EP1078354B1 - Method and device for determining spectral voice characteristics in a spoken expression - Google Patents
Method and device for determining spectral voice characteristics in a spoken expression Download PDFInfo
- Publication number
- EP1078354B1 EP1078354B1 EP99929088A EP99929088A EP1078354B1 EP 1078354 B1 EP1078354 B1 EP 1078354B1 EP 99929088 A EP99929088 A EP 99929088A EP 99929088 A EP99929088 A EP 99929088A EP 1078354 B1 EP1078354 B1 EP 1078354B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transformation
- utterance
- wavelet
- speech
- speaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 16
- 230000014509 gene expression Effects 0.000 title abstract 4
- 230000009466 transformation Effects 0.000 claims abstract description 63
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 13
- 238000001914 filtration Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/06—Elementary speech units used in speech synthesisers; Concatenation rules
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
Definitions
- the invention relates to a method and an arrangement for Determination of spectral speech characteristics in one spoken utterance.
- a wavelet transformation is known from [1].
- Wavelet transformation is through a wavelet filter ensures that a high pass share and a Low-pass portion of a subsequent transformation stage Signal of a current transformation stage complete restore. It is done by a Transformation stage to the next a reduction of Dissolution of the high-pass component or low-pass component Technical term: "Subsampling"). In particular, by that Subsampling the number of transformation levels finally.
- US-A-5528725 discloses a method for speech recognition using wavelet transformations.
- EP-A-0519802 discloses a method of speech synthesis which speaker-specific characteristics with regard to a a natural sounding sequence of speech sounds adapts.
- the object of the invention is a method and an arrangement for determining spectral Specify language characteristics, with the help in particular a natural-looking synthetic speech output can be determined is.
- a method for Determination of spectral speech characteristics in one spoken utterance. This becomes the spoken utterance digitized and subjected to a wavelet transformation. Using different transformation levels of the wavelet transformation become the speaker-specific Characteristics determined.
- the individual high-pass components or low-pass components stand for predefined ones speaker-specific characteristics, both High pass component as well as low pass component of a respective one Transformation level, i.e. the respective characteristic, can be modified separately from other characteristics. If you use the inverse wavelet transformation from the respective high-pass and low-pass proportions of the individual Transformation levels back to the original signal together, this ensures that exactly what you want Characteristic has been changed. It is therefore possible to change certain predetermined characteristics of the utterance, without affecting the rest of the utterance.
- One embodiment is that before the wavelet transformation the utterance windowed, that is, a given one Set of samples cut out, and in the Frequency range is transformed. This will in particular a Fast Fourier Transform (FFT) is applied.
- FFT Fast Fourier Transform
- Another embodiment is that a High-pass component of a transformation stage in a real part and split an imaginary part.
- the high pass portion of the Wavelet transformation corresponds to the difference signal between the current low-pass component and the low-pass component the previous transformation level.
- further training consists in the number of transformation stages of the wavelet transformation to be carried out by determining that in the last Transformation level, which consists of cascaded Low passports exist, contain a steady portion of the utterance is. Then the signal as a whole can be represented by its Wavelet coefficients. This corresponds to the complete one Transformation of the information of the signal section in the Wavelet space.
- the speaker-specific characteristics a) to c) are in speech synthesis of great importance.
- An advantage of the invention is that the spectral Envelope reflects the speaker's articulation tract and not, e.g. a pole position model, on formants is supported. Go further with the wavelet transformation as a nonparametric representation, no data is lost that The utterance can always be completely reconstructed. From the individual transformation levels of the wavelet transformation resulting data are linear from each other independently, can thus be influenced separately and later on to the influenced utterance - lossless - be put together.
- an arrangement for determining spectral Speech characteristics indicated a processor unit has, which is set up such that an utterance can be digitized. Then the utterance becomes a Wavelet transform and subjected to different levels of transformation speaker-specific characteristics determined.
- the standard deviation ⁇ is determined by the Predeterminable position of the sideband minimum 101 in FIG. 1.
- Equation (1) The constant c from equation (1) is used to normalize the complex wavelet function: in which ⁇ called the conjugate complex wavelet function.
- a signal 301 is filtered both by a high pass HP1 302 and by a low pass TP1 305.
- subsampling takes place, ie the number of values to be stored is reduced per filter.
- An inverse wavelet transformation ensures that the original signal 301 can be reconstructed from the low-pass component TP1 305 and the high-pass component HP1 304.
- HP1 302 is separated according to real part Re1 303 and Imaginary part Im1 304 filtered.
- the signal 310 after the low pass filter TP1 305 is again both by a high pass HP2 306 and by a Filtered low pass TP2 309.
- the HP2 306 high pass includes again a real part Re2 307 and an imaginary part Im2 308.
- Das Signal after the second transformation stage 311 is again filtered, etc.
- FIG. 4 shows various transformation stages of the wavelet transformation, divided into low-pass components (FIGS. 4A, 4C and 4E) and high-pass components (FIGS. 4B, 4D and 4F).
