EP1097306B1 - Oscillating motor - Google Patents

Oscillating motor Download PDF

Info

Publication number
EP1097306B1
EP1097306B1 EP99919094A EP99919094A EP1097306B1 EP 1097306 B1 EP1097306 B1 EP 1097306B1 EP 99919094 A EP99919094 A EP 99919094A EP 99919094 A EP99919094 A EP 99919094A EP 1097306 B1 EP1097306 B1 EP 1097306B1
Authority
EP
European Patent Office
Prior art keywords
sealing ring
pressure
rotor
space
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99919094A
Other languages
German (de)
French (fr)
Other versions
EP1097306A1 (en
Inventor
Stefan Beetz
Klaus Reichel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Lemfoerder GmbH
Original Assignee
ZF Lemfoerder GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Lemfoerder GmbH filed Critical ZF Lemfoerder GmbH
Publication of EP1097306A1 publication Critical patent/EP1097306A1/en
Application granted granted Critical
Publication of EP1097306B1 publication Critical patent/EP1097306B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/12Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/003Systems for the equilibration of forces acting on the elements of the machine

Definitions

  • the invention relates to a swivel motor according to the preamble of claim 1.
  • Such pivoting motors are used in particular in the aviation and vehicle industry.
  • Such a swing motor is disclosed in US-A-3 128 679 and consists of a stator with a housing and lids on both sides. In the housing one or more stator vanes are arranged. In the covers an output shaft is mounted, which is equipped with rotor blades in the same number.
  • the stator blades and the rotor blades form a plurality of volume-variable chambers which are designed as pressure or drainage spaces and therefore have connection to corresponding inlet or outlet connections.
  • the pressure chambers and the drainage spaces are separated from one another by a frame sealing element enclosing the stator wing or the rotor wing.
  • Pivot motors of this type are subject to major tightness problems that express not least because of the limited and the changing rotational movement in a very high wear of the sealing elements and in an unsatisfactory sealing quality in the output shaft.
  • the Diagonaldichtring a very high level of wear, since the dormant diagonal sealing ring is exposed to different pressure loads and is constantly pressed against the rotor moving in alternating directions. Due to the high load, this leads to a short service life of the Diagonaldichtringe and thus to an increase in the cost of the swing motor.
  • Another disadvantage is that the trapped pressure in the cavities of the diagonal sealing ring is maintained even with a pressure-free pressure chamber.
  • This due to the different pressure conditions at standstill an even greater frictional force than the operating condition, which must always be overcome at each start. This also contributes to a reduction in the service life and, moreover, limits the field of application of such pivoting motors because of the poor starting behavior.
  • the invention overcomes the aforementioned disadvantages of the prior art.
  • the starting behavior of the swivel motor is improved in that the static pressure enclosed in the installation space of the diagonal sealing ring and the dynamic working pressure prevailing in the pressure chambers can be compensated via pressure equalization channels on both sides of the sliding sealing ring. This reduces the force acting at standstill and the operation of the slewing motor undesirable contact forces in an appropriate order of magnitude. It is advantageous to balance both the static pressure from the installation space of the Diagonaldichtringes and the dynamic pressure from the pressure chambers on Gleitdichtring.
  • the pivoting motor according to FIG. 1 consists essentially of an outer stator 1 and an inner rotor 2.
  • the stator 1 is composed of a housing 3 and on both ends of the housing 3 arranged lids 4, which are fastened by means not shown screws.
  • a clamping ring 5 on each cover side assumes the fixation of the radial position to each other.
  • Both covers 4 each have a bearing bore.
  • Inside the housing 3 is a cylindrical housing bore, which is divided in the length of two opposing and radially aligned stator blades 6 in two opposing spaces.
  • the rotor 2 in contrast, consists of an output shaft 7 with bilateral bearing journals 8 and an intermediate cylinder part 9. In the region of this cylinder part 9, two opposing and radially aligned rotor blades 10 are arranged.
  • the rotor 2 is fitted in the housing 3 of the stator 1 so that an axially aligned sealing gap 11 is formed between the head of the rotor blade 10 and the inner wall of the housing and between the head of the stator blade 6 and the peripheral surface of the cylinder part.
  • Each rotor blade 10 therefore divides one of the two free spaces in the housing 3 in a pressure chamber 13 and in a drain chamber 14, so that there are two opposite pressure chambers 13 and two opposite drainage spaces 14, which are reversed during operation.
  • Both pressure chambers 13 and both drainage spaces 14 are interconnected by inner channels 15 and 16, while one of the two pressure chambers 13 communicates with an inlet connection 17 and one of the two drainage spaces 14 with a drain connection 18.
  • each stator wing 6 and each rotor blade 10 provided with two longitudinal legs 21, the between itself a central and over the whole height and Form along the entire length extending groove 22. In this groove 22, the frame seal member 20 is pressed. This ensures that the rotor blade 10 am Scope and at the front sides of each blade 10 sealed from the housing 3 and the covers 4 is.
  • a Gleitdichtring 23 is axially slidably mounted on the output shaft 7, so that it rests with its radially aligned sliding and sealing surface in a sliding manner on the inner surface of the lid 4 and here forms a radially directed sealing gap 24.
  • With its axially aligned sealing surface of the sliding seal 23 bears against the peripheral surface of the drive shaft 7 and forms an axially aligned sealing gap 25 between the inner surface of the Gleitdichtringes 23 and the rotor or the stator blades 10 and 6, there is a further sealing gap 26, the each adjacent pressure and discharge chambers 13, 14 separated from each other and is sealed by the frame sealing member 20 sealing.
  • the sliding seal 23 has on its side facing away from the cover 4 a recess which is designed as an installation space 27 for a diagonal sealing ring 28.
  • This installation space 27 in cooperation with a diameter step on the cylinder part 9 of the output shaft 7, forms a first sealing edge 29 and a second sealing edge 30.
  • the Diagonaldichtring 28 is z. B. formed with two sealing parts and with an intermediate and movable guide member and fitted in the installation space 27 so that the one sealing part on the one hand to the first sealing edge 29 and the other sealing part on the other hand bears against the second sealing edge 30.
  • the sliding seal 23 and the rotor 2 are further equipped with a rotation.
  • both legs 21 of the rotor blade 10, which enclose the frame sealing element 20, are formed on their end faces as a driver 31.
  • the Gleitdichtring 23 has on the periphery two opposite pairs of axial grooves 32, wherein each pair of grooves 32 is associated with the two legs 21 of the rotor blade 10.
  • the distance between the two grooves 32 of a pair in Gleitdichtring 23 corresponds to the distance between the two drivers 31 on the legs 21 of the rotor blade 10.
  • each axial groove 32 corresponds to the dimensions of the corresponding opposing driver 31, so that in the assembled state each driver 31 in an axial groove 32 engages.
  • the sliding seal 23 is further equipped with means for a static and a dynamic pressure relief to reduce the frictional resistance between the sliding seal ring 23 and the lid 4.
  • the sliding seal 23 for the static pressure relief on the cover side has a circumferential annular channel 33, which is tuned in its position and its effective base on the location and size of the pressure-loaded base of the pressure-side installation space 27 for the diagonal sealing ring 28.
  • At least one pressure compensation bore 34 connects the cover-side annular channel 33 with the pressure-side installation space 27 of the diagonal sealing ring 28.
  • annular channels 35 are provided on the cover side of the sliding seal ring 23, which are arranged on a common circumferential line and limited in their length.
  • two adjacent annular channels 35 are always separated on the one hand by a web 36 and on the other hand by the two grooves 32 with the intermediate Nutensteg 37.
  • Each of the four annular channels 35 terminates in one of the two grooves 32 and thus creates a pressure equalization channel 38 between all four annular channels 35 and the pressure chamber 13. In position, the four annular channels 35 are aligned opposite to the pressure-effective surface of the sliding seal 23.
  • the size of the effective base area corresponds to a predetermined part of the effective area of the Gleitdichtringes 23rd
  • two opposing annular channels 35 are always connected to the two opposite pressure chambers 13 of the pivot motor, while the webs 36 and the grooves between the grooves 32 Nutenstege the pressure chambers 13 separate from the adjacent drainage spaces 14.
  • pressure medium passes as leakage from two opposing pressure chambers 13 in each case via the first sealing edge 29 in the installation space 27 of the Diagonaldichtringes 28 and here builds up the same pressure as in the pressure chambers 13, since the outflow of the pressure medium on the second sealing edge 30th is prevented.
  • the pressure medium passes through the pressure equalization bore 34 in the opposite annular channel 33, whereby it comes to pressure equalization on both sides of the Diagonaldichtringes 23 and thus to reduce acting in the direction of the lid 4 contact pressure.
  • the pressure is enclosed in the installation space 27 and in the annular channel 33 and thus acts statically on the sliding seal ring 23.
  • the pressure in the two pressure chambers 13 also loads the Gleitdichtring 23 on its protruding into the pressure chambers 13 faces in the direction of the cover 4.
  • the pressure but also propagates through the pressure equalization channels 38 into the two opposite annular channels 35 and loaded the Gleitdichtring 23rd in the opposite direction.
  • the resulting force remains as a pressing force for ensuring the sealing function of the sliding seal 23 is obtained. Due to the changing pressure conditions in the pressure chambers 13, the sliding seal 23 is dynamically loaded in this area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft einen Schwenkmotor nach dem Oberbegriff des Anspruchs 1.
Solche Schwenkmotore werden insbesondere in der Flug- und Fahrzeugindustrie eingesetzt.
The invention relates to a swivel motor according to the preamble of claim 1.
Such pivoting motors are used in particular in the aviation and vehicle industry.

