EP1095967A1 - Novel cell culture supports carrying special properties and their production - Google Patents
Novel cell culture supports carrying special properties and their production Download PDFInfo
- Publication number
- EP1095967A1 EP1095967A1 EP99402710A EP99402710A EP1095967A1 EP 1095967 A1 EP1095967 A1 EP 1095967A1 EP 99402710 A EP99402710 A EP 99402710A EP 99402710 A EP99402710 A EP 99402710A EP 1095967 A1 EP1095967 A1 EP 1095967A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- film
- grafting
- grafted
- activation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 238000004113 cell culture Methods 0.000 title abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 56
- 229920000642 polymer Polymers 0.000 claims abstract description 50
- 229920006254 polymer film Polymers 0.000 claims abstract description 35
- 239000000178 monomer Substances 0.000 claims abstract description 34
- 230000004913 activation Effects 0.000 claims abstract description 31
- 229920002521 macromolecule Polymers 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 28
- 229920001577 copolymer Polymers 0.000 claims abstract description 27
- 238000005520 cutting process Methods 0.000 claims abstract description 18
- 230000001419 dependent effect Effects 0.000 claims abstract description 16
- 238000004080 punching Methods 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims abstract description 11
- 238000007654 immersion Methods 0.000 claims abstract description 10
- 238000004804 winding Methods 0.000 claims abstract description 9
- 238000005406 washing Methods 0.000 claims abstract description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000002978 peroxides Chemical class 0.000 claims abstract description 6
- 238000010924 continuous production Methods 0.000 claims abstract description 5
- 229920000578 graft copolymer Polymers 0.000 claims abstract description 5
- 239000008187 granular material Substances 0.000 claims abstract description 5
- 230000002596 correlated effect Effects 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 2
- 239000004793 Polystyrene Substances 0.000 claims description 20
- 229920002223 polystyrene Polymers 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 12
- 150000001412 amines Chemical group 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- RESPXSHDJQUNTN-UHFFFAOYSA-N 1-piperidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCCC1 RESPXSHDJQUNTN-UHFFFAOYSA-N 0.000 claims description 5
- WLPAQAXAZQUXBG-UHFFFAOYSA-N 1-pyrrolidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCC1 WLPAQAXAZQUXBG-UHFFFAOYSA-N 0.000 claims description 5
- 150000003926 acrylamides Chemical class 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 5
- 230000001413 cellular effect Effects 0.000 claims description 5
- 238000007334 copolymerization reaction Methods 0.000 claims description 4
- 239000003446 ligand Substances 0.000 claims description 4
- -1 polyethylene ethylene Polymers 0.000 claims description 4
- 230000000875 corresponding effect Effects 0.000 claims description 3
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000010942 ceramic carbide Substances 0.000 claims description 2
- 229920000307 polymer substrate Polymers 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 abstract description 2
- 230000000379 polymerizing effect Effects 0.000 abstract 2
- 125000003277 amino group Chemical group 0.000 abstract 1
- 229920005601 base polymer Polymers 0.000 abstract 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract 1
- 239000010408 film Substances 0.000 description 75
- 210000004027 cell Anatomy 0.000 description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 238000001994 activation Methods 0.000 description 23
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000004873 anchoring Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 239000011325 microbead Substances 0.000 description 4
- 210000002381 plasma Anatomy 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 101000878457 Macrocallista nimbosa FMRFamide Proteins 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-M hydroperoxide group Chemical group [O-]O MHAJPDPJQMAIIY-UHFFFAOYSA-M 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 241000178041 Ceropegia media Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- DQRLCTAGMVGVFH-UHFFFAOYSA-N cyanide;hydrochloride Chemical compound Cl.N#[C-] DQRLCTAGMVGVFH-UHFFFAOYSA-N 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- RJUVPCYAOBNZAX-VOTSOKGWSA-N ethyl (e)-3-(dimethylamino)-2-methylprop-2-enoate Chemical compound CCOC(=O)C(\C)=C\N(C)C RJUVPCYAOBNZAX-VOTSOKGWSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- UACSZOWTRIJIFU-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCO UACSZOWTRIJIFU-UHFFFAOYSA-N 0.000 description 1
- GJIDOLBZYSCZRX-UHFFFAOYSA-N hydroxymethyl prop-2-enoate Chemical compound OCOC(=O)C=C GJIDOLBZYSCZRX-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
- C12N5/0075—General culture methods using substrates using microcarriers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
Definitions
- the present invention relates to a new process for obtaining two-dimensional (2D) microcarriers for the culture of anchor-dependent cells. More specifically, the invention relates to a method of preparation of such microcarriers suitable for mass culture, in infusion or in clusters of anchor-dependent animal cells and exhibiting particular properties such as cryosensitivity, biocompatibility, biodegradability or specific adhesion. The invention also relates to the microcarriers obtained by this process and their use. Finally, it relates to a device which makes it possible to manufacture these microsupports in mass, size and homogeneous constitution.
- Anchor-dependent cells are dependent on adherence to a medium to proliferate and preserve their functions and their viability. This dependence is a bottleneck technological bottleneck for the production of substances biological and pharmaceutical products secreted by these CAD in comparison with those from anchor-independent cells which can proliferate in suspension. This dependence comes in particular from the fact that the CAD growth stops when they reach confluence and that it is necessary to detach the confluent cells by trypsinization. In addition, the need for cells in nutrient medium and oxygen limits the number and / or the surface of the microcarriers for a given volume of culture medium.
- microsupports used industrially to mass culture anchor-dependent cells are characterized by three-dimensional geometry (3D) and the easiest to shape are spherical geometry.
- 3D microbeads Used by the biopharmaceutical industry to make cell culture (bioreactor up to 1000 L) in batch mode, 3D microbeads, an example of which is Cytodex R sold by Pharmacia (UPPSALA, Sweden) suspended at 5g / l allow to obtain concentrations of the order of 2.10 6 cells / ml, 7% of the culture volume being occupied by the microbeads. These constitute a reference in the field.
- the surface / volume ratio of spherical microcarriers is not favorable to an increase in the concentration of microcarriers in the bioreactor.
- microcarriers tend to become tiny and negligible compared to dimensions of cultured cells. This reduction in thickness is such that it there is no possibility of cell growth, nor within the support, nor on its edge but only on its two anchoring faces.
- 2D microsupports (2D-MS) offer the main advantage of a surface anchor per unit of volume higher than all 3D competitors, such as the CYTODEX® microbeads mentioned above.
- the large anchoring surface available for CAD per unit of volume of 2D-MS therefore makes it possible to envisage the culture of cells with high industrial scale concentrations.
- supports for anchor-dependent cell culture are that of the recovery mode of cells attached to their support while preserving the biological properties or physiological of the latter. Indeed, the detachment of cells from their support goes through an enzymatic treatment (such as trypsin) or a chelating agent (such as EDTA), which can damage not only cellular functions but also their subsequent re-attachment to supports in the context of continuous cultures.
- This limitation is particularly detrimental when the biological functions of cells are then used industrially. This situation is frequently encountered in the case of production of macromolecules of interest by said cells, or when all of the receptors or molecules membranes is sought after for their ability to bind ligands or internalize molecules or substances.
- anchor-dependent cells also lead to a limit to industrial production of biological macromolecules produced by these cells which it these are molecules normally synthesized by cells in question or more generally produced by insertion by techniques of genetic recombination of genes coding for a protein heterologous.
- This limitation linked to cell production capacities anchoring-dependent functional can lead to cost prices manufacturers of proteins that we wish to express and purify, incompatible with a subsequent sale price of a medicinal product containing said protein as active ingredient.
- the polymer is chosen according to the critical lower temperature or LCST which is a temperature of transition for hydration and dehydration of the polymeric compound.
- LCST critical lower temperature
- the cells remain fixed on the polymer support during the cellular culture. They can be taken down after a lowering the temperature of the culture such that the latter is substantially lower than the LCST.
- the methods of obtaining a polymer or copolymer with a lower LCST temperature data are described in EP 382 214 B1. All polymers grafted from the monomers cited in this patent application are suitable but not limited in application to cryosensitivity herein request.
- hydrophilic monomers are: N-vinyl-pyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methyl-acrylamide, hydroxyethyl-methacrylate, hydroxyethyl-acrylate, hydroxymethyl-methacrylate, hydroxymethyl-acrylate, acrylic acid and methacrylic acid having acid groups and their salts, vinylsulfonic acid, acid styrylsulfonic and N, N'-dimethylamino-ethyl-methacrylate, N, N'-diethylamino-ethyl-methacrylate, and N, N'-dimethylamino-propyl-acrylamide having basic groups and their salts.
- hydrophobic monomers are: derivatives acrylates and methacrylate derivatives such as ethyl acrylate, methylmethacrylate and glycidyl-methacrylate etc., N-substituted-alkyl (meth) -acrylamide derivatives such as N-nbutyl- (meth) -acrylamide and N-isopropyl-acrylamide etc. as well as vinyl chloride, acrylonitrile, styrene, and vinyl acetate etc.
- a particularly advantageous process includes cutting by continuous punching, the size of the punches being that of the size 2D microsupports sought.
- An angle ⁇ > 90% corresponds to a situation of no wetting and drops remain formed on the surface of the material.
- a contact angle ⁇ between 30 and 90 ° corresponds to an imperfect wetting corresponding to a spread partial drop on the material.
- the polymer material which can be used for producing the films (substrate) can thus be polystyrene, polyethylene, polyethylene terephthalate or polycarbonate or any copolymer mainly including these rather hydrophobic polymer materials.
- the material used can also be cellophane or aliphatic polyester of the polylactide type or polyhydroxybutyrate and any copolymer mainly including these more hydrophilic materials.
- the film is in essence bioresorbable / biodegradable and, in in this case it can be used as an implant in the living organism if the polymer used is preferably recognized biomedical grade by the FDA.
- the thickness of the film used to produce the microsupports is between 10 and 25 ⁇ .
- Continuous production of reels of thin polymer film or ultra-thin is produced by the "extrusion-stretching" technique from granules of a given polymer.
- This raw material is heated to reach the molten state, then extruded through a rotating screw and molded between two plates to produce a thick polymer film.
- the fairly thick film is then stretched hot, either in one direction, either in two directions orthogonal to each other to then produce a non-shrink film whose thickness is much smaller and customizable (between 10 and 35 ⁇ ) over the entire width of the coil produced, this within the limits of thermal properties and mechanical of the raw material.
- the "blow-molding” technique is an alternative continuous film work.
- the variant is located at the second step, namely, the injection of air between two walls of films which has the role to extend the material and therefore to obtain a film thickness more low.
- Other techniques for processing thin films are described in other applications of polymer chemistry (such as biosensors): "spin-coating” or “solvent-casting” but these two techniques are more often used to make sheets or discs of small size and are less suitable for producing continuous film reels.
- the polymer film which can advantageously be in a rollable form with a width between 5 cm and 60 cm and a length of at least 3 km, undergoes then an activation in order to generate groupings reagents, capable of forming covalent bonds with others reactive groups of the substance that one wishes to graft.
- groupings reagents capable of forming covalent bonds with others reactive groups of the substance that one wishes to graft.
- organic monomers or polymers having particular properties, in particular properties of cryosensitivity or biocompatibility; it can also be biological macromolecules which have a specific affinity for certain cellular receptors: 2D microcarriers resulting from such grafting then allow the selective adhesion of certain types of cells present in an initial cell sample comprising a mixture of cells.
- keratinocytes skin cells having reached different stages of differentiation, or cells resulting from the insertion, activation or repression of a particular function, in particular by inserting a gene carrying said function or carrier of a regulatory function for gene expression cellular.
- activation consists in subjecting the support to a electromagnetic radiation which breaks the bonds and the creation of free radicals, peroxide, hydroperoxide functions or amines.
- molecules spacers can be grafted if desired via free radicals thus generated. Their function is to increase the length of the link between reactive sites and the monomers, polymers or macromolecules that are wants to covalently bond to the polymer film, and therefore to increase their mobility.
- Activation consists in subjecting said film to a bombardment electronic. This bombardment is preferably carried out under inert atmosphere. In the process of the invention, it is essential that the activation step precedes the grafting step.