- the fundamental frequency is spoken utterance evident.
- the fluctuations in the amplitude is clearly a predominant periodicity in Wavelet-filtered spectrum to recognize the fundamental frequency of the speaker.
- the fundamental frequency it is possible given utterances in speech synthesis each other adapt or use appropriate statements from a database to determine given utterances.
- Fig.4C In the low-pass portion of Fig.4C are as pronounced minima and Maxima the formants of the speech signal section (the length of the speech signal section corresponds approximately to twice Fundamental frequency).
- the formants represent Resonance frequencies in the speaker's vocal tract. The clear one Representability of the formants enables an adjustment and / or selection of suitable sound modules at concatenative speech synthesis.
- the three speaker-specific characteristics mentioned are thus identified and targeted for speech synthesis to be influenced. It is particularly important that manipulation in the inverse wavelet transform of a single speaker-specific characteristic only this influences the other perceptually relevant variables stay untouched. Thus, the fundamental frequency can be targeted can be adjusted without changing the smokiness of the voice being affected.
- Another possible application is the selection of one suitable sound section for concatenative linking with another sound section, both sound sections originally from different speakers in different Contexts were included.
- determination spectral Speech characteristics can be a more suitable one to be linked Phonetic section can be found as with the characteristics Criteria are known that allow a comparison of Sound sections among themselves and thus a selection of the matching sound section automatically according to certain specifications enable.
- a database is created with a predetermined amount of naturally-spoken language from different speakers, sound sections in the naturally-spoken language being identified and stored. There are numerous representatives for the different sound sections of a language that the database can access.
- the sound sections are in particular phonemes of a language or a series of such phonemes. The smaller the section of the sound, the greater the possibilities when composing new words. For example, the German language contains a predetermined amount of approximately 40 phonemes, which are sufficient for the synthesis of almost all words in the language. Different acoustic contexts must be taken into account, depending on the word in which the respective phoneme appears.
- FIG. 5 shows two sounds A 507 and B 508 by way of example shown, each of the individual sound sections 505 and 506 exhibit. Lute A 507 and B 508 are from a spoken utterance, whereby the sound A 507 clearly is different from the sound B 508. A dividing line 509 indicates where the A 507 sound should be linked to the B 508 sound. In the present case, the first three sound sections should of the sound A 507 with the last three sound sections of the According to B 508 can be linked concatenatively.
- a variant consists in an abrupt transition along the the dividing line 509 divided sounds. However, this happens the discontinuities mentioned, which the human ear as distracting. If you put together a sound C, that the sound sections within a transition area 501 or 502 are taken into account, where a spectral Distance between two assignable Sound sections in the respective transition area 501 or 502 is adjusted (gradual transition between the According sections). As the distance measure is used especially in the wavelet space the Euclidean distance between the relevant coefficients in this area.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Machine Translation (AREA)
- Electrically Operated Instructional Devices (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Sorting Of Articles (AREA)
- Pallets (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und eine Anordnung zur Bestimmung spektraler Sprachcharakteristika in einer gesprochenen Äußerung.The invention relates to a method and an arrangement for Determination of spectral speech characteristics in one spoken utterance.
Bei einer konkatenativen Sprachsynthese werden einzelne Laute aus Sprachdatenbanken zusammengesetzt. Um dabei einen für das menschliche Ohr natürlich klingenden Sprachverlauf zu erhalten, sind Diskontinuitäten an den Punkten, wo die Laute zusammengesetzt werden (Konkatenationspunkte) zu vermeiden. Die Laute sind dabei insbesondere Phoneme einer Sprache oder eine Zusammensetzung mehrerer Phoneme.In a concatenative speech synthesis, individual sounds composed of language databases. To get one for that human ear naturally sounding speech history too are discontinuities at the points where the sounds are to be put together (concatenation points) to avoid. The sounds are in particular phonemes of a language or a composition of several phonemes.
Eine Wavelet-Transformation ist aus [1] bekannt. Bei der Wavelet-Transformation ist durch ein Wavelet-Filter gewährleistet, daß jeweils ein Hochpaßanteil und ein Tiefpaßanteil einer nachfolgenden Transformationsstufe ein Signal einer aktuellen Transformationsstufe vollständig wiederherstellen. Dabei erfolgt von einer Transformationsstufe zur nächsten eine Reduktion der Auflösung des Hochpaßanteils bzw. Tiefpaßanteils (engl. Fachbegriff: "Subsampling"). Insbesondere ist durch das Subsampling die Anzahl der Transformationsstufen endlich.A wavelet transformation is known from [1]. In the Wavelet transformation is through a wavelet filter ensures that a high pass share and a Low-pass portion of a subsequent transformation stage Signal of a current transformation stage complete restore. It is done by a Transformation stage to the next a reduction of Dissolution of the high-pass component or low-pass component Technical term: "Subsampling"). In particular, by that Subsampling the number of transformation levels finally.