Ein solcher Schwenkmotor ist in US-A-3 128 679 offenbart und besteht aus einem Stator mit einem Gehäuse und beidseitigen Deckeln. Im Gehäuse sind ein oder mehrere Statorflügel angeordnet. In den Deckeln ist eine Abtriebswelle gelagert, die mit Rotorflügeln in gleicher Anzahl ausgerüstet ist. Die Statorflügel und die Rotorflügel bilden mehere volumenveränderliche Kammern, die als Druck- bzw. Ablaufräume ausgebildet sind und demnach Verbindung zu entsprechenden Zulauf- bzw. Ablaufanschlüssen besitzen.
Für die innere Dichtheit sind die Druckräume und die Ablaufräume durch jeweils ein, den Statorflügel bzw. den Rotorflügel umschließendes, Rahmendichtelement voneinander getrennt.
Für die Dichtheit nach außen befinden sich im Bereich der Abtriebsachse zwischen dem Rotor und jedem Deckel jeweils ein ringförmiges Dichtelement, das vorrangig im Deckel angeordnet ist.
Schwenkmotore dieser Art unterliegen großen Dichtheitsproblemen, die sich nicht zuletzt wegen der begrenzten und der wechselnden Drehbewegung in einem sehr hohen Verschleiß der Dichtelemente und in einer unbefriedigenden Dichtqualität im Bereich der Abtriebswelle ausdrükken.
Such a swing motor is disclosed in US-A-3 128 679 and consists of a stator with a housing and lids on both sides. In the housing one or more stator vanes are arranged. In the covers an output shaft is mounted, which is equipped with rotor blades in the same number. The stator blades and the rotor blades form a plurality of volume-variable chambers which are designed as pressure or drainage spaces and therefore have connection to corresponding inlet or outlet connections.
For the inner tightness, the pressure chambers and the drainage spaces are separated from one another by a frame sealing element enclosing the stator wing or the rotor wing.
For the tightness to the outside are located in the region of the output axis between the rotor and each lid in each case an annular sealing element, which is arranged primarily in the lid.
Pivot motors of this type are subject to major tightness problems that express not least because of the limited and the changing rotational movement in a very high wear of the sealing elements and in an unsatisfactory sealing quality in the output shaft.