- the monomer which one wishes to graft is then also subjected to radiation and a very large amount of homopolymers is created free in solution which can adsorb on the surface of the support and which must be then wash off. In this case, it is then difficult to ensure that all the ungrafted free chains are eliminated by washing, and that these free adsorbed chains do not dissolve in the middle of culture during cell detachment by thermal contrast.
- the scrolling speed of the film can vary from 0.1 to 10 m per minute and be established according to the total radiation dose required to activate the film and the power of the irradiator fixed according to the thermal resistance of the film.
- the Kilogray or joule per gram is a representative unit of the dose and depends on the characteristics of the electron beam unit.
- corona discharge When a corona discharge is used, it is emitted at a voltage of several thousand volts and at frequencies the located in the kHz domain. This process is used in an atmosphere ambient.
- the geometric amplitude of the corona arc is a few millimeters for most conventional systems to a few centimeters for blown arc systems.
- the discharge is carried out with parallel electrodes located on either side of the object.
- the use of crown discharges for film activation has the advantage of being a treatment under ambient atmosphere.
- Activation of the polymer film by cold plasma is carried out also using electrodes which emit discharges into the radio frequency domain.
- a plasma is obtained by ionization using a high source frequency of a gas or a mixture of gases introduced into an enclosure put under a residual pressure of a few millibars. This process expensive is also difficult to implement continuously on a film polymer.
- these three types of activation: electron beam, ⁇ or ⁇ , crown or plasma discharges are suitable for generating reactive groups.
- the technique of radiografting of monomers of acrylamide or vinyl type as described above on the surface of a thin polymer film of polystyrene or aliphatic polyester type must therefore be initiated by radiation whatever the nature of it.
- the grafting step is then carried out directly by immersion in immersing the pre-activated polymer film in a solution of the monomer, of a mixture of several selected monomers or macromolecules.
- the method according to the invention thus comprises inter alia optimization of the four parameters mentioned above, namely: nature and irradiation dose, grafting time, concentration of monomers and nature of the solvent in the grafting bath, in order to obtain a layer of polymer, copolymer or specific macromolecules grafted so covalent and desired thickness.
- the thickness of the layer of polymer, of organic copolymer, or specific macromolecules deposited is determined by analysis "X-ray photon spectroscopy" (XPS) and directly depends on the duration of the grafting step by impregnation in the bath.
- XPS X-ray photon spectroscopy
- the reactive groups created are capable of being oxidized instantly in the presence of air.
- the grafting step is carried out extemporaneously by immersion in a bath containing an ad hoc compound which makes it possible to regenerate the reactive radicals.
- the grafting step can be the case followed by a washing step which consists in removing the residues from the biological monomer, polymer or macromolecules that have not been consumed and / or polymerized on the surface of the polymer film.
- These rinses are generally carried out in a mixture of isopropanol in water (70/30% v / v) until there is no longer any trace of reagents and / or products in the washing phases.
- it is essential that washing is as efficient as possible made of the cytotoxicity of acrylamide monomers or polymers and derivatives.
- different natures of polymers, copolymers or macromolecules can thus constitute a layer of between 1 and 10 nanometers on which the adherent cells attach and proliferate.
- the polymer or copolymer of interest is chosen from poly-N-alkyl (meth) acrylamide derivatives, their respective copolymers, poly-N-acryloyl-piperidine or poly-N -acryloyl-pyrrolidine.
- surface treatment involves, for example, covalent grafting of hydrophilic polymer of the polyethylene ethylene oxide PEO type on the surface of a polymer film pre-exposed to an allylamine plasma to generate amine functions. surface, and this by means of a suitable chemical coupling agent, such as for example cyanide chloride. This type of treatment is described in (J. Biomed. Mater. Res. 1991, 25 , 1547).
- the conventional methods of grafting macromolecules onto the supports as described in particular in the techniques of affinity chromatography using antibodies, aptamers or molecules obtained by combinatorial chemistry can be used .
- Those skilled in the art can refer, for a detailed description of these techniques, to (J. Cell. Biol. 1991, 114 , 1089 ⁇ 1990, 110 , 777, J. Biol. Chem. 1992, 267 , 14019 ⁇ 10133 , Art. Organs 1992, 16 , 526, Macromolecules, 1993, 26 , 1483).
- the biological macromolecules (oligopeptides, oligonucleotides etc.), which can advantageously be grafted onto the supports prepared by a method according to the invention, are ligands specific for cellular receptors making it possible to achieve the growth of a certain type of cells in a culture medium at the expense of other cell types which could be mixed with it. Even more particularly, this could make it possible to multiply the cells which express, either naturally, or resulting from an in vitro genetic recombination of these cells expressing a specific macromolecule at the level of their membrane.
- the substrate polymer film on which have been grafted a polymer, a copolymer or a macromolecule of interest is then cut by a process chosen according to the geometry and size of the desired 2D microcarriers.
- a preferred implementation in the present invention is the punching, the size of the punches being that of the 2D micro-supports products.
- the microcarriers have a thickness preferably less than or equal to 25 ⁇ as well as a disc shape.
- the last step in the production process such grafted 2D-MS therefore includes a cutting of the grafted film thin or ultra-thin polymer (substrate) in micrometric particles characterized by two-dimensional geometry and comprising two anchor faces on each of which the cells hang and proliferate without possible penetration of cells between the two faces.
- Homogeneity of size is essential to the synchrony of the different stages of cell growth. Indeed, the presence of microcarriers of various sizes would imply that of small ones would reach confluence before those of large size. In this case, the CAD which reached the confluence earlier, can partly drop, die and release ammonia, lactic acid and others toxins that are deleterious to the growth of CAD proliferating on larger microcarriers.
- This step is carried out by punching the polymer film only pre-activated or pre-activated then grafted with circular punches of selected diameter (for example 150 ⁇ ) in ceramic carbide.
- the film polymer is punched at a cutting frequency (beats by minute) optimized as a function of the speed of advancement of the polymer film graft.
- the embossing systems using a rotary knife consisting of engravings inserted on a printing cylinder of given diameter, a second cylinder of the same diameter serving as a press or "imprint".
- a number of punch lines given on the 360 ° of the cylinder (defined depending on the spacing between punches and the cylinder diameter) and a number of punches per line given (defined according to the length of the cylinder).
- the cutting speed of a reel of film passing between the two cylinders and therefore the productivity must be different from our process. It is a technique widely used by companies that market labels of all sizes and shapes. In this case, the pressure it would take applying for cutting may limit the process.
- the invention also relates to microcarriers with two dimensions (2D) endowed with particular functionalities for the culture of dependent anchor cells (CAD), as obtained by a described process above, characterized in that the thickness of the polymer film is included between 10 and 35 ⁇ , and that of the polymer, the copolymer or a macromolecule of interest covalently grafted have a thickness between 1 and 10 nm.
- 2D dependent anchor cells
- FIG. 2 represents the diagram of the device of the step of continuous film cutting (in the form of reels).
- the system rewinder-unwinder serves as a supply and evacuation tool for cutting. In addition, this tool will operate 24 hours a day.
- M1 is the engine governing the tape feed
- M2 is the reel winding motor
- M3 is the reel unwinding motor.
- C1 represents the sensor to start M3
- C2 is the stop sensor for M3
- C3 represents the M2
- C4 start sensor is the M2 stop sensor.
- R1 indicates the band braking system.
- the film unwinding / rewinding system allows the advancement of said film at a speed of between 0.1 and 8 m by minute.
- the unwinding / winding speed is much slower at cutting stage only during the activation and grafting stages.
- the heart of the device consists of a tool block on which are inserted, along the length of the film, rows of punches circulars and the corresponding imprint block.
- the tool block will include 9 rows of 50 punches each.
- This configuration of the online tool block in the direction of length rather than width increases maintenance security.
- the spacing between them is 0.25 mm; the regular pitch between 2 lines is 0.20 mm. It is clear that the arrangement cited above, the diameter of the punches and their spacing is an optimal proposition but can of course be adapted in according to needs and has no binding character.
- the 2D-MS grafted microcarriers are then continuously collected.
- the device according to the invention comprising punches with a diameter of 150 ⁇ makes it possible to obtain approximately 1 kg of confetti (2D-MS microsupports) 150 ⁇ in diameter. Knowing that the surface density of the material is 26.25 g / m 2 , the minimum number of particles obtained equals 2.38 10 9 microcarriers per coil or per kilo of microcarriers produced. In the configuration cited above by way of example, the cutting yield is 28%.
- FIG. 3 represents the 2D-MS microcarriers thus obtained.
- Microdisks can be collected in receptacles positioned directly under the punching die.
- Example 1 Radiografting using the pre-irradiation technique using electron beam under nitrogen:
- discontinuous radio-grafting total activation dose, nature of the solvent, concentration of the monomer, temperature of the grafting bath, grafting time
- sheets 5 x 10 cm 2 polystyrene film 25 ⁇ thick
- Van der Graaf type static research electron accelerator characterized by low power and low dose rate compared to industrial devices.
- the polystyrene culture flasks containing the polystyrene film are washed twice in an Isopropanol / H 2 O 70/30% (v / v) mixture and dried under a stream of nitrogen for 15 minutes.
- the previously degassed bottles are placed under an irradiator High energy static EB (10 Mev).
- the bottles are therefore irradiated under the beam for a fixed time (in minutes) so to absorb a given total dose (in Kgray or Joule / g).
- the dose deposited is calibrated beforehand with a dosimeter.
- the bottles are immediately brought into contact with the solution (H 2 O), stock of monomer (concentration by weight of 10 to 40%) under a nitrogen atmosphere.
- the freshly prepared stock solution of monomer is transferred to the polystyrene bottle pre-irradiated by a nitrogen push system.
- the grafting solution once transferred to the pre-irradiated bottle, is balanced at a given temperature (from 25 ° C to 60 ° C).
- the grafting time (from 0.5 to 24 hours) is varied at a given temperature in order to check the influence of various parameters on the thickness of the layer of Poly-N-isopropylacrylamide on the surface of the film like the culture flask in polystyrene.
- the grafting solutions are removed from the vials after a given time and then the vials and the grafted films are washed three times and then dried.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Graft Or Block Polymers (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
La présente invention porte sur un nouveau procédé d'obtention de microsupports à deux dimensions (2D) pour la culture de cellules ancrage-dépendantes. Plus précisément, l'invention porte sur un procédé de préparation de tels microsupports adaptés à la culture en masse, en perfusion ou en clusters de cellules animales ancrage-dépendantes et manifestant des propriétés particulières telles la cryosensibilité, la biocompatibilité, la biodégradabilité ou l'adhésion spécifique. L'invention porte également sur les microsupports obtenus par ce procédé et leur utilisation. Elle porte enfin sur un dispositif qui permet de fabriquer ces microsupports en masse, de taille et de constitution homogènes.The present invention relates to a new process for obtaining two-dimensional (2D) microcarriers for the culture of anchor-dependent cells. More specifically, the invention relates to a method of preparation of such microcarriers suitable for mass culture, in infusion or in clusters of anchor-dependent animal cells and exhibiting particular properties such as cryosensitivity, biocompatibility, biodegradability or specific adhesion. The invention also relates to the microcarriers obtained by this process and their use. Finally, it relates to a device which makes it possible to manufacture these microsupports in mass, size and homogeneous constitution.
