EP1087114B1 - Method for controlling the regeneration of a particulate filter - Google Patents

Method for controlling the regeneration of a particulate filter Download PDF

Info

Publication number
EP1087114B1
EP1087114B1 EP00119467A EP00119467A EP1087114B1 EP 1087114 B1 EP1087114 B1 EP 1087114B1 EP 00119467 A EP00119467 A EP 00119467A EP 00119467 A EP00119467 A EP 00119467A EP 1087114 B1 EP1087114 B1 EP 1087114B1
Authority
EP
European Patent Office
Prior art keywords
regeneration
particle filter
temperature
loading
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00119467A
Other languages
German (de)
French (fr)
Other versions
EP1087114A1 (en
Inventor
Thomas Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1087114A1 publication Critical patent/EP1087114A1/en
Application granted granted Critical
Publication of EP1087114B1 publication Critical patent/EP1087114B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • F01N3/0293Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust injecting substances in exhaust stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for controlling regeneration of a Particulate filter with the features mentioned in the preamble of claim 1.
  • soot particles are formed under certain operating conditions, which are discharged with the exhaust gas. Unhindered emission of the soot particles is not only undesirable due to increased legal regulations, but can also lead to damage to exhaust gas cleaning devices integrated in an exhaust gas duct of the diesel engine. For example, the NO x storage catalytic converters can become clogged with increasing operating time as a result of an increasing deposition of soot particles. It is therefore known to arrange a particle filter in the exhaust gas passage, through which the exhaust gas flows and thereby retains soot particles.
  • Regeneration takes place through oxidation with the oxygen present in the exhaust gas, but at least one Regeneration temperature in the area of the particle filter must be reached. Is that Temperature below the regeneration temperature, it is known, for example through motor measures, a throttle valve regulation or with the help of a electrical heating resistor to force a temperature increase. Is conceivable but also to reduce the regeneration temperature by adding suitable additives, until the regeneration is complete.
  • a load value can be determined using suitable models of the particle filter is calculated.
  • models include parameters like one Speed of the diesel engine, the exhaust gas back pressure or the Exhaust gas temperature. If the loading value exceeds a predetermined limit value, then the regeneration is initiated. It is disadvantageous, however, that when determining the Load value according to the conventional methods a relatively high error in purchase must be taken and therefore the limit is set accordingly low. This means that the regeneration is carried out more frequently than is actually technically necessary is.
  • US-5,287,698 describes an exhaust gas purification device which has a particle filter, whereby the loading and finally the regeneration start of the filter by a variety determined by parameters and the burn rate is monitored.
  • the invention is therefore based on the object to provide a method which Regeneration of the particle filter optimally adapts to the actual circumstances.
  • FIG. 1 shows an arrangement of a particle filter 10 in an exhaust duct 12 Diesel engine 14 of motor vehicles.
  • Exhaust side can Exhaust duct 12 can be assigned to several sensors, for example Temperature sensors 16, 18 or pressure sensors 20, 22. The determined in this way Sizes are input into an engine control unit 24.
  • the engine control unit 24 can, for example, an injection system 26, a throttle valve 28 in a known manner controlled in an intake manifold 30 or a throttle valve 32 in the exhaust duct 12 become.
  • FIG. 2 shows a flow diagram for a method that controls the regeneration of the Particulate filter 10 allowed.
  • Input parameters a load value BW, a travel time t, a travel distance s and a Frequency np of a pressure-dependent event can be recorded. These sizes will be briefly explained below.
  • the load value BW is a measure of the flow characteristic of the exhaust gas through the particle filter 10 and increases with increasing soot loading.
  • the load value BW can be calculated from a model that includes one Pressure difference before and after the particle filter 10 flows.
  • An exhaust back pressure p before the particle filter 10 can be detected directly via the pressure sensor 20.
  • the pressure of the Exhaust gas downstream of the particle filter 10 is, for example, via the pressure sensor 22 detectable.
  • quantities must are taken into account, such as one detectable by the temperature sensor 16 Exhaust gas temperature, as well as an air mass flow or a speed of the diesel engine 14.
  • Such models are known and should therefore be in the frame this description will not be explained in more detail.
  • the travel time t and the travel distance s are both measured from the point in time at which the last regeneration of the particle filter 10 was ended.
  • the integration of appropriate measuring devices in the motor vehicle and the transmission of the recorded data to the engine control unit 24 is known.
  • the fourth input variable is a variable dependent on the exhaust gas back pressure p, namely the frequency n p for the exhaust gas back pressure p to be exceeded via a peak pressure p max since the last regeneration of the particle filter 10. Again, this variable can either be detected directly via the pressure sensor 20 or via a known one Model can be calculated.
  • a step S1 the detected parameters flow into a map, the one Status code Z delivers.
  • the weighting of the individual factors can engine-specific.
  • the condition index is Z of all included parameters dependent.
  • step S2 If the status indicator Z exceeds a status indicator limit value GW 1 , there is a need for regeneration (step S2). In the opposite case, the query is terminated (step S3), and the method can be reinitiated if necessary.
  • the procedure shown is particularly advantageous because an unnecessarily frequent regeneration can be avoided. If, for example, the travel time t or the travel distance s has been very short since the last regeneration, the load value BW must already be very large in order to lead to an overall exceeding of the status indicator Z via the status indicator limit value GW 1 .
  • a temperature T in the area of the particle filter 10 is below a necessary regeneration temperature T reg . If this is the case, at least one measure for reaching the regeneration temperature T reg is taken (step S5).
  • measures include, for example, the addition of additives, electrical heating with a heating resistor (not shown here) in the area of the particle filter 10 or regulation of the throttle valve 28.
  • the necessary regeneration temperature T reg that can be detected, for example, by the temperature sensor 18 is reached at the particle filter 10 so that the regeneration can be carried out (step S6).
  • the regeneration parameters are maintained until the load value BW is below a load limit value GW 2 , for example 5 to 20% (step S7). Otherwise the regeneration is terminated in a step S8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Thermistors And Varistors (AREA)