Zur Lösung dieses Problems wurden schon viele Versuche unternommen.
So ist beispielsweise bekannt, einen flexiblen Diagonaldichtring zu verwenden, der in einer Ringnut des Deckels eingesetzt und mit seiner diagonalen Dichtkante entgegen der Druckrichtung auf den umlaufenden Dichtspalt zwischen den Stirnflächen des Deckels und des Rotorflügels ausgerichtet ist.
Im Betrieb gelangt über diesen Dichtspalt Druckmedium in den Hohlraum des Diagonaldichtringes, wo sich ein zur Druckkammer gleicher Druck aufbaut, der auf Grund unterschiedlicher Flächenverhältnisse den flexiblen Diagonaldichtring mit seiner Dichtkante gegen den umlaufenden Dichtspalt preßt und ihn verschließt.
Diese Dichtvariante hat aber erhebliche Nachteile.
So stellt sich am Diagonaldichtring ein sehr hoher Verschleiß ein, da der ruhende Diagonaldichtring unterschiedlichen Druckbelastungen ausgesetzt ist und ständig gegen den sich in wechselnden Richtungen bewegenden Rotor gepreßt wird. Das führt wegen der hohen Belastung zu einer geringen Lebensdauer der Diagonaldichtringe und damit zu einer Verteuerung des Schwenkmotors.
Ein weiterer Nachteil besteht darin, daß der eingeschlossene Druck in den Hohlräumen des Diagonaldichtringes auch bei druckloser Druckkammer erhalten bleibt. So stellt sich auf Grund der unterschiedlichen Druckverhältnisse im Stillstand eine gegenüber dem Betriebszustand noch größere Reibkraft ein, die bei jedem Anfahren stets überwunden werden muß. Auch das trägt zu einer Verringerung der Lebensdauer bei und grenzt obendrein den Einsatzbereich solcher Schwenkmotore wegen des schlechten Anfahrverhaltens stark ein.
Many attempts have been made to solve this problem.
For example, it is known to use a flexible Diagonaldichtring which is inserted in an annular groove of the lid and aligned with its diagonal sealing edge against the pressing direction on the circumferential sealing gap between the end faces of the lid and the rotor blade.
In operation passes through this sealing gap pressure medium in the cavity of Diagonaldichtringes where a pressure equal to the pressure builds up pressure due to different surface conditions, the flexible Diagonaldichtring with its sealing edge against the circumferential sealing gap and closes it.
However, this sealing variant has considerable disadvantages.
Thus, the Diagonaldichtring a very high level of wear, since the dormant diagonal sealing ring is exposed to different pressure loads and is constantly pressed against the rotor moving in alternating directions. Due to the high load, this leads to a short service life of the Diagonaldichtringe and thus to an increase in the cost of the swing motor.
Another disadvantage is that the trapped pressure in the cavities of the diagonal sealing ring is maintained even with a pressure-free pressure chamber. Thus, due to the different pressure conditions at standstill an even greater frictional force than the operating condition, which must always be overcome at each start. This also contributes to a reduction in the service life and, moreover, limits the field of application of such pivoting motors because of the poor starting behavior.

Es ist auch bekannt, an Stelle des Diagonaldichtringes einen Gleitdichtring im Deckel einzusetzen, der sich gegen die drehenden Stirnflächen der Rotorflügel und damit an das Kastendichtelement anlehnt. Durch eine ungewollte aber immer mögliche Relativbewegung zwischen dem Gleitdichtring und dem Rahmendichtelement am Rotorflügel wird das Rahmendichtelement stark beansprucht, was eine kurze Lebensdauer zur Folge hat.
Außerdem sind die Dichtigkeitswerte unter Verwendung dieses Gleitdichtringes äußerst gering, was den Wirkungsgrad des Schwenkmotors herabsetzt.
Mit dem geringen Wirkungsgrad und der geringen Lebensdauer der ringförmigen Dichtelemente sind die Einsatzmöglichkeiten dieses Schwenkmotors stark eingeschränkt.
It is also known to use instead of the Diagonaldichtringes a Gleitdichtring in the lid, which leans against the rotating end faces of the rotor blades and thus to the box sealing element. By an unwanted but always possible relative movement between the Gleitdichtring and the frame sealing element on the rotor blade, the frame sealing element is heavily stressed, resulting in a short life result.
In addition, the tightness values using this Gleitdichtringes are extremely low, which reduces the efficiency of the swing motor.
With the low efficiency and the low life of the annular sealing elements, the applications of this swing motor are severely limited.

Mit der US 3.426.654 wurde auch bekannt, ein diagonal wirkendes Dichtelement einzusetzen, das in Dichtrichtung von einem flexiblen Dichtring belastet und in seiner Dichtfunktion unterstützt wird.
Letztendlich kann auch diese Dichtvariante den hohen Anforderungen hinsichtlich des Anfahrverhaltens, der Dichtheit und der Lebensdauer nicht gerecht werden.
With US 3,426,654 it has also been known to use a diagonally acting sealing element which is loaded in the sealing direction by a flexible sealing ring and supported in its sealing function.
Ultimately, this sealing variant can not meet the high requirements with regard to the starting behavior, the tightness and the service life.

Es besteht daher die Aufgabe, das Anfahrverhalten bei radialen Schwenkmotoren der vorliegenden Gattung zu verbessern und dabei den hohen Standard in der Dichtfunktion und der Lebensdauer beizubehalten.It is therefore the task of the starting behavior at radial slew motors of the present type to improve and the high standard in the sealing function and to maintain the service life.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Zweckdienliche Ausgestaltungen ergeben sich aus den Unteransprüchen 2 bis 7.This task is characterized by the characterizing features of claim 1. Expedient embodiments emerge from the dependent claims 2 to 7.