US-A-5528725 offenbart ein Verfahren zur Spracherkennung mittels Wavelet-Transformationen.US-A-5528725 discloses a method for speech recognition using wavelet transformations.
EP-A-0519802 offenbart ein Verfahren zur Sprachsynthese, das sprecherspezifische Charakteristika im Hinblick auf eine natürlich klingende Aneinanderreihung von Sprachlauten anpasst. EP-A-0519802 discloses a method of speech synthesis which speaker-specific characteristics with regard to a a natural sounding sequence of speech sounds adapts.
Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Anordnung zur Bestimmung spektraler Sprachcharakteristika anzugeben, mit deren Hilfe insbesondere eine natürlich wirkende synthetische Sprachausgabe bestimmbar ist.The object of the invention is a method and an arrangement for determining spectral Specify language characteristics, with the help in particular a natural-looking synthetic speech output can be determined is.
Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Patentansprüche gelöst. This task is carried out according to the characteristics of the independent Claims resolved.
Im Rahmen der Erfindung wird ein Verfahren angegeben zur Bestimmung spektraler Sprachcharakteristika in einer gesprochenen Äußerung. Dazu wird die gesprochenen Äußerung digitalisiert und einer Wavelet-Transformation unterzogen. Anhand unterschiedlicher Transformationsstufen der Wavelet-Transformation werden die sprecherspezifischen Charakteristika ermittelt.Within the scope of the invention, a method is specified for Determination of spectral speech characteristics in one spoken utterance. This becomes the spoken utterance digitized and subjected to a wavelet transformation. Using different transformation levels of the wavelet transformation become the speaker-specific Characteristics determined.
Dabei ist es insbesondere ein Vorteil, daß bei der Wavelet-Transformation mittels eines Hochpaßfilters und eines Tiefpaßfilters die Äußerung aufgeteilt wird und unterschiedliche Hochpaßanteile bzw. Tiefpaßanteile verschiedener Transformationsstufen sprecherspezifische Charakteristika enthalten.It is a particular advantage that in the wavelet transformation by means of a high-pass filter and one Low pass filter the utterance is split and different high-pass components or low-pass components different transformation levels speaker-specific Characteristics included.
Die einzelnen Hochpaßanteile bzw. Tiefpaßanteile verschiedener Transformationsstufen stehen für vorgegebene sprecherspezifische Charakteristika, wobei sowohl Hochpaßanteil als auch Tiefpaßanteil einer jeweiligen Transformationsstufe, also das jeweilige Charakteristikum, getrennt von anderen Charakteristika modifiziert werden kann. Setzt man bei der inversen Wavelet-Transformation aus den jeweiligen Hochpaß- und Tiefpaßanteilen der einzelnen Transformationsstufen wieder das ursprüngliche Signal zusammen, so ist gewährleistet, daß genau das gewünschte Charakteristikum verändert worden ist. Es ist somit möglich bestimmte vorgegebene Eigenarten der Äußerung zu verändern, ohne daß dadurch der Rest der Äußerung beeinflußt wird.The individual high-pass components or low-pass components Different transformation levels stand for predefined ones speaker-specific characteristics, both High pass component as well as low pass component of a respective one Transformation level, i.e. the respective characteristic, can be modified separately from other characteristics. If you use the inverse wavelet transformation from the respective high-pass and low-pass proportions of the individual Transformation levels back to the original signal together, this ensures that exactly what you want Characteristic has been changed. It is therefore possible to change certain predetermined characteristics of the utterance, without affecting the rest of the utterance.
Eine Ausgestaltung besteht darin, daß vor der Wavelet-Transformation die Äußerung gefenstert, also eine vorgegebene Menge von Abtastwerten ausgeschnitten, und in den Frequenzbereich transformiert wird. Hierzu wird insbesondere eine Fast-Fourier-Transformation (FFT) angewandt.One embodiment is that before the wavelet transformation the utterance windowed, that is, a given one Set of samples cut out, and in the Frequency range is transformed. This will in particular a Fast Fourier Transform (FFT) is applied.
Eine weitere Ausgestaltung besteht darin, daß ein Hochpaßanteil einer Transformationsstufe in einen Realteil und einen Imaginärteil aufgeteilt wird. Der Hochpaßanteil der Wavelet-Transformation entspricht dem Differenzsignal zwischen dem aktuellen Tiefpaßanteil und dem Tiefpaßanteil der vorhergehenden Transformationsstufe.Another embodiment is that a High-pass component of a transformation stage in a real part and split an imaginary part. The high pass portion of the Wavelet transformation corresponds to the difference signal between the current low-pass component and the low-pass component the previous transformation level.
Insbesondere besteht eine Weiterbildung darin, die Zahl der durchzuführenden Transformationsstufen der Wavelet-Transformation dadurch zu bestimmen, daß in der letzten Transformationsstufe, die aus hintereinandergeschalