EP1084547A1 - Method for fine synchronisation on a signal received from a transmission channel - Google Patents

Method for fine synchronisation on a signal received from a transmission channel

Info

Publication number
EP1084547A1
EP1084547A1 EP99914586A EP99914586A EP1084547A1 EP 1084547 A1 EP1084547 A1 EP 1084547A1 EP 99914586 A EP99914586 A EP 99914586A EP 99914586 A EP99914586 A EP 99914586A EP 1084547 A1 EP1084547 A1 EP 1084547A1
Authority
EP
European Patent Office
Prior art keywords
signal
transmission channel
characterization
eigenvalues
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99914586A
Other languages
German (de)
French (fr)
Inventor
Jean-Louis Dornstetter
Nidham Ben Rached
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks France SAS
Original Assignee
Nortel Matra Cellular SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Matra Cellular SCA filed Critical Nortel Matra Cellular SCA
Publication of EP1084547A1 publication Critical patent/EP1084547A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0334Processing of samples having at least three levels, e.g. soft decisions

Definitions

  • the present invention relates to a method of fine synchronization on a reception signal corresponding to a reference signal transmitted in a transmission channel.
  • a transmitter transmits a reference signal in a transmission channel intended for a receiver.
  • One of the first operations that the receiver must perform is synchronization on the reception signal.
  • This problem is well known to those skilled in the art and it is therefore not necessary to recall here the different techniques which are used to obtain this synchronization.
  • the signals are digital, it is customary to evaluate the synchronization difference by means of a time unit, the bit time, which is the time difference separating two successive bits of a signal.
  • bit time which is the time difference separating two successive bits of a signal.
  • This precision may prove to be insufficient in certain cases.
  • it is synchronization which gives the signal journey time in the transmission channel or, in other words, the transmission time between the transmitter and the receiver.
  • This is important because, in a duplex radiocommunication system where a base station is in communication with a terminal, each piece of equipment being provided with a transceiver, the terminal must operate so that the signal it transmits arrives at a precise instant with reference to the time base of the base station. To do this, it is of course necessary for the terminal to know the time it takes for this signal to reach the base station. On the other hand, this transmission time directly reflects the distance between the transmitter and the receiver.
  • the present invention thus relates to a synchronization method whose precision is much greater than the bit time.
  • the fine synchronization method on a reception signal corresponding to a reference signal transmitted in a transmission channel comprises the following steps: - selection of a source signal producing a characterization signal following its passage through the transmission channel,
  • the time increment adopted for the calculation of the correlation function is chosen to be sufficiently small, in any case much less than a bit time, this method makes it possible to obtain very good precision.
  • the number of these dominant eigenvalues is predetermined. Typically, this number represents around 20 to 30% of the dimension of the characterization matrix.
  • the ratio of the sum of the dominant eigenvalues to the sum of all the eigenvalues is greater than or equal to a predetermined number.
  • the number chosen will often be greater than 90%, 95% for example.
  • the method further comprising a step of estimating the additive noise in the transmission channel, the dominant eigenvalues are such that their sum is less than or equal to the sum of all the eigenvalues minus the additive noise.
  • the estimation of the additive noise is carried out by normalizing the instantaneous noise which is evaluated by means of the reception signal, the reference signal and an estimation of the impulse response of the transmission channel.
  • the characterization matrix results from a smoothing operation.
  • the characterization signal is an estimate of the impulse response of the transmission channel.
  • the characterization signal is the reception signal.
  • FIG. 1 a first alternative embodiment of the invention
  • the receiver has already acquired coarse synchronization on the reception signal, of the order of bit time, using any of the solutions available.
  • This reception signal corresponds to a reference signal produced by the transmitter and known to the receiver.
  • This reference signal can be known a priori, that is to say that it is a learning sequence formed from identified symbols. It can also be known a posteriori by means of techniques generically referred to as the blind survey. In this case, during the synchronization procedure, the receiver regenerates the series of symbols forming the reference signal from the reception signal.
  • a source signal is selected which, produced by the transmitter, gives to the receiver, after transmission in the channel, a characterization signal.
  • this characterization signal is the reception signal itself.
  • this is not always the optimal solution as regards the complexity and performance of the process of the invention.
  • Another solution consists in retaining a modulated pulse as the source signal, the characterization signal then becoming the impulse response of the transmission channel.
  • the GSM digital cellular radio system uses a learning sequence of 26 symbols, the impulse response being generally estimated with 5 coefficients since it is admitted that the dispersion of the channel is worth 4.
  • the reception signal has a maximum dimension of 22 which is significantly larger than that of the impulse response.
  • this technique uses a measurement matrix A constructed at from the training sequence TS of length n.
  • This matrix includes (n-d) rows and (d + 1) columns, d representing the dispersion of the channel.
  • the element appearing in the ith line and in the jth column is the (d + i- j) th symbol of the training sequence, that is to note a ⁇ the th symbol of a TS sequence of 26 symbols:
  • the learning sequence is chosen such that the matrix A ⁇ A is invertible where the operator represents the transposition.
  • the reception signal S the first four symbols S Q to S3 are not taken into account because these also depend on unknown symbols transmitted before the learning sequence, since the dispersion of the channel is worth 4.
  • the reception signal By an abuse of language one will henceforth define the reception signal as a vector S having for components the symbols received, S4, S5, s_, ..., S25. Consequently, the estimation of the impulse response X takes the following form:
  • the next step of the method of the invention consists in establishing a statistic of this impulse response.
  • statistic we mean a set of data reflecting the average value of this response over an analysis period.
  • a first example of smoothing consists in carrying out the average of the matrix XX n over the analysis period assumed to include m learning sequences:
  • the operator .h represents the Hermitian transformation or complex conjugation transposition.
  • a second smoothing example consists in updating, after receipt of the ith training sequence, the smoothing matrix Li_ ⁇ (XX n ) obtained in the (il) th training sequence by means of a multiplicative coefficient ⁇ , this factor being generally known as smoothing forget factor and being between 0 and 1:
  • Li (XX h ) ⁇ XiXi h + (l- ⁇ ) Li _! (XX h )
  • Initialization can be done by any means, in particular by means of the first estimate X obtained or by an average obtained as above for a low number of training sequences.
  • the smoothing matrix L (XX n ) which is in fact a statistical characterization matrix, will henceforth be denoted L.
  • the method then comprises a step of searching for the pairs (eigenvalue, eigenvector) of the characterization matrix.
  • the eigenvalues ⁇ ⁇ are now classified, in descending order. Indeed, the sum of these values corresponds to the energy of the characterization signal X composed partly of a useful signal which is the image of the source signal and partly of the additive noise N of the transmission channel. It follows that the dominant eigenvalues, those which are the highest, represent the useful signal, while the weakest eigenvalues represent the noise.
  • the method consists in retaining a predetermined number of dominant eigenvalues. For example, for an impulse response to
  • the useful signal has an energy which is a predetermined fraction f of the energy of the characterization signal.
  • the fraction f can be set a priori, to a value of 95% for example. This fraction can also be derived the signal-to-noise ratio of the reception signal obtained elsewhere.
  • the additive noise N is estimated directly from the reception signal and from the measurement matrix A.
  • N Q the noise vector affecting the reception signal
  • the dominant eigenvalues are therefore obtained from a direct estimate of the noise.
  • the next step of the method consists in calculating the correlation function of the source signal with the sum of the eigenvectors VJ_ associated with the dominant eigenvalues ⁇ j_.
  • the source signal is oversampled with respect to the bit time and it will therefore be noted g (t) where t which represents the time is a discrete variable whose quantization step is, for example, 1/32 bit time. It is represented by a vector of the same dimension as the characterization signal, ie 5 in the example adopted.
  • the point appearing between the source signal g (t) and the eigenvector v ⁇ classically represents the scalar product.
  • the last step of the process consists in finding the value t 0 of t closest to zero which corresponds to the first relative maximum of the correlation function c (t).
  • the characterization signal is the reception signal S, so that the source signal is now the reference signal, ie in the case of GSM, the modulated TS training sequence GMSK (for "Gaussian Minimum Shift Keying").
  • GMSK for "Gaussian Minimum Shift Keying"
  • the statistics of the characterization signal are therefore estimated by means of a characterization matrix which is now obtained by smoothing the various occurrences of the reception signal S.
  • smoothing is considered in a very general sense.
  • the characterization matrix L therefore takes the following form: h 1 m V.
  • Li (SS n ) ⁇ S S n + (l- ⁇ ) Li_ ⁇ (SS n )
  • the invention can thus be implemented in different ways, the essential point being to have a source signal and the result of its transmission, namely the characterization signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

