.In the following description of various examples of electron drift plasma thrusters equipped with several main annular ionization and acceleration channels, the similar elements of the different main annular channels, or associated with the different channels, will carry the same references, but followed by the letter A, B, C or D depending on whether it is a first, a second, a third or a fourth annular channel of the same thruster.

Les figures 1 à 3 montrent un propulseur à plasma à deux canaux annulaires principaux 124A, 124B disposés côte à côte et définissant une configuration essentiellement rectangulaire. Les axes 241A,241B des deux canaux 124A, 124B sont inclinés d'un angle 242 par rapport à l'axe géométrique 752 du propulseur. Une cathode creuse unique 140 est associée aux deux canaux principaux 124A, 124B.Figures 1 to 3 show a plasma thruster with two main annular channels 124A, 124B arranged side by side and defining a substantially rectangular configuration. The axes 241A, 241B of the two channels 124A, 124B are inclined at an angle 242 with respect to the geometric axis 752 of the thruster. A single hollow cathode 140 is associated with the two main channels 124A, 124B.

Un propulseur à plasma classique à un seul canal annulaire principal, tel que celui représenté sur la figure 16, comprend en principe quatre bobines externes 31 associées à une pièce polaire externe 34.A conventional single-channel main plasma thruster, such as that shown in FIG. 16, comprises in principle four outer coils 31 associated with an outer pole piece 34.

Dans le cas d'un propulseur à plasma selon l'invention, à deux canaux principaux 124A, 124B, il est possible de fusionner les deux bobines externes adjacentes 131 situées au voisinage de la partie médiane entre les deux canaux 124A, 124B. De la sorte, il est possible de n'utiliser que six bobines externes 131 reliées à une pièce polaire externe commune 134 présentant une forme de V très ouvert (figures 1 et 2)In the case of a plasma thruster according to the invention, with two main channels 124A, 124B, it is possible to merge the two adjacent outer coils 131 located in the vicinity of the median portion between the two channels 124A, 124B. In this way, it is possible to use only six external coils 131 connected to a common external pole piece 134 having a very open V shape (FIGS. 1 and 2)

Des pièces polaires internes 135A, 135B sont montées sur des premiers noyaux 138A, 138B disposés autour des axes 241A, 241B des canaux annulaires principaux 124A, 124B, et sont donc en nombre égal au nombre de canaux annulaires 124A, 124B. Des bobines internes ou premières bobines 133A, 133B disposées autour des premiers noyaux 138A, 138B sont également en nombre égal au nombre de canaux annulaires 124A, 124B (figure 3).Internal pole pieces 135A, 135B are mounted on first cores 138A, 138B arranged around the axes 241A, 241B of the main annular channels 124A, 124B, and are therefore equal in number to the number of annular channels 124A, 124B. Internal coils or first coils 133A, 133B disposed around the first cores 138A, 138B are also equal in number to the number of annular channels 124A, 124B (Figure 3).

Les bobines externes 131, ou deuxièmes bobines, sont montées sur des deuxièmes noyaux 137 disposés dans des espaces libres ménagés entre les canaux annulaires principaux 124A, 124B. Les noyaux 137 des bobines 131 sont reliés dans leur partie aval à la pièce polaire aval externe 134. Une autre pièce polaire externe amont 311 comportant des portions 311A, 311B disposées autour des canaux annulaires 124A, 124B est disposée en amont de la première pièce polaire aval externe 134 (figures 3 et 15).The outer coils 131, or second coils, are mounted on second cores 137 disposed in free spaces formed between the main annular channels 124A, 124B. The cores 137 of the coils 131 are connected in their downstream part to the outer downstream pole piece 134. Another upstream outer pole piece 311 comprising portions 311A, 311B arranged around the annular channels 124A, 124B is arranged upstream of the first pole piece external downstream 134 (Figures 3 and 15).

Les canaux 124A, 124B et les éléments de circuit magnétique sont solidaires d'une embase 175, de préférence en alliage léger, qui joue le rôle de radiateur. Les connexions électriques et fluides sont logées dans des cavités ménagées dans cette embase.The channels 124A, 124B and the magnetic circuit elements are integral with a base 175, preferably light alloy, which acts as a radiator. The electrical and fluid connections are housed in cavities formed in this base.

Le circuit magnétique peut être réalisé par exemple d'une manière similaire à celle décrite dans le brevet US 5 359 258 ou d'une manière semblable à celle décrite dans la demande de brevet français 98 10674 déposée le 25 août 1998, et illustrée sur les figures 3 et 15.The magnetic circuit can be produced for example in a manner similar to that described in US Pat. No. 5,359,258 or in a manner similar to that described in French patent application 98,10674 filed on August 25, 1998, and illustrated on Figures 3 and 15.

Si l'on considère plus particulièrement les figures 3, 14 et 15, on voit que chaque canal annulaire tel que 124A est délimité par des parois isolantes 122A, est ouvert à son extrémité aval et présente une section de forme tronconique à sa partie amont et cylindrique à sa partie aval. Une anode annulaire 125A présente une section profilée en forme de tronc de cône ouvert vers l'aval. L'anode 125A peut présenter des fentes 117A réalisées dans la partie massive 116A de l'anode 125A pour augmenter la surface de contact avec le plasma. Des trous 120A d'injection d'un gaz ionisable provenant d'un distributeur 127A de gaz ionisable sont formés dans la paroi de l'anode 125A. Le distributeur 127 A est alimenté en gaz ionisable par une canalisation 126A. L'anode 125A peut être supportée par rapport aux pièces 122A en matériau céramique délimitant le canal 124A, par exemple par une colonnette massive 114A à section circulaire et par au moins deux colonnettes 115A amincies en lames flexibles. Un isolateur 300A est interposé entre la canalisation 126A et l'anode 125A qui est reliée par une liaison électrique 145A au pôle positif de l'alimentation électrique de la décharge anode-cathode.If we consider more particularly Figures 3, 14 and 15, we see that each annular channel such as 124A is delimited by insulating walls 122A, is open at its downstream end and has a frustoconical section at its upstream portion and cylindrical at its downstream part. An annular anode 125A has a conical section shaped frustum open downstream. The anode 125A may have slits 117A made in the solid portion 116A of the anode 125A to increase the area of contact with the plasma. Injection holes 120A of an ionizable gas from an ionizable gas distributor 127A are formed in the wall of the anode 125A. The distributor 127 A is supplied with ionizable gas via a pipe 126A. The anode 125A may be supported with respect to the 122A ceramic material delimiting the channel 124A, for example by a solid column 114A circular section and by at least two columns 115A thinned flexible blades. An isolator 300A is interposed between the pipe 126A and the anode 125A which is connected by an electrical connection 145A to the positive pole of the power supply of the anode-cathode discharge.

