EP1097485A1 - Purification of battery electrolytes by means of chemical adsorption - Google Patents

Purification of battery electrolytes by means of chemical adsorption

Info

Publication number
EP1097485A1
EP1097485A1 EP99929150A EP99929150A EP1097485A1 EP 1097485 A1 EP1097485 A1 EP 1097485A1 EP 99929150 A EP99929150 A EP 99929150A EP 99929150 A EP99929150 A EP 99929150A EP 1097485 A1 EP1097485 A1 EP 1097485A1
Authority
EP
European Patent Office
Prior art keywords
carbonate
adsorbent
ethyl
added
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99929150A
Other languages
German (de)
French (fr)
Inventor
Michael Jungnitz
Holger Wiederhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1097485A1 publication Critical patent/EP1097485A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute

Definitions

  • the present invention relates to a method for removing protic contaminants from battery electrolytes by means of chemical
  • the commonly used lithium batteries (secondary and primary battery cells) generally use electrolytes consisting of conductive salts such as LiPF 6l LiBF 4 , LiAsF 6 , Li methide, Li imide or Li triflate and a mixture of solvents, mainly organic carbonates such as propylene carbonate, ethylene carbonate or butylene carbonate, ethers such as dimethyl ether, and propionates such as methyl propionate or ethyl propionate.
  • conductive salts such as LiPF 6l LiBF 4 , LiAsF 6 , Li methide, Li imide or Li triflate
  • solvents mainly organic carbonates such as propylene carbonate, ethylene carbonate or butylene carbonate, ethers such as dimethyl ether, and propionates such as methyl propionate or ethyl propionate.
  • these electrolyte solutions normally contain protic impurities such as water, alcohols, peroxides.
  • the conductive salts in the electrolyte solutions react extremely sensitively to these impurities and decompose, for example, to HF, LiF, POF 3 or P x O y F z and to various oxyfluorophosphoric acids (R a P b O c F d ).
  • These decomposition products are very harmful to the battery cells because they attack the cell components, i.e. the cathode and anode, and have a massive impact on the formation of the cover layer on the electrodes. This significantly shortens the life of a battery.
  • HF in particular is very aggressive in this regard, it is necessary to significantly reduce the HF content in the electrolyte mixtures, which is normally 50-80 ppm. An HF content of less than 30 ppm is desired for most applications.
  • the water content of the electrolyte mixture should also be as low as possible so that these decomposition products cannot occur to the extent that existed up to now.
  • the lowest possible water content (for example less than 20 ppm) is therefore desirable.
  • the previously used methods of reducing the water content in a conventional way are not effective enough.
  • the object of the present invention was now to provide a method for the separation of protic impurities, in particular e.g. of water or HF, which can be carried out simply, quickly and effectively and which can reduce the content of water and HF to less than 30 ppm.
  • protic impurities in particular e.g. of water or HF
  • the invention therefore relates to a process for the purification of electrolyte solutions for lithium cells, characterized by the following steps: a) addition of a base (adsorbent) which is fixed to a carrier material and which chemically adsorbs the protic impurities, and b) separation of the adsorbent.
  • the electrolyte solutions according to the invention essentially consist of conductive salts such as LiPF 6 , LiBF 4 , LiAsF 6l Li-methides, Li-imides or Li-triflates, preferably 0.7 to 1.8 mol / l, and solvent mixtures selected from the organic solvents organic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate,
  • Suitable adsorbents are generally all those which contain basic groups, bonded to a support, and thus can chemically adsorb and thus neutralize the protic impurities.
  • Amino groups in particular primary amino groups, are preferably used as basic groups. Silicon dioxide, polystyrene or other plastics are preferably used as carriers.
  • the base is selected from —NH 2 groups which are linked to a silicon dioxide matrix via propylene groups.
  • This product is commercially available as Lichroprep ® -NH2.
  • Amberlite plastics with attached - NH 2 groups can also preferably be used.
  • the purification according to the invention can be carried out in various ways.
  • the first option is to mix the electrolyte solution, then add the adsorbent to separate the protic impurities, which is then separated off again.
  • the solvents required for the electrolyte solution are first mixed, then the adsorbent is added. After the adsorption has ended, the adsorbent is separated off again and only at the end is the conductive salt mixed in.
  • the adsorbent can be introduced into the respective mixture with stirring and then separated off again by filtration.
  • the reaction time can be chosen as desired, but is preferably kept as short as possible; Experience has shown that a brief stirring of up to 10 minutes is sufficient to complete the adsorption.
  • the adsorbent can be filled into a column.
  • the solution to be cleaned is passed through the adsorbent column by means of a pump.
  • the adsorbent must be anhydrous, preferably it is dried well before use. It is preferably dried in vacuo at about 100 ° C. for a few days, cooled and then stored in the absence of moisture or better used immediately.
  • adsorbent Preferably, 0.2 to 3% by weight of adsorbent is added to the electrolyte solutions to be cleaned. A content of 0.4 to 1% by weight of adsorbent is particularly preferred.
  • the adsorbent is separated off by filtration or the like. These conventional methods are known to the person skilled in the art.
  • the battery solvents purified according to the invention have values for the water and HF content of less than 20 ppm.
  • the electrolyte solutions according to the invention therefore show improved properties, such as higher cycle efficiency and longer service life, when used in lithium-ion and lithium batteries.
  • the invention thus also relates to electrolyte solutions which are suitable for lithium cells (primary or secondary) which are thereby are marked that they are cleaned according to the method described here.
  • Lichroprep (-NH 2 is dried at 100 ° C in a vacuum for 4 days.
  • the electrolytic solution is prepared as follows:
  • the HF and H 2 O content after treatment is in each case ⁇ 10 ppm.
  • Al 2 O 3 is dried and stored as in Example 1.
  • the solvents for the electrolyte, 440 g of ethylene carbonate and 440 g of dimethyl carbonate are mixed, and 10 g of dried Al 2 O 3 are added, the mixture is stirred for 10 minutes and the adsorbent is filtered off again.
  • the HF and H2O content after each treatment is ⁇ 20 ppm.
  • the adsorbent is then filled into a column.
  • An electrolytic solution is prepared as follows: 440 g of ethylene carbonate and 440 g of dimethyl carbonate are mixed and the mixture is cooled to 10 ° C. 120 g of LiPF 6 are added and the mixture is mixed with stirring. The electrolyte thus obtained contains 60 ppm HF. This electrolyte is by means of
  • the cleaned electrolyte contains HF and H 2 O less than 10 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Primary Cells (AREA)