The invention concerns a method for fine synchronisation on a reception signal (S) corresponding to a reference signal (TS) transmitted in a transmission channel, comprising the following steps: selecting a signal source producing a characterisation signal (X) following its passage in the transmission channel; establishing a characterisation matrix (L) to estimate the characterisation signal (X) covariance; identifying characteristic modal values which are the highest characteristic values (μi) of said characterisation matrix (L); computing the source signal correlation function c(t) with the sum of characteristic vectors (vi) associated with the characteristic modal values; searching said correlation function c(t) first maximum.

Description

Procédé de synchronisation fine sur un signal reçu d'un canal de transmission Fine synchronization method on a signal received from a transmission channel
La présente invention concerne un procédé de synchronisation fine sur un signal de réception correspondant à un signal de référence émis dans un canal de transmission.The present invention relates to a method of fine synchronization on a reception signal corresponding to a reference signal transmitted in a transmission channel.
Dans un système de transmission, notamment par ondes radios, un émetteur émet un signal de référence dans un canal de transmission a destination d'un récepteur. Une des premières opérations que doit réaliser le récepteur est la synchronisation sur le signal de réception. Ce problème est bien connu de l'homme du métier et il n'est donc pas nécessaire de rappeler ici les différentes techniques qui sont employées pour obtenir cette synchronisation. Lorsque les signaux sont numériques, on a coutume d'évaluer l'écart de synchronisation au moyen d'une unité de temps, le temps bit, qui est l'écart temporel séparant deux bits successifs d'un signal. Or, il apparaît que les solutions disponibles dans l'état de l'art ne permettent pas d'acquérir une synchronisation beaucoup plus précise que le temps bit.In a transmission system, in particular by radio waves, a transmitter transmits a reference signal in a transmission channel intended for a receiver. One of the first operations that the receiver must perform is synchronization on the reception signal. This problem is well known to those skilled in the art and it is therefore not necessary to recall here the different techniques which are used to obtain this synchronization. When the signals are digital, it is customary to evaluate the synchronization difference by means of a time unit, the bit time, which is the time difference separating two successive bits of a signal. However, it appears that the solutions available in the state of the art do not make it possible to acquire a much more precise synchronization than bit time.
Cette précision peut s'avérer insuffisante dans certains cas. En effet, c'est la synchronisation qui donne le temps de trajet du signal dans le canal de transmission ou, autrement dit, le temps de transmission entre l'émetteur et le récepteur. Cette donnée est importante car, dans un système de radiocommunication duplex où une station de base est en communication avec un terminal, chaque équipement étant pourvu d'un émetteur-récepteur, le terminal doit fonctionner de sorte que le signal qu'il émet arrive à un instant précis en référence à la base de temps de la station de base. Pour ce faire, il faut naturellement que le terminal connaisse le temps que met ce signal pour parvenir à la station de base. D'autre part, ce temps de transmission reflète directement la distance séparant l'émetteur du récepteur. On comprend bien que la précision de cette distance est fondamentale lorsqu'il s'agit de procéder à la localisation du terminal en repérant sa position relative par rapport à une ou plusieurs stations de base. Le problème général de la localisation d'un terminal est une préoccupation très actuelle du fait de ses applications au nombre desquelles on citera, par exemple, les stratégies de changements de cellules ("handover") dans les réseaux cellulaires. On mentionnera également le domaine de la sécurité, qu'il faille situer géographiquement la provenance d'un appel d'urgence ou bien la position d'un véhicule volé équipé du terminal .This precision may prove to be insufficient in certain cases. In fact, it is synchronization which gives the signal journey time in the transmission channel or, in other words, the transmission time between the transmitter and the receiver. This is important because, in a duplex radiocommunication system where a base station is in communication with a terminal, each piece of equipment being provided with a transceiver, the terminal must operate so that the signal it transmits arrives at a precise instant with reference to the time base of the base station. To do this, it is of course necessary for the terminal to know the time it takes for this signal to reach the base station. On the other hand, this transmission time directly reflects the distance between the transmitter and the receiver. We understands that the accuracy of this distance is fundamental when it comes to locating the terminal by locating its relative position with respect to one or more base stations. The general problem of locating a terminal is a very current concern because of its applications, among which we will cite, for example, strategies for cell change ("handover") in cellular networks. We will also mention the area of security, whether it is necessary to locate the origin of an emergency call or the position of a stolen vehicle equipped with the terminal.
La présente invention a ainsi pour objet un procédé de synchronisation dont la précision est bien supérieure au temps bit.The present invention thus relates to a synchronization method whose precision is much greater than the bit time.
Selon l'invention, le procédé de synchronisation fine sur un signal de réception correspondant à un signal de référence émis dans un canal de transmission comprend les étapes suivantes : - sélection d'un signal source produisant un signal de caractérisation suite à son passage dans le canal de transmission,According to the invention, the fine synchronization method on a reception signal corresponding to a reference signal transmitted in a transmission channel comprises the following steps: - selection of a source signal producing a characterization signal following its passage through the transmission channel,