Abstract

From a family of characteristics or model, which cover the degree of particle deposition (BW) of the filter (10), the journey time (t) and/or the distance travelled (s) since the last regeneration, a condition factor (Z) is derived. If this factor exceeds a limiting value (GW1) this indicates that regeneration is necessary. A regeneration process is then performed until a lower limit (GW2) is reached

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer Regeneration eines Partikelfilters mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for controlling regeneration of a Particulate filter with the features mentioned in the preamble of claim 1.

Während eines Verbrennungsvorgangs eines Luft-Kraftstoff-Gemisches in DieselBrennkraftmaschinen von Kraftfahrzeugen entstehen unter bestimmten Betriebsbedingungen Rußpartikel, die mit dem Abgas ausgetragen werden. Eine ungehinderte Emission der Rußpartikel ist nicht nur aufgrund gestiegener gesetzlicher Bestimmungen unerwünscht, sondern kann auch zur Schädigung von in einem Abgaskanal der Diesel-Brennkraftmaschine integrierten Abgasreinigungseinrichtungen führen. So können sich beispielsweise mit zunehmender Betriebsdauer infolge einer zunehmenden Ablagerung von Rußpartikeln die NOX-Speicherkatalysatoren zusetzen. Es ist daher bekannt, in dem Abgaskanal einen Partikelfilter anzuordnen, der von dem Abgas durchströmt wird und dabei Rußpartikel zurückhält.During a combustion process of an air-fuel mixture in diesel internal combustion engines of motor vehicles, soot particles are formed under certain operating conditions, which are discharged with the exhaust gas. Unhindered emission of the soot particles is not only undesirable due to increased legal regulations, but can also lead to damage to exhaust gas cleaning devices integrated in an exhaust gas duct of the diesel engine. For example, the NO x storage catalytic converters can become clogged with increasing operating time as a result of an increasing deposition of soot particles. It is therefore known to arrange a particle filter in the exhaust gas passage, through which the exhaust gas flows and thereby retains soot particles.