Die Erfindung beseitigt die genannten Nachteile aus dem Stand der Technik.
Insbesondere wird das Anfahrverhalten des Schwenkmotors dadurch verbessert, daß der im Einbauraum des Diagonaldichtringes eingeschlossene statische Druck und der in den Druckräumen herrschende dynamische Arbeitsdruck sich über Druckausgleichskanäle zu beiden Seiten des Gleitdichtringes ausgleichen kann. Das vermindert die beim Stillstand und beim Arbeitsgang des Schwenkmotors wirkenden unerwünschten Anpreßkräfte in einer zweckmäßigen Größenordnung.
Dabei ist es von Vorteil, sowohl den statischen Druck aus dem Einbauraum des Diagonaldichtringes als auch den dynamischen Druck aus den Druckkammern am Gleitdichtring auszugleichen.
Mit der Verdrehsicherung zwischen dem Rotor und dem Gleitdichtring wird gewährleistet, daß der Gleitdichtring zu keinem anderen Dichtelement, weder zum Rahmendichtelement noch zum Diagonaldichtring eine Relativbewegung ausführt. Damit wird eine statische Dichtstelle realisiert, die von einer hohen Dichtheit geprägt ist. Diese statische Dichtstelle bedeutet aber auch eine sehr schonende Behandlung der beteiligten Dichtelemente, was zu einer hohen Lebensdauer führt.
Von besonderem Vorteil ist es, wenn getrennte Ringkanäle für den dynamischen und für den statischen Druckausgleich vorgesehen sind. Das ermöglicht eine stets konstante Anpreßkraft am Gleitdichtring.
The invention overcomes the aforementioned disadvantages of the prior art.
In particular, the starting behavior of the swivel motor is improved in that the static pressure enclosed in the installation space of the diagonal sealing ring and the dynamic working pressure prevailing in the pressure chambers can be compensated via pressure equalization channels on both sides of the sliding sealing ring. This reduces the force acting at standstill and the operation of the slewing motor undesirable contact forces in an appropriate order of magnitude.
It is advantageous to balance both the static pressure from the installation space of the Diagonaldichtringes and the dynamic pressure from the pressure chambers on Gleitdichtring.
With the rotation between the rotor and the Gleitdichtring ensures that the Gleitdichtring performs no relative to any other sealing element, neither to the frame sealing element nor the Diagonaldichtring a relative movement. Thus, a static sealing point is realized, which is characterized by a high density. However, this static sealing point also means a very gentle treatment of the sealing elements involved, which leads to a long service life.
It is particularly advantageous if separate annular channels are provided for the dynamic and for the static pressure compensation. This allows an always constant contact pressure on Gleitdichtring.

Die Erfindung soll nachstehend an Hand eines Ausführungsbeispieles näher erläutert werden.The invention will be described below with reference to an embodiment be explained in more detail.

Dazu zeigen

Fig. 1:
einen Schwenkmotor im Längsschnitt,
Fig. 2:
den Schwenkmotor im Querschnitt,
Fig. 3:
den Rotor des Schwenkmotors in einer perspektivischen Darstellung,
Fig. 4:
den Gleitdichtring in einer Ansicht und
Fig. 5:
den Gleitdichtring in einem Teilschnitt.
Show this
Fig. 1:
a swivel motor in longitudinal section,
Fig. 2:
the swivel motor in cross section,
3:
the rotor of the swing motor in a perspective view,
4:
the sliding seal in a view and
Fig. 5:
the Gleitdichtring in a partial section.

Der Schwenkmotor gemäß der Fig. 1 besteht in der Hauptsache aus einem äußeren Stator 1 und einem inneren Rotor 2.
Der Stator 1 setzt sich aus einem Gehäuse 3 und aus an beiden Stirnseiten des Gehäuses 3 angeordneten Deckeln 4 zusammen, die über nichtdargestellte Schrauben befestigt sind.
Ein Spannring 5 an jeder Deckelseite übernimmt die Fixierung der radialen Lage zueinander.
The pivoting motor according to FIG. 1 consists essentially of an outer stator 1 and an inner rotor 2.
The stator 1 is composed of a housing 3 and on both ends of the housing 3 arranged lids 4, which are fastened by means not shown screws.
A clamping ring 5 on each cover side assumes the fixation of the radial position to each other.

Beide Deckel 4 besitzen je eine Lagerbohrung. Im Inneren des Gehäuses 3 befindet sich eine zylindrische Gehäusebohrung, die in der Länge von zwei sich gegenüberliegenden und radial ausgerichteten Statorflügeln 6 in zwei gegenüberliegende Freiräume aufgeteilt ist.
Der Rotor 2 besteht dagegen aus einer Abtriebswelle 7 mit beidseitigen Lagerzapfen 8 und einem dazwischenliegenden Zylinderteil 9. Im Bereich dieses Zylinderteils 9 sind zwei gegenüberliegende und radial ausgerichtete Rotorflügel 10 angeordnet. Der Rotor 2 ist in dem Gehäuse 3 des Stators 1 so eingepaßt, daß zwischen dem Kopf des Rotorflügels 10 und der Innenwand des Gehäuses sowie zwischen dem Kopf des Statorflügels 6 und der Umfangsfläche des Zylinderteils 9 jeweils ein axial ausgerichteter Dichtspalt 11 gebildet ist.
Zwischen den Stirnflächen des Rotorflügels 10 und den Stirnflächen des Statorflügels 6 und den beidseitigen Innenflächen der beiden Deckel 4 ergibt sich jeweils ein radial ausgerichteter Dichtspalt 12.
Jeder Rotorflügel 10 teilt daher einen der beiden Freiräume im Gehäuse 3 in einen Druckraum 13 und in einen Ablaufraum 14 auf, sodaß sich zwei gegenüberliegende Druckräume 13 und zwei gegenüberliegende Ablaufräume 14 ergeben, die sich während des Betriebes umkehren. Beide Druckräume 13 und beide Ablaufräume 14 sind durch innere Kanäle 15 bzw. 16 untereinander verbunden, während einer der beiden Druckräume 13 mit einem Zulaufanschluß 17 und einer der beiden Ablaufräume 14 mit einem Ablaufanschluß 18 in Verbindung steht. Zwischen den Deckeln 4 und den jeweiligen Lagerzapfen 8 sowie zwischen den Deckeln 4 und dem Gehäuse 3 sind in üblicher Weise Dichtelemente 19 für die äußere Dichtheit vorgesehen.
Both covers 4 each have a bearing bore. Inside the housing 3 is a cylindrical housing bore, which is divided in the length of two opposing and radially aligned stator blades 6 in two opposing spaces.
The rotor 2, in contrast, consists of an output shaft 7 with bilateral bearing journals 8 and an intermediate cylinder part 9. In the region of this cylinder part 9, two opposing and radially aligned rotor blades 10 are arranged. The rotor 2 is fitted in the housing 3 of the stator 1 so that an axially aligned sealing gap 11 is formed between the head of the rotor blade 10 and the inner wall of the housing and between the head of the stator blade 6 and the peripheral surface of the cylinder part.
Between the end faces of the rotor blade 10 and the end faces of the stator blade 6 and the two-sided inner surfaces of the two covers 4 results in each case a radially aligned sealing gap 12th
Each rotor blade 10 therefore divides one of the two free spaces in the housing 3 in a pressure chamber 13 and in a drain chamber 14, so that there are two opposite pressure chambers 13 and two opposite drainage spaces 14, which are reversed during operation. Both pressure chambers 13 and both drainage spaces 14 are interconnected by inner channels 15 and 16, while one of the two pressure chambers 13 communicates with an inlet connection 17 and one of the two drainage spaces 14 with a drain connection 18. Between the covers 4 and the respective bearing pin 8 and between the covers 4 and the housing 3 sealing elements 19 are provided for the external tightness in the usual way.