Abstract

The present invention relates to the removal of protic impurities from battery electrodes which are suitable for lithium cells by means of chemical adsorption.

Description

Aufreinigung von Batterieelektrolyten mittels chemischer Purification of battery electrolytes using chemical
Adsorptionadsorption
Die vorliegende Erfindung betrifft eine Methode zur Entfernung von protischen Verunreinigungen aus Batterieelektrolyten mittels chemischerThe present invention relates to a method for removing protic contaminants from battery electrolytes by means of chemical
Adsorption.Adsorption.
Bei den üblich verwendeten Lithium-Batterien (sekundär und primär Batteriezellen) werden im Allgemeinen Elektrolyte eingesetzt, die aus Leitsalzen wie z.B. LiPF6l LiBF4, LiAsF6, Li-Methiden, Li-Imiden oder Li- Triflaten und einer Mischung aus Lösungsmitteln, hauptsächlich organische Carbonate, wie Propylencarbonat, Ethylencarbonat oder Butylencarbonat, Ether, wie Dimethylethter, und Propionate, wie Methylpropionat oder Ethylpropionat,, bestehen.The commonly used lithium batteries (secondary and primary battery cells) generally use electrolytes consisting of conductive salts such as LiPF 6l LiBF 4 , LiAsF 6 , Li methide, Li imide or Li triflate and a mixture of solvents, mainly organic carbonates such as propylene carbonate, ethylene carbonate or butylene carbonate, ethers such as dimethyl ether, and propionates such as methyl propionate or ethyl propionate.
Diese Elektrolytlösungen enthalten normalerweise trotz hoher Reinheit der einzelnen Komponenten protische Verunreinigungen wie z.B. Wasser, Alkohole, Peroxide. Die Leitsalze in den Elektrolytlösungen reagieren jedoch äußerst empfindlich auf diese Verunreinigungen und zersetzen sich beispielsweise zu HF, LiF, POF3 oder PxOyFz und zu verschiedenen Oxyfluorphosphorsäuren (RaPbOcFd). Diese Zersetzungsprodukte sind für die Batteriezellen sehr schädlich, da sie die Zellkomponenten, also Kathode und Anode, angreifen und die Deckschichtbildung an den Elektroden massiv beeinflussen. Die Lebenszeit einer Batterie wird dadurch wesentlich verkürzt.Despite the high purity of the individual components, these electrolyte solutions normally contain protic impurities such as water, alcohols, peroxides. However, the conductive salts in the electrolyte solutions react extremely sensitively to these impurities and decompose, for example, to HF, LiF, POF 3 or P x O y F z and to various oxyfluorophosphoric acids (R a P b O c F d ). These decomposition products are very harmful to the battery cells because they attack the cell components, i.e. the cathode and anode, and have a massive impact on the formation of the cover layer on the electrodes. This significantly shortens the life of a battery.
Da vor allem HF in dieser Beziehung sehr aggressiv ist, ist es notwendig, den Gehalt an HF in den Elektrolytmischungen, der normalerweise 50 - 80 ppm beträgt, wesentlich zu verringern. Für die meisten Anwendung wird ein HF-Gehalt von weniger als 30 ppm gewünscht.Since HF in particular is very aggressive in this regard, it is necessary to significantly reduce the HF content in the electrolyte mixtures, which is normally 50-80 ppm. An HF content of less than 30 ppm is desired for most applications.
Der Wassergehalt der Elektrolytmischung sollte möglichst ebenfalls sehr gering sein, damit diese Zersetzungsprodukte erst gar nicht in dem bisher bestehenden Umfang auftreten können. Ein möglichst geringer Wassergehalt (z.B. weniger als 20 ppm) ist daher wünschenswert. Die bisher angewandten Methoden, den Wassergehalt auf konventionelle Art zu reduzieren, sind nicht effektiv genug.The water content of the electrolyte mixture should also be as low as possible so that these decomposition products cannot occur to the extent that existed up to now. The lowest possible water content (for example less than 20 ppm) is therefore desirable. The previously used methods of reducing the water content in a conventional way are not effective enough.
In der kanadischen Patentanmeldung 2, 193, 119 wird eine Methode beschrieben, bei welcher die sauren Verunreinigungen mittels wasserstofffreien Chloriden, Bromiden oder lodiden abgetrennt werden. Jedoch ist diese Methode auch nicht optimal, denn die entstehenden Reaktionsprodukte HCI, HBr und HJ sind während und auch noch in geringem Umfang nach der Abtrennung durch Destillation in den Elektrolytmischungen mitenthalten und könnten daher weitere Reaktionen auslösen.Canadian patent application 2, 193, 119 describes a method in which the acidic impurities are separated off using hydrogen-free chlorides, bromides or iodides. However, this method is also not optimal, because the resulting reaction products HCI, HBr and HJ are contained in the electrolyte mixtures during and also to a small extent after separation by distillation and could therefore trigger further reactions.