Les cellules ancrage-dépendantes (CAD) sont dépendantes de l'adhésion à un support pour proliférer et préserver leurs fonctions cellulaires et leur viabilité. Cette dépendance constitue un goulot d'étranglement technologique pour la production de substances biologiques et pharmaceutiques secrétées par ces CAD en comparaison avec celles issues de cellules ancrage-indépendantes qui, elles, peuvent proliférer en suspension. Cette dépendance provient notamment du fait que la croissance des CAD s'arrête quand ces dernières arrivent à confluence et qu'il est nécessaire de détacher les cellules confluentes par trypsinisation. En outre, le besoin des cellules en milieu nutritif et en oxygène limite le nombre et/ou la surface des microsupports pour un volume donné de milieu de culture. Différents systèmes de culture ont été développés en vue de présenter une surface d'ancrage suffisante que pour permettre de produire des CAD à l'échelle industrielle : les "roller bottles", les systèmes "multi-tray", les fibres creuses, et les microsupports, particulièrement intéressants en terme de rapport surface/volume.Anchor-dependent cells (CAD) are dependent on adherence to a medium to proliferate and preserve their functions and their viability. This dependence is a bottleneck technological bottleneck for the production of substances biological and pharmaceutical products secreted by these CAD in comparison with those from anchor-independent cells which can proliferate in suspension. This dependence comes in particular from the fact that the CAD growth stops when they reach confluence and that it is necessary to detach the confluent cells by trypsinization. In addition, the need for cells in nutrient medium and oxygen limits the number and / or the surface of the microcarriers for a given volume of culture medium. Different cropping systems have been developed in order to present a sufficient anchoring surface only for allow CAD to be produced on an industrial scale: "roller bottles", "multi-tray" systems, hollow fibers, and microcarriers, particularly interesting in terms of surface / volume ratio.
Nombre de microsupports utilisés industriellement pour cultiver en masse des cellules ancrage-dépendantes (CAD) se caractérisent par une géométrie tridimensionnelle (3D) et les plus faciles à façonner sont à géométrie sphérique. Utilisées par l'industrie biopharmaceutique pour faire de la culture cellulaire (bioréacteur jusqu'à 1000 L) en mode batch, les microbilles 3D dont un exemple est le CytodexR vendu par Pharmacia (UPPSALA, Suède) mises en suspension à 5g/l permettent d'obtenir des concentrations de l'ordre de 2.106 cellules/ml, 7 % du volume de culture étant occupé par les microbilles. Celles-ci constituent une référence dans le domaine. Néanmoins, le rapport surface/volume des microsupports sphériques est peu favorable à une augmentation de la concentration en microsupports dans le bioréacteur. Si on veut cultiver des CAD à hautes concentrations (107 à 5.107 cellules/ml), il faut pouvoir augmenter la concentration en microsupport dans le bioréacteur. Or, il arrive rapidement un moment où le volume des microbilles gonflées représente une proportion trop importante du volume de culture, réduisant le volume de milieu disponible pour les cellules.Many microsupports used industrially to mass culture anchor-dependent cells (CAD) are characterized by three-dimensional geometry (3D) and the easiest to shape are spherical geometry. Used by the biopharmaceutical industry to make cell culture (bioreactor up to 1000 L) in batch mode, 3D microbeads, an example of which is Cytodex R sold by Pharmacia (UPPSALA, Sweden) suspended at 5g / l allow to obtain concentrations of the order of 2.10 6 cells / ml, 7% of the culture volume being occupied by the microbeads. These constitute a reference in the field. However, the surface / volume ratio of spherical microcarriers is not favorable to an increase in the concentration of microcarriers in the bioreactor. If you want to cultivate CAD at high concentrations (10 7 to 5.10 7 cells / ml), you must be able to increase the concentration of microsupport in the bioreactor. However, there comes quickly a moment when the volume of the swollen microbeads represents an excessive proportion of the culture volume, reducing the volume of medium available for the cells.
Une nouvelle génération de microsupports à géométrie bidimensionnelle a été développée et décrite dans EP 579 596.A new generation of microsupports with two-dimensional geometry was developed and described in EP 579 596.
Par géométrie bidimensionnelle, il faut entendre que l'épaisseur de ces microsupports tend à devenir infime et négligeable par rapport aux dimensions des cellules cultivées. Cette réduction d'épaisseur est telle qu'il n'y a aucune possibilité de croissance des cellules, ni au sein du support, ni sur sa tranche mais uniquement sur ses deux faces d'ancrage. Ces microsupports 2D (2D-MS) offrent le principal avantage d'une surface d'ancrage par unité de volume plus élevée que l'ensemble des compétiteurs 3D, telles les microbilles du type CYTODEX® mentionnées ci-dessus.By two-dimensional geometry, it should be understood that the thickness of these microcarriers tend to become tiny and negligible compared to dimensions of cultured cells. This reduction in thickness is such that it there is no possibility of cell growth, nor within the support, nor on its edge but only on its two anchoring faces. These 2D microsupports (2D-MS) offer the main advantage of a surface anchor per unit of volume higher than all 3D competitors, such as the CYTODEX® microbeads mentioned above.
Ils permettent donc pour une occupation de volume de culture donnée dans un bioréacteur, de cultiver et d'obtenir plus de cellules par unité de volume. En effet, la surface d'ancrage externe d'une sphère (4πR2) est égale à la surface totale de deux disques (2 x 2πR2) infiniment minces situés à l'équateur et s'inscrivant dans cette sphère. Cependant, les volumes combinés de ces deux disques "équatoriaux" deviennent d'autant plus faibles que l'épaisseur du film, utilisé pour les produire, est faible, ne représentant qu'une infime fraction du volume de la sphère qui les circonscrit. Adoptant une épaisseur de 10µm pour l'ensemble des disques générés dans une sphère, la surface totale apte à l'ancrage des cellules ainsi fournie par les disques est environ 3.3 fois supérieure à la surface extérieure de la sphère, tenant compte des mouvements aléatoires de ceux-ci, en suspension.They therefore make it possible, for an occupation of culture volume given in a bioreactor, to cultivate and obtain more cells per unit of volume. Indeed, the external anchoring surface of a sphere (4πR 2 ) is equal to the total surface of two infinitely thin discs (2 x 2πR 2 ) located at the equator and forming part of this sphere. However, the combined volumes of these two "equatorial" discs become smaller the smaller the thickness of the film used to produce them, representing only a tiny fraction of the volume of the sphere which circumscribes them. Adopting a thickness of 10 µm for all of the disks generated in a sphere, the total surface capable of anchoring the cells thus provided by the disks is approximately 3.3 times greater than the outer surface of the sphere, taking into account the random movements of these, in suspension.
La grande surface d'ancrage disponible pour les CAD par unité de volume des 2D-MS permet donc d'envisager la culture de cellules à hautes concentrations à l'échelle industrielle.The large anchoring surface available for CAD per unit of volume of 2D-MS therefore makes it possible to envisage the culture of cells with high industrial scale concentrations.
Une autre limitation des supports pour culture cellulaire ancrage-dépendante est celle du mode de récupération des cellules attachées à leur support tout en préservant les propriétés biologiques ou physiologiques de ces dernières. En effet, le détachement des cellules de leur support passe par un traitement enzymatique (tel la trypsine) ou un agent chélateur (tel l'EDTA), qui peut endommager non seulement les fonctions cellulaires mais également leur ré-attachement ultérieur à des supports dans le cadre de cultures en continu. Cette limitation est particulièrement préjudiciable lorsque les fonctions biologiques des cellules sont utilisées ensuite sur le plan industriel. Cette situation est fréquemment rencontrée dans le cas de production de macromolécules d'intérêt par lesdites cellules, ou encore quand l'intégralité des récepteurs ou molécules membranaires est recherchée pour leur capacité à lier des ligands ou internaliser des molécules ou des substances.Another limitation of supports for anchor-dependent cell culture is that of the recovery mode of cells attached to their support while preserving the biological properties or physiological of the latter. Indeed, the detachment of cells from their support goes through an enzymatic treatment (such as trypsin) or a chelating agent (such as EDTA), which can damage not only cellular functions but also their subsequent re-attachment to supports in the context of continuous cultures. This limitation is particularly detrimental when the biological functions of cells are then used industrially. This situation is frequently encountered in the case of production of macromolecules of interest by said cells, or when all of the receptors or molecules membranes is sought after for their ability to bind ligands or internalize molecules or substances.
En outre, la culture à confluence des cellules ancrage-dépendantes conduit à la formation de liens intercellulaires ou de jonctions intercellulaires. Ces jonctions intercellulaires contribuent également à la fonctionnalité des cellules et leur destruction à la perte de ces fonctionnalités.In addition, culture at confluence of anchor-dependent cells leads to the formation of intercellular links or junctions intercellular. These intercellular junctions also contribute to the functionality of cells and their destruction at the loss of these features.
Ces limites dans la culture en masse des cellules ancrage-dépendantes conduisent également à une limite à la production industrielle de macromolécules biologiques produites par cesdites cellules qu'il s'agisse des molécules synthétisées normalement par les cellules en question ou plus généralement produites par insertion par des techniques de recombinaison génétique de gènes codant pour une protéine hétérologue. Cette limitation liée aux capacités de production de cellules ancrage-dépendantes fonctionnelles peut conduire à des prix de revient industriels des protéines que l'on souhaite exprimer et purifier, incompatibles avec un prix de vente ultérieur d'un médicament contenant ladite protéine comme principe actif.These limitations in mass culture of anchor-dependent cells also lead to a limit to industrial production of biological macromolecules produced by these cells which it these are molecules normally synthesized by cells in question or more generally produced by insertion by techniques of genetic recombination of genes coding for a protein heterologous. This limitation linked to cell production capacities anchoring-dependent functional can lead to cost prices manufacturers of proteins that we wish to express and purify, incompatible with a subsequent sale price of a medicinal product containing said protein as active ingredient.
Il existe donc un besoin réel de disposer de microsupports pour la culture de CAD présentant les spécificités suivantes :
- haut rendement de cellules par unité de volume de milieu de culture ;
- altération minimale de la viabilité des CAD consécutivement à leur décrochage des microsupports ;
- contrôle du nombre et de la spécificité des cellules susceptibles de s'ancrer sur lesdits supports, ledit contrôle permettant d'adapter ces supports, d'une part, au système de culture utilisé, d'autre part, aux fonctionnalités desdites cellules cultivées ;
- possibilité de produire à grande échelle ces microsupports pour cellules ancrage-dépendantes avec une excellente reproductibilité et à un prix de revient industriel compatible avec le prix de revient de production de cellules ou de macromolécules d'intérêt biologique.
- high cell yield per unit volume of culture medium;
- minimal deterioration of the viability of CAD following their detachment from microcarriers;
- control of the number and specificity of cells capable of being anchored on said supports, said control making it possible to adapt these supports, on the one hand, to the culture system used, on the other hand, to the functionalities of said cultured cells;
- possibility of large-scale production of these microsupports for anchor-dependent cells with excellent reproducibility and at an industrial cost price compatible with the production cost of cells or macromolecules of biological interest.
Des tentatives pour surmonter un certain nombre d'inconvénients décrits ci-dessus, notamment la nécessité d'utiliser des enzymes ou des agents chélateurs pour décrocher les cellules de leur support, ont été décrites dans EP 387 975 et dans EP 382 214. Ces deux brevets proposent de recouvrir les supports classiques de culture cellulaire par le produit de la copolymérisation de monomères hydrophiles choisis parmi les dérivés de poly-N-alkyl-(meth)acrylamide, leurs copolymères respectifs, le poly-N-acryloyl-piperidine ou le poly-N-acryloyl-pyrrolidine dont la fonctionnalité recherchée est la cryosensibilité.Attempts to overcome a number of disadvantages described above, including the need to use enzymes or chelating agents to unhook cells from their support, have been described in EP 387 975 and in EP 382 214. These two patents propose to cover conventional cell culture supports with the product of the copolymerization of hydrophilic monomers chosen from poly-N-alkyl- (meth) acrylamide derivatives, their respective copolymers, the poly-N-acryloyl-piperidine or poly-N-acryloyl-pyrrolidine, the functionality sought is cryosensitivity.