Um ein allmähliches Zusetzen des Partikelfilters zu verhindern, muß dieser in regelmäßigen Abständen regeneriert werden. Die Regeneration erfolgt durch Oxidation mit dem im Abgas vorhandenen Sauerstoff, wobei allerdings mindestens eine Regenerationstemperatur im Bereich des Partikelfilters erreicht werden muß. Liegt die Temperatur unterhalb der Regenerationstemperatur, so ist es bekannt, beispielsweise durch motorische Maßnahmen, eine Drosselklappenregulierung oder mit Hilfe eines elektrischen Heizwiderstandes eine Temperaturerhöhung zu erzwingen. Denkbar ist aber auch, durch Zugabe von geeigneten Additiven die Regenerationstemperatur herabzusetzen, bis die Regeneration abgeschlossen ist.In order to prevent a gradual clogging of the particle filter, it must be in be regenerated at regular intervals. Regeneration takes place through oxidation with the oxygen present in the exhaust gas, but at least one Regeneration temperature in the area of the particle filter must be reached. Is that Temperature below the regeneration temperature, it is known, for example through motor measures, a throttle valve regulation or with the help of a electrical heating resistor to force a temperature increase. Is conceivable but also to reduce the regeneration temperature by adding suitable additives, until the regeneration is complete.

Es ist ferner bekannt, eine Regenerationsnotwendigkeit derart festzulegen, daß im Turnus einer vorgegebenen Fahrzeit oder Fahrstrecke die Regeneration durchgeführt wird. Nachteilig hieran ist, daß ein tatsächlicher Beladungszustand des Partikelfilters unberücksichtigt bleibt und die jeweils gesetzte Fahrzeit oder Fahrstrecke aus Gründen der Sicherheit entsprechend niedrig gewählt wird. Damit kann es zu einer unnötigen Regeneration kommen. Neben dem im allgemeinen erhöhten Kraftstoffverbrauch müssen dann auch eine erhöhte Gefahr einer thermischen Schädigung der Abgasreinigungseinrichtung sowie Einflüsse auf das Fahrverhalten in Kauf genommen werden.It is also known to determine a need for regeneration in such a way that The regeneration is carried out at intervals of a given travel time or route becomes. The disadvantage of this is that the particle filter is actually loaded remains unconsidered and the set travel time or route for reasons security is chosen accordingly low. This can make it unnecessary Regeneration are coming. In addition to the generally increased fuel consumption then also have an increased risk of thermal damage to the Exhaust gas cleaning device and influences on driving behavior are accepted become.

Zur Abhilfe sind Verfahren bekannt, in denen über geeignete Modelle ein Beladungswert des Partikelfilters berechnet wird. Derartige Modelle umfassen dabei Parameter wie eine Drehzahl der Diesel-Brennkraftmaschine, den Abgasgegendruck oder die Abgastemperatur. Überschreitet der Beladungswert einen vorgegebenen Grenzwert, so wird die Regeneration initiiert. Nachteilig ist allerdings, daß bei der Ermittlung des Beladungswertes nach den herkömmlichen Verfahren ein relativ hoher Fehler in Kauf genommen werden muß und daher der Grenzwert entsprechend niedrig angesetzt wird. Damit wird die Regeneration häufiger durchgeführt als eigentlich technisch notwendig ist. As a remedy, methods are known in which a load value can be determined using suitable models of the particle filter is calculated. Such models include parameters like one Speed of the diesel engine, the exhaust gas back pressure or the Exhaust gas temperature. If the loading value exceeds a predetermined limit value, then the regeneration is initiated. It is disadvantageous, however, that when determining the Load value according to the conventional methods a relatively high error in purchase must be taken and therefore the limit is set accordingly low. This means that the regeneration is carried out more frequently than is actually technically necessary is.