Weiterhin wurde in der Literatur (J. Electrochem. Soc, Vol. 143, No. 12, 3809-3819, 1996) vorgeschlagen, HF mit einer Base wie Tributylamin zu neutralisieren. Die Reaktionsprodukte von HF mit Tributylamin verbleiben jedoch im Elektrolyten, was ein großer Nachteil ist. Es wurde nachgewiesen, daß dadurch die Zykleneffizienz fällt.Furthermore, it has been proposed in the literature (J. Electrochem. Soc, Vol. 143, No. 12, 3809-3819, 1996) to neutralize HF with a base such as tributylamine. However, the reaction products of HF with tributylamine remain in the electrolyte, which is a major disadvantage. It has been shown that this reduces cycle efficiency.
Aufgabe der vorliegenden Erfindung war es nun, eine Methode zur Abtrennung von protischen Verunreinigungen, insbesondere z.B. von Wasser oder HF, zu finden, die einfach, schnell und effektiv durchzuführen ist und welche den Gehalt von Wasser und HF auf weniger als 30 ppm reduzieren kann.The object of the present invention was now to provide a method for the separation of protic impurities, in particular e.g. of water or HF, which can be carried out simply, quickly and effectively and which can reduce the content of water and HF to less than 30 ppm.
Es wurde nun gefunden, daß durch Fixierung der basischen Gruppe an einen Träger die beschriebenen Nachteile vermieden werden können und die Abtrennung der protischen Verunreinigungen aus Batterielösungsmitteln einfach und sehr effektiv mittels chemischer Adsorption durchgeführt werden kann.It has now been found that the disadvantages described can be avoided by fixing the basic group to a support and the separation of the protic impurities from battery solvents can be carried out simply and very effectively by means of chemical adsorption.
Gegenstand der Erfindung ist daher ein Verfahren zur Aufreinigung von Elektrolytlösungen für Lithium-Zellen, gekennzeichnet durch folgende Schritte: a) Zugabe einer an einem Trägermaterial fixierten Base (Adsorbens), welche die protischen Verunreinigungen chemisch adsorbiert, und b) Abtrennung des Adsorbens. Die erfindungsgemäßen Elektrolytlösungen bestehen im Wesentlichen aus Leitsalzen wie LiPF6, LiBF4, LiAsF6l Li-Methiden, Li-Imiden oder Li- Triflaten, vorzugsweise 0,7 bis 1 ,8 mol/l, und Lösungsmittelgemischen ausgewählt aus den organischen Lösungsmitteln organische Carbonate wie Propylencarbonat, Ethylencarbonat, Butylencarbonat,The invention therefore relates to a process for the purification of electrolyte solutions for lithium cells, characterized by the following steps: a) addition of a base (adsorbent) which is fixed to a carrier material and which chemically adsorbs the protic impurities, and b) separation of the adsorbent. The electrolyte solutions according to the invention essentially consist of conductive salts such as LiPF 6 , LiBF 4 , LiAsF 6l Li-methides, Li-imides or Li-triflates, preferably 0.7 to 1.8 mol / l, and solvent mixtures selected from the organic solvents organic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate,
Dimethylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Methylpropylcarbonat, Ethylpropylcarbonat und weitere organische Carbonate, und Propionate, wie Methylpropionat oder Ethylpropionat, Formiate, wie Ethylformiat oder Methylformiat, Acetate wie Methylacetat, Ethylacetat, halogenierte Carbonate, wie chloriertes Ethylencarbonat, fluoriertes Ethylencarbonat, fluoriertes Propylencarbonat oder fluoriertes Ethylencarbonat, aber auch Ether wie Dimethoxyethan.Dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate and other organic carbonates, and propionates such as methyl propionate or ethyl propionate, formates such as ethyl formate or methyl formate, acetates such as methyl acetate, ethyl acetate, halogenated carbonates such as chlorinated ethylene carbonate, fluorinated ethylene carbonate or fluorinated ethylene carbonate, fluorinated ethylene carbonate, fluorinated propylene carbonate , but also ethers such as dimethoxyethane.
Als geeignete Adsorbentien kommen allgemein alle die in Frage, die basische Gruppen, gebunden an einen Träger, enthalten und somit die protischen Verunreinigungen chemisch adsorbieren und damit neutralisieren können.Suitable adsorbents are generally all those which contain basic groups, bonded to a support, and thus can chemically adsorb and thus neutralize the protic impurities.