- établissement d'une matrice de caractérisation pour estimer la covariance du signal de caractérisation, - identification des valeurs propres dominantes qui sont les valeurs propres les plus élevées de cette matrice de caractérisation,- establishment of a characterization matrix to estimate the covariance of the characterization signal, - identification of the dominant eigenvalues which are the highest eigenvalues of this characterization matrix,
- calcul de la fonction de corrélation du signal source avec la somme des vecteurs propres associés aux valeurs propres dominantes,- calculation of the correlation function of the source signal with the sum of the eigenvectors associated with the dominant eigenvalues,
- recherche du premier maximum de cette fonction de corrélation.- search for the first maximum of this correlation function.
Lorsque l'incrément de temps adopté pour le calcul de la fonction de corrélation est choisi suffisamment petit, en tout cas bien inférieur à un temps bit, ce procédé permet d'obtenir une très bonne précision. Selon une première option, le nombre de ces valeurs propres dominantes est prédéterminé. Typiquement, ce nombre représente de l'ordre de 20 à 30 % de la dimension de la matrice de caractérisation. Selon une deuxième option, le rapport de la somme des valeurs propres dominantes à la somme de toutes les valeurs propres est supérieur ou égal a un nombre prédéterminé. Ici, le nombre retenu sera souvent supérieur à 90 %, 95 % par exemple. Selon une troisième option, le procédé comprenant de plus une étape d'estimation du bruit additif dans le canal de transmission, les valeurs propres dominantes sont telles que leur somme soit inférieure ou égale à la somme de toutes les valeurs propres diminuée du bruit additif. De plus, l'estimation du bruit additif est réalisée en normalisant le bruit instantané qui est évalué au moyen du signal de réception, du signal de référence et d'une estimation de la réponse impulsionnelle du canal de transmission. Avantageusement, en notant A la matrice de transmission associée au signal de référence, l'expression du bruit instantané est la suivante : NQ = S - A.X.When the time increment adopted for the calculation of the correlation function is chosen to be sufficiently small, in any case much less than a bit time, this method makes it possible to obtain very good precision. According to a first option, the number of these dominant eigenvalues is predetermined. Typically, this number represents around 20 to 30% of the dimension of the characterization matrix. According to a second option, the ratio of the sum of the dominant eigenvalues to the sum of all the eigenvalues is greater than or equal to a predetermined number. Here, the number chosen will often be greater than 90%, 95% for example. According to a third option, the method further comprising a step of estimating the additive noise in the transmission channel, the dominant eigenvalues are such that their sum is less than or equal to the sum of all the eigenvalues minus the additive noise. In addition, the estimation of the additive noise is carried out by normalizing the instantaneous noise which is evaluated by means of the reception signal, the reference signal and an estimation of the impulse response of the transmission channel. Advantageously, by noting A to the transmission matrix associated with the reference signal, the expression of the instantaneous noise is as follows: N Q = S - AX
Par ailleurs, quelle que soit l'option éventuellement retenue, la matrice de caractérisation résulte d'une opération de lissage.In addition, whatever option is chosen, the characterization matrix results from a smoothing operation.
Selon un mode de réalisation préférentiel, le signal de caractérisation est une estimation de la réponse impulsionnelle du canal de transmission.According to a preferred embodiment, the characterization signal is an estimate of the impulse response of the transmission channel.
On peut également prévoir que le signal de caractérisation soit le signal de réception.It can also be provided that the characterization signal is the reception signal.
La présente invention apparaîtra maintenant de manière plus détaillée dans le cadre de la description qui suit où sont proposés des exemples de mise en oeuvre à titre illustratif, ceci en référence aux figures annexées qui représentent : - la figure 1, une première variante de réalisation de 1 ' invention, etThe present invention will now appear in more detail in the context of the description which follows, where illustrative examples are provided, this with reference to the appended figures which represent: FIG. 1, a first alternative embodiment of the invention, and
- la figure 2, une deuxième variante.- Figure 2, a second variant.
Les éléments communs aux deux figures sont affectées d'une seule et même référence.The elements common to the two figures are assigned a single reference.
Le récepteur a déjà acquis une synchronisation grossière sur le signal de réception, de l'ordre du temps bit, au moyen de l'une quelconque des solutions disponibles.The receiver has already acquired coarse synchronization on the reception signal, of the order of bit time, using any of the solutions available.
Ce signal de réception correspond à un signal de référence produit par l'émetteur et connu du récepteur. Ce signal de référence peut être connu à priori, c'est-à-dire qu'il s'agit d'une séquence d'apprentissage formée de symboles identifiés. Il peut également être connu à posteriori au moyen de techniques génériquement référencées sous le terme de sondage aveugle. Dans ce cas, au cours de la procédure de synchronisation, le récepteur régénère la suite des symboles formant le signal de référence à partir du signal de réception.This reception signal corresponds to a reference signal produced by the transmitter and known to the receiver. This reference signal can be known a priori, that is to say that it is a learning sequence formed from identified symbols. It can also be known a posteriori by means of techniques generically referred to as the blind survey. In this case, during the synchronization procedure, the receiver regenerates the series of symbols forming the reference signal from the reception signal.