La pièce polaire interne 135A est prolongée par un noyau magnétique axial central 138 A qui est lui-même prolongé à la partie amont du propulseur par une pluralité de bras radiaux 352A reliés à une deuxième pièce polaire interne amont conique 351A. Une deuxième bobine magnétique interne 132A peut être placée dans la partie amont de la deuxième pièce polaire interne 351 A, à l'extérieur de celle-ci. Le champ magnétique de la bobine interne 132A est canalisé par des bras radiaux 136 placés dans le prolongement des bras radiaux 352A, ainsi que par la pièce polaire externe 311A et la pièce polaire interne 351A. Un faible entrefer 361 peut être ménagé entre les bras radiaux 352A et les bras radiaux 136.The inner pole piece 135A is extended by a central axial magnetic core 138A which is itself extended to the upstream portion of the thruster by a plurality of radial arms 352A connected to a second conical upstream inner pole piece 351A. A second internal magnetic coil 132A can be placed in the upstream portion of the second inner pole piece 351 A, outside thereof. The magnetic field of the internal coil 132A is channeled by radial arms 136 placed in the extension of the radial arms 352A, as well as by the outer pole piece 311A and the inner pole piece 351A. A small gap 361 may be provided between the radial arms 352A and the radial arms 136.

Des feuilles de matériau superisolant formant écran 130A sont disposées en amont du canal annulaire 124A et des feuilles de matériau superisolant 301A formant écran sont également interposées entre la canal 124A et la bobine interne 133A. Les écrans 130A, 301A éliminent l'essentiel du flux rayonné par le canal 124A vers les bobines 133A, 132A et l'embase 175.Sheets of screen-insulating material 130A are disposed upstream of the annular channel 124A and superimposing material sheets 301A forming a screen are also interposed between the channel 124A and the inner coil 133A. The screens 130A, 301A eliminate most of the flux radiated by the channel 124A to the coils 133A, 132A and the base 175.

Dans le cadre du propulseur à plasma à plusieurs canaux 124A, 124B selon l'invention il est possible d'utiliser une seule cathode 140 pour alimenter les deux canaux 124A, 124B. En effet, la cathode 140 crée un nuage de plasma qui rend son positionnement relativement insensible par rapport à l'un des faisceaux et de plus les axes 241A, 241B des canaux 124A, 124B étant convergents, cela entraîne un croisement des faisceaux de plasma qui diminue considérablement l'impédance entre les faisceaux. Il n'est toutefois pas exclu d'ajouter une cathode redondante si cela s'avère nécessaire, notamment si le nombre de canaux est supérieur ou égal à quatre.In the context of the multichannel plasma thruster 124A, 124B according to the invention it is possible to use a single cathode 140 for supplying the two channels 124A, 124B. Indeed, the cathode 140 creates a plasma cloud which makes its positioning relatively insensitive with respect to one of the beams and moreover the axes 241A, 241B of the channels 124A, 124B being convergent, this leads to a crossing of the plasma beams which significantly decreases the impedance between the beams. However, it is not excluded to add a redundant cathode if this is necessary, especially if the number of channels is greater than or equal to four.

Le propulseur à deux canaux 124A, 124B des figures 1 à 3 permet un contrôle du vecteur poussée selon un axe.The two-channel thruster 124A, 124B of FIGS. 1 to 3 allows control of the thrust vector along an axis.

Des configurations de propulseur à trois canaux 124A à 124 C, telles que celles représentées sur les figures 5 à 8 permettent un contrôle du vecteur poussée selon deux axes.Three-channel thruster configurations 124A-124C, such as those shown in FIGS. 5-8, provide two-axis thrust vector control.

Dans le mode de réalisation des figures 5 et 6, les axes 241A, 241B, 241C des trois canaux annulaires principaux 124A, 124B, 124C disposés en triangle convergent vers l'axe 752 du propulseur. Chaque canal 124A à 124C est entouré par quatre bobines externes 131 dans une configuration "en diamant". Certaines bobines 131 coopèrent avec deux canaux voisins, de sorte que le nombre total de bobines externes 131 est ramené à 7 au lieu de 12.In the embodiment of FIGS. 5 and 6, the axes 241A, 241B, 241C of the three main annular channels 124A, 124B, 124C arranged in a triangle converging towards the axis 752 of the thruster. Each channel 124A-124C is surrounded by four outer coils 131 in a "diamond" configuration. Some coils 131 cooperate with two neighboring channels, so that the total number of external coils 131 is reduced to 7 instead of 12.

Le nombre d'ampères-tours des bobines externes 131 est ajusté en fonction du périmètre de pièces polaires à alimenter. Ce nombre d'ampères-tours est identique pour les quatre bobines les plus centrales tandis que les trois bobines externes 131 situées au voisinage des sommets du triangle défini par les canaux 124A à 124C comportent les deux tiers du nombre de tours des bobines externes 131 centrales.The number of ampere-turns of the outer coils 131 is adjusted according to the perimeter of the pole pieces to feed. This number of ampere-turns is identical for the four most central coils while the three outer coils 131 located near the vertices of the triangle defined by the channels 124A to 124C comprise two-thirds of the number of revolutions of the outer coils 131 .

Les autres éléments principaux du propulseur à trois canaux 124A, 124B, 124C sont semblables à ceux du propulseur à deux canaux 124A, 124B, notamment en ce qui concerne l'embase commune en alliage léger 175, la cathode commune 140, les noyaux magnétiques 138A à 138C des bobines internes 133A à 133C et les noyaux magnétiques 137 des bobines externes 131 reliés entre eux par un réseau de barres ferromagnétiques 136.The other main elements of the three-channel thruster 124A, 124B, 124C are similar to those of the two-channel thruster 124A, 124B, in particular with regard to the light alloy common base 175, the common cathode 140, the magnetic cores 138A at 138C of the internal coils 133A to 133C and the magnetic cores 137 of the external coils 131 interconnected by a network of ferromagnetic bars 136.