Als basische Gruppen werden dabei vorzugsweise Amino-Gruppen, insbesondere primäre Amino-Gruppen eingesetzt. Als Träger werden dabei vorzugsweise Siliciumdioxid, Polystyrol oder auch andere Kunststoffe verwendet.Amino groups, in particular primary amino groups, are preferably used as basic groups. Silicon dioxide, polystyrene or other plastics are preferably used as carriers.
Bei besonders bevorzugten Ausführungsformen dieser Erfindung werden beispielsweise als Base -NH2-Gruppen gewählt, die über Propylen- Gruppen an eine Siiiciumdioxid-Matrix geknüpft sind. Dieses Produkt ist als Lichroprep®-NH2 im Handel zu beziehen.In particularly preferred embodiments of this invention, for example, the base is selected from —NH 2 groups which are linked to a silicon dioxide matrix via propylene groups. This product is commercially available as Lichroprep ® -NH2.
Ferner bevorzugt können auch Amberlit-Kunststoffe mit daran fixierten - NH2-Gruppen verwendet werden.Amberlite plastics with attached - NH 2 groups can also preferably be used.
Die Durchführung der erfindungsgemäßen Aufreinigung kann auf verschiedene Art und Weise geschehen.The purification according to the invention can be carried out in various ways.
Die erste Möglichkeit besteht darin, die Elektrolytlösung fertig zu mischen, dann das Adsorbens zur Abtrennung der protischen Verunreinigungen zuzugegeben, welches dann anschließend wieder abgetrennt wird. Bei der zweiten Möglichkeit werden zunächst die für die Elektrolytlösung benötigten Lösungsmittel gemischt, dann wird das Adsorbens zugegeben. Nach beendeter Adsoprtion wird das Adsorbens wieder abgetrennt und zum Schluß erst wird das Leitsalz zugemischt.The first option is to mix the electrolyte solution, then add the adsorbent to separate the protic impurities, which is then separated off again. In the second option, the solvents required for the electrolyte solution are first mixed, then the adsorbent is added. After the adsorption has ended, the adsorbent is separated off again and only at the end is the conductive salt mixed in.
Das Adsorbens kann einerseits unter Rühren in die jeweilige Mischung eingebracht und anschließend durch Filtration wieder abgetrennt werden. Die Reaktionszeit kann beliebig gewählt werden, vorzugsweise wird sie jedoch so kurz wie möglich gehalten; erfahrungsgemäß reicht ein kurzes Rühren von bis zu 10 Minuten aus, um die Adsorption vollständig durchzuführen.On the one hand, the adsorbent can be introduced into the respective mixture with stirring and then separated off again by filtration. The reaction time can be chosen as desired, but is preferably kept as short as possible; Experience has shown that a brief stirring of up to 10 minutes is sufficient to complete the adsorption.
Andererseits kann das Adsorbens in eine Säule gefüllt werden. Die zu reinigende Lösung wird wie üblich mittels einer Pumpe über die Adsorbenssäule gegeben.On the other hand, the adsorbent can be filled into a column. As usual, the solution to be cleaned is passed through the adsorbent column by means of a pump.
Das Adsorbens muß wasserfrei sein, vorzugsweise wird es vor dem Einsatz gut getrocknet. Vorzugsweise wird es über einige Tage bei ca. 100 °C im Vakuum getrocknet, abgekühlt und anschließend unter Ausschluß von Feuchtigkeit aufbewahrt oder besser sofort verwendet.The adsorbent must be anhydrous, preferably it is dried well before use. It is preferably dried in vacuo at about 100 ° C. for a few days, cooled and then stored in the absence of moisture or better used immediately.
Vorzugsweise gibt man 0,2 bis 3 Gew.-% an Adsorbens zu den zu reinigenden Elektrolytlösungen. Insbesondere bevorzugt ist ein Gehalt von 0,4 bis 1 Gew.-% an Adsorbens.Preferably, 0.2 to 3% by weight of adsorbent is added to the electrolyte solutions to be cleaned. A content of 0.4 to 1% by weight of adsorbent is particularly preferred.
Die Abtrennung des Adsorbens erfolgt durch Filtration oder Ähnliches. Diese konventionellen Methoden sind dem Fachmann bekannt.The adsorbent is separated off by filtration or the like. These conventional methods are known to the person skilled in the art.
Auf diese Weise erhält man aufgereinigte Elektrolytlösungen, die die hohen Anforderungen nach geringem Wasser- und HF-Gehalt erfüllen. Die erfindungsgemäß aufgereinigten Batterielösungsmittel weisen Werte für den Wasser- und HF- Gehalt von kleiner als 20 ppm auf.In this way, purified electrolyte solutions are obtained that meet the high requirements for low water and HF content. The battery solvents purified according to the invention have values for the water and HF content of less than 20 ppm.