Il convient en premier lieu de caractériser la transmission entre l'émetteur et le récepteur. A cet effet, on sélectionne un signal source qui, produit par l'émetteur, donne au niveau du récepteur, après transmission dans le canal, un signal de caractérisation.It is first of all necessary to characterize the transmission between the transmitter and the receiver. To this end, a source signal is selected which, produced by the transmitter, gives to the receiver, after transmission in the channel, a characterization signal.
Naturellement, si le signal source est le signal de référence, ce signal de caractérisation est le signal de réception lui-même. Ce n'est pas cependant pas toujours la solution optimale quant à la complexité et aux performances du procédé de l'invention.Naturally, if the source signal is the reference signal, this characterization signal is the reception signal itself. However, this is not always the optimal solution as regards the complexity and performance of the process of the invention.
Une autre solution consiste à retenir une impulsion modulée comme signal source, le signal de caractérisation devenant alors la réponse impulsionnelle du canal de transmission.Another solution consists in retaining a modulated pulse as the source signal, the characterization signal then becoming the impulse response of the transmission channel.
A titre d'exemple, le système de radiocommunication cellulaire numérique GSM fait appel à une séquence d'apprentissage de 26 symboles, la réponse impulsionnelle étant généralement estimée avec 5 coefficients puisqu'on admet que la dispersion du canal vaut 4.For example, the GSM digital cellular radio system uses a learning sequence of 26 symbols, the impulse response being generally estimated with 5 coefficients since it is admitted that the dispersion of the channel is worth 4.
Dans ce cas, le signal de réception a une dimension maximale de 22 qui est sensiblement plus importante que celle de la réponse impulsionnelle.In this case, the reception signal has a maximum dimension of 22 which is significantly larger than that of the impulse response.
On examinera donc successivement deux variantes de mise en oeuvre de 1 ' invention en commençant par le cas où le signal source est une impulsion modulée en référence à la figure 1. L'estimation de la réponse impulsionnelle ne pose pas de difficultés en soi car de nombreuses méthodes permettent d'y parvenir, par exemple la méthode dite du critère des moindres carrés qui est décrite notamment dans les demandes de brevet FR 2696604 et EP 0564849. En matière de rappel, cette technique fait appel à une matrice de mesure A construite à partir de la séquence d'apprentissage TS de longueur n. Cette matrice comprend (n-d) lignes et (d+1) colonnes, d représentant la dispersion du canal. L'élément figurant à la ième ligne et à la jème colonne est le (d+i- j)ième symbole de la séquence d'apprentissage, soit en notant a^ le ième symbole d'une séquence TS de 26 symboles :We will therefore successively examine two alternative embodiments of the invention, starting with the case where the source signal is a modulated pulse with reference to FIG. 1. The estimation of the impulse response does not pose any difficulties in itself because of numerous methods make it possible to achieve this, for example the so-called least squares criterion method which is described in particular in patent applications FR 2696604 and EP 0564849. In terms of recall, this technique uses a measurement matrix A constructed at from the training sequence TS of length n. This matrix includes (n-d) rows and (d + 1) columns, d representing the dispersion of the channel. The element appearing in the ith line and in the jth column is the (d + i- j) th symbol of the training sequence, that is to note a ^ the th symbol of a TS sequence of 26 symbols:
La séquence d'apprentissage est choisie telle que la matrice A^A soit inversible où l'opérateur représente la transposition .The learning sequence is chosen such that the matrix A ^ A is invertible where the operator represents the transposition.
Dans le signal de réception S, on ne prend pas en compte les quatre premiers symboles SQ à S3 car ceux-ci dépendent également de symbole inconnus émis avant la séquence d'apprentissage, étant donné que la dispersion du canal vaut 4. Par un abus de langage on définira donc dorénavant le signal de réception comme un vecteur S ayant pour composantes les symboles reçus, S4, S5, s_ , ... , S25. Dès lors, l'estimation de la réponse impulsionnelle X prend la forme suivante :In the reception signal S, the first four symbols S Q to S3 are not taken into account because these also depend on unknown symbols transmitted before the learning sequence, since the dispersion of the channel is worth 4. By an abuse of language one will henceforth define the reception signal as a vector S having for components the symbols received, S4, S5, s_, ..., S25. Consequently, the estimation of the impulse response X takes the following form:
X = (At A)-1 At . S L'étape suivante du procédé de l'invention consiste à établir une statistique de cette réponse impulsionnelle. Par statistique, on entend un ensemble de données reflétant la valeur moyenne de cette réponse sur une période d'analyse.X = (A t A) -1 A t . The next step of the method of the invention consists in establishing a statistic of this impulse response. By statistic, we mean a set of data reflecting the average value of this response over an analysis period.
On construit donc une matrice de lissage des différentes estimations X obtenues pendant la période d'analyse pour obtenir une estimation de la covariance associée à cette réponse impulsionnelle. On entend ici lissage dans un sens très général, c'est-à-dire toute opération permettant de lisser ou de moyenner la réponse impulsionnelle sur la période d'analyse.We therefore construct a smoothing matrix of the different estimates X obtained during the analysis period to obtain an estimate of the covariance associated with this impulse response. Here, we mean smoothing in a very general sense, that is to say any operation making it possible to smooth or average the impulse response over the analysis period.