Dans cette utilisation, le polymère est choisi en fonction de la température inférieure critique ou LCST qui est une température de transition pour l'hydratation et la déshydratation du composé polymérique. Quand la LCST est inférieure à la température de culture des cellules, les cellules restent fixées sur le support du polymère pendant la phase de culture cellulaire. Elles peuvent en être décrochées consécutivement à un abaissement de la température de la culture tel que cette dernière est substantiellement inférieure à la LCST. Les méthodes d'obtention d'un polymère ou d'un copolymère avec une température LCST inférieure donnée sont décrites dans EP 382 214 B1. Tous les polymères greffés à partir des monomères cités dans cette demande de brevet sont appropriés mais non limités dans l'application à la cryosensibilité dans la présente demande. De manière générale, on peut dire que l'inclusion de monomères hydrophiles dans le processus de polymérisation tend à augmenter la LCST, alors que la présence de polymères hydrophobes tend à diminuer la LCST. Des exemples de monomères hydrophiles sont : N-vinyl-pyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methyl-acrylamide, hydroxyethyl-methacrylate, hydroxyethyl-acrylate, hydroxymethyl-methacrylate, hydroxymethyl-acrylate, acide acrylique et acide methacrylique ayant des groupes acides et leurs sels, acide vinylsulfonique, acide styrylsulfonique et N,N'-dimethylamino-ethyl-methacrylate, N,N'-diethylamino-ethyl-methacrylate, et N,N'-dimethylamino-propyl-acrylamide ayant des groupes basiques et leurs sels.In this use, the polymer is chosen according to the critical lower temperature or LCST which is a temperature of transition for hydration and dehydration of the polymeric compound. When the LCST is below the cell culture temperature, the cells remain fixed on the polymer support during the cellular culture. They can be taken down after a lowering the temperature of the culture such that the latter is substantially lower than the LCST. The methods of obtaining a polymer or copolymer with a lower LCST temperature data are described in EP 382 214 B1. All polymers grafted from the monomers cited in this patent application are suitable but not limited in application to cryosensitivity herein request. In general, it can be said that the inclusion of monomers hydrophilic in the polymerization process tends to increase the LCST, while the presence of hydrophobic polymers tends to decrease the LCST. Examples of hydrophilic monomers are: N-vinyl-pyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methyl-acrylamide, hydroxyethyl-methacrylate, hydroxyethyl-acrylate, hydroxymethyl-methacrylate, hydroxymethyl-acrylate, acrylic acid and methacrylic acid having acid groups and their salts, vinylsulfonic acid, acid styrylsulfonic and N, N'-dimethylamino-ethyl-methacrylate, N, N'-diethylamino-ethyl-methacrylate, and N, N'-dimethylamino-propyl-acrylamide having basic groups and their salts.
Des exemples de monomères hydrophobes sont: les dérivés acrylates et dérivés methacrylates tels que l'éthyl-acrylate, le methylmethacrylate et le glycidyl-methacrylate etc., les dérivés N-substitués-alkyl(meth)-acrylamides tels que le N-nbutyl-(meth)-acrylamide et le N-isopropyl-acrylamide etc. ainsi que le chlorure de vinyl, l'acrylonitrile, le styrene, et l'acetate de vinyl etc.Examples of hydrophobic monomers are: derivatives acrylates and methacrylate derivatives such as ethyl acrylate, methylmethacrylate and glycidyl-methacrylate etc., N-substituted-alkyl (meth) -acrylamide derivatives such as N-nbutyl- (meth) -acrylamide and N-isopropyl-acrylamide etc. as well as vinyl chloride, acrylonitrile, styrene, and vinyl acetate etc.
Néanmoins, les moyens décrits pour coupler ces polymères ou copolymères cryosensibles sur les supports de culture cellulaire ne permettent :
- ni le contrôle de la quantité et donc de l'épaisseur des polymères greffés, paramètre particulièrement important lorsque l'on veut contrôler la densité des cellules en culture ;
- ni d'assurer un couplage covalent du polymère ou copolymère sur le support de culture ; ceci est un inconvénient majeur dans la mesure où il ne permet pas la conservation à long terme de ces supports ni leur réutilisation.
- nor the control of the quantity and therefore of the thickness of the grafted polymers, a particularly important parameter when it is desired to control the density of the cells in culture;
- nor to ensure a covalent coupling of the polymer or copolymer on the culture support; this is a major drawback insofar as it does not allow long-term preservation of these supports nor their reuse.
La présente invention porte sur un procédé d'obtention en continu de microsupports à deux dimensions (2D) exhibant des fonctionnalités particulières pour la culture de cellules ancrage-dépendantes (CAD). Il est illustré dans la figure 1 et comprend au moins la succession d'étapes suivantes :
- une production en continu de bobines de film polymère d'une épaisseur inférieure ou égale à 35 µ à partir de granules d'un polymère donné ;
- une activation dudit film polymère par tout moyen permettant de générer des groupements réactifs notamment des radicaux ou des fonctions peroxydes, hydroperoxydes ou amines ;
- un greffage covalent entre le film polymère activé et un polymère, un copolymère ou une macromolécule d'intérêt dont la fonctionnalité est recherchée, ledit greffage étant obtenu par immersion du film dans une solution de monomère, la copolymérisation étant amorcée par les radicaux libres créés par l'activation sous rayonnement β, le temps d'immersion étant directement corrélé à l'épaisseur recherchée du polymère greffé sur le film ;
- le cas échéant un lavage pour éliminer les monomères non consommés et non fixés sur le film ;
- une découpe du film polymère par un procédé choisi en fonction de la géométrie et de la taille des microsupports 2D recherchées ;
- le cas échéant, une étape de stérilisation, soit par autoclavage, soit par rayonnement, la méthode de stérilisation étant bien entendu choisie en fonction du matériau à stériliser. Dans le cas où le matériel n'est pas autoclavable, il doit être stérilisé par une méthode physique (rayonnement γ ou β) ou chimique (mélange isopropanol/H2O 70/30 % (v/v)).
- continuous production of reels of polymer film with a thickness of 35 µm or less from granules of a given polymer;
- activation of said polymer film by any means making it possible to generate reactive groups, in particular radicals or peroxide, hydroperoxide or amine functions;
- a covalent grafting between the activated polymer film and a polymer, a copolymer or a macromolecule of interest whose functionality is sought, said grafting being obtained by immersion of the film in a monomer solution, the copolymerization being initiated by the free radicals created by activation under β radiation, the immersion time being directly correlated to the desired thickness of the polymer grafted onto the film;
- if necessary, washing to remove the monomers not consumed and not fixed on the film;
- cutting the polymer film by a process chosen according to the geometry and the size of the 2D microsupports sought;
- if necessary, a sterilization step, either by autoclaving or by radiation, the sterilization method being of course chosen as a function of the material to be sterilized. If the material is not autoclavable, it must be sterilized by a physical (γ or β radiation) or chemical (isopropanol / H 2 O 70/30% (v / v)) mixture.
Un procédé particulièrement avantageux comprend une découpe par poinçonnage en continu, la taille des poinçons étant celle de la taille des microsupports 2D recherchée.A particularly advantageous process includes cutting by continuous punching, the size of the punches being that of the size 2D microsupports sought.
C'est la combinaison de ces différentes étapes incluant une activation suivie d'un greffage covalent d'un film polymère (substrat) préalablement mis en oeuvre puis une découpe dudit film substrat porteur du polymère, copolymère ou macromolécule greffés de façon covalente par un procédé permettant l'obtention de microsupports 2D homogènes en taille et géométrie qui fait toute l'originalité de l'invention.It is the combination of these different stages including a activation followed by covalent grafting of a polymer film (substrate) previously implemented and then cutting said carrier substrate film of the polymer, copolymer or macromolecule grafted covalently by a process for obtaining homogeneous 2D microcarriers in size and geometry which makes all the originality of the invention.
En ce qui concerne la matière première mise en oeuvre sous forme de film, la nature du polymère ne peut être quelconque. Il est souhaitable suivant l'invention que le matériau soit :
- de densité comprise entre 0.9 et 1.25g/cm3 et de préférence entre 1 et 1.1 g/cm3 pour permettre une culture agitée en suspension dans du milieu de culture (en bioréacteur), sans risque de sédimentation ou de flottation.
- transparent pour permettre une analyse aisée des cellules au cours de leur croissance, en continu dans le bioréacteur. Par transparent, on entend que dans des longueurs d'ondes comprises entre 400 nm et 1000 nm, la lumière traverse les microporteurs sans atténuation importante de l'intensité du faisceau lumineux émergeant par rapport à l'intensité du faisceau de lumière incident. Une adsorption inférieure à 1 % est considérée comme tout à fait avantageuse ;
- caractérisé par une balance hydrophobe/hydrophile adéquate : s'il est plutôt hydrophobe, il doit avoir un angle de contact tel qu'il soit suffisamment mouillable en milieu aqueux et s'il est plutôt hydrophile, il ne doit pas gonfler dans l'eau ; autrement dit, l'angle de contact entre la surface du matériau et une goutte de milieu aqueux doit être compris entre 30° et 90°, l'angle de contact étant défini comme l'angle formé entre la surface du matériau et la tangente de la goutte au point triple d'intersection entre la goutte, la surface du matériau et l'air.
- density between 0.9 and 1.25 g / cm 3 and preferably between 1 and 1.1 g / cm 3 to allow a stirred culture in suspension in the culture medium (in bioreactor), without risk of sedimentation or flotation.
- transparent to allow easy analysis of cells during their growth, continuously in the bioreactor. By transparent, it is meant that in wavelengths between 400 nm and 1000 nm, the light passes through the microcarriers without significant attenuation of the intensity of the emerging light beam relative to the intensity of the incident light beam. An adsorption of less than 1% is considered to be entirely advantageous;
- characterized by an adequate hydrophobic / hydrophilic balance: if it is rather hydrophobic, it must have a contact angle such that it is sufficiently wettable in an aqueous medium and if it is rather hydrophilic, it must not swell in water ; in other words, the contact angle between the surface of the material and a drop of aqueous medium must be between 30 ° and 90 °, the contact angle being defined as the angle formed between the surface of the material and the tangent from the drop to the triple point of intersection between the drop, the surface of the material and the air.
Un angle = 0 correspond à un mouillage parfait et la surface de liquide est parallèle à la surface du matériau. Un angle > 90 % correspond à une situation d'absence de mouillage et des gouttes restent formées en surface du matériau. Un angle de contact compris entre 30 et 90 ° correspond à un mouillage imparfait correspondant à un étalement partiel de la goutte sur le matériau.An angle = 0 corresponds to perfect wetting and the surface of liquid is parallel to the surface of the material. An angle > 90% corresponds to a situation of no wetting and drops remain formed on the surface of the material. A contact angle between 30 and 90 ° corresponds to an imperfect wetting corresponding to a spread partial drop on the material.
Suivant l'invention, le matériau polymère pouvant être utilisé pour produire les films (substrat) peut ainsi être le polystyrène, le polyéthylène, le polyéthylènetéréphtalate ou le polycarbonate ou tout copolymère incluant majoritairement ces matériaux polymères plutôt hydrophobes. En tant que film plus hydrophile, le matériau utilisé peut également être en cellophane ou en polyester aliphatique de type polylactide ou polyhydroxybutyrate et tout copolymère incluant majoritairement ces matériaux plus hydrophiles.According to the invention, the polymer material which can be used for producing the films (substrate) can thus be polystyrene, polyethylene, polyethylene terephthalate or polycarbonate or any copolymer mainly including these rather hydrophobic polymer materials. In as a more hydrophilic film, the material used can also be cellophane or aliphatic polyester of the polylactide type or polyhydroxybutyrate and any copolymer mainly including these more hydrophilic materials.
Lorsque la nature du polymère mis en oeuvre est de type polyester aliphatique, le film est par essence biorésorbable/biodégradable et, dans ce cas, il peut être utilisé en tant qu'implant dans l'organisme vivant si le polymère mis en oeuvre est de grade biomédical de préférence reconnu par la FDA.When the nature of the polymer used is of polyester type aliphatic, the film is in essence bioresorbable / biodegradable and, in in this case it can be used as an implant in the living organism if the polymer used is preferably recognized biomedical grade by the FDA.
De préférence, l'épaisseur du film utilisé pour produire les microsupports est entre 10 et 25µ.Preferably, the thickness of the film used to produce the microsupports is between 10 and 25µ.