US-5,287,698 beschreibt eine Abgasreinigungsvorrichtung, die einen Partikelfilter aufweist, wobei die Beladung und schließlich der Regenerationsbeginn des Filters durch eine Vielzahl von Parametern bestimmt und die Abbrennrate überwacht wird.US-5,287,698 describes an exhaust gas purification device which has a particle filter, whereby the loading and finally the regeneration start of the filter by a variety determined by parameters and the burn rate is monitored.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur schaffen, das eine Regeneration des Partikelfilters optimaler an die tatsächlichen Begebenheiten anpaßt.The invention is therefore based on the object to provide a method which Regeneration of the particle filter optimally adapts to the actual circumstances.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. This object is achieved by a method according to claim 1. Preferred embodiments of the invention are the subject of the dependent claims.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Anordnung eines Partikelfilters in einem Abgaskanal einer Diesel-Brennkraftmaschine und
Figur 2
ein Flußdiagramm zur Steuerung einer Regeneration des Partikelfilters.
Further preferred embodiments of the invention result from the other features mentioned in the subclaims.
The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
Figure 1
an arrangement of a particle filter in an exhaust duct of a diesel engine and
Figure 2
a flowchart for controlling a regeneration of the particle filter.

Die Figur 1 zeigt eine Anordnung eines Partikelfilters 10 in einem Abgaskanal 12 einer Diesel-Brennkraftmaschine 14 von Kraftfahrzeugen. Abgasseitig können dem Abgaskanal 12 mehrere Sensoren zugeordnet werden, wie beispielsweise Temperatursensoren 16, 18 oder Drucksensoren 20, 22. Die auf diese Weise ermittelten Größen finden Eingang in einem Motorsteuergerät 24. Über das Motorsteuergerät 24 kann in bekannter Weise beispielsweise ein Einspritzsystem 26, eine Drosselklappe 28 in einem Saugrohr 30 oder auch eine Drosselklappe 32 im Abgaskanal 12 gesteuert werden.FIG. 1 shows an arrangement of a particle filter 10 in an exhaust duct 12 Diesel engine 14 of motor vehicles. Exhaust side can Exhaust duct 12 can be assigned to several sensors, for example Temperature sensors 16, 18 or pressure sensors 20, 22. The determined in this way Sizes are input into an engine control unit 24. Via the engine control unit 24 can, for example, an injection system 26, a throttle valve 28 in a known manner controlled in an intake manifold 30 or a throttle valve 32 in the exhaust duct 12 become.

Während eines Verbrennungsvorganges eines Luft-Kraftstoff-Gemisches in der Diesel-Brennkraftmaschine 14 entstehen Rußpartikel, die in dem Partikelfilter 10 beim Durchströmen des Abgases zurückgehalten werden. Um ein Verstopfen des Partikelfilters 10 zu vermeiden, muß dieser regelmäßig regeneriert werden. Die Figur 2 zeigt ein Flußdiagramm für ein Verfahren, das eine Steuerung der Regeneration des Partikelfilters 10 erlaubt. Zunächst müssen gemäß dem Ausführungsbeispiel als Eingangsparameter ein Beladungswert BW, eine Fahrzeit t, eine Fahrstrecke s und eine Häufigkeit np eines druckabhängigen Ereignisses erfaßt werden. Diese Größen werden nachfolgend kurz erläutert.During a combustion process of an air-fuel mixture in the diesel engine 14 soot particles are formed, which in the particle filter 10 Flowing through the exhaust gas are retained. To clog the To avoid particle filter 10, it must be regenerated regularly. Figure 2 shows a flow diagram for a method that controls the regeneration of the Particulate filter 10 allowed. First, according to the embodiment as Input parameters a load value BW, a travel time t, a travel distance s and a Frequency np of a pressure-dependent event can be recorded. These sizes will be briefly explained below.