Un premier exemple de lissage consiste à effectuer la moyenne de la matrice XXn sur la période d'analyse supposée comprendre m séquences d'apprentissage :A first example of smoothing consists in carrying out the average of the matrix XX n over the analysis period assumed to include m learning sequences:
L(XXh) = -Yxxh L (XX h ) = -Yxx h
L'opérateur .h représente la transformation hermitienne ou transposition conjugaison complexe. Un second exemple de lissage consiste à actualiser, après réception de la ième séquence d'apprentissage, la matrice de lissage Li_ι(XXn) obtenue à la (i-l)iè e séquence d'apprentissage au moyen d'un coefficient multiplicatif α, ce facteur étant généralement connu sous le nom de facteur d'oubli de lissage et étant compris entre 0 et 1 :The operator .h represents the Hermitian transformation or complex conjugation transposition. A second smoothing example consists in updating, after receipt of the ith training sequence, the smoothing matrix Li_ι (XX n ) obtained in the (il) th training sequence by means of a multiplicative coefficient α, this factor being generally known as smoothing forget factor and being between 0 and 1:
Li(XXh) = αXiXih + (l-α)Li_!(XXh) L'initialisation peut se faire par tous moyens, notamment au moyen de la première estimation X obtenue ou bien par une moyenne obtenue comme ci-dessus pour un faible nombre de séquences d'apprentissage. Dans un souci de simplification, la matrice de lissage L(XXn) qui est en fait une matrice de caractérisation statistique, sera désormais notée L.Li (XX h ) = αXiXi h + (l-α) Li _! (XX h ) Initialization can be done by any means, in particular by means of the first estimate X obtained or by an average obtained as above for a low number of training sequences. For the sake of simplification, the smoothing matrix L (XX n ) which is in fact a statistical characterization matrix, will henceforth be denoted L.
Le procédé comprend ensuite une étape de recherche des couples (valeur propre, vecteur propre) de la matrice de caractérisation.The method then comprises a step of searching for the pairs (eigenvalue, eigenvector) of the characterization matrix.
Cette étape ne sera pas plus détaillée car bien connue de 1 'homme de métier.This step will not be more detailed as well known to one skilled in the art.
Les valeurs propres λ^ sont maintenant classées, par ordre décroissant. En effet, la somme de ces valeurs correspond à 1 ' énergie du signal de caractérisation X composée pour partie d'un signal utile qui est l'image du signal source et pour partie du bruit additif N du canal de transmission. II vient que les valeurs propres dominantes, celles qui sont le plus élevées, représentent le signal utile, tandis que les valeurs propres les plus faibles représentent le bruit.The eigenvalues λ ^ are now classified, in descending order. Indeed, the sum of these values corresponds to the energy of the characterization signal X composed partly of a useful signal which is the image of the source signal and partly of the additive noise N of the transmission channel. It follows that the dominant eigenvalues, those which are the highest, represent the useful signal, while the weakest eigenvalues represent the noise.
Selon une première option, le procédé consiste à retenir un nombre prédéterminé de valeurs propres dominantes. Par exemple, pour une réponse impulsionnelle àAccording to a first option, the method consists in retaining a predetermined number of dominant eigenvalues. For example, for an impulse response to
5 coefficients, on retient les deux premières valeurs propres λi et λ2»5 coefficients, we retain the first two eigenvalues λi and λ2 "
Selon une deuxième option, on considère que le signal utile présente une énergie qui est une fraction prédéterminée f de l'énergie du signal de caractérisation. Ainsi en notant λi les valeurs propres pour i variant de 1 à p, il y aura d valeurs propres dominantes, d étant obtenu comme suit :According to a second option, it is considered that the useful signal has an energy which is a predetermined fraction f of the energy of the characterization signal. Thus by noting λi the eigenvalues for i varying from 1 to p, there will be d dominant eigenvalues, d being obtained as follows:
d d + 1d d + 1
Σ λ. Σ λ.Σ λ. Σ λ.
—— < f et —— > f—— <f and ——> f
P PP P
Σ λ. ∑ λ. i = 1 i = 1Σ λ. ∑ λ. i = 1 i = 1
La fraction f peut être fixée a priori, à une valeur de 95 % par exemple. Cette fraction peut également dériver du rapport signal à bruit du signal de réception obtenu par ailleurs.The fraction f can be set a priori, to a value of 95% for example. This fraction can also be derived the signal-to-noise ratio of the reception signal obtained elsewhere.
Selon une troisième option du procédé, sans doute la plus performante, le bruit additif N est estimé directement à partir du signal de réception et de la matrice de mesure A. En effet, en notant NQ le vecteur bruit affectant le signal de réception, il vient que : S = AX + N0 Compte tenu du fait que les vecteurs S et NQ ont 22 composantes, le bruit additif N peut s'exprimer de la manière suivante :According to a third option of the method, undoubtedly the most efficient, the additive noise N is estimated directly from the reception signal and from the measurement matrix A. In fact, by noting N Q the noise vector affecting the reception signal, it follows that: S = AX + N 0 Taking into account that the vectors S and NQ have 22 components, the additive noise N can be expressed in the following way:
N = (— ) (S - AX)h (S - AX)N = (-) (S - AX) h (S - AX)
Naturellement, cette estimation du bruit additif peut être moyennée en lissée. En reprenant les notations précédentes et en normalisant les énergies, il vient que :Naturally, this estimate of the additive noise can be averaged in smoothness. By taking up the previous notations and normalizing the energies, it follows that:
P PP P
∑ λ. > N et ∑ λ. < N i = d i = d + 1∑ λ. > N and ∑ λ. <N i = d i = d + 1
On obtient donc les valeurs propres dominantes à partir d'une estimation directe du bruit.The dominant eigenvalues are therefore obtained from a direct estimate of the noise.