Zur Gewährleistung der inneren Dichtheit zwischen den benachbarten Druckräumen 13 und den Ablaufräumen 14 befindet sich auf jedem Rotorflügel 10 und auf jedem Statorflügel 6 im Bereich der axialen und der radial ausgerichteten Dichtspalte 11 und 12 ein Rahmendichtelement 20. Dazu ist jeder Statorflügel 6 und jeder Rotorflügel 10 mit zwei längsverlaufenden Schenkeln 21 versehen, die zwischen sich eine mittige und über die ganze Höhe und über die ganze Länge verlaufende Nut 22 ausbilden. In diese Nut 22 ist das Rahmendichtelement 20 eingepreßt. Damit ist gewährleistet, daß der Rotorflügel 10 am Umfang und an den Stirnseiten eines jeden Rotorflügels 10 gegenüber dem Gehäuse 3 und den Deckeln 4 abgedichtet ist.To ensure the inner tightness between the adjacent pressure chambers 13 and the drainage spaces 14 is located on each rotor blade 10 and on each stator wing 6 in the region of the axial and the radially aligned Sealing gaps 11 and 12 a frame sealing element 20. For this purpose, each stator wing 6 and each rotor blade 10 provided with two longitudinal legs 21, the between itself a central and over the whole height and Form along the entire length extending groove 22. In this groove 22, the frame seal member 20 is pressed. This ensures that the rotor blade 10 am Scope and at the front sides of each blade 10 sealed from the housing 3 and the covers 4 is.

Im Übergangsbereich vom Lagerzapfen 8 zum Zylinderteil 9 ist ein Gleitdichtring 23 axial verschiebbar auf der Abtriebswelle 7 aufgesetzt, sodaß er mit seiner radial ausgerichteten Gleit- und Dichtfläche in gleitender Weise an der Innenfläche des Deckels 4 anliegt und hier einen radial ausgerichteten Dichtspalt 24 ausbildet. Mit seiner axial ausgerichteten Dichtfläche liegt der Gleitdichtring 23 an der Umfangsfläche der Antriebswelle 7 an und bildet hier einen axial ausgerichteten Dichtspalt 25. Zwischen der innenliegenden Fläche des Gleitdichtringes 23 und dem Rotor- bzw. dem Statorflügel 10 bzw. 6 besteht ein weiterer Dichtspalt 26, der die jeweils benachbarten Druck- und Ablaufräume 13, 14 voneinander trennt und der durch das Rahmendichtelement 20 dichtend verschlossen wird.
Der Gleitdichtring 23 besitzt auf seiner dem Deckel 4 abgewandten Seite eine Ausnehmung, die als Einbauraum 27 für einen Diagonaldichtring 28 ausgelegt ist. Dieser Einbauraum 27 bildet im Zusammenwirken mit einer Durchmesserstufung am Zylinderteil 9 der Abtriebswelle 7 eine erste Dichtkante 29 und eine zweite Dichtkante 30.
Der Diagonaldichtring 28 ist z. B. mit zwei Dichtteilen und mit einem dazwischenliegenden und beweglichen Führungsteil ausgebildet und im Einbauraum 27 so eingepaßt, daß das eine Dichtteil einerseits an der ersten Dichtkante 29 und das andere Dichtteil andererseits an der zweiten Dichtkante 30 anliegt.
In the transition region from the bearing pin 8 to the cylinder part 9, a Gleitdichtring 23 is axially slidably mounted on the output shaft 7, so that it rests with its radially aligned sliding and sealing surface in a sliding manner on the inner surface of the lid 4 and here forms a radially directed sealing gap 24. With its axially aligned sealing surface of the sliding seal 23 bears against the peripheral surface of the drive shaft 7 and forms an axially aligned sealing gap 25 between the inner surface of the Gleitdichtringes 23 and the rotor or the stator blades 10 and 6, there is a further sealing gap 26, the each adjacent pressure and discharge chambers 13, 14 separated from each other and is sealed by the frame sealing member 20 sealing.
The sliding seal 23 has on its side facing away from the cover 4 a recess which is designed as an installation space 27 for a diagonal sealing ring 28. This installation space 27, in cooperation with a diameter step on the cylinder part 9 of the output shaft 7, forms a first sealing edge 29 and a second sealing edge 30.
The Diagonaldichtring 28 is z. B. formed with two sealing parts and with an intermediate and movable guide member and fitted in the installation space 27 so that the one sealing part on the one hand to the first sealing edge 29 and the other sealing part on the other hand bears against the second sealing edge 30.