La production en continu de bobines de film polymère mince ou ultra-mince est réalisée par la technique "d'extrusion-étirement" à partir de granules d'un polymère donné. Cette matière première est chauffée pour atteindre l'état fondu, puis extrudée au travers d'une vis tournante et moulée entre deux plaques pour produire un film polymère épais. A la sortie de l'extrudeuse, le film assez épais est alors étiré à chaud, soit dans un seul sens, soit dans deux sens orthogonaux l'un par rapport à l'autre pour produire alors un film non rétractable dont l'épaisseur est beaucoup plus faible et contrôlable à façon (entre 10 et 35µ) sur toute la largeur de la bobine produite, ceci dans les limites des propriétés thermiques et mécaniques de la matière première.Continuous production of reels of thin polymer film or ultra-thin is produced by the "extrusion-stretching" technique from granules of a given polymer. This raw material is heated to reach the molten state, then extruded through a rotating screw and molded between two plates to produce a thick polymer film. To the leaving the extruder, the fairly thick film is then stretched hot, either in one direction, either in two directions orthogonal to each other to then produce a non-shrink film whose thickness is much smaller and customizable (between 10 and 35µ) over the entire width of the coil produced, this within the limits of thermal properties and mechanical of the raw material.
La technique d"'extrusion-soufflage" est une alternative de mise en oeuvre de film en continu. La variante se situe au niveau de la seconde étape, à savoir, l'injection d'air entre deux parois de films qui a pour rôle d'étendre la matière et par conséquent d'obtenir une épaisseur de film plus faible. D'autres techniques de mise en oeuvre de films minces sont décrites dans d'autres applications de la chimie des polymères (tels que les biosensors): le "spin-coating" ou le "solvent-casting" mais ces deux techniques sont plus souvent utilisées pour faire des feuilles ou des disques de petites tailles et sont moins appropriées pour produire des bobines de film en continu.The "blow-molding" technique is an alternative continuous film work. The variant is located at the second step, namely, the injection of air between two walls of films which has the role to extend the material and therefore to obtain a film thickness more low. Other techniques for processing thin films are described in other applications of polymer chemistry (such as biosensors): "spin-coating" or "solvent-casting" but these two techniques are more often used to make sheets or discs of small size and are less suitable for producing continuous film reels.
Dans une deuxième étape, le film polymère, qui peut avantageusement se présenter sous une forme enroulable d'une largeur comprise entre 5 cm et 60 cm et une longueur d'au moins 3 km, subit ensuite une activation afin de permettre de générer des groupements réactifs, susceptibles de former des liaisons covalentes avec d'autres groupements réactifs de la substance que l'on souhaite greffer. Dans ce sens, par substance, on entend des monomères ou polymères organiques ayant des propriétés particulières, notamment des propriétés de cryosensibilité ou de biocompatibilité; il peut s'agir également de macromolécules biologiques qui ont une affinité spécifique pour certains récepteurs cellulaires : les microsupports 2D résultant d'un tel greffage permettent alors l'adhésion sélective de certains types de cellules présentes dans un échantillon cellulaire initial comprenant un mélange de cellules. A titre d'exemple, on peut citer des cellules de la peau (kératinocytes) parvenues à différents stades de différenciation, ou encore des cellules résultant de l'insertion, l'activation ou la répression d'une fonction particulière, notamment par l'insertion d'un gène porteur de ladite fonction ou porteur d'une fonction régulatrice de l'expression d'un gène cellulaire.In a second step, the polymer film, which can advantageously be in a rollable form with a width between 5 cm and 60 cm and a length of at least 3 km, undergoes then an activation in order to generate groupings reagents, capable of forming covalent bonds with others reactive groups of the substance that one wishes to graft. In this meaning, by substance, is meant organic monomers or polymers having particular properties, in particular properties of cryosensitivity or biocompatibility; it can also be biological macromolecules which have a specific affinity for certain cellular receptors: 2D microcarriers resulting from such grafting then allow the selective adhesion of certain types of cells present in an initial cell sample comprising a mixture of cells. By way of example, mention may be made of skin cells (keratinocytes) having reached different stages of differentiation, or cells resulting from the insertion, activation or repression of a particular function, in particular by inserting a gene carrying said function or carrier of a regulatory function for gene expression cellular.
Quatre procédés sont employés pour modifier la structure chimique des polymères et générer des groupements réactifs. Il s'agit des faisceaux d'électrons et, plus particulièrement, de rayonnements β, des décharges couronnes ou corona, du traitement UV et, enfin, des plasmas. Pour chaque procédé, deux paramètres vont orienter le choix de la méthode selon les propriétés recherchées pour le matériau soumis à ces rayonnements :
- la nature des groupes chimiques induits dans le polymère par l'activation,
- la profondeur de traitement dans l'épaisseur du matériau.
- the nature of the chemical groups induced in the polymer by the activation,
- the depth of treatment in the thickness of the material.
Dans tous les cas, l'activation consiste à soumettre le support à un rayonnement électromagnétique qui engendre une cassure des liaisons et la création de radicaux libres, de fonctions peroxydes, hydroperoxydes ou amines.In all cases, activation consists in subjecting the support to a electromagnetic radiation which breaks the bonds and the creation of free radicals, peroxide, hydroperoxide functions or amines.
Si besoin est, et selon des méthodes déjà décrites, des molécules espaceurs peuvent être, le cas échéant, greffées via les radicaux libres ainsi générés. Leur fonction est d'augmenter la longueur du lien entre les sites réactifs et les monomères, polymères ou macromolécules que l'on souhaite lier de façon covalente au film polymère, et par conséquent d'augmenter la mobilité de ceux-ci.If necessary, and according to methods already described, molecules spacers can be grafted if desired via free radicals thus generated. Their function is to increase the length of the link between reactive sites and the monomers, polymers or macromolecules that are wants to covalently bond to the polymer film, and therefore to increase their mobility.
L'activation consiste à soumettre ledit film à un bombardement électronique. Ce bombardement est réalisé, de préférence, sous atmosphère inerte. Dans le procédé de l'invention, il est essentiel que l'étape d'activation précède l'étape de greffage. En effet, lorsque ces deux étapes sont simultanées comme dans le cas du brevet EP 382 214, le monomère que l'on souhaite greffer est alors soumis lui aussi au rayonnement et il se crée une quantité très importante d'homopolymères libres en solution qui peuvent s'adsorber à la surface du support et qu'il faut ensuite éliminer au lavage. Dans ce cas, il est alors difficile de s'assurer que toutes les chaínes libres non greffées sont éliminées par le lavage, et que ces chaínes libres adsorbées ne se dissolvent pas dans le milieu de culture lors du détachement cellulaire par contraste thermique.Activation consists in subjecting said film to a bombardment electronic. This bombardment is preferably carried out under inert atmosphere. In the process of the invention, it is essential that the activation step precedes the grafting step. When these two stages are simultaneous as in the case of patent EP 382,214, the monomer which one wishes to graft is then also subjected to radiation and a very large amount of homopolymers is created free in solution which can adsorb on the surface of the support and which must be then wash off. In this case, it is then difficult to ensure that all the ungrafted free chains are eliminated by washing, and that these free adsorbed chains do not dissolve in the middle of culture during cell detachment by thermal contrast.
Les conditions d'activation sont choisies en fonction d'un certain nombre de paramètres parmi lesquels figurent au moins :
- la nature du film polymère à greffer ;
- la nature du copolymère ou des macromolécules que l'on souhaite coupler de façon covalente au film polymère ;
- le caractère discontinu ou continu du procédé d'activation : le support greffé qui sera ensuite découpé peut en effet être traité de façon statique ou en continu par défilement du film.
- the nature of the polymer film to be grafted;
- the nature of the copolymer or macromolecules which it is desired to couple covalently to the polymer film;
- the discontinuous or continuous nature of the activation process: the grafted support which will then be cut can indeed be treated statically or continuously by scrolling the film.
Quand le procédé d'activation est continu, la vitesse de défilement du film peut varier de 0,1 à 10 m par minute et être établie en fonction de la dose totale d'irradiation requise pour activer le film et de la puissance de l'irradiateur fixée selon la résistance thermique du film.When the activation process is continuous, the scrolling speed of the film can vary from 0.1 to 10 m per minute and be established according to the total radiation dose required to activate the film and the power of the irradiator fixed according to the thermal resistance of the film.
Dans le cas de l'irradiation de film polystyrène par rayonnement β ou γ, on peut augmenter la puissance de l'irradiateur jusqu'à 6 milliampères (mA) ; au-delà, il y a surchauffe et déformation du film. Si on diminue sensiblement la vitesse de défilement du film, avec une intensité fixée à 6 mA, on peut atteindre des doses de 80 à 200 Kgray au maximum en un seul passage sous l'irradiateur.In the case of irradiation of polystyrene film by β radiation or γ, we can increase the power of the irradiator up to 6 milliamps (my) ; beyond, there is overheating and deformation of the film. If we decrease appreciably the speed of movement of the film, with an intensity fixed at 6 mA, doses of 80-200 kg maximum can be reached in one only one pass under the irradiator.
Le Kilogray ou joule par gramme est une unité représentative de la dose et dépend des caractéristiques de l'unité de faisceau d'électrons.The Kilogray or joule per gram is a representative unit of the dose and depends on the characteristics of the electron beam unit.
Lorsqu'une décharge couronne (ou corona) est utilisée, elle est émise sous une tension de plusieurs milliers de volts et à des fréquences la situant dans le domaine des kHz. Ce procédé s'utilise sous atmosphère ambiante. L'amplitude géométrique de l'arc corona est de quelques millimètres pour les systèmes les plus classiques à quelques centimètres pour les systèmes à arc soufflé. La décharge est réalisée avec des électrodes parallèles se situant de part et d'autre de l'objet. L'utilisation des décharges couronnes pour l'activation du film a l'avantage d'être un traitement sous atmosphère ambiante.When a corona discharge is used, it is emitted at a voltage of several thousand volts and at frequencies the located in the kHz domain. This process is used in an atmosphere ambient. The geometric amplitude of the corona arc is a few millimeters for most conventional systems to a few centimeters for blown arc systems. The discharge is carried out with parallel electrodes located on either side of the object. The use of crown discharges for film activation has the advantage of being a treatment under ambient atmosphere.
L'activation du film polymère par plasma froid est réalisée également à l'aide d'électrodes qui émettent des décharges dans le domaine des radiofréquences.Activation of the polymer film by cold plasma is carried out also using electrodes which emit discharges into the radio frequency domain.
Un plasma est obtenu par ionisation à l'aide d'une source haute fréquence d'un gaz ou d'un mélange de gaz introduit dans une enceinte mise sous une pression résiduelle de quelques millibars. Ce procédé coûteux est également difficile à mettre en oeuvre en continu sur un film polymère. Néanmoins ces trois types d'activation : faisceau d'électrons, β ou γ, décharges couronnes ou plasma sont appropriés pour générer des groupements réactifs.A plasma is obtained by ionization using a high source frequency of a gas or a mixture of gases introduced into an enclosure put under a residual pressure of a few millibars. This process expensive is also difficult to implement continuously on a film polymer. However, these three types of activation: electron beam, β or γ, crown or plasma discharges are suitable for generating reactive groups.
Suivant l'invention, la technique de radiogreffage de monomères de type acrylamide ou vinylique tels que décrits plus haut à la surface d'un mince film polymérique de type polystyrène ou polyesther aliphatique doit donc être initiée par rayonnement quelle que soit la nature de celui-ci. L'étape de greffage est réalisée ensuite directement par immersion en plongeant le film polymère pré-activé dans une solution du monomère, d'un mélange de plusieurs monomères ou de macromolécules sélectionnés.According to the invention, the technique of radiografting of monomers of acrylamide or vinyl type as described above on the surface of a thin polymer film of polystyrene or aliphatic polyester type must therefore be initiated by radiation whatever the nature of it. The grafting step is then carried out directly by immersion in immersing the pre-activated polymer film in a solution of the monomer, of a mixture of several selected monomers or macromolecules.
S'il s'agit d'un monomère organique, sa copolymérisation à la surface du film polymère est amorcée par les radicaux libres créés durant la pré-irradiation, et les chaínes polymères formées sont liées par covalence au film. La réaction est instantanée mais, suivant la nature du film, elle pourra se prolonger pendant quelques secondes, voire quelques minutes pour arriver à un taux de greffage maximum. Ce taux de greffage est directement lié à la dose d'irradiation, à la concentration en monomères dans le bain d'imprégnation, et au temps de la réaction.If it is an organic monomer, its copolymerization with surface of the polymer film is initiated by free radicals created during pre-irradiation, and the polymer chains formed are linked by covalent to the film. The reaction is instantaneous, but, depending on the nature of the film, it can last for a few seconds or even a few minutes to arrive at a maximum grafting rate. This grafting rate is directly related to the irradiation dose, the concentration of monomers in the impregnation bath, and at the time of the reaction.