Quelle que soit l'option précédemment retenue, l'étape suivante du procédé consiste à calculer la fonction de corrélation du signal source avec la somme des vecteurs propres VJ_ associés aux valeurs propres dominantes λj_. Le signal source est suréchantilloné par rapport au temps bit et on le notera donc g(t) où t qui représente le temps est une variable discrète dont le pas de quantification vaut, à titre d'exemple, 1/32 temps bit. Il est représenté par un vecteur de même dimension que le signal de caractérisation, soit 5 dans l'exemple adopté. La fonction de corrélation c(t) est calculée par exemple pour t variant de -1 à +1 temps bit au moyen de l'expression suivante : d c(t) = ∑ g(t).v± i = 1Whatever the option previously selected, the next step of the method consists in calculating the correlation function of the source signal with the sum of the eigenvectors VJ_ associated with the dominant eigenvalues λj_. The source signal is oversampled with respect to the bit time and it will therefore be noted g (t) where t which represents the time is a discrete variable whose quantization step is, for example, 1/32 bit time. It is represented by a vector of the same dimension as the characterization signal, ie 5 in the example adopted. The correlation function c (t) is calculated for example for t varying from -1 to +1 bit time by means of the following expression: dc (t) = ∑ g (t) .v ± i = 1
Le point figurant entre le signal source g(t) et le vecteur propre v^ représente classiquement le produit scalaire. La dernière étape du procédé consiste à rechercher la valeur t0 de t la plus proche de zéro qui correspond au premier maximum relatif de la fonction corrélation c(t).The point appearing between the source signal g (t) and the eigenvector v ^ classically represents the scalar product. The last step of the process consists in finding the value t 0 of t closest to zero which corresponds to the first relative maximum of the correlation function c (t).
C'est cette valeur particulière tg qui donne l'écart de synchronisation recherchée par rapport au signal de réception.It is this particular value tg which gives the desired synchronization difference with respect to the reception signal.
Par ailleurs, on peut considérer la fonction complémentaire c'(t) suivante : c'(t)= ∑ g(t).Vi i = d + 1Furthermore, we can consider the following complementary function c '(t): c' (t) = ∑ g (t). Vi i = d + 1
Il faut remarquer que la valeur particulière to mentionnée ci-dessus peut également être obtenue en recherchant la valeur de t la plus proche de zéro qui correspond au premier minimum relatif de la formation complémentaire c'(t).It should be noted that the particular value to mentioned above can also be obtained by looking for the value of t closest to zero which corresponds to the first relative minimum of the complementary formation c '(t).
Ces deux méthodes pour obtenir 1 * écart de synchronisation to sont donc équivalentes.These two methods to obtain 1 * synchronization difference to are therefore equivalent.
En réféence à la figure 2, considérons maintenant une deuxième variante de 1 ' invention selon laquelle le signal de caractérisation est le signal de réception S, si bien que le signal source est maintenant le signal de référence, soit dans le cas du GSM, la séquence d'apprentissage TS modulée GMSK (pour "Gaussian Minimum Shift Keying").With reference to FIG. 2, let us now consider a second variant of the invention according to which the characterization signal is the reception signal S, so that the source signal is now the reference signal, ie in the case of GSM, the modulated TS training sequence GMSK (for "Gaussian Minimum Shift Keying").
La statistique du signal de caractérisation est donc estimée au moyen d'une matrice de caractérisation qui est maintenant obtenue par lissage des différentes occurrences du signal de réception S. Ici encore, on considère le terme lissage dans un sens très général.The statistics of the characterization signal are therefore estimated by means of a characterization matrix which is now obtained by smoothing the various occurrences of the reception signal S. Here again, the term smoothing is considered in a very general sense.
La matrice de caractérisation L prend donc la forme suivante : h 1 m V.The characterization matrix L therefore takes the following form: h 1 m V.
L(SSn) = — Y SSn ou bien, m -?L (SS n ) = - Y SS n or, m -?
Li(SSn) = αS S n + (l-α)Li_ι(SSn)Li (SS n ) = αS S n + (l-α) Li_ι (SS n )
On recherche ensuite les p' valeurs propres λ'j. de cette matrice et, comme dans la première variante, on identifie les d' valeurs propres dominantes.We then look for the p 'eigenvalues λ'j. of this matrix and, as in the first variant, we identify the dominant eigenvalues.
On calcule maintenant la fonction de corrélation f(t) de la séquence d'apprentissage modulée et de la somme des vecteurs propres v ' _ associés aux valeurs propres dominantesWe now calculate the correlation function f (t) of the modulated learning sequence and of the sum of the eigenvectors v '_ associated with the dominant eigenvalues
A. jj . Là encore, la séquence d'apprentissage g'(t) est suréchantillonnée et elle est représentée par un vecteur deA. dd. Again, the learning sequence g '(t) is oversampled and is represented by a vector of
22 composantes. La fonction de corrélation devient donc :22 components. The correlation function therefore becomes:
d' f(t)= ∑ g'ttJ.v i = 1 Comme auparavant, on peut définir une nouvelle fonction complémentaire f'(t) :d 'f (t) = ∑ g'ttJ.v i = 1 As before, we can define a new complementary function f' (t):
P' f'(t) = ∑ g'(t).v'. i=d'+l Le procédé se termine de la même manière en recherchant le premier maximum de la fonction de corrélation f(t) ou le premier minimum de la fonction complémentaire f (t).P 'f' (t) = ∑ g '(t) .v'. i = d '+ l The process ends in the same way by looking for the first maximum of the correlation function f (t) or the first minimum of the complementary function f (t).
L'invention peut ainsi être mise en oeuvre de différentes manières, le point essentiel étant de disposer d'un signal source et du résultat de sa transmission, à savoir du signal de caractérisation. The invention can thus be implemented in different ways, the essential point being to have a source signal and the result of its transmission, namely the characterization signal.