Wie insbesondere die Fig. 3 zeigt, sind der Gleitdichtring 23 und der Rotor 2 weiterhin mit einer Verdrehsicherung ausgerüstet.
Dazu sind jeweils beide Schenkel 21 des Rotorflügels 10, die das Rahmendichtelement 20 einschließen, an ihren Stirnseiten als Mitnehmer 31 ausgebildet.
Dagegen besitzt der Gleitdichtring 23 am Umfang zwei gegenüberliegende Paare von axialen Nuten 32, wobei jedes Paar von Nuten 32 den beiden Schenkeln 21 eines der Rotorflügel 10 zugeordnet ist. Insofern entspricht der Abstand beider Nuten 32 eines Paares im Gleitdichtring 23 dem Abstand beider Mitnehmer 31 an den Schenkeln 21 des Rotorflügels 10. Ebenso entsprechen die Abmessungen jeder axialen Nut 32 den Abmessungen des entsprechenden gegenüberliegenden Mitnehmers 31, so daß im montierten Zustand jeder Mitnehmer 31 in eine axiale Nut 32 eingreift.
Der Gleitdichtring 23 ist weiterhin mit Einrichtungen für eine statische und eine dynamische Druckentlastung ausgerüstet, um die Reibwiderstände zwischen dem Gleitdichtring 23 und dem Deckel 4 zu verringern.
Dazu besitzt der Gleitdichtring 23 für die statische Druckentlastung auf der Deckelseite einen umlaufenden Ringkanal 33, der in seiner Lage und seiner wirksamen Grundfläche auf die Lage und die Größe der druckbelasteten Grundfläche des druckseitigen Einbauraumes 27 für den Diagonaldichtring 28 abgestimmt ist. Mindestens eine Druckausgleichsbohrung 34 verbindet den deckelseitigen Ringkanal 33 mit dem druckseitigen Einbauraum 27 des Diagonaldichtringes 28.
Für den dynamischen Druckausgleich sind wiederum auf der Deckelseite des Gleitdichtringes 23 vier Ringkanäle 35 vorgesehen, die auf einer gemeinsamen Umfangslinie angeordnet und in ihrer Länge begrenzt sind. Dabei sind immer zwei benachbarte Ringkanäle 35 einerseits durch einen Steg 36 und andererseits durch die beiden Nuten 32 mit dem dazwischenliegenden Nutensteg 37 voneinander getrennt. Jeder der vier Ringkanäle 35 läuft in eine der beiden Nuten 32 aus und schafft somit einen Druckausgleichskanal 38 zwischen allen vier Ringkanälen 35 und dem Druckraum 13. In ihrer Lage sind die vier Ringkanäle 35 gegenüberliegend zu der druckwirksamen Fläche des Gleitdichtringes 23 ausgerichtet. Die Größe der wirksamen Grundfläche entspricht zu einem vorbestimmten Teil der druckwirksamen Fläche des Gleitdichtringes 23.
Durch diese Anordnung sind immer zwei gegenüberliegende Ringkanäle 35 mit den beiden gegenüberliegenden Druckräumen 13 des Schwenkmotors verbunden, während die Stege 36 und die zwischen den Nuten 32 liegenden Nutenstege die Druckräume 13 von den benachbarten Ablaufräumen 14 trennen.
Während des Betriebes des Schwenkmotors gelangt Druckmedium als Leckage aus beiden gegenüberliegenden Druckräumen 13 jeweils über die erste Dichtkante 29 in den Einbauraum 27 des Diagonaldichtringes 28 und baut hier den gleichen Druck wie in den Druckräumen 13 auf, da das Abfließen des Druckmediums über die zweite Dichtkante 30 unterbunden ist. Dafür gelangt das Druckmedium aber über die Druckausgleichsbohrung 34 in den gegenüberliegenden Ringkanal 33, wodurch es zum Druckausgleich zu beiden Seiten des Diagonaldichtringes 23 und damit zur Verringerung der in Richtung des Deckels 4 wirkenden Anpreßkraft kommt. Der Druck wird im Einbauraum 27 und im Ringkanal 33 eingeschlossen und wirkt somit statisch auf den Gleitdichtring 23.
Gleichzeitig belastet der Druck in den beiden Druckräumen 13 den Gleitdichtring 23 auf seinen in die Druckräume 13 ragenden Teilflächen ebenfalls in Richtung des Deckels 4. Der Druck pflanzt sich aber auch über die Druckausgleichskanäle 38 bis in die zwei gegenüberliegenden Ringkanäle 35 fort und belastet den Gleitdichtring 23 in entgegengesetzter Richtung. Die daraus resultierende Kraft verbleibt als Anpreßkraft für die Gewährleistung der Dichtfunktion des Gleitdichtringes 23 erhalten. Auf Grund der wechselnden Druckverhältnisse in den Druckräumen 13 wird der Gleitdichtring 23 in diesem Bereich dynamisch belastet.
As particularly shown in FIG. 3, the sliding seal 23 and the rotor 2 are further equipped with a rotation.
For this purpose, in each case both legs 21 of the rotor blade 10, which enclose the frame sealing element 20, are formed on their end faces as a driver 31.
In contrast, the Gleitdichtring 23 has on the periphery two opposite pairs of axial grooves 32, wherein each pair of grooves 32 is associated with the two legs 21 of the rotor blade 10. In this respect, the distance between the two grooves 32 of a pair in Gleitdichtring 23 corresponds to the distance between the two drivers 31 on the legs 21 of the rotor blade 10. Similarly, the dimensions of each axial groove 32 correspond to the dimensions of the corresponding opposing driver 31, so that in the assembled state each driver 31 in an axial groove 32 engages.
The sliding seal 23 is further equipped with means for a static and a dynamic pressure relief to reduce the frictional resistance between the sliding seal ring 23 and the lid 4.
For this purpose, the sliding seal 23 for the static pressure relief on the cover side has a circumferential annular channel 33, which is tuned in its position and its effective base on the location and size of the pressure-loaded base of the pressure-side installation space 27 for the diagonal sealing ring 28. At least one pressure compensation bore 34 connects the cover-side annular channel 33 with the pressure-side installation space 27 of the diagonal sealing ring 28.
For the dynamic pressure equalization, in turn, four annular channels 35 are provided on the cover side of the sliding seal ring 23, which are arranged on a common circumferential line and limited in their length. In this case, two adjacent annular channels 35 are always separated on the one hand by a web 36 and on the other hand by the two grooves 32 with the intermediate Nutensteg 37. Each of the four annular channels 35 terminates in one of the two grooves 32 and thus creates a pressure equalization channel 38 between all four annular channels 35 and the pressure chamber 13. In position, the four annular channels 35 are aligned opposite to the pressure-effective surface of the sliding seal 23. The size of the effective base area corresponds to a predetermined part of the effective area of the Gleitdichtringes 23rd
By this arrangement, two opposing annular channels 35 are always connected to the two opposite pressure chambers 13 of the pivot motor, while the webs 36 and the grooves between the grooves 32 Nutenstege the pressure chambers 13 separate from the adjacent drainage spaces 14.
During operation of the swivel motor pressure medium passes as leakage from two opposing pressure chambers 13 in each case via the first sealing edge 29 in the installation space 27 of the Diagonaldichtringes 28 and here builds up the same pressure as in the pressure chambers 13, since the outflow of the pressure medium on the second sealing edge 30th is prevented. But the pressure medium passes through the pressure equalization bore 34 in the opposite annular channel 33, whereby it comes to pressure equalization on both sides of the Diagonaldichtringes 23 and thus to reduce acting in the direction of the lid 4 contact pressure. The pressure is enclosed in the installation space 27 and in the annular channel 33 and thus acts statically on the sliding seal ring 23.
At the same time, the pressure in the two pressure chambers 13 also loads the Gleitdichtring 23 on its protruding into the pressure chambers 13 faces in the direction of the cover 4. The pressure but also propagates through the pressure equalization channels 38 into the two opposite annular channels 35 and loaded the Gleitdichtring 23rd in the opposite direction. The resulting force remains as a pressing force for ensuring the sealing function of the sliding seal 23 is obtained. Due to the changing pressure conditions in the pressure chambers 13, the sliding seal 23 is dynamically loaded in this area.