Die erfindungsgemäßen Elektrolytlösungen zeigen daher bei der Verwendung in Lithium-Ionen und Lithiumbatterien verbesserte Eigenschaften wie höhere Zykleneffizienz und längere Lebenszeit.The electrolyte solutions according to the invention therefore show improved properties, such as higher cycle efficiency and longer service life, when used in lithium-ion and lithium batteries.
Gegenstand der Erfindung sind somit auch Elektrolytlösungen, die geeignet sind für Lithium-Zellen (primär oder sekundär), die dadurch gekennzeichnet sind, daß sie nach der hier beschriebenen Methode aufgereinigt werden.The invention thus also relates to electrolyte solutions which are suitable for lithium cells (primary or secondary) which are thereby are marked that they are cleaned according to the method described here.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung in weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen sind deswegen lediglich als beschreibende, keineswegs als in irgendeine Weise limitierende Offenbarung aufzufassen.Even without further explanations, it is assumed that a person skilled in the art can use the above description in the broadest scope. The preferred embodiments are therefore only to be understood as a descriptive disclosure, and in no way as a limitation in any way.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen sind durch Bezugnahme in diese Anmeldung eingeführt.The full disclosure of all applications, patents, and publications listed above and below are incorporated by reference into this application.
Die folgenden Beispiele sollen die Erfindung näher erläutern.The following examples are intended to explain the invention in more detail.
Beispiel 1example 1
Lichroprep(-NH2 wird bei 100 °C im Vakuum für 4 Tage getrocknet.Lichroprep (-NH 2 is dried at 100 ° C in a vacuum for 4 days.
Die Elektrolytlösung wird folgendermaßen hergestellt:The electrolytic solution is prepared as follows:
440 g Ethylencarbonat und 440 g Dimethylcarbonat werden gemischt und auf 10 °C gekühlt. Danach werden 120 g LiPF6 hinzugegeben und unter Rühren gemischt.440 g of ethylene carbonate and 440 g of dimethyl carbonate are mixed and cooled to 10 ° C. Then 120 g of LiPF 6 are added and mixed with stirring.
1000 ml Elektrolyt werden mit 4 g Adsorbens versetzt und kurz gerührt. Danach wird das Adsorbens sofort abgenutscht.1000 ml of electrolyte are mixed with 4 g of adsorbent and stirred briefly. Then the adsorbent is immediately sucked off.
Der Gehalt an HF und H2O liegt nach der Behandlung jeweils bei < 10 ppm.The HF and H 2 O content after treatment is in each case <10 ppm.
Beispiel 2Example 2
AI2O3 wird wie in Beispiel 1 getrocknet und gelagert. Man mischt die Lösungsmittel für den Elektrolyten, 440 g Ethylencarbonat und 440 g Dimethylcarbonat, und gibt 10 g getrocknetes AI2O3 hinzu, läßt 10 Minuten rühren und filtriert das Adsorbens wieder ab.Al 2 O 3 is dried and stored as in Example 1. The solvents for the electrolyte, 440 g of ethylene carbonate and 440 g of dimethyl carbonate are mixed, and 10 g of dried Al 2 O 3 are added, the mixture is stirred for 10 minutes and the adsorbent is filtered off again.
Danach kühlt man auf 10 °C ab und gibt 120 g LiPF6 unter Rühren hinzu.Then it is cooled to 10 ° C. and 120 g of LiPF 6 are added with stirring.
Der Gehalt an HF und H2O liegt nach der Behandlung jeweils bei < 20 ppm.The HF and H2O content after each treatment is <20 ppm.
Beispiel 3Example 3
AI2O3 wird wie in Beispiel 1 beschrieben getrocknet und gelagert.Al 2 O 3 is dried and stored as described in Example 1.
Das Adsorbens wird dann in eine Säule gefüllt.The adsorbent is then filled into a column.
Eine Elektrolytlösung wird folgendermaßen hergestellt: Man mischt 440 g Ethylencarbonat und 440 g Dimethylcarbonat und kühlt auf 10 °C ab. Dazu gibt man 120 g LiPF6 und mischt unter Rühren. Der so erhaltene Elektrolyt enthält 60 ppm HF. Dieser Elektrolyt wird mittelsAn electrolytic solution is prepared as follows: 440 g of ethylene carbonate and 440 g of dimethyl carbonate are mixed and the mixture is cooled to 10 ° C. 120 g of LiPF 6 are added and the mixture is mixed with stirring. The electrolyte thus obtained contains 60 ppm HF. This electrolyte is by means of
Pumpe über die oben genannte Adsorbenssäule gepumpt. Der gereinigte Elektrolyt enthält HF und H2O kleiner 10 ppm. Pump pumped over the above-mentioned adsorbent column. The cleaned electrolyte contains HF and H 2 O less than 10 ppm.