Claims

REVENDICATIONS
1)Procédé de synchronisation fine sur un signal de réception (S) correspondant à un signal de référence (TS) émis dans un canal de transmission, caractérisé en ce qu'il comprend les étapes suivantes :1) Method of fine synchronization on a reception signal (S) corresponding to a reference signal (TS) transmitted in a transmission channel, characterized in that it comprises the following steps:
- sélection d'un signal source produisant un signal de caractérisation (X, S) suite à son passage dans ledit canal de transmission,- selection of a source signal producing a characterization signal (X, S) following its passage through said transmission channel,
- établissement d'une matrice de caractérisation (L) pour estimer la covariance dudit signal de caractérisation (X,- establishment of a characterization matrix (L) to estimate the covariance of said characterization signal (X,
S),S),
- identification des valeurs propres dominantes qui sont les valeurs propres (λ^, λ' _ ) les plus élevées de cette matrice de caractérisation (L), - calcul de la fonction de corrélation (c(t), f(t)) dudit signal source avec la somme des vecteurs propres (v^, v'^) associés auxdites valeurs propres dominantes,- identification of the dominant eigenvalues which are the highest eigenvalues (λ ^, λ '_) of this characterization matrix (L), - calculation of the correlation function (c (t), f (t)) of said source signal with the sum of the eigenvectors (v ^, v '^) associated with said dominant eigenvalues,
- recherche du premier maximum de cette fonction de corrélation (c(t), f(t)). 2)Procédé selon la revendication 1, caractérisé en ce que le nombre (d, d') desdites valeurs propres dominantes (λi, λ' est prédéterminé.- search for the first maximum of this correlation function (c (t), f (t)). 2) Method according to claim 1, characterized in that the number (d, d ') of said dominant eigenvalues (λi, λ' is predetermined.
3)Procédé selon la revendication 1 caractérisé en ce que le rapport de la somme desdites valeurs propres dominantes à la somme de toutes les valeurs propres est supérieur ou égal à un nombre prédéterminé.3) Method according to claim 1 characterized in that the ratio of the sum of said dominant eigenvalues to the sum of all eigenvalues is greater than or equal to a predetermined number.
4)Procédé selon la revendication 1 caractérisé en ce que, comprenant de plus une étape d'estimation du bruit additif (N) dans le canal de transmission, lesdites valeurs propres dominantes sont telles que leur somme soit inférieure ou égale à la somme de toutes les valeurs propres diminuée dudit bruit additif (N) .4) Method according to claim 1 characterized in that, further comprising a step of estimating the additive noise (N) in the transmission channel, said dominant eigenvalues are such that their sum is less than or equal to the sum of all the eigenvalues minus said additive noise (N).
5)Procédé selon la revendication 4, caractérisé en ce que l'estimation du bruit additif (N) est réalisée en normalisant le bruit instantané (NQ) qui est évalué au moyen dudit signal de réception (S), dudit signal de référence (TS) et d'une estimation de la réponse impulsionnelle (X) du canal de transmission.5) Method according to claim 4, characterized in that the estimation of the additive noise (N) is carried out by normalizing the instantaneous noise (N Q ) which is evaluated by means of said reception signal (S), of said reference signal (TS) and an estimate of the impulse response (X) of the transmission channel.
6)Procédé selon la revendication 5 caractérisé en ce que, en notant A la matrice de transmission associée audit signal de référence (TS), l'expression du bruit instantané (NQ) est la suivante : NQ = S - A.X.6) Method according to claim 5 characterized in that, by noting A the transmission matrix associated with said reference signal (TS), the expression of instantaneous noise (NQ) is as follows: N Q = S - AX
7)Procédé selon la revendication 6, caractérisé en ce que ledit bruit additif (N) est de plus moyenne.7) Method according to claim 6, characterized in that said additive noise (N) is more average.
8)Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ladite matrice de caractérisation (L) résulte d'une opération de lissage.8) Method according to any one of claims 1 to 7, characterized in that said characterization matrix (L) results from a smoothing operation.
9)Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit signal de caractérisation est une estimation de la réponse impulsionnelle (X) du canal de transmission.9) Method according to any one of the preceding claims, characterized in that the said characterization signal is an estimate of the impulse response (X) of the transmission channel.
10)Procédé selon l'une quelconque des revendications 1 a 8, caractérisé en ce que ledit signal de caractérisation est ledit signal de réception (S). 10) Method according to any one of claims 1 to 8, characterized in that said characterization signal is said reception signal (S).
EP99914586A 1998-04-10 1999-04-09 Method for fine synchronisation on a signal received from a transmission channel Withdrawn EP1084547A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9804782A FR2777408B1 (en) 1998-04-10 1998-04-10 FINE SYNCHRONIZATION METHOD ON A RECEIVED SIGNAL OF A TRANSMISSION CHANNEL
FR9804782 1998-04-10
PCT/FR1999/000835 WO1999053645A1 (en) 1998-04-10 1999-04-09 Method for fine synchronisation on a signal received from a transmission channel