Aufstellung der BezugszeichenList of reference signs

11
Statorstator
22
Rotorrotor
33
Gehäusecasing
44
Deckelcover
55
Spannringclamping ring
66
Statorflügelstator vanes
77
Abtriebswelleoutput shaft
88th
Lagerzapfenpivot
99
Zylinderteilcylinder part
1010
Rotorflügelrotor blades
1111
Dichtspaltsealing gap
1212
Dichtspaltsealing gap
1313
Druckraumpressure chamber
1414
Ablaufraumdrain space
1515
Kanalchannel
1616
Kanalchannel
1717
Zulaufanschlußinlet connection
1818
AblaufanschlußWaste connection
1919
äußeres Dichtelementouter sealing element
2020
RahmendichtelementFrame sealing element
2121
Schenkelleg
2222
Nutgroove
2323
Gleitdichtringsliding sealing ring
2424
Dichtspaltsealing gap
2525
Dichtspaltsealing gap
2626
Dichtspaltsealing gap
2727
Einbaurauminstallation space
2828
DiagonaldichtringDiagonal sealing ring
2929
erste Dichtkante first sealing edge
3030
zweite Dichtkantesecond sealing edge
3131
Mitnehmertakeaway
3232
axiale Nutaxial groove
3333
Ringkanalannular channel
3434
DruckausgleichsbohrungPressure compensating bore
3535
Ringkanalannular channel
3636
Stegweb
3737
NutenstegNutensteg
3838
DruckausgleichskanalPressure compensation channel

Claims (7)

  1. Oscillating motor consisting
    of a stator (1) having a housing (3) and covers (4) at both ends, wherein at least one stator lobe (6) is disposed in said housing (3), and
    of a rotor (2) having a driven shaft (7) which is mounted in the covers (4), and having a number of rotor lobes (10) which corresponds to the number of stator lobes (6), wherein
    said stator lobe (6) and said rotor lobe (10) construct, in conjunction with the housing (3), a cylindrical part (9) of the driven shaft (7) and the two covers (4), at least one pressure space (13) and one discharge space (14) and
    said pressure space (13) and said discharge space (14) are sealed off, towards the inside, by a frame-type sealing element (20) inserted in the stator lobe and rotor lobe (6, 10) and
    said pressure space (13) and said discharge space (14) are sealed off towards the outside and towards the inside by an annular sealing element, wherein said annular sealing element consists of a sliding sealing ring (23) and a soft sealing ring which is disposed on the side of the pressure space (13) and of the discharge space (14), and said sliding sealing ring (23) and said soft sealing ring are disposed on a common axis,
    characterised in that the sliding sealing ring (23) is mounted on a bearing journal (8) of the driven shaft (7) in an axially displaceable manner and rests, with a sliding and sealing face, against an inner face of the cover (4) and that there are located, on the cover side of the sliding sealing ring (23), annular ducts (33, 35) which are connected, via pressure-equalising bores (34) and pressure-equalising ducts (38), to that side of the sliding sealing ring (23) which faces towards the pressure space (13) or discharge space (14).
  2. Oscillating motor according to claim 1,
    characterised in that an installation space (27) of the soft sealing ring, which space is disposed in the sliding sealing ring (23), is connected, via at least one pressure-equalising bore (34) in said sliding sealing ring (23), to a circumferential annular duct (33) on the cover side, and/or each pressure space (13) and discharge space (14) is connected, via at least one pressure-equalising duct (38) in the sliding sealing ring (23), to an additional annular duct (35) on the cover side.
  3. Oscillating motor according to claim 2,
    characterised in that the additional annular duct (35) consists of four regions which are limited in length and are each disposed on a common peripheral line and which are limited, at one end, by a barrier (36) and, at the other end, by a groove barrier (37).
  4. Oscillating motor according to claim 3,
    characterised in that the rotor (2) and the sliding sealing ring (23) possess an anti-twisting arrangement which consists of at least one entrainment means (31) on each rotor lobe (10) and at least one axial groove (32) in the sliding sealing ring (23), which groove corresponds with said entrainment means (31), and each groove (32) is equipped with a pressure-equalising duct (38).
  5. Oscillating motor according to claim 4,
    characterised in that the axial grooves (32) in the sliding sealing ring (23) are disposed in pairs and are associated, in each case, with flanges (21) on the rotor lobe (10), the entrainment means (31) being constructed on end surfaces of said flanges (21).
  6. Oscillating motor according to claim 3,
    characterised in that the circumferential annular duct (33) is provided for static pressure-equalisation and the four regions, which are limited in length, of the additional annular duct (35) are provided for dynamic pressure-equalisation.
  7. Oscillating motor according to claim 1,
    characterised in that the soft sealing ring is a diagonal sealing ring (28) which is fitted into an installation space (27) of the sliding sealing ring (23) and is oriented, with its sealing parts in opposite directions, towards a first sealing edge (29) formed on the cylindrical part (9) of the driven shaft (7), and towards a second sealing edge (30) on the bearing journal (8).
EP99919094A 1998-03-23 1999-03-17 Oscillating motor Expired - Lifetime EP1097306B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19812752 1998-03-23
DE19812752A DE19812752C1 (en) 1998-03-23 1998-03-23 Oscillating engine for motor vehicle
PCT/DE1999/000742 WO1999049226A1 (en) 1998-03-23 1999-03-17 Oscillating motor