Les figures 7 et 8 montrent un propulseur à trois canaux annulaires principaux 124A, 124B, 124C qui ne diffère du mode de réalisation des figures 5 et 6 que par le nombre et la disposition des bobines externes 131.Figures 7 and 8 show a thruster with three main annular channels 124A, 124B, 124C which differs from the embodiment of Figures 5 and 6 only by the number and arrangement of the outer coils 131.

Dans le cas du mode de réalisation des figures 7 et 8, il existe dix bobines externes 131. Celles-ci sont réparties de telle sorte que chaque canal annulaire principal 124A, 124B, 124C soit entouré par cinq bobines formant un pentagone irrégulier. Ce caractère irrégulier est dû à l'angle de convergence des canaux, qui est de l'ordre de 10°. Un pentagone régulier pourrait être obtenu si l'angle de convergence des canaux était plus important, de l'ordre de 37°. Certaines des bobines externes 131 jouent un rôle simultanément pour deux ou trois canaux 124A à 124C, de sorte que le nombre total de bobines externes 131 est ramené à 10 au lieu de 15. La pièce polaire commune 134 moyenne le champ.In the case of the embodiment of Figures 7 and 8, there are ten outer coils 131. These are distributed so that each main annular channel 124A, 124B, 124C is surrounded by five coils forming an irregular pentagon. This irregular character is due to the angle of convergence of the channels, which is of the order of 10 °. A regular pentagon could be obtained if the angle of convergence of the channels was greater, of the order of 37 °. Some of the outer coils 131 play a role simultaneously for two or three channels 124A-124C, so that the total number of outer coils 131 is reduced to 10 instead of 15. The common pole piece 134 averages the field.

La disposition des figures 7 et 8 est intéressante pour de gros propulseurs, pour lesquels il est préférable de fractionner les bobines externes 131 afin d'alléger la pièce polaire externe 134. La pièce polaire externe 134 et l'embase 175 présentent la forme d'un hexagone irrégulier avec six bobines externes 131 placées au voisinage des sommets de l'hexagone et quatre bobines externes 131 réparties en étoile entre les trois canaux 124A à 124C.The arrangement of FIGS. 7 and 8 is of interest for large thrusters, for which it is preferable to split the outer coils 131 in order to lighten the outer pole piece 134. The outer pole piece 134 and the base 175 have the shape of an irregular hexagon with six outer coils 131 placed in the vicinity of the vertices of the hexagon and four outer coils 131 distributed in a star between the three channels 124A to 124C.

Les figures 9 et 10 montrent un propulseur à quatre canaux annulaires principaux 124A, 124B, 124C, 124D disposés essentiellement en carré et associés à neuf bobines externes 131. Chaque canal 124A à 124D est entouré par quatre bobines externes 131. Des bobines externes 131 jouent un rôle vis-à-vis de plusieurs canaux. Seules les bobines 131 situées au voisinage des angles de la pièce polaire 134 et de l'embase 175 de forme essentiellement carrée, ne jouent un rôle vis-à-vis que d'un seul canal 124A à 124D. De la sorte, le nombre de bobines externes 131 peut être ramené de 16 à 9.FIGS. 9 and 10 show a thruster with four main annular channels 124A, 124B, 124C, 124D disposed essentially in a square and associated with nine external coils 131. Each channel 124A to 124D is surrounded by four external coils 131. External coils 131 play a role vis-à-vis several channels. Only the coils 131 located near the corners of the pole piece 134 and the base 175 of substantially square shape, play a role vis-à-vis only one channel 124A to 124D. In this way, the number of external coils 131 can be reduced from 16 to 9.

Pour obtenir une déviation déterminée, il faut augmenter l'angle 242 des axes 241A à 241D par rapport à l'axe 752, cet angle 242 devenant le double de celui prévu dans le cas d'un propulseur à deux canaux.To obtain a determined deflection, it is necessary to increase the angle 242 of the axes 241A to 241D with respect to the axis 752, this angle 242 becoming twice that envisaged in the case of a two-channel thruster.

Si l'on se reporte aux figures 11 à 13, on voit un propulseur selon l'invention à deux canaux 124A, 124B essentiellement similaire au propulseur des figures 1 à 3. Toutefois, dans le cas des figures 11 à 13, le propulseur est en outre équipé de moyens d'orientation mécanique uniaxe.Referring to FIGS. 11 to 13, a propellant according to the invention with two channels 124A, 124B is shown essentially similar to the thruster of FIGS. 1 to 3. However, in the case of FIGS. 11 to 13, the thruster is in addition equipped with means of uniaxial mechanical orientation.

Les deux canaux annulaires principaux 124A, 124B et leurs six bobines externes associées 131 assurent une commande souple et aisée de l'orientation du vecteur poussée selon un premier axe, avec un angle pouvant être compris entre 5° et 20°. Les moyens d'orientation mécanique uniaxe permettent de commander l'orientation du vecteur poussée selon un deuxième axe, avec un angle 783 important, par exemple de l'ordre de 50°.The two main annular channels 124A, 124B and their associated six outer coils 131 provide smooth and easy control of the orientation of the vector pushed along a first axis, with an angle that can be between 5 ° and 20 °. The uniaxial mechanical orientation means make it possible to control the orientation of the thrust vector along a second axis, with an important angle 783, for example of the order of 50 °.

On notera qu'un système d'orientation mécanique uniaxe est beaucoup plus simple, plus léger et plus robuste qu'un système d'orientation mécanique deux axes. En particulier, dans le cas d'un système uniaxe, le centre de gravité 751 du propulseur peut être situé sur l'axe de rotation 782 du dispositif d'orientation, ce qui dispense alors de mettre en oeuvre un dispositif de blocage. Le verrouillage angulaire peut en effet être obtenu directement à l'aide d'un mécanisme de commande de rotation irréversible comprenant par exemple un moteur électrique 177 et un réducteur 179. L'axe de rotation 782 du berceau 175 du propulseur à orientation mécanique peut être matérialisé par deux roulements à contact oblique 178 capables de résister aux efforts dynamiques au cours du lancement du propulseur. L'un au moins des roulements à contact oblique 178 peut être monté sur une membrane élastique 781 permettant de garantir une précontrainte constante et indépendante des gradients thermiques empêchant les coincements, comme décrit par exemple dans le brevet européen 0 325 073. La membrane élastique 781 est elle-même montée sur une embase fixe 176. Les liaisons électriques sont assurées par des câbles souples et l'alimentation en gaz ionisable par des canalisations élastiques.It should be noted that a uniaxial mechanical orientation system is much simpler, lighter and more robust than a two-axis mechanical orientation system. In particular, in the case of a uniaxial system, the center of gravity 751 of the thruster may be located on the axis of rotation 782 of the orientation device, which then dispenses to implement a locking device. The angular locking can indeed be obtained directly by means of an irreversible rotation control mechanism comprising for example an electric motor 177 and a reducer 179. The axis of rotation 782 of the cradle 175 of the mechanically-oriented thruster may be embodied by two angular contact bearings 178 capable of withstanding the dynamic forces during the launching of the thruster. At least one of the angular contact bearings 178 may be mounted on an elastic membrane 781 to ensure a constant and independent preload of thermal gradients preventing jamming, as described for example in European Patent 0 325 073. The elastic membrane 781 is itself mounted on a fixed base 176. The electrical connections are provided by flexible cables and the supply of ionizable gas by elastic conduits.

Le propulseur à deux canaux 124A, 124B avec orientation mécanique uniaxe est particulièrement utile lorsqu'il s'agit de pointer le vecteur poussée selon un angle important sur un axe et selon un angle plus faible sur l'autre.The two-channel thruster 124A, 124B with uniaxial mechanical orientation is particularly useful when it comes to pointing the thrust vector at a large angle on one axis and at a lower angle on the other.

Ceci est en particulier le cas pour les satellites de télécommunication utilisant la propulsion à plasma pour la fin d'un transfert entre une orbite de transfert géostationnaire (GTO) et une orbite géostationnaire finale (GEO), puis pour un contrôle Nord-Sud, ainsi que pour les missions demandant une loi de vecteur poussée dans le plan orbital, puis en dehors du plan orbital (correction d'inclinaison pour le transfert GTO-GEO ou pour certaines missions planétaires).This is particularly the case for telecommunications satellites using plasma propulsion for the end of a transfer between a geostationary transfer orbit (GTO) and a final geostationary orbit (GEO), then for a North-South control, as well as only for missions requesting a push vector law in the orbital plane, then outside the orbital plane (tilt correction for GTO-GEO transfer or for some planetary missions).

D'une manière générale, selon l'invention, le contrôle du vecteur poussée est obtenu en alimentant séparément en fluide propulsif plusieurs canaux annulaires principaux d'ionisation et d'accélération 124A à 124D inclus dans un circuit magnétique commun 134, reliés à une cathode creuse unique 140 et à un bloc d'alimentation 190 unique (figure 4).In general, according to the invention, the control of the thrust vector is obtained by separately supplying to the propulsion fluid several main annular ionization and acceleration channels 124A to 124D included in a common magnetic circuit 134, connected to a cathode single hollow 140 and a single power supply 190 (Figure 4).

Pour un champ magnétique radial fixé (déterminé par le courant passant dans la cathode creuse commune 140), il existe une certaine marge de débit masse, donc de courant de décharge, pour un moteur à dérive fermée d'électrons fonctionnant en mode non focalisé (dit encore "mode tige" ou "spike mode" en anglais). La poussée étant sensiblement proportionnelle au courant de décharge et au débit masse dans un petit domaine autour du point de fonctionnement nominal, il devient aisé de contrôler la poussée individuelle de chaque canal 124A à 124D en modifiant le débit masse. Ceci est obtenu facilement à l'aide de régulateurs de débit individuels 185A à 185D comprenant par exemple un thermocapillaire contrôlé par une boucle d'asservissement en courant de décharge. On peut aussi utiliser une microélectrovanne de dosage (à actuateur thermique, ou piézoélectrique ou magnétostrictif).For a fixed radial magnetic field (determined by the current flowing in the common hollow cathode 140), there is a certain margin of mass flow, and therefore of discharge current, for a closed-electron drift motor operating in an unfocused mode ( still says "fashion rod" or "spike mode" in English). Since the thrust is substantially proportional to the discharge current and to the mass flow rate in a small area around the nominal operating point, it becomes easy to control the individual thrust of each channel 124A to 124D. modifying the mass flow. This is easily achieved with the aid of individual flow controllers 185A through 185D including, for example, a thermocapillary controlled by a discharge current control loop. It is also possible to use a metering micro-solenoid valve (with thermal actuator, or piezoelectric or magnetostrictive).

Dans les propulseurs à plasma stationnaire classiques, un capteur de courant est situé sur la ligne de retour de courant (à un potentiel voisin de la masse, car égal au potentiel cathode diminué de la chute de tension dans les bobines)In conventional stationary plasma thrusters, a current sensor is located on the current return line (at a potential near the ground, because equal to the cathode potential minus the voltage drop in the coils)

Dans le cas présent, il faut en plus mesurer le courant de chaque anode. Le potentiel d'anode étant de 300 V, il est préférable d'effectuer cette mesure par un capteur de courant à isolation galvanique 193A à 193D. Par exemple, on peut mesurer le différentiel de courant entre deux fils en plaçant un capteur à effet Hall sur l'axe de deux solénoïdes bobinés en opposition, chaque solénoïde étant parcouru par le courant d'une anode.In this case, it is necessary to measure the current of each anode. Since the anode potential is 300 V, it is preferable to carry out this measurement by a galvanically isolated current sensor 193A to 193D. For example, the current differential between two wires can be measured by placing a Hall sensor on the axis of two coiled-in solenoids, each solenoid being traversed by the current of an anode.

La figure 4 montre le schéma électrique d'un propulseur à trois canaux 124A à 124C (donc à trois anodes 125A à 125C). Chaque anode 125A à 125C est reliée à l'alimentation commune par l'intermédiaire d'un filtre constitué par un circuit L-C (911A à 911C). Cela permet de découpler les fréquences d'oscillations entre chaque canal qui peuvent être légèrement différentes en raison des débits-masses différents.Figure 4 shows the wiring diagram of a three-channel thruster 124A-124C (thus three anodes 125A-125C). Each anode 125A to 125C is connected to the common supply via a filter consisting of an L-C circuit (911A to 911C). This makes it possible to decouple the oscillation frequencies between each channel which may be slightly different because of the different flow rates.

Vis-à-vis d'un bloc d'alimentations alimentant un propulseur unique, la seule complication apportée consiste en l'adjonction de commandes de régulateurs de débit supplémentaires et de capteurs de courant différentiels à isolation galvanique (92, 921, 922).With respect to a power supply unit supplying a single thruster, the only complication is the addition of additional flow regulator controls and galvanically isolated differential current sensors (92, 921, 922).

Le schéma de la figure 4 est naturellement applicable à un mode de réalisation à quatre canaux 124A à 124D tel que celui des figures 9 et 10. Dans ce cas, il est seulement ajouté une branche supplémentaire dont les éléments sont affectés de la lettre D.The diagram of Figure 4 is naturally applicable to a four-channel embodiment 124A to 124D such as that of Figures 9 and 10. In this case, it is only added an additional branch whose elements are assigned the letter D.

Dans chaque branche correspondant à un canal 124A à 124D, une chambre comprend une anode 125A à 125D et un distributeur 127A à 127D, alimenté en gaz ionisable au moyen d'une canalisation 118A à 118D, d'un isolateur (300A à 300D) et d'un régulateur de débit (185A à 185D), raccordé par un tronçon de canalisation commune d'alimentation 126 contrôlée par une électrovanne 187. La canalisation commune 126 alimente également la cathode creuse 140 au moyen d'un organe de perte de charge 186 et d'un isolateur 300. La décharge est établie entre la cathode creuse 140 et les anodes 125A à 125D au moyen d'un circuit d'alimentation électrique 191. Les oscillations de décharge des différents canaux sont découplées par des filtres 911 A à 911 D placés entre les différentes anodes 125A à 125D et la cathode 140. Le courant de décharge de chaque anode est contrôlé par une boucle d'asservissement comprenant un capteur de courant 193A à 193D, de préférence à isolation galvanique, un régulateur 192 recevant une consigne 922 de déviation de vecteur poussée pour un contrôle un axe, ou deux consignes 922 de déviation de vecteur poussée pour un contrôle deux axes, et une consigne 921 de courant de décharge total. Le courant de décharge et l'accélération des ions sont contrôlés par la distribution de champ magnétique déterminée par la pièce polaire aval externe 134 commune à tous les canaux, la pièce polaire externe amont 311 commune à tous les canaux, les bobines externes 131 montées sur les noyaux 137 et les pièces polaires internes 135A à 135D montées sur les noyaux 138A à 138D équipés de bobines 133A à 133D. Les extrémités de toutes les pièces polaires ont des profils de tores coaxiaux aux axes 241A à 241D des canaux 124A à 124D. Les bobines internes 133A à 133D et externes 131 sont montées en série entre la cathode et la borne négative du circuit d'alimentation électrique 191 tandis que les différents noyaux sont reliés à l'amont par les barres ferromagnétiques 136. Les circuits de régulation permettent de définir dans chaque canal 124A à 124D une plage de débit typiquement comprise entre 50% et 120% du débit nominal.In each branch corresponding to a channel 124A to 124D, a chamber comprises an anode 125A to 125D and a distributor 127A to 127D, supplied with ionizable gas by means of a line 118A to 118D, from an isolator (300A to 300D) and a flow regulator (185A to 185D), connected by a common supply pipe section 126 controlled by a solenoid valve 187. The common channel 126 also feeds the hollow cathode 140 by means of a pressure drop member 186 and an isolator 300. The discharge is established between the hollow cathode 140 and the anodes 125A to 125D by means of a power supply circuit 191 The discharge oscillations of the different channels are decoupled by filters 911 A to 911 D placed between the different anodes 125A to 125D and the cathode 140. The discharge current of each anode is controlled by a servo control loop comprising a sensor. current 193A to 193D, preferably electrically isolated, a regulator 192 receiving a setpoint 922 of thrust vector deflection for one-axis control, or two setpoints 922 of thrust vector deflection for a two-axis control, and a setpoint 921 current total discharge. The discharge current and the acceleration of the ions are controlled by the magnetic field distribution determined by the external downstream pole piece 134 common to all the channels, the upstream external pole piece 311 common to all the channels, the external coils 131 mounted on cores 137 and inner pole pieces 135A-135D mounted on cores 138A-138D provided with coils 133A-133D. The ends of all the pole pieces have coaxial core profiles at axes 241A through 241D of channels 124A through 124D. The internal coils 133A to 133D and external coils 131 are connected in series between the cathode and the negative terminal of the power supply circuit 191 while the various cores are connected upstream by the ferromagnetic bars 136. The control circuits make it possible to define in each channel 124A to 124D a flow range typically between 50% and 120% of the nominal flow rate.

Diverses variantes de réalisation des circuits de régulation sont possibles.Various embodiments of the control circuits are possible.

Ainsi, selon une variante particulière, le nombre de bobines externes 131 est un multiple du nombre de canaux annulaires principaux 124A à 124D, les bobines de chaque sous-ensemble de bobines 131 attribué à chaque canal 124A à 124D sont montées en série et les différents sous-ensembles de bobines 131 sont montés en parallèle, les impédances des bobines montées en série étant égales.Thus, according to a particular variant, the number of external coils 131 is a multiple of the number of main annular channels 124A to 124D, the coils of each subset of coils 131 assigned to each channel 124A to 124D are connected in series and the different Subsets of coils 131 are connected in parallel, the impedances of the coils connected in series being equal.

Selon une autre variante, le nombre des bobines externes 131 est un multiple du nombre de canaux annulaires 124A à 124D et les bobines de chacun des sous ensembles de bobines 131 attribués aux différents canaux sont alimentées par un vernier de courant.According to another variant, the number of external coils 131 is a multiple of the number of annular channels 124A to 124D and the coils each of the subsets of coils 131 allocated to the different channels are fed by a current vernier.

Selon encore une autre variante, il est prévu une boucle numérique d'asservissement de l'orientation du vecteur poussée, les consignes de poussée totale et de déviation du vecteur poussée étant données sous forme numérique, et la consigne de déviation du vecteur poussée a priorité sur la consigne de poussée totale en cas d'incompatibilité entre les deux consignes.According to yet another variant, a digital loop for controlling the orientation of the thrust vector is provided, the commands for total thrust and deflection of the thrust vector being given in digital form, and the thrust reference of the thrust vector takes precedence. on the total thrust instruction in case of incompatibility between the two instructions.

On notera que le propulseur à canaux multiples selon l'invention est capable de fournir la même capacité de contrôle de poussée qu'un propulseur unique monté sur une platine autorisant un débattement de 3°.It will be noted that the multi-channel thruster according to the invention is capable of providing the same thrust control capability as a single thruster mounted on a turntable allowing a travel of 3 °.

Dans le cas d'un propulseur unique appliqué par exemple à un satellite de constellation, la distance entre le propulseur et le centre de gravité du satellite est de l'ordre de 1m. Le couple induit par une poussée F avec un angle de déviation de θ degrés est égal à C = F.sinθ. soit pour θ = 3° C = 0,0523 FIn the case of a single thruster applied for example to a constellation satellite, the distance between the thruster and the center of gravity of the satellite is of the order of 1m. The torque induced by a thrust F with a deflection angle of θ degrees is equal to C = F.sinθ. either for θ = 3 ° C = 0.0523 F

Dans le cas d'un propulseur selon l'invention à deux canaux distants de 140 mm, avec un diamètre de faisceau unitaire de 100 mm et une poussée unitaire nominale F1=F/2, si les axes des canaux individuels présentent un angle de divergence avec un demi-angle α de 10°, la variation de couple autorisée par la variation de poussée individuelle de chaque canal sera : C = 0 , 07 + sin 10 ° Δ F 1 - Δ F 2

Figure imgb0001
C = 0 , 21136 Δ F 1 - Δ F 2
Figure imgb0002
In the case of a thruster according to the invention with two channels 140 mm apart, with a unitary beam diameter of 100 mm and a nominal unit thrust F1 = F / 2, if the axes of the individual channels have a divergence angle with a half-angle α of 10 °, the variation of torque allowed by the individual thrust variation of each channel will be: VS = 0 , 07 + sin 10 ° Δ F 1 - Δ F two
Figure imgb0001
VS = 0 , 21136 Δ F 1 - Δ F two
Figure imgb0002

Si les valeurs absolues des variations sont égales, par exécution d'une loi de commande, on obtient: Δ F 1 = 0 , 215 F 1

Figure imgb0003
If the absolute values of the variations are equal, by execution of a control law, we obtain: Δ F 1 = 0 , 215 F ~ 1
Figure imgb0003

La variation de poussée qui est ainsi de l'ordre de 20 %, est facilement commandable.The variation of thrust which is thus of the order of 20%, is easily controllable.

En terme de masse supplémentaire de gaz ionisable embarquée sur un satellite, tel qu'un satellite de télécommunications de 150kg, on peut noter que dans le cas de réalisations de l'art antérieur comprenant deux platines d'orientation, la masse embarquée supplémentaire est supérieure à 12kg. Dans le cas d'un propulseur selon l'invention à une platine unique mais canaux multiples, il est nécessaire d'embarquer une masse supplémentaire de gaz ionisable tel que le xénon de l'ordre de 2kg qui est très nettement inférieure à la masse supplémentaire induite pas les dispositifs de l'art antérieur à deux platines d'orientation.In terms of additional mass of ionizable gas embedded on a satellite, such as a telecommunications satellite of 150 kg, it may be noted that in the case of embodiments of the prior art comprising two orientation plates, the additional onboard mass is greater at 12kg. In the case of a thruster according to the invention to a single plate but multiple channels, it is necessary to embark a additional mass of ionizable gas such as xenon of the order of 2kg which is very significantly lower than the additional mass induced by the devices of the prior art with two orientation plates.

Claims (24)

  1. A closed electron drift plasma thruster having a steerable thrust vector, the thruster comprising at least one main annular ionization and acceleration channel fitted with an anode and ionizable gas feed means, a magnetic circuit for creating a magnetic field in said main annular channel, and a hollow cathode (140) associated with the ionizable gas feed means, the thruster being characterised in that it comprises a plurality of main annular ionization and acceleration channels (124A to 124D) having axes that are not parallel (241A to 241D) and that converge downstream from the outlets of said main annular channels (124A to 124D), in that the magnetic circuit for creating a magnetic field comprises a first external polepiece (134) that is downstream and common to all of the annular channels (124A to 124D), a second external polepiece (311) common to all of the annular channels (124A to 124D) and that is disposed upstream from the downstream first external polepiece (134), a plurality of internal polepieces (135A to 135D) in number equal to the number of main annular channels (124A to 124D) and mounted on first cores (138A to 138D) disposed about the axes (241A to 241D) of the main annular channels (124A to 124D), a plurality of first coils (133A to 133D) disposed respectively around the plurality of first cores (138A to 138D), and a plurality of second coils (131) mounted on second cores (137) disposed in empty spaces left between the main annular channels (124A to 124D), said second cores (137) of the second coils (131) being interconnected via their upstream portions by ferromagnetic bars (136) and being connected via their downstream portions to said downstream first external polepiece (134), and in that it comprises means (192) for regulating the ionizable gas feed flow rate to each of the main annular channels (124A to 124D) and means (191) for controlling the ion discharge and acceleration current in the main annular channels (124A to 124D).
  2. A plasma thruster according to claim 1, characterised in that the axes (241A to 241D) of the main annular ionization and acceleration channels (124A to 124D) converge on the geometrical axis (752) of the thruster.
  3. A plasma thruster according to claim 1 or claim 2, characterised in that the axes (241A to 241A) of the main annular ionization and acceleration channels (124A to 124D) form angles lying in the range 5° to 20° with the geometrical axis (752) of the thruster.
  4. A plasma thruster according to any one of claims 1 to 3, characterised in that each main annular ionization and acceleration channel (124A to 124D) comprises an anode (125A to 125D) associated with a manifold (127A to 127D) fed with ionizable gas by means of a pipe (118A to 118D) connected via an isolator (300A to 300D) to a flow rate regulator (185A to 185D).
  5. A plasma thruster according to any one of claims 1 to 4, characterised in that the hollow cathode (140) is fed by a pipe connected via an isolator (300) to a head loss member (186).
  6. A plasma thruster according to claim 4 and claim 5, characterised in that the flow rate regulators (185A to 185D) and the head loss member (186) are fed from a common pipe (126) controlled by an electrically controlled valve (187).
  7. A plasma thruster according to claims 4 and 5, characterised in that it comprises an electrical power supply circuit (191) for setting up discharge between the hollow cathode (140) and the anodes (125A to 125D), and in that the discharge oscillations of the main annular channels (124A to 124D) are decoupled by filters (911A to 911D) placed between the cathode (140) and the anodes (125A to 125D).
  8. A plasma thruster according to claim 7, characterised in that to control the discharge currents of the anodes (125A to 125D), it comprises servo-control loops comprising current pickups (193A to 193D) and a current regulator (192) acting on the flow rate regulators (185A to 185D) and receiving a total current discharge reference value (921) and at least one thrust vector deflection reference value (922) for steering about at least one axis, the ion discharge and acceleration current being controlled by a magnetic field distribution determined by said magnetic circuit in which the plurality of first coils (133A to 133D) and the plurality of second coils (131) are connected in series between the cathode (140) and the negative terminal of the electricity power supply circuit (191).
  9. A plasma thruster according to claim 8, characterised in that the flow rate regulators (185A to 185D) are constituted by thermocapillary means controlled by discharge current servo-control loops.
  10. A plasma thruster according to claim 8, characterised in that the flow rate regulators (185A to 185D) are constituted by electrically controlled micromeasuring valves that are actuated thermally, piezoelectrically, or magnetostrictively.
  11. A plasma thruster according to claim 8, characterised in that the current pickups (193A to 193D) are electrically-isolated in order to measure the current in each of the anodes (125A to 125D) at a potential of several hundred volts.
  12. A plasma thruster according to any one of claims 1 to 11, characterised in that the range of flow rates in each main annular channel (124A to 124D) extends from 50% to 120% of the nominal flow rate.
  13. A plasma thruster according to any one of claims 1 to 12, characterised in that the number of second coils (131) lies in the range 4 to 10.
  14. A plasma thruster according to any one of claims 1 to 13, characterised in that it comprises a common baseplate (175) acting as a radiator and as a housing for the electrical and fluid connections.
  15. A plasma thruster according to any one of claims 1 to 14, characterised in that it comprises two main annular ionization and acceleration channels (124A, 124B).
  16. A plasma thruster according to claims 14 and 15, characterised in that it comprises two main annular ionization and acceleration channels (124A, 124B) making it possible to provide control about a first axis using means (192) for adjusting the ionizable gas feed rate, and in that it further comprises mechanical hinge means to the baseplate (175) of the thruster about a different axis.
  17. A plasma thruster according to claim 16, characterised in that the baseplate (175) of the thruster is hinged about said second axis (782) with a maximum angle (783) of 50°.
  18. A plasma thruster according to claim 16 or claim 17, characterised in that the baseplate (175) of the thruster is hinged about said second axis (782) on two ball bearings (178) which are prestressed by at least one flexible membrane (781) mounted on a fixed platform (176) and which are fixed directly to the baseplate (175), the center of gravity (751) of the moving assembly being situated close to the vicinity of the axis of rotation (782) and the angle of rotation (783) being controlled by an electric motor (177) and a stepdown gear (179) that provide angular locking.
  19. A plasma thruster according to any one of claims 1 to 14, characterised in that it comprises three main annular ionization and acceleration channels (124A to 124C) distributed in a triangle about the axis (752) of the thruster.
  20. A plasma thruster according to any one of claims 1 to 14, characterised in that it comprises four main annular ionization and acceleration channels (124A to 124D) disposed in a square about the axis (752) of the thruster.
  21. A plasma thruster according to any one of claims 1 to 20, characterised in that the number of second coils (131) is a multiple of the number of main annular ionization and acceleration channels (124A to 124D), in that the coils of each subset of second coils (131) allocated to each channel (124A to 124D) are connected in series, and in that the various subsets of second coils (131) are connected in parallel, with the impedances of the coils connected in series being equal.
  22. A plasma thruster according to any one of claims 1 to 20, characterised in that the number of second coils (131) is a multiple of the number of main annular ionization and acceleration channels (124A to 124D), and in that the coils of each of the subsets of second coils (131) allocated to the various channels (124A to 124D) are powered via a current vernier.
  23. A plasma thruster according to any one of claims 1 to 20, characterised in that it comprises a digital servo-control loop for steering the thrust vector, the total thrust reference value and the thrust vector deflection value being given in digital form, and the thrust vector deflection reference value having priority over the total thrust reference value in the event of the two reference values being incompatible.
  24. A plasma thruster according to any one of claims 1 to 15, 19, and 20, characterised in that the means (192) for regulating the ionizable gas feed rate receive two reference values (922) for thrust vector deflection to provide control about two axes.
EP99403313A 1998-12-30 1999-12-29 Closed electron drift plasma thrustor with orientable thrust vector Expired - Lifetime EP1101938B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9816631A FR2788084B1 (en) 1998-12-30 1998-12-30 PLASMA PROPELLER WITH CLOSED ELECTRON DRIFT WITH ORIENTABLE PUSH VECTOR
FR9816631 1998-12-30

Publications (2)

Publication Number Publication Date
EP1101938A1 EP1101938A1 (en) 2001-05-23
EP1101938B1 true EP1101938B1 (en) 2006-11-22

Family

ID=9534675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99403313A Expired - Lifetime EP1101938B1 (en) 1998-12-30 1999-12-29 Closed electron drift plasma thrustor with orientable thrust vector

Country Status (7)