Claims

P A T E N T A N S P R Ü C H EP A T E N T A N S P R Ü C H E
1. Verfahren zur Aufreinigung von Elektrolytlösungen für Lithium-Zellen, gekennzeichnet durch folgende Schritte: a) Zugabe einer an einem Trägermaterial fixierten Base (Adsorbens), welche die protischen Verunreinigungen chemisch adsorbiert, und b) Abtrennung des Adsorbens.1. Process for the purification of electrolyte solutions for lithium cells, characterized by the following steps: a) addition of a base (adsorbent) fixed to a carrier material, which adsorbs the protic impurities chemically, and b) separation of the adsorbent.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Adsorbens der fertig gemischten Elektrolytlösung zugegeben wird.2. The method according to claim 1, characterized in that the adsorbent is added to the mixed electrolyte solution.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Adsorbens zuerst den Lösungsmitteln zugegeben wird, um die Abtrennung der Verunreinigungen durchzuführen, dann abgetrennt wird und anschließend erst das Leitsalz zugemischt wird.3. The method according to claim 1, characterized in that the adsorbent is first added to the solvents in order to carry out the removal of the impurities, then is separated off and only then the conductive salt is added.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Base an einen Träger wie Siliciumdioxid oder4. The method according to any one of claims 1 to 3, characterized in that the base on a support such as silicon dioxide or
Polystyrol oder anderen Kunststoff fixiert ist.Polystyrene or other plastic is fixed.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Adsorbens eine Base mit -NH2-Gruppen eingesetzt wird, welche über Propylen-Gruppen mit einer Siiiciumdioxid-Matrix verknüpft sind.5. The method according to any one of claims 1 to 4, characterized in that a base with -NH 2 groups is used as the adsorbent, which are linked via propylene groups with a silicon dioxide matrix.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß 0,2 bis 3 Gew.-%, insbesondere 0,4 bis 1 ,0 Gew.-%, Adsorbens zugesetzt werden.6. The method according to any one of claims 1 to 5, characterized in that 0.2 to 3 wt .-%, in particular 0.4 to 1, 0 wt .-%, adsorbent are added.
7. Elektrolytlösung, geeignet für Lithium-Zellen, dadurch gekennzeichnet, daß sie nach dem in Anspruch 1 beschriebenen Verfahren aufgereinigt wird.7. electrolytic solution, suitable for lithium cells, characterized in that it is purified by the method described in claim 1.
8. Elektrolytlösung nach Anspruch 6, welche als Lösungsmittel organische Carbonate und/oder Propionate und/oder Formiate, und/oder Acetate und/oder und/oder halogenierte Carbonate und/oder Ether enthält. 8. Electrolyte solution according to claim 6, which contains organic carbonates and / or propionates and / or formates, and / or acetates and / or and / or halogenated carbonates and / or ethers as solvents.
. Elektrolytlösung nach Anspruch 6, welche als Lösungsmittel organische Carbonate, ausgewählt aus der Gruppe Propylencarbonat, Ethylencarbonat, Butylencarbonat, Dimethylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Methylpropylcarbonat, Ethylpropylcarbonat, und/oder Propionate, ausgewählt aus der Gruppe Methylpropionat und. Electrolytic solution according to claim 6, which as a solvent organic carbonates selected from the group propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and / or propionates selected from the group methyl propionate and
Ethylpropionat, und/oder Formiate, ausgewählt aus der Gruppe Ethylformiat und Methylformiat, und/oder Acetate, ausgewählt aus der Gruppe Methylacetat und Ethylacetat und/oder halogenierte Carbonate, ausgewählt aus der Gruppe chloriertes Ethylencarbonat, fluoriertes Ethylencarbonat, und fluoriertes Propylencarbonat, und/oder Ether wie Dimethoxyethan enthält.Ethyl propionate, and / or formates, selected from the group ethyl formate and methyl formate, and / or acetates, selected from the group methyl acetate and ethyl acetate and / or halogenated carbonates, selected from the group chlorinated ethylene carbonate, fluorinated ethylene carbonate, and fluorinated propylene carbonate, and / or Contains ethers such as dimethoxyethane.
10. Elektrolytlösung nach Anspruch 6, welche als Leitsalz LiPF6, LiBF4, LiAsF6, Li-Methid, Li-Imid oder Li-Triflat enthält. 10. Electrolytic solution according to claim 6, which contains LiPF 6 , LiBF 4 , LiAsF 6 , Li methide, Li imide or Li triflate as the conductive salt.
EP99929150A 1998-06-20 1999-06-08 Purification of battery electrolytes by means of chemical adsorption Withdrawn EP1097485A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19827630 1998-06-20
DE19827630A DE19827630A1 (en) 1998-06-20 1998-06-20 Purification of battery electrolytes using chemical adsorption
PCT/EP1999/003937 WO1999067843A1 (en) 1998-06-20 1999-06-08 Purification of battery electrolytes by means of chemical adsorption