Publications (1)

Publication Number Publication Date
EP1084547A1 true EP1084547A1 (en) 2001-03-21

Family

ID=9525334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99914586A Withdrawn EP1084547A1 (en) 1998-04-10 1999-04-09 Method for fine synchronisation on a signal received from a transmission channel

Country Status (5)

Country Link
EP (1) EP1084547A1 (en)
CN (1) CN1300488A (en)
CA (1) CA2328293A1 (en)
FR (1) FR2777408B1 (en)
WO (1) WO1999053645A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057701A1 (en) * 2002-12-22 2004-07-08 Fractus S.A. Multi-band monopole antenna for a mobile communications device
FR2857102B1 (en) 2003-07-04 2007-06-15 Nortel Networks Ltd METHOD FOR MEASURING THE RECEIVING TIME OF A RECEIVED RADIO SIGNAL, MEASURING DEVICE AND DEVICE FOR LOCATING A MOBILE STATION FOR CARRYING OUT THE METHOD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001747A (en) * 1990-01-22 1991-03-19 Racal Data Communications Inc. Frequency offset estimator for data modem
FR2696604B1 (en) * 1992-10-07 1994-11-04 Alcatel Radiotelephone Device for estimating a transmission channel.
FR2747870B1 (en) * 1996-04-19 1998-11-06 Wavecom Sa DIGITAL SIGNAL WITH MULTIPLE REFERENCE BLOCKS FOR CHANNEL ESTIMATION, CHANNEL ESTIMATION METHODS AND CORRESPONDING RECEIVERS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9953645A1 *

Also Published As

Publication number Publication date
WO1999053645A8 (en) 2001-03-08
FR2777408A1 (en) 1999-10-15
WO1999053645A1 (en) 1999-10-21
CA2328293A1 (en) 1999-10-21
CN1300488A (en) 2001-06-20
FR2777408B1 (en) 2000-06-23

Similar Documents

Publication Publication Date Title
FR2904168A1 (en) SYSTEM FOR ESTIMATING THE RECEPTION QUALITY OF A DIGITAL TRANSMISSION.
EP1288674A1 (en) Method and device of speed estimation of a mobile terminal of a wireless communication system
EP0991952B1 (en) Radiogoniometry method and device co-operating in transmission
EP0709959B1 (en) Correction of a frequency offset
EP1026518A1 (en) Procedure for estimating the relative velocity between an emitter and a receiver in a telecommunications system
FR2693062A1 (en) Method and decision return equalizer device for block transmission of information symbols
WO2001065789A1 (en) Method and device for estimating channel propagation
EP1235399B1 (en) Method and apparatus to estimate the covariance matrix of the transmission channel of a UMTS system
EP2334021B1 (en) Method for the blind estimation of ofdm signal parameters through adaptive covariance
EP1084547A1 (en) Method for fine synchronisation on a signal received from a transmission channel
EP1288675B1 (en) Method and device for estimating the velocity of a mobile terminal, in particular, of a cellular telephone
EP3131229A1 (en) Method for generating a group secret key based on the physical radio layer and associated wireless terminal
EP1105746B1 (en) Radio estimation method of a mobile station velocity
EP0983640A1 (en) Space-weighted communication path estimation
EP3643024A1 (en) Transmission and reception of a data stream
FR2798794A1 (en) METHOD FOR PROCESSING MULTI-PATH NAVIGATION SIGNALS IN A RECEIVER HAVING A PLURALITY OF ANTENNAS
EP0724346B1 (en) Method for calculation of the phase error in a receiver for digital signals
EP2156569B1 (en) Method for processing a sampled rectified ultra wide band signal
EP0985280A1 (en) Time-weighted transmission channel estimation
EP1229696B1 (en) Channel parameters estimation using maximum likelihood estimation
FR3062533A1 (en) METHOD FOR RECONSTRUCTING A SIGNAL
FR3141024A1 (en) Method for estimating at least one parameter among a time advance and a frequency offset between first and second communication devices
EP1101334A1 (en) Dynamic sampling of a transmission channel
WO2010130915A1 (en) Polling a radio communication band
WO2006131665A1 (en) Device for selecting a receiver based on the environment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI GB SE

18D Application deemed to be withdrawn

Effective date: 20021031

D18D Application deemed to be withdrawn (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORTEL NETWORKS SA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031101