Le procédé selon l'invention comprend ainsi entre autres l'optimisation des quatre paramètres cités ci-dessus, à savoir : nature et dose d'irradiation, durée du greffage, concentration des monomères et nature du solvant dans le bain de greffage, afin d'obtenir une couche de polymère, copolymère ou de macromolécules spécifiques greffés de façon covalente et d'épaisseur souhaitée. De fait, comme le montre l'exemple 2 ci-après, l'épaisseur de la couche de polymère, de copolymère organique, ou de macromolécules spécifiques déposée est déterminée par analyse « X-ray photon spectroscopy » (XPS) et dépend directement de la durée de l'étape de greffage par imprégnation dans le bain.The method according to the invention thus comprises inter alia optimization of the four parameters mentioned above, namely: nature and irradiation dose, grafting time, concentration of monomers and nature of the solvent in the grafting bath, in order to obtain a layer of polymer, copolymer or specific macromolecules grafted so covalent and desired thickness. In fact, as shown in Example 2 below, the thickness of the layer of polymer, of organic copolymer, or specific macromolecules deposited is determined by analysis "X-ray photon spectroscopy" (XPS) and directly depends on the duration of the grafting step by impregnation in the bath.
Dans le cas où l'étape de pré-irradiation est réalisée sous air, les groupements réactifs créés sont susceptibles d'être oxydés instantanément en présence de l'air. Dans ce cas, l'étape de greffage est réalisée extemporanément par l'immersion dans un bain contenant un composé ad hoc qui permet de régénérer les radicaux réactifs.In the case where the pre-irradiation step is carried out in air, the reactive groups created are capable of being oxidized instantly in the presence of air. In this case, the grafting step is carried out extemporaneously by immersion in a bath containing an ad hoc compound which makes it possible to regenerate the reactive radicals.
Dans le procédé de l'invention, l'étape de greffage peut être le cas échéant suivie d'une étape de lavage qui consiste à éliminer les résidus du monomère, du polymère ou des macromolécules biologiques qui n'ont pas été consommés et/ou polymérisés à la surface du film polymère. Ces rinçages se réalisent généralement dans un mélange d'isopropanol dans l'eau (70/30 % v/v) jusqu'à ce qu'il n'y ait plus aucune trace de réactifs et/ou de produits dans les phases de lavage. Dans l'application à la culture de cellules, il est essentiel que le lavage soit le plus efficace possible du fait de la cytotoxicité des monomères ou polymères d'acrylamide et dérivés.In the process of the invention, the grafting step can be the case followed by a washing step which consists in removing the residues from the biological monomer, polymer or macromolecules that have not been consumed and / or polymerized on the surface of the polymer film. These rinses are generally carried out in a mixture of isopropanol in water (70/30% v / v) until there is no longer any trace of reagents and / or products in the washing phases. In the application to culture of cells, it is essential that washing is as efficient as possible made of the cytotoxicity of acrylamide monomers or polymers and derivatives.
Dans le procédé de l'invention, différentes natures de polymères, copolymères ou macromolécules peuvent ainsi constituer une couche comprise entre 1 et 10 nanomètres sur laquelle les cellules adhérentes se fixent et prolifèrent. Lorsque la cryosensibilité totale ou partielle est recherchée, le polymère ou le copolymère d'intérêt est choisi parmi les dérivés de poly-N-alkyl (meth)acrylamides, leurs copolymères respectifs, le poly-N-acryloyl-piperidine ou le poly-N-acryloyl-pyrrolidine. Lorsque la biocompatibilité est recherchée, le traitement de surface implique par exemple le greffage covalent de polymère hydrophile de type polyoxyde d'éthylène PEO aminé à la surface d'un film polymère pré-exposé à un plasma d'allylamine pour générer des fonctions amines en surface, et ce par l'intermédiaire d'un agent de couplage chimique adéquat, comme par exemple le chlorure de cyanure. Ce type de traitement est décrit dans (J. Biomed. Mater. Res. 1991, 25, 1547).In the process of the invention, different natures of polymers, copolymers or macromolecules can thus constitute a layer of between 1 and 10 nanometers on which the adherent cells attach and proliferate. When total or partial cryosensitivity is sought, the polymer or copolymer of interest is chosen from poly-N-alkyl (meth) acrylamide derivatives, their respective copolymers, poly-N-acryloyl-piperidine or poly-N -acryloyl-pyrrolidine. When biocompatibility is sought, surface treatment involves, for example, covalent grafting of hydrophilic polymer of the polyethylene ethylene oxide PEO type on the surface of a polymer film pre-exposed to an allylamine plasma to generate amine functions. surface, and this by means of a suitable chemical coupling agent, such as for example cyanide chloride. This type of treatment is described in (J. Biomed. Mater. Res. 1991, 25 , 1547).
Quand la propriété recherchée est une adhésion sélective de cellules animales, les méthodes classiques de greffage de macromolécules sur les supports telles que décrites notamment dans les techniques de chromatographie par affinité utilisant des anticorps, des aptamères ou des molécules obtenues par chimie combinatoire, peuvent être utilisées. L'homme du métier pourra se reporter, pour un descriptif détaillé de ces techniques, à (J. Cell. Biol. 1991, 114, 1089 § 1990, 110, 777, J. Biol. Chem. 1992, 267, 14019 § 10133, Artif. Organs 1992, 16, 526, Macromolécules, 1993, 26, 1483). Les macromolécules biologiques (oligopeptides, oligonucléotides etc.), susceptibles d'être greffées avantageusement sur les supports préparés par un procédé selon l'invention, sont des ligands spécifiques de récepteurs cellulaires permettant de réaliser la croissance d'un certain type de cellules dans un milieu de culture au détriment d'autres types cellulaires qui pourraient y être mélangés. De manière encore plus particulière, cela pourrait permettre de multiplier les cellules qui expriment, soit de façon naturelle, soit résultant d'une recombinaison génétique in vitro de ces cellules exprimant une macromolécule spécifique au niveau de leur membrane.When the property sought is a selective adhesion of animal cells, the conventional methods of grafting macromolecules onto the supports as described in particular in the techniques of affinity chromatography using antibodies, aptamers or molecules obtained by combinatorial chemistry, can be used . Those skilled in the art can refer, for a detailed description of these techniques, to (J. Cell. Biol. 1991, 114 , 1089 § 1990, 110 , 777, J. Biol. Chem. 1992, 267 , 14019 § 10133 , Art. Organs 1992, 16 , 526, Macromolecules, 1993, 26 , 1483). The biological macromolecules (oligopeptides, oligonucleotides etc.), which can advantageously be grafted onto the supports prepared by a method according to the invention, are ligands specific for cellular receptors making it possible to achieve the growth of a certain type of cells in a culture medium at the expense of other cell types which could be mixed with it. Even more particularly, this could make it possible to multiply the cells which express, either naturally, or resulting from an in vitro genetic recombination of these cells expressing a specific macromolecule at the level of their membrane.
Dans le procédé de l'invention, le film polymère substrat sur lequel ont été greffés un polymère, un copolymère ou une macromolécule d'intérêt, est ensuite découpé par un procédé choisi en fonction de la géométrie et de la taille des microsupports 2D voulues.In the process of the invention, the substrate polymer film on which have been grafted a polymer, a copolymer or a macromolecule of interest, is then cut by a process chosen according to the geometry and size of the desired 2D microcarriers.
Une mise en oeuvre préférée dans la présente invention est le poinçonnage, la taille des poinçons étant celle des microsupports 2D produits.A preferred implementation in the present invention is the punching, the size of the punches being that of the 2D micro-supports products.
Suivant une forme de réalisation préférée de l'invention, les microsupports ont une épaisseur de préférence inférieure ou égale à 25 µ ainsi qu'une forme de disque. La dernière étape du procédé de production de tels 2D-MS greffés comprend donc un découpage du film greffé polymère (substrat) mince ou ultra-mince en particules micrométriques caractérisées par une géométrie bidimensionnelle et comportant deux faces d'ancrage sur chacune desquelles les cellules s'accrochent et prolifèrent sans pénétration possible des cellules entre les deux faces.According to a preferred embodiment of the invention, the microcarriers have a thickness preferably less than or equal to 25 µ as well as a disc shape. The last step in the production process such grafted 2D-MS therefore includes a cutting of the grafted film thin or ultra-thin polymer (substrate) in micrometric particles characterized by two-dimensional geometry and comprising two anchor faces on each of which the cells hang and proliferate without possible penetration of cells between the two faces.
Dans notre procédé, nous avons sélectionné une technique de découpe par poinçonnage qui permet d'accéder à une excellente qualité de microdisques produits, en terme d'homogénéité de taille, de forme et d'épaisseur des microdisques fournis, et en terme d'absence de débris.In our process, we have selected a technique of punching cutting which provides excellent quality of microdisks produced, in terms of homogeneity of size, shape and thickness of the microdisks supplied, and in terms of absence of debris.
L'homogénéité de taille (homodispersité) est essentielle à la synchronie des différentes étapes de la croissance des cellules. En effet, la présence de microsupports de diverses tailles impliquerait que ceux de petite taille atteindraient la confluence avant ceux de grande taille. Dans ce cas, les CAD qui ont atteint la confluence plus tôt, peuvent en partie se décrocher, mourir et relarguer de l'ammoniac, de l'acide lactique et d'autres toxines qui sont délétères pour la croissance des CAD proliférant sur les microsupports de plus grande taille.Homogeneity of size (homodispersity) is essential to the synchrony of the different stages of cell growth. Indeed, the presence of microcarriers of various sizes would imply that of small ones would reach confluence before those of large size. In this case, the CAD which reached the confluence earlier, can partly drop, die and release ammonia, lactic acid and others toxins that are deleterious to the growth of CAD proliferating on larger microcarriers.
Cette étape est réalisée par poinçonnage du film polymère uniquement préactivé ou préactivé puis greffé par des poinçons circulaires de diamètre choisi (par exemple 150 µ) en carbure céramique. Le film polymère est poinçonné à une fréquence de découpe (battements par minute) optimisée en fonction de la vitesse d'avancement du film polymère greffé.This step is carried out by punching the polymer film only pre-activated or pre-activated then grafted with circular punches of selected diameter (for example 150 μ) in ceramic carbide. The film polymer is punched at a cutting frequency (beats by minute) optimized as a function of the speed of advancement of the polymer film graft.
D'autres techniques de découpe peuvent être envisagées. D'une part, les systèmes d'embossing utilisant un couteau rotatif constitué de gravures enfichées sur un cylindre d'impression de diamètre donné, un second cylindre de même diamètre servant de presse ou "d'empreinte". Il y a un nombre de lignes de poinçons donnés sur les 360° du cylindre (définis en fonction de l'espacement entre poinçons et du diamètre du cylindre) et un nombre de poinçons par ligne donné (défini en fonction de la longueur du cylindre). La vitesse de découpe d'une bobine de film passant entre les deux cylindres et donc la productivité doit être différente de notre procédé. C'est une technique fort utilisée par les sociétés qui commercialisent des étiquettes de toutes tailles et formes. Dans ce cas, la pression qu'il faudrait appliquer pour la découpe risque de limiter le procédé.Other cutting techniques can be envisaged. Of a hand, the embossing systems using a rotary knife consisting of engravings inserted on a printing cylinder of given diameter, a second cylinder of the same diameter serving as a press or "imprint". There is has a number of punch lines given on the 360 ° of the cylinder (defined depending on the spacing between punches and the cylinder diameter) and a number of punches per line given (defined according to the length of the cylinder). The cutting speed of a reel of film passing between the two cylinders and therefore the productivity must be different from our process. It is a technique widely used by companies that market labels of all sizes and shapes. In this case, the pressure it would take applying for cutting may limit the process.