Publications (1)

Publication Number Publication Date
EP1097485A1 true EP1097485A1 (en) 2001-05-09

Family

ID=7871575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99929150A Withdrawn EP1097485A1 (en) 1998-06-20 1999-06-08 Purification of battery electrolytes by means of chemical adsorption

Country Status (10)

Country Link
US (1) US6573002B1 (en)
EP (1) EP1097485A1 (en)
JP (1) JP2002519821A (en)
KR (1) KR20010052939A (en)
CN (1) CN1306681A (en)
AU (1) AU4606499A (en)
CA (1) CA2336206A1 (en)
DE (1) DE19827630A1 (en)
TW (1) TW469662B (en)
WO (1) WO1999067843A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049097B4 (en) 2000-09-27 2004-08-26 Chemetall Gmbh Process for drying organic liquid electrolytes
DE10143171A1 (en) * 2001-09-04 2003-03-20 Solvay Fluor & Derivate Acid separation process
JP4474844B2 (en) * 2003-04-15 2010-06-09 ソニー株式会社 Electrolytic solution and battery using the same
US8672988B2 (en) * 2004-10-22 2014-03-18 Medtronic Cryocath Lp Method and device for local cooling within an organ using an intravascular device
CA2517248A1 (en) 2005-08-29 2007-02-28 Hydro-Quebec Process for purifying an electrolyte, the electrolyte thus obtained and its uses
US20070192710A1 (en) * 2006-02-15 2007-08-16 Frank Platz Lean context driven user interface
DE102008040153A1 (en) * 2007-07-04 2009-01-08 Chemetall Gmbh Process for the preparation of low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride
JP5405129B2 (en) * 2009-01-05 2014-02-05 三菱マテリアル株式会社 Method for producing perfluoroalkyl sulfonate
EP2607315A1 (en) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
EP2607316A1 (en) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
EP2607306A1 (en) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
EP2607305A1 (en) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
US11081737B2 (en) * 2017-07-31 2021-08-03 Viking Power Systems Pte, Ltd. Getter for use with electrochemical cells, devices including the getter, and method of forming same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3136578A1 (en) 1981-09-15 1983-03-31 Varta Batterie Ag, 3000 Hannover GALVANIC ELEMENT WITH INTEGRATED GETTER
JPS5981869A (en) 1982-11-01 1984-05-11 Hitachi Maxell Ltd Manufacture of lithium battery
JPS6139464A (en) * 1984-07-31 1986-02-25 Toyota Motor Corp Organic electrolyte secondary battery
JPS61227820A (en) * 1985-04-01 1986-10-09 Kawasaki Heavy Ind Ltd Removing method for carbonic acid gas
US4810266A (en) 1988-02-25 1989-03-07 Allied-Signal Inc. Carbon dioxide removal using aminated carbon molecular sieves
US5136032A (en) * 1989-12-07 1992-08-04 Daicel Chemical Industries, Ltd. Method for separating phosphopolyol compounds using a separating agent
DE4120942A1 (en) * 1991-06-25 1993-01-07 Franz Dr Clementi Compsn. for purifying liq. or gas e.g. to remove organic impurity or unsatd resin - comprises silanised siliceous compsn. with functional gps.
JP3269187B2 (en) * 1993-06-18 2002-03-25 株式会社デンソー Deodorant and method for producing the same
US5849429A (en) * 1996-10-23 1998-12-15 Samsung Display Devices Co., Ltd. Purification process for lithium battery electrolytes
US6045945A (en) * 1997-03-25 2000-04-04 Ube Industries, Ltd. Electrolyte solution for lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9967843A1 *