Der Beladungswert BW ist ein Maß für die Durchflußcharakteristik des Abgases durch den Partikelfilter 10 und erhöht sich mit zunehmender Rußbeladung. Der Beladungswert BW kann dabei aus einem Modell berechnet werden, in das unter anderem eine Druckdifferenz vor und hinter dem Partikelfilter 10 einfließt. Ein Abgasgegendruck p vor dem Partikelfilter 10 kann über den Drucksensor 20 direkt erfaßt werden. Der Druck des Abgases stromab des Partikelfilters 10 ist beispielsweise über den Drucksensor 22 erfaßbar. Weiterhin müssen zur Berücksichtigung einer Dynamik dieses Modells Größen berücksichtigt werden, wie eine über den Temperatursensor 16 erfaßbare Abgastemperatur, als auch ein Luftmassenstrom oder eine Drehzahl der Diesel-Brennkraftmaschine 14. Derartige Modelle sind bekannt und sollen daher im Rahmen dieser Beschreibung nicht näher erläutert werden.The load value BW is a measure of the flow characteristic of the exhaust gas through the particle filter 10 and increases with increasing soot loading. The load value BW can be calculated from a model that includes one Pressure difference before and after the particle filter 10 flows. An exhaust back pressure p before the particle filter 10 can be detected directly via the pressure sensor 20. The pressure of the Exhaust gas downstream of the particle filter 10 is, for example, via the pressure sensor 22 detectable. In addition, to take into account the dynamics of this model, quantities must are taken into account, such as one detectable by the temperature sensor 16 Exhaust gas temperature, as well as an air mass flow or a speed of the diesel engine 14. Such models are known and should therefore be in the frame this description will not be explained in more detail.

Die Fahrzeit t und die Fahrstrecke s werden beide ab dem Zeitpunkt gemessen, an dem die letzte Regeneration des Partikelfilters 10 beendet wurde. Die Integration entsprechender Meßeinrichtungen in dem Kraftfahrzeug und die Übermittlung der erfaßten Daten an das Motorsteuergerät 24 ist bekannt.
Als vierte Eingangsgröße dient eine vom Abgasgegendruck p abhängige Größe, nämlich die Häufigkeit np für ein Überschreiten des Abgasgegendruckes p über einen Spitzendruck pmax seit der letzten Regeneration des Partikelfilters 10. Wiederum kann diese Größe entweder direkt über den Drucksensor 20 erfaßt oder über ein bekanntes Modell berechnet werden.
The travel time t and the travel distance s are both measured from the point in time at which the last regeneration of the particle filter 10 was ended. The integration of appropriate measuring devices in the motor vehicle and the transmission of the recorded data to the engine control unit 24 is known.
The fourth input variable is a variable dependent on the exhaust gas back pressure p, namely the frequency n p for the exhaust gas back pressure p to be exceeded via a peak pressure p max since the last regeneration of the particle filter 10. Again, this variable can either be detected directly via the pressure sensor 20 or via a known one Model can be calculated.

Die erfaßten Parameter fließen in einem Schritt S1 in ein Kennfeld ein, das eine Zustandskennzahl Z liefert. Die Gewichtung der einzelnen Faktoren kann dabei motorspezifisch angepaßt werden. Insgesamt ist die Zustandskennzahl Z von allen eingeflossenen Parametern abhängig.In a step S1, the detected parameters flow into a map, the one Status code Z delivers. The weighting of the individual factors can engine-specific. Overall, the condition index is Z of all included parameters dependent.

Überschreitet die Zustandskennzahl Z einen Zustand Kennzahl-Grenzwert GW1, so liegt eine Regenerationsnotwendigkeit vor (Schritt S2). Im gegenteiligen Fall erfolgt ein Abbruch der Abfrage (Schritt S3), und gegebenenfalls kann das Verfahren neu initiiert werden. Die gezeigte Vorgehensweise ist besonders deshalb vorteilhaft, weil eine unnötig häufige Regeneration vermieden werden kann. Ist beispielsweise die Fahrzeit t oder die Fahrstrecke s seit der letzten Regeneration noch sehr klein, so muß der Beladungswert BW bereits sehr groß sein, um insgesamt zu einem Überschreiten der Zustandskennzahl Z über den Zustand Kennzahl-Grenzwert GW1 zu führen.If the status indicator Z exceeds a status indicator limit value GW 1 , there is a need for regeneration (step S2). In the opposite case, the query is terminated (step S3), and the method can be reinitiated if necessary. The procedure shown is particularly advantageous because an unnecessarily frequent regeneration can be avoided. If, for example, the travel time t or the travel distance s has been very short since the last regeneration, the load value BW must already be very large in order to lead to an overall exceeding of the status indicator Z via the status indicator limit value GW 1 .