Publications (2)

Publication Number Publication Date
EP1097306A1 EP1097306A1 (en) 2001-05-09
EP1097306B1 true EP1097306B1 (en) 2005-07-27

Family

ID=7862014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99919094A Expired - Lifetime EP1097306B1 (en) 1998-03-23 1999-03-17 Oscillating motor

Country Status (5)

Country Link
US (1) US6429551B1 (en)
EP (1) EP1097306B1 (en)
DE (2) DE19812752C1 (en)
ES (1) ES2245099T3 (en)
WO (1) WO1999049226A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870295B2 (en) * 2001-01-22 2005-03-22 Lg Electronics Inc. Oscillating motor and motor control apparatus and method
DE102004010432B3 (en) * 2004-03-01 2005-10-06 Zf Friedrichshafen Ag Sealing device for a radial swing motor
US20060059937A1 (en) * 2004-09-17 2006-03-23 Perkins David E Systems and methods for providing cooling in compressed air storage power supply systems
DE102006014018A1 (en) * 2006-03-27 2007-10-04 Robert Bosch Gmbh Hydraulic rotary motor for use in vehicle, has housing block with extension transverse to plane, where extension is smaller than in transverse direction of blades, and block is made of material e.g. steel
WO2009109283A1 (en) * 2008-03-01 2009-09-11 Ixetic Hückeswagen Gmbh Oscillating motor housing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128679A (en) 1962-04-26 1964-04-14 Roto Actuator Corp Sealing and stop means for fluid motors
US3195421A (en) * 1963-02-04 1965-07-20 Houdaille Industries Inc Rotary hydraulic actuator and sealing means therefor
US3426654A (en) * 1967-02-06 1969-02-11 Ex Cell O Corp Shaft mounting and sealing construction for rotary actuators
US4656925A (en) * 1985-01-24 1987-04-14 Sollami Phillip A Face seal
US4823678A (en) * 1987-10-26 1989-04-25 Sollami Phillip A Rotary actuator
DE4333047C1 (en) * 1993-09-29 1994-10-27 Freudenberg Carl Fa Sealing arrangement
ES2212323T3 (en) * 1997-06-17 2004-07-16 Zf Lemforder Metallwaren Ag SHUTTER RING OF A TILTING MOTOR.
EP1019637B1 (en) * 1997-09-29 2004-04-14 ZF Lemförder Metallwaren AG Radial oscillating motor

Also Published As

Publication number Publication date
ES2245099T3 (en) 2005-12-16
DE59912339D1 (en) 2005-09-01
WO1999049226A1 (en) 1999-09-30
US6429551B1 (en) 2002-08-06
EP1097306A1 (en) 2001-05-09
DE19812752C1 (en) 1999-08-12

Similar Documents

Publication Publication Date Title
EP0750720B1 (en) Turbo-machine with a balance piston
DE2939945A1 (en) SCREW MACHINE WITH AXIAL FLEXIBLE SEAL
DE1553282A1 (en) Rotary piston machine, in particular rotary piston pump
DE2757240C2 (en) Hydrodynamic double brake
EP1019637B1 (en) Radial oscillating motor
DE19850158A1 (en) Fuel pump for internal combustion engine
DE69407080T2 (en) Side channel pump
DE1653801A1 (en) Capsule pump
EP1721095A1 (en) Sealing device for a radial swivel motor
WO1995002125A1 (en) Hydraulic gearwheel machine (pump or engine) in particular internal-gearwheel machine
EP0988454B1 (en) Sealing ring for an oscillating motor
EP1097306B1 (en) Oscillating motor
DE2608887C2 (en) Rotary valve control device in a rotary piston machine for liquid
EP1495227A2 (en) Hydraulic pump unit
DE69724044T2 (en) Rotating machine with piston valve
DE19725412C2 (en) Radial swivel motor
DE19631824A1 (en) Single stage centrifugal pump for fluids
DE60021750T2 (en) SCREW ROTOR MACHINE WITH A EQUIPMENT FOR ATTACHING AT ANY CIRCUMSTANCES TO A ROTOR
DE2402237A1 (en) HYDROSTATIC BEARING
DE19742881B4 (en) Radial swing motor
DE2902301C2 (en) Vane pump
DE19742882C1 (en) Radial engine for motor vehicle
DE4337508A1 (en) Radial piston motor as a plug-in motor
DE102004009840A1 (en) Vane arrangement for vane cell pump has for after-vane passages defined by vanes in rotor side radial slots in slot base widened connecting cross sections to pressure channels in side walls
DE102006030711B4 (en) Radial swing motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 20001024

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZF LEMFOERDER METALLWAREN AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59912339

Country of ref document: DE

Date of ref document: 20050901

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050926

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2245099

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070307

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070314

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070417

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070518

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070308

Year of fee payment: 9

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080317

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090313

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001