Also Published As

Publication number Publication date
TW469662B (en) 2001-12-21
US6573002B1 (en) 2003-06-03
CN1306681A (en) 2001-08-01
JP2002519821A (en) 2002-07-02
WO1999067843A1 (en) 1999-12-29
AU4606499A (en) 2000-01-10
DE19827630A1 (en) 2000-04-27
KR20010052939A (en) 2001-06-25
CA2336206A1 (en) 1999-12-29

Similar Documents

Publication Publication Date Title
DE102005012116B3 (en) Producing 4-fluoroethylene carbonate involves reacting mixture gas of fluorine and nitrogen, regulated to have desired bubble size while passing through gas bubble regulating column, with ethylene carbonate
EP1097485A1 (en) Purification of battery electrolytes by means of chemical adsorption
DE69720777T2 (en) STABILIZED ELECTROCHEMICAL CELL
DE69005154T2 (en) Process for the production of non-aqueous electrolytes.
DE2639121B2 (en) Galvanic element and method of making an electrolyte salt for this element P.R. Mallory &amp; Co. Inc., Indiana®
EP3231769B1 (en) Manufacturing method for lithium difluorophosphate powder, and lithium difluorophosphate
EP2185569B1 (en) Method for producing low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride
EP0012215B1 (en) 2-Hydroxybutanesulfonic acid choline and its use as conducting salt
DE112022001347T5 (en) METHOD FOR PRODUCING A POSITIVE ELECTRODE MATERIAL FOR A PRUSSIAN BLUE SODIUM ION BATTERY
DE1917907B2 (en) GALVANIC PRIMARY ELEMENT WITH A NEGATIVE LIGHT METAL ELECTRODE, A NON-Aqueous ELECTROLYTE AND A POSITIVE ELECTRODE MADE OF SOLID CARBON LUORIDE AND METHOD FOR PRODUCING THE POSITIVE ELECTRODE
DE2834485A1 (en) Rechargeable cell with light metal anode alloyed with lithium - and anhydrous electrolyte contg. corrosion inhibitor forming insol. lithium cpd.
DE60103436T2 (en) Lithiumfluoralkylphosphate and their use as conductive salts
DE112019005761T5 (en) Processes to remove reactive solvent from lithium bis (fluorosulfonyl) imide (LiFSI) using organic solvents that are stable to anodes in lithium-ion and lithium-metal batteries
DE102009005926A1 (en) Process for producing vinyl ethylene carbonate
WO1999067844A1 (en) Purification of battery electrolytes by means of physical adsorption
DE3621781A1 (en) METHOD FOR PURIFYING L-ASCORBIN ACID
EP1107930B1 (en) Method for producing highly pure libf 4?
DE2557600B2 (en) GALVANIC ELEMENT WITH A NITRILE AS A SOLVENT FOR THE ELECTROLYTE SALT
EP2607305A1 (en) LiPF6 solutions
EP1517941B1 (en) Method for the preparation of polyether alcohols
WO2019122230A1 (en) Acetalic electrolyte
DE19915056A1 (en) Organic lithium salt solutions, especially battery electrolytes, are dehydrated by contact with alkali or alkaline earth metal ion exchanged zeolite granules
DE3411258A1 (en) NON-GASING SAFETY ELECTROLYTE FOR WATER-FREE ELECTROCHEMICAL CELLS
DE2026110B2 (en)
DE4303836C1 (en) Anhydrous technical hydrofluoric acid purificn. by electrolysis - in presence of small amt. of water to minimise electrode corrosion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 20001109;LV PAYMENT 20001109;SI PAYMENT 20001109

17Q First examination report despatched

Effective date: 20010717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030607