Bei bestehender Regenerationsnotwendigkeit wird nachfolgend in einem Schritt S4 ermittelt, ob eine Temperatur T im Bereich des Partikelfilters 10 unterhalb einer notwendigen Regenerationstemperatur Treg liegt. Ist dies der Fall, so wird zumindest eine Maßnahme zum Erreichen der Regenerationstemperatur Treg ergriffen (Schritt S5). Derartige Maßnahmen umfassen beispielsweise einen Zusatz von Additiven, ein elektrisches Aufheizen mit einem hier nicht dargestellten Heizwiderstand im Bereich des Partikelfilters 10 oder eine Regelung der Drosselklappe 28. Selbstverständlich kann auch durch Steuerung des Verbrennungsvorgangs des Luft-Kraftstoff-Gemisches über das Einspritzsystem 26 und die Drosselklappe 28 im Saugrohr 30 die Abgastemperatur erhöht werden. Wichtig ist lediglich, daß die beispielsweise über den Temperatursensor 18 erfaßbare notwendige Regenerationstemperatur Treg am Partikelfilter 10 erreicht wird, damit die Regeneration durchgeführt werden kann (Schritt S6).If there is a need for regeneration, it is subsequently determined in a step S4 whether a temperature T in the area of the particle filter 10 is below a necessary regeneration temperature T reg . If this is the case, at least one measure for reaching the regeneration temperature T reg is taken (step S5). Such measures include, for example, the addition of additives, electrical heating with a heating resistor (not shown here) in the area of the particle filter 10 or regulation of the throttle valve 28. Of course, by controlling the combustion process of the air-fuel mixture via the injection system 26 and the throttle valve 28 in the intake manifold 30, the exhaust gas temperature can be increased. It is only important that the necessary regeneration temperature T reg that can be detected, for example, by the temperature sensor 18 is reached at the particle filter 10 so that the regeneration can be carried out (step S6).

Die Regenerationsparameter werden so lange aufrechterhalten, bis der Beladungswert BW unterhalb eines Beladungs-Grenzwertes GW2, beispielsweise bei 5 bis 20%, liegt (Schritt S7). Andernfalls erfolgt in einem Schritt S8 ein Abbruch der Regeneration.The regeneration parameters are maintained until the load value BW is below a load limit value GW 2 , for example 5 to 20% (step S7). Otherwise the regeneration is terminated in a step S8.

Claims (4)

  1. Method for controlling a regeneration of a particle filter which is arranged in an exhaust pipe of a diesel internal-combustion engine, characterized in that
    (a) a state characteristic variable Z is determined using a characteristic diagram or model which includes a loading value BW for the particle filter (10) and a driving time t and/or driving distance s since the last regeneration,
    (b) there is a need for regeneration when the state characteristic variable Z exceeds a state characteristic variable limit value GW1, and the regeneration is carried out until the loading value BW for the particle filter (10) is below a loading limit value GW2,
    an exhaust-gas back-pressure p, in the form of a frequency np with which the exhaust-gas back-pressure p has exceeded a peak pressure pmax since the last regeneration of the particle filter (10), being taken into account in the model or characteristic diagram for determining the state characteristic variable Z.
  2. Method according to Claim 1, characterized in that when there is a need for regeneration and when a temperature T in the region of the particle filter (10) is below a required regeneration temperature Treg, at least one measure is taken in order to reach the regeneration temperature Treg.
  3. Method according to Claim 2, characterized in that the measures for reaching the regeneration temperature Treg comprise the addition of additives, electrical heating and engine measures.
  4. Method according to one of the preceding claims, characterized in that the loading limit value GW2 for the loading value BW is ≤ 5 to 20%.
EP00119467A 1999-09-22 2000-09-15 Method for controlling the regeneration of a particulate filter Expired - Lifetime EP1087114B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19945372A DE19945372A1 (en) 1999-09-22 1999-09-22 Method for controlling regeneration of a particle filter
DE19945372 1999-09-22

Publications (2)

Publication Number Publication Date
EP1087114A1 EP1087114A1 (en) 2001-03-28
EP1087114B1 true EP1087114B1 (en) 2002-12-11

Family

ID=7922878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00119467A Expired - Lifetime EP1087114B1 (en) 1999-09-22 2000-09-15 Method for controlling the regeneration of a particulate filter