Country Link
US (1) US6279314B1 (en)
EP (1) EP1101938B1 (en)
JP (1) JP4377016B2 (en)
DE (1) DE69934122T2 (en)
FR (1) FR2788084B1 (en)
RU (1) RU2227845C2 (en)
UA (1) UA58559C2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696792B1 (en) 2002-08-08 2004-02-24 The United States Of America As Represented By The United States National Aeronautics And Space Administration Compact plasma accelerator
US7461502B2 (en) 2003-03-20 2008-12-09 Elwing Llc Spacecraft thruster
JP4223921B2 (en) 2003-10-24 2009-02-12 トヨタ自動車株式会社 Vertical take-off and landing flight device
US7030576B2 (en) * 2003-12-02 2006-04-18 United Technologies Corporation Multichannel hall effect thruster
US7459858B2 (en) * 2004-12-13 2008-12-02 Busek Company, Inc. Hall thruster with shared magnetic structure
US8407979B1 (en) 2007-10-29 2013-04-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetically-conformed, variable area discharge chamber for hall thruster, and method
WO2009102227A2 (en) * 2008-02-12 2009-08-20 Dumitru Ionescu The direction acceleration principle, the direction acceleration devices and the direction acceleration devices systems
FR2931212B1 (en) * 2008-05-19 2010-06-04 Astrium Sas ELECTRIC PROPULSEUR FOR A SPATIAL VEHICLE
GB0823391D0 (en) 2008-12-23 2009-01-28 Qinetiq Ltd Electric propulsion
FR2941503B1 (en) * 2009-01-27 2011-03-04 Snecma PROPELLER WITH CLOSED DERIVATIVE ELECTRON
FR2970702B1 (en) * 2011-01-26 2013-05-10 Astrium Sas METHOD AND SYSTEM FOR DRIVING A REAR PROPULSE FLYWHEEL
FR2976029B1 (en) 2011-05-30 2016-03-11 Snecma HALL EFFECTOR
FR2979956B1 (en) * 2011-09-09 2013-09-27 Snecma PLASMA STATIONARY POWER PROPULSION PROPULSION SYSTEM
US9316213B2 (en) * 2013-09-12 2016-04-19 James Andrew Leskosek Plasma drive
WO2016149082A1 (en) * 2015-03-15 2016-09-22 Aerojet Rocketdyne, Inc. Hall thruster with exclusive outer magnetic core
FR3034214B1 (en) 2015-03-25 2017-04-07 Snecma FLOW CONTROL DEVICE AND METHOD
FR3039861B1 (en) * 2015-08-07 2017-09-01 Snecma STATIONARY PLASMA PROPELLER POWER PROPULSION SYSTEM WITH A SINGLE POWER SUPPLY UNIT
DE102017212927B4 (en) 2017-07-27 2019-05-02 Airbus Defence and Space GmbH Electric engine and method of operating an electric engine
EP3604805B1 (en) 2018-08-02 2024-04-24 ENPULSION GmbH Ion thruster for thrust vectored propulsion of a spacecraft
CN110285030A (en) * 2019-06-11 2019-09-27 上海空间推进研究所 Hall thruster cluster suitable for space application
CN111547211A (en) * 2020-05-29 2020-08-18 河北工业大学 Novel underwater vector propeller
GB2599933B (en) * 2020-10-15 2023-02-22 Iceye Oy Spacecraft propulsion system and method of operation
CN112392675B (en) * 2020-10-23 2022-03-04 北京精密机电控制设备研究所 Array type electric heating plasma accelerating device
CN112696330B (en) * 2020-12-28 2022-09-13 上海空间推进研究所 Magnetic pole structure of Hall thruster
FR3138169A1 (en) * 2022-07-25 2024-01-26 Airbus Defence And Space Sas POWER SUPPLY ASSEMBLY FOR SPACESHIP PLASMA THRUSTER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359258A (en) * 1991-11-04 1994-10-25 Fakel Enterprise Plasma accelerator with closed electron drift
EP0541309B1 (en) * 1991-11-04 1996-01-17 Fakel Enterprise Plasma accelerator with closed electron drift
RU2032280C1 (en) * 1992-02-18 1995-03-27 Инженерный центр "Плазмодинамика" Method of control over plasma flux and plasma device
RU2092983C1 (en) * 1996-04-01 1997-10-10 Исследовательский центр им.М.В.Келдыша Plasma accelerator
ES2296295T3 (en) * 1995-12-09 2008-04-16 Astrium Sas PROVIDER OF HALL EFFECT THAT CAN BE GUIDED.
US5767627A (en) * 1997-01-09 1998-06-16 Trusi Technologies, Llc Plasma generation and plasma processing of materials

Also Published As

Publication number Publication date
EP1101938A1 (en) 2001-05-23
DE69934122T2 (en) 2007-09-20
DE69934122D1 (en) 2007-01-04
RU2227845C2 (en) 2004-04-27
US6279314B1 (en) 2001-08-28
JP4377016B2 (en) 2009-12-02
UA58559C2 (en) 2003-08-15
FR2788084B1 (en) 2001-04-06
FR2788084A1 (en) 2000-07-07
JP2000205115A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
EP1101938B1 (en) Closed electron drift plasma thrustor with orientable thrust vector
EP2783112B1 (en) Hall-effect thruster
EP3174795B1 (en) Spacecraft propulsion system and method
EP2478219B1 (en) Hall-effect plasma thruster
EP0519038B1 (en) Method for controlling the pitch attitude of a satellite by means of solar radiation pressure, and a satellite, for implementing same
EP0662195B1 (en) Reduced length plasma engine with closed electron deviation
EP3146205B1 (en) Engine for a spacecraft, and spacecraft comprising such an engine
EP2812571A1 (en) Hall effect thruster
EP2179435B1 (en) Hall effect ion ejection device
EP2115301A1 (en) Emitter for ionic thruster
EP3807152A1 (en) Method for arranging a plurality of spacecraft under the cover of a launcher without a structural distributor and assembly resulting from such a method
WO1999030410A1 (en) Electrostatic microactuators, active three-dimensional microcatheters using same and method for making same
WO2012156642A1 (en) In-flight attitude control and direct thrust flight control system of a vehicle and craft comprising such a system
FR3110549A1 (en) Method for optimizing the orbit transfer of an electrically propelled spacecraft and satellite implementing said method
EP1520104B1 (en) Hall-effect plasma thruster
EP0669461A1 (en) Three grid ion-optical device
EP2276926B1 (en) Electric thruster for a spacecraft
FR2761339A1 (en) Attitude control of space satellite using electrical supply sub-system
WO2023034577A2 (en) Microfabricated multiemitter electrospray thrusters
EP3688300B1 (en) Improved device for damping spacecraft
EP3688301B1 (en) Improved device for orienting spacecraft
WO2023135386A1 (en) Orbital deployment module with a three-point space propulsion system
EP4334213A1 (en) Spacecraft comprising an electrical device and an orientation system for said electrical device
WO2017072457A1 (en) More compact direct thrust flight control and attitude control system, and craft comprising such a system
FR3101382A1 (en) Ion propulsion device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011025

AKX Designation fees paid

Free format text: DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69934122

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69934122

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69934122

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R081

Ref document number: 69934122

Country of ref document: DE

Owner name: SNECMA, FR

Free format text: FORMER OWNER: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION (S.N.E.C.M.A.), PARIS, FR

Effective date: 20121005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181122

Year of fee payment: 20

Ref country code: GB

Payment date: 20181127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69934122

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191228