L'invention porte également sur les microsupports à deux dimensions (2D) doués de fonctionnalités particulières pour la culture de cellules ancrage dépendantes (CAD), tels qu'obtenus par un procédé décrit ci-dessus, caractérisés en ce que l'épaisseur du film polymère est comprise entre 10 et 35 µ, et celle du polymère, du copolymère ou d'une macromolécule d'intérêt greffés de façon covalente ont une épaisseur comprise entre 1 et 10 nm. The invention also relates to microcarriers with two dimensions (2D) endowed with particular functionalities for the culture of dependent anchor cells (CAD), as obtained by a described process above, characterized in that the thickness of the polymer film is included between 10 and 35 µ, and that of the polymer, the copolymer or a macromolecule of interest covalently grafted have a thickness between 1 and 10 nm.
La succession des étapes de la fabrication de 2D-MS greffés est donnée à la figure 1.The succession of stages in the fabrication of grafted 2D-MS is given in figure 1.
Lorsque les 2D-MS sont cryosensibles, une épaisseur minimale de 5 nanomètres pour la couche greffée est nécessaire si l'on souhaite que les cellules à confluence soient détachées de manière quantitative de leur support. Des épaisseurs plus faibles sont recherchées lorsque l'on souhaite détacher partiellement et non quantitativement par contraste thermique des CAD à confluence.When 2D-MS are cryosensitive, a minimum thickness of 5 nanometers for the grafted layer is necessary if one wishes that confluent cells are quantitatively detached from their support. Thinner thicknesses are sought when wish to detach partially and not quantitatively by contrast thermal of CAD at confluence.
L'invention porte également sur un dispositif de préparation en continu de support 2D-MS doués de propriétés particulières, préparé selon un procédé tel que décrit ci-dessus et mettant en oeuvre une fixation covalente d'un polymère, copolymère ou macromolécules biologiques sur un substrat constitué d'un film polymère, ledit dispositif comprenant :
- un système de déroulement/enroulement du film polymère, l'entraínement du film étant effectué à une vitesse choisie au niveau de chacune des étapes : activation, greffage, poinçonnage ;
- un irradiateur permettant d'activer la surface du film ;
- un bain de greffage destiné à contenir la solution de monomères, polymères ou macromolécules à greffer, dans lequel le film polymère préactivé passe, de façon continue, à une vitesse déterminée, entraíné par le système d'enroulement/déroulement ;
- un outil de découpe permettant de réaliser le poinçonnage du film lors de son déroulement.
- a system for unwinding / winding the polymer film, the film being driven at a speed chosen at each of the stages: activation, grafting, punching;
- an irradiator for activating the surface of the film;
- a grafting bath intended to contain the solution of monomers, polymers or macromolecules to be grafted, in which the pre-activated polymer film passes continuously, at a determined speed, driven by the winding / unwinding system;
- a cutting tool allowing the punching of the film during its unwinding.
La figure 2 représente le schéma du dispositif de l'étape de découpe en continu du film (sous forme de bobines). Le système enrouleur-dérouleur sert d'approvisionnement et d'évacuation à un outil de découpe. De plus, cet outil fonctionnera 24 heures sur 24. M1 est le moteur régissant l'avance de bande, M2 est le moteur d'enroulement de la bobine et M3 est le moteur de déroulement de la bobine. C1 représente le capteur de mise en marche de M3, C2 est le capteur d'arrêt de M3, C3 représente le capteur de mise en marche de M2 et C4 est le capteur d'arrêt de M2. Enfin, R1 indique le système de freinage de bande.FIG. 2 represents the diagram of the device of the step of continuous film cutting (in the form of reels). The system rewinder-unwinder serves as a supply and evacuation tool for cutting. In addition, this tool will operate 24 hours a day. M1 is the engine governing the tape feed, M2 is the reel winding motor and M3 is the reel unwinding motor. C1 represents the sensor to start M3, C2 is the stop sensor for M3, C3 represents the M2 and C4 start sensor is the M2 stop sensor. Finally, R1 indicates the band braking system.
De façon préférée, le système de déroulement/enroulement du film permet l'avancement dudit film à une vitesse comprise entre 0,1 et 8 m par minute. La vitesse de déroulement/enroulement est beaucoup plus lente au stade de la découpe que lors des étapes d'activation et de greffage.Preferably, the film unwinding / rewinding system allows the advancement of said film at a speed of between 0.1 and 8 m by minute. The unwinding / winding speed is much slower at cutting stage only during the activation and grafting stages.
Le coeur du dispositif est constitué d'un bloc outil sur lequel sont enfichées, dans le sens de la longueur du film, des rangées de poinçons circulaires et le bloc empreinte correspondant. A titre d'exemple, pour un film de 5 cm de largeur, le bloc-outil comprendra 9 rangées de 50 poinçons chacune. Cette configuration du bloc-outil en ligne dans le sens de la longueur plutôt que de la largeur augmente la sécurité de maintenance. Sur une même ligne de poinçons, l'espacement entre ceux-ci est de 0,25 mm ; le pas régulier entre 2 lignes est de 0,20 mm. Il est clair que la disposition citée ci-dessus, le diamètre des poinçons et leur espacement est une proposition optimale mais peut bien entendu être adaptée en fonction des besoins et n'a aucun caractère contraignant.The heart of the device consists of a tool block on which are inserted, along the length of the film, rows of punches circulars and the corresponding imprint block. For example, for a 5 cm wide film, the tool block will include 9 rows of 50 punches each. This configuration of the online tool block in the direction of length rather than width increases maintenance security. On the same line of punches, the spacing between them is 0.25 mm; the regular pitch between 2 lines is 0.20 mm. It is clear that the arrangement cited above, the diameter of the punches and their spacing is an optimal proposition but can of course be adapted in according to needs and has no binding character.
Au fur et à mesure du poinçonnage, les microsupports greffés 2D-MS sont ensuite recueillis en continu. A titre d'exemple, à partir d'une bobine de polystyrène greffée d'une largeur de 5 cm et d'une longueur de 3 km, le dispositif selon l'invention comprenant des poinçons de diamètre 150 µ permet d'obtenir environ 1 kg de confettis (microsupports 2D-MS) de 150 µ de diamètre. Sachant que la densité surfacique de la matière est de 26,25 g/m2, le nombre minimum de particules obtenues égale 2,38 109 microsupports par bobine ou par kilo de microsupports produits. Dans la configuration citée ci-dessus à titre d'exemple, le rendement de découpe est de 28 %.As punching takes place, the 2D-MS grafted microcarriers are then continuously collected. By way of example, from a spool of polystyrene grafted with a width of 5 cm and a length of 3 km, the device according to the invention comprising punches with a diameter of 150 μ makes it possible to obtain approximately 1 kg of confetti (2D-MS microsupports) 150 µ in diameter. Knowing that the surface density of the material is 26.25 g / m 2 , the minimum number of particles obtained equals 2.38 10 9 microcarriers per coil or per kilo of microcarriers produced. In the configuration cited above by way of example, the cutting yield is 28%.
La figure 3 représente les microsupports 2D-MS ainsi obtenus.FIG. 3 represents the 2D-MS microcarriers thus obtained.
Les microdisques peuvent être récupérés dans des réceptacles positionnés directement sous la matrice de poinçonnage. Microdisks can be collected in receptacles positioned directly under the punching die.
Les exemples ci-après permettent, sans les limiter, de montrer les avantages du procédé et des supports pour culture cellulaire tels qu'obtenus par ce procédé.The examples below allow, without limiting them, to show the advantages of the cell culture method and supports such that obtained by this process.
Dans un premier temps, nous avons recherché à optimiser et à définir les paramètres de radio-greffage en discontinu (dose totale d'activation, nature du solvant, concentration du monomère, température du bain de greffage, temps de greffage) sur des feuilles (film de 5 x 10 cm2 en polystyrène de 25 µ d'épaisseur) avec un accélérateur d'électrons statiques de recherche de type Van der Graaf, caractérisé par une faible puissance et un faible débit de doses comparativement aux appareils industriels. Ces feuilles sont placées préalablement dans des flacons de culture de 75 cm2 pré-dégazés et irradiés à sec sous atmosphère inerte (azote) de la façon suivante :First, we sought to optimize and define the parameters of discontinuous radio-grafting (total activation dose, nature of the solvent, concentration of the monomer, temperature of the grafting bath, grafting time) on sheets ( 5 x 10 cm 2 polystyrene film 25 µ thick) with a Van der Graaf type static research electron accelerator, characterized by low power and low dose rate compared to industrial devices. These leaves are placed beforehand in 75 cm 2 culture flasks, pre-degassed and irradiated to dryness under an inert atmosphere (nitrogen) as follows:
Les flacons de culture en polystyrène contenant le film de polystyrène sont lavés deux fois dans un mélange Isopropanol / H2O 70/30 % (v/v) et séchés sous flux d'azote pendant 15 minutes.The polystyrene culture flasks containing the polystyrene film are washed twice in an Isopropanol / H 2 O 70/30% (v / v) mixture and dried under a stream of nitrogen for 15 minutes.
Les flacons préalablement dégazés sont placés sous un irradiateur EB statique haute énergie (10 Mev). Un accélérateur d'électrons (10 MeV) de type Van der Graaf dont l'intensité est fixée à 1 mA et le débit de dose fixé à 10 Kgray/min (1 Mrad/min), est utilisé. Les flacons sont dès lors irradiés sous le faisceau pendant un temps fixé (en minutes) afin d'absorber une dose totale donnée (en Kgray ou Joule/g). La dose déposée est calibrée préalablement avec un dosimètre.The previously degassed bottles are placed under an irradiator High energy static EB (10 Mev). An electron accelerator (10 MeV) Van der Graaf type, the intensity of which is fixed at 1 mA and the dose rate set at 10 Kgray / min (1 Mrad / min), is used. The bottles are therefore irradiated under the beam for a fixed time (in minutes) so to absorb a given total dose (in Kgray or Joule / g). The dose deposited is calibrated beforehand with a dosimeter.
A la sortie de l'irradiateur, les flacons sont immédiatement mis en contact avec la solution (H2O), stock de monomère (concentration en poids de 10 à 40 %) sous atmosphère d'azote. La solution stock de monomère, fraíchement préparée, est transférée dans le flacon en polystyrène pré-irradié par un système de poussée d'azote. La solution de greffage, une fois transférée dans le flacon pré-irradié, est équilibrée à une température donnée (de 25 °C à 60 °C). Le temps de greffage (de 0.5 à 24 heures) est varié à une température donnée afin de vérifier l'influence de divers paramètres sur l'épaisseur de la couche de Poly-N-isopropylacrylamide à la surface du film comme du flacon de culture en polystyrène. Les solutions de greffage sont éliminées des flacons après un temps donné puis les flacons ainsi que les films greffés sont lavés trois fois puis séchés.At the outlet of the irradiator, the bottles are immediately brought into contact with the solution (H 2 O), stock of monomer (concentration by weight of 10 to 40%) under a nitrogen atmosphere. The freshly prepared stock solution of monomer is transferred to the polystyrene bottle pre-irradiated by a nitrogen push system. The grafting solution, once transferred to the pre-irradiated bottle, is balanced at a given temperature (from 25 ° C to 60 ° C). The grafting time (from 0.5 to 24 hours) is varied at a given temperature in order to check the influence of various parameters on the thickness of the layer of Poly-N-isopropylacrylamide on the surface of the film like the culture flask in polystyrene. The grafting solutions are removed from the vials after a given time and then the vials and the grafted films are washed three times and then dried.
Nous pouvons conclure de ces différents essais que les rendements de greffage les plus importants, menant à une épaisseur de dépôt de plus de 5 nanomètres, ont été obtenus lors de l'étape de pré-irradiation, avec une dose totale d'irradiation de 250 Kgray (temps d'irradiation 25 min), en laissant les films préactivés en contact avec le monomère durant au moins 2 heures. Lorsque le temps de greffage est plus court, les rendements de greffage, et par conséquent des épaisseurs de dépôt plus faibles (inférieures à 5 nanomètres) ont été obtenues à la surface du film polystyrène. De telles surfaces ne confèrent que partiellement les propriétés et fonctionnalités recherchées.We can conclude from these different tests that the highest grafting yields, leading to a thickness of deposit of more than 5 nanometers, were obtained during the pre-irradiation step, with a total radiation dose of 250 Kgray (time 25 min), leaving the pre-activated films in contact with the monomer lasting at least 2 hours. When the grafting time is shorter, grafting yields, and therefore thicknesses weaker deposits (less than 5 nanometers) were obtained at the surface of the polystyrene film. Such surfaces only confer partially the properties and functionalities sought.