Country Status (3)

Country Link
EP (1) EP1087114B1 (en)
AT (1) ATE229614T1 (en)
DE (2) DE19945372A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60008639T2 (en) 1999-07-02 2005-03-10 Mitsubishi Jidosha Kogyo K.K. Exhaust gas purification device of an internal combustion engine
DE10130633B4 (en) * 2001-06-26 2010-10-21 Man Nutzfahrzeuge Ag Process for the regeneration of a particulate filter
JP4623869B2 (en) 2001-06-26 2011-02-02 トヨタ自動車株式会社 Exhaust gas purification device and exhaust gas purification method
DE10159069A1 (en) * 2001-12-01 2003-06-12 Daimler Chrysler Ag Method for operating an electronic control unit of a motor vehicle
JP4092458B2 (en) * 2002-04-08 2008-05-28 日産自動車株式会社 Exhaust gas purification device
JP4140371B2 (en) 2002-12-16 2008-08-27 日産自動車株式会社 Particulate filter regeneration device and engine exhaust gas purification device
JP2004197657A (en) * 2002-12-18 2004-07-15 Nissan Motor Co Ltd Reproducing apparatus for particulate filter and engine waste gas purifying facility
DE102004026589A1 (en) * 2004-06-01 2006-01-19 Siemens Ag Method for monitoring a particulate filter
CN102787890B (en) 2004-11-25 2015-04-15 Avl里斯脱有限公司 Method for determining particle accumulation in particle filter arranged in exhaust gas flow of internal combustion engine
AT501102B1 (en) * 2004-12-09 2007-02-15 Avl List Gmbh Exhaust emission determining process for internal combustion engine involves preparing model, measuring actual particle emissions over interval, and integrating them
AT502086B1 (en) * 2005-05-10 2007-03-15 Avl List Gmbh Exhaust emission determining process for internal combustion engine involves preparing model, measuring actual particle emissions over interval, and integrating them
FR2897650A1 (en) * 2006-02-23 2007-08-24 Renault Sas Diesel internal combustion engine control for motor vehicle, involves determining value, representative of operating range of diesel internal combustion engine, until value attains predetermined loading limit of particle filter
DE102006033567B4 (en) * 2006-07-20 2022-12-08 Hjs Emission Technology Gmbh & Co. Kg Method for determining the triggering point in time for triggering the regeneration process for regenerating a particle filter
US20090044515A1 (en) * 2007-08-14 2009-02-19 Shuguang Lu System and method for removing particulate matter from a diesel particulate filter
US7980067B2 (en) * 2007-12-20 2011-07-19 Detroit Diesel Corporation Method to operate vehicle with internal combustion engine and exhaust aftertreatment system according to detected drive cycles
DE102009058698B4 (en) 2009-12-17 2016-01-07 Volkswagen Ag Determining the efficiency of a particulate filter by measuring the pressure drop across an additional particulate filter
FR3005103B1 (en) * 2013-04-25 2015-05-15 Peugeot Citroen Automobiles Sa METHOD FOR PREVIOUSLY RELEASING REGENERATION OF A PARTICLE FILTER
DE102015221495A1 (en) 2015-11-03 2017-05-04 Volkswagen Aktiengesellschaft Method and apparatus for regeneration of a particulate filter
CN107345495A (en) * 2016-05-06 2017-11-14 罗伯特·博世有限公司 The frequent regeneration diagnostic method of diesel particulate filters
DE102016114427A1 (en) * 2016-08-04 2018-02-08 Volkswagen Aktiengesellschaft Process for the regeneration of a particulate filter
DE102017100500A1 (en) 2017-01-12 2018-07-12 Volkswagen Aktiengesellschaft Process for the regeneration of a particulate filter
CN106640303B (en) * 2017-01-25 2019-02-15 中国第一汽车股份有限公司 The generation control system of diesel engine particles supplementary set device
CN110735697B (en) * 2019-12-20 2020-04-21 潍柴动力股份有限公司 Method and system for controlling DPF regeneration and engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093109A (en) * 1983-10-28 1985-05-24 Isuzu Motors Ltd Apparatus for judging and processing burning timing of particulate
US4974414A (en) * 1987-07-02 1990-12-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Particulate purging apparatus for diesel engine exhaust
DE68904128T2 (en) * 1988-06-09 1993-04-29 Iveco Fiat METHOD AND DEVICE FOR CONTROLLING THE REGENERATION, AT LEAST OF A PARTICLE FILTER, WHICH IS INSTALLED IN A DIESEL ENGINE.
US5195316A (en) * 1989-12-27 1993-03-23 Nissan Motor Co., Ltd. Exhaust gas purifying device for an internal combustion engine
DE4303625B4 (en) * 1993-02-09 2005-02-10 Deutz Ag Process for the regeneration of particle filter systems
DE4303626C2 (en) * 1993-02-09 2003-05-28 Deutz Ag Method for controlling particle filter systems
JP2920161B2 (en) * 1993-06-22 1999-07-19 株式会社デンソー Diesel engine exhaust purification system