Claims (17)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99402710A EP1095967A1 (en) | 1999-10-29 | 1999-10-29 | Novel cell culture supports carrying special properties and their production |
AT00976028T ATE248882T1 (en) | 1999-10-29 | 2000-10-27 | CELL CULTURE CARRIER WITH SPECIAL PROPERTIES AND THEIR PRODUCTION |
EP00976028A EP1244732B1 (en) | 1999-10-29 | 2000-10-27 | Carrier beads for cell culture bearing particular properties and production thereof |
DE60005058T DE60005058D1 (en) | 1999-10-29 | 2000-10-27 | CELL CULTURE SUPPORT WITH SPECIAL PROPERTIES AND THEIR PRODUCTION |
AU13941/01A AU1394101A (en) | 1999-10-29 | 2000-10-27 | Novel carrier beads for cell culture bearing particular properties and production thereof |
PCT/EP2000/011245 WO2001030894A1 (en) | 1999-10-29 | 2000-10-27 | Novel carrier beads for cell culture bearing particular properties and production thereof |
JP2001533886A JP2003513132A (en) | 1999-10-29 | 2000-10-27 | Novel cell culture carrier with specific properties and its production |
US10/133,325 US20030003554A1 (en) | 1999-10-29 | 2002-04-29 | Novel cell culture supports with particular properties, and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99402710A EP1095967A1 (en) | 1999-10-29 | 1999-10-29 | Novel cell culture supports carrying special properties and their production |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1095967A1 true EP1095967A1 (en) | 2001-05-02 |
Family
ID=8242158
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99402710A Withdrawn EP1095967A1 (en) | 1999-10-29 | 1999-10-29 | Novel cell culture supports carrying special properties and their production |
EP00976028A Expired - Lifetime EP1244732B1 (en) | 1999-10-29 | 2000-10-27 | Carrier beads for cell culture bearing particular properties and production thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00976028A Expired - Lifetime EP1244732B1 (en) | 1999-10-29 | 2000-10-27 | Carrier beads for cell culture bearing particular properties and production thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US20030003554A1 (en) |
EP (2) | EP1095967A1 (en) |
JP (1) | JP2003513132A (en) |
AT (1) | ATE248882T1 (en) |
AU (1) | AU1394101A (en) |
DE (1) | DE60005058D1 (en) |
WO (1) | WO2001030894A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1280888A1 (en) * | 2000-04-18 | 2003-02-05 | 4C Biotech | Cell culture method, cell cluster obtained by said methods and use thereof |
WO2009008547A1 (en) * | 2007-07-11 | 2009-01-15 | Nitto Denko Corporation | Cell culture substrate |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011016036A (en) * | 2007-11-26 | 2011-01-27 | Asahi Kasei Chemicals Corp | Protein-adsorbent and method for producing the same |
JP5672892B2 (en) * | 2009-09-18 | 2015-02-18 | 学校法人東京理科大学 | Copolymer for immobilizing ligand and method for immobilizing ligand with the copolymer |
US9926523B2 (en) | 2010-12-16 | 2018-03-27 | General Electric Company | Cell carriers and methods for culturing cells |
US9534206B2 (en) | 2010-12-16 | 2017-01-03 | General Electric Company | Cell carrier, associated methods for making cell carrier and culturing cells using the same |
US9453197B2 (en) | 2010-12-16 | 2016-09-27 | General Electric Company | Methods of making cell carrier |
US9453196B2 (en) | 2010-12-16 | 2016-09-27 | General Electric Company | Cell carrier, methods of making and use |
US9518249B2 (en) | 2010-12-16 | 2016-12-13 | General Electric Company | Cell carrier, associated methods for making cell carrier and culturing cells using the same |
CA3129563C (en) | 2013-01-17 | 2024-03-26 | Greenmantra Recycling Technologies Ltd. | Catalytic depolymerisation of polymeric materials |
US10472487B2 (en) | 2015-12-30 | 2019-11-12 | Greenmantra Recycling Technologies Ltd. | Reactor for continuously treating polymeric material |
US11306216B2 (en) | 2016-02-09 | 2022-04-19 | Sun Chemical Corporation | High molecular weight polystyrene in inks and coatings |
US10689500B2 (en) | 2016-02-09 | 2020-06-23 | Sun Chemical Corporation | High molecular weight polystyrene in inks and coatings |
JP6880051B2 (en) | 2016-02-13 | 2021-06-02 | グリーンマントラ リサイクリング テクノロジーズ リミテッド | Polymer modified asphalt with wax additives |
AU2017239181B2 (en) | 2016-03-24 | 2020-12-10 | Greenmantra Recycling Technologies Ltd. | Wax as a melt flow modifier and processing aid for polymers |
JP6362224B2 (en) | 2016-05-09 | 2018-07-25 | 住友ゴム工業株式会社 | Surface modification method |
MX2019003575A (en) | 2016-09-29 | 2019-06-03 | Greenmantra Recycling Tech Ltd | Reactor for treating polystyrene material. |
JP6872921B2 (en) * | 2017-02-09 | 2021-05-19 | 学校法人 東洋大学 | Nitrogen-containing wastewater treatment equipment and treatment method |
US10723858B2 (en) | 2018-09-18 | 2020-07-28 | Greenmantra Recycling Technologies Ltd. | Method for purification of depolymerized polymers using supercritical fluid extraction |
CN112831087B (en) * | 2020-12-28 | 2022-11-11 | 珠海健科医用材料有限公司 | Macroporous polystyrene resin surface modification method for blood purification and blood purifier |
CN116145424B (en) * | 2023-02-23 | 2024-01-09 | 同腾新创(苏州)科技有限公司 | Long-acting surface modified carrier for promoting cell adhesion |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60229933A (en) * | 1984-04-28 | 1985-11-15 | Yoshito Ikada | Method for modifying surface of high polymer material |
JPH04237492A (en) * | 1991-01-21 | 1992-08-25 | Terumo Corp | Formed product for culturing cell |
JPH04252174A (en) * | 1991-01-28 | 1992-09-08 | Terumo Corp | Formed article for tissue culture and production thereof |
JPH04295818A (en) * | 1991-03-26 | 1992-10-20 | Seiko Epson Corp | Production of contact lens |
US5449383A (en) * | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
US5707859A (en) * | 1991-02-18 | 1998-01-13 | Nunc, A/S | Two-dimensional microcarriers for anchorage dependent cells |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1326416C (en) * | 1986-08-25 | 1994-01-25 | Ralph Xavier Ewall | Polymeric wound dressings |
US5284766A (en) * | 1989-02-10 | 1994-02-08 | Kao Corporation | Bed material for cell culture |
US5273911A (en) * | 1991-03-07 | 1993-12-28 | Mitsubishi Denki Kabushiki Kaisha | Method of producing a thin-film solar cell |
-
1999
- 1999-10-29 EP EP99402710A patent/EP1095967A1/en not_active Withdrawn
-
2000
- 2000-10-27 EP EP00976028A patent/EP1244732B1/en not_active Expired - Lifetime
- 2000-10-27 JP JP2001533886A patent/JP2003513132A/en active Pending
- 2000-10-27 AU AU13941/01A patent/AU1394101A/en not_active Abandoned
- 2000-10-27 AT AT00976028T patent/ATE248882T1/en not_active IP Right Cessation
- 2000-10-27 DE DE60005058T patent/DE60005058D1/en not_active Expired - Lifetime
- 2000-10-27 WO PCT/EP2000/011245 patent/WO2001030894A1/en active Search and Examination
-
2002
- 2002-04-29 US US10/133,325 patent/US20030003554A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60229933A (en) * | 1984-04-28 | 1985-11-15 | Yoshito Ikada | Method for modifying surface of high polymer material |
JPH04237492A (en) * | 1991-01-21 | 1992-08-25 | Terumo Corp | Formed product for culturing cell |
JPH04252174A (en) * | 1991-01-28 | 1992-09-08 | Terumo Corp | Formed article for tissue culture and production thereof |
US5707859A (en) * | 1991-02-18 | 1998-01-13 | Nunc, A/S | Two-dimensional microcarriers for anchorage dependent cells |
JPH04295818A (en) * | 1991-03-26 | 1992-10-20 | Seiko Epson Corp | Production of contact lens |
US5449383A (en) * | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
Non-Patent Citations (4)
Title |
---|
DATABASE WPI Section Ch Week 198601, Derwent World Patents Index; Class A35, AN 1986-003676, XP002136378 * |
DATABASE WPI Section Ch Week 199240, Derwent World Patents Index; Class A96, AN 1992-328958, XP002136379 * |
DATABASE WPI Section Ch Week 199248, Derwent World Patents Index; Class A14, AN 1992-395450, XP002136380 * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 030 (C - 1018) 20 January 1993 (1993-01-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1280888A1 (en) * | 2000-04-18 | 2003-02-05 | 4C Biotech | Cell culture method, cell cluster obtained by said methods and use thereof |
WO2009008547A1 (en) * | 2007-07-11 | 2009-01-15 | Nitto Denko Corporation | Cell culture substrate |
Also Published As
Publication number | Publication date |
---|---|
ATE248882T1 (en) | 2003-09-15 |
EP1244732B1 (en) | 2003-09-03 |
WO2001030894A1 (en) | 2001-05-03 |
EP1244732A1 (en) | 2002-10-02 |
US20030003554A1 (en) | 2003-01-02 |
AU1394101A (en) | 2001-05-08 |
DE60005058D1 (en) | 2003-10-09 |
JP2003513132A (en) | 2003-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1244732B1 (en) | Carrier beads for cell culture bearing particular properties and production thereof | |
JP5324750B2 (en) | Cell culture support and production method thereof | |
JP5080848B2 (en) | Cell culture support and production method thereof | |
EP0579596A1 (en) | Cell culture medium and method for preparing such medium. | |
EP2781594A1 (en) | Cell culture substrate, and method for manufacturing same | |
Aziz et al. | Plasma polymerization for tissue engineering purposes | |
JPH0923876A (en) | Production of supporting material for cell culture | |
JP5752164B2 (en) | Cell culture support and production method thereof | |
Bech et al. | Double plasma treatment-induced graft polymerization of carbohydrated monomers on poly (ethylene terephthalate) fibers | |
WO2013079231A1 (en) | Method for preparing a hydrogel matrix by photopolymerization | |
Young et al. | Immobilization of l-lysine on dense and porous poly (vinylidene fluoride) surfaces for neuron culture | |
EP0029411B1 (en) | Adhesive composition for depositing an adhesive coating able to fix biofunctional molecules, coating obtained and process for its preparation, substrate covered with the coating and its use as a biocatalyst | |
Petrov et al. | Cryogels via uv irradiation | |
JP2011072297A (en) | Cell culture substrate | |
Liu et al. | Rapid aqueous photo‐polymerization route to polymer and polymer‐composite hydrogel 3D inverted colloidal crystal scaffolds | |
JPS63198980A (en) | Base material for cultivating cell | |
JPS63196273A (en) | Substrate for cell culture | |
JPH04237492A (en) | Formed product for culturing cell | |
KR100836206B1 (en) | Peg hydrogel for fabrication of micropattern and process thereof | |
EP0046613B1 (en) | Process for the immobilisation of globular microbial cells by means of adhesion to a solid support | |
JPS63196272A (en) | Substrate material for cell culture | |
JP7183612B2 (en) | Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells | |
JPH04252174A (en) | Formed article for tissue culture and production thereof | |
JP6123247B2 (en) | Method for producing cell culture substrate having temperature responsiveness | |
EP1280888A1 (en) | Cell culture method, cell cluster obtained by said methods and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20011103 |