Also Published As

Publication number Publication date
DE19945372A1 (en) 2001-03-29
EP1087114A1 (en) 2001-03-28
ATE229614T1 (en) 2002-12-15
DE50000907D1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
EP1087114B1 (en) Method for controlling the regeneration of a particulate filter
EP0697062B1 (en) Process and device for controllably adding a reducing agent into nitrogen oxide-containing exhaust gas
DE10161461B4 (en) Process and device for the regeneration of particulate filters in diesel engines
EP1602807B1 (en) Process for controlling a particle filter
DE102004013603B4 (en) Emission control system and regeneration end determination method
DE102009047960B4 (en) Apparatus and method for optimizing exhaust temperature control in a vehicle during particulate filter regeneration
EP1242724B1 (en) Device and method for determination of exhaust gas and catalyst temperature
EP1108862B1 (en) Method and apparatus for reducing harmful constituents of exhaust gas of a combustion engine
DE102005000978B4 (en) Device for controlling the pollutant emissions of a self-igniting internal combustion engine
DE102008049098A1 (en) Exhaust-gas cleaning system operating method for e.g. diesel engine of motor vehicle, involves determining aging condition of exhaust gas cleaning component by correlation of hydrocarbon existed in exhaust gas upstream of component
EP3640443B1 (en) Method for determining the contamination of a rust filter
DE102007000001A1 (en) Method for detecting excessive combustion
EP2358983B1 (en) Method for regenerating an open particle separator
DE102011015061A1 (en) Method and device for metering the additive for regeneration of a diesel particulate filter
DE102014115630B4 (en) Exhaust treatment system, control module and method for controlling an exhaust treatment system
DE102011014129A1 (en) Method and device for determining a start time of a regeneration process for the regeneration of a diesel particulate filter
DE102017201742A1 (en) Method for heating and regenerating a particulate filter in the exhaust gas of a gasoline engine
DE10252732B4 (en) Method and device for operating an exhaust aftertreatment device of an internal combustion engine
EP1099465B1 (en) Process and apparatus for purifying the exhaust gas of an internal combustion engine
WO2004016339A2 (en) Method for cleaning a particulate filter
EP1103711B1 (en) Method and apparatus for controlling the torque of a diesel engine
DE10234340A1 (en) Process to determine the residual soot particle load in automotive diesel exhaust filter by measurement of primary soot capacity followed by reaction with nitric oxide generated in filter
DE10023079B4 (en) Device and method for controlling a NOx regeneration of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
DE102021113499A1 (en) Method for operating an internal combustion engine
DE102008002557A1 (en) Method and apparatus for operating an exhaust aftertreatment system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010928

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

REF Corresponds to:

Ref document number: 229614

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000907

Country of ref document: DE

Date of ref document: 20030123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20021211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030627

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1087114E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030915

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030915

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030912

BERE Be: lapsed

Owner name: *VOLKSWAGEN A.G.

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50000907

Country of ref document: DE

Effective date: 20130516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50000907

Country of ref document: DE

Representative=s name: TEGEL & MEYER, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190923

Year of fee payment: 20

Ref country code: FR

Payment date: 20190926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50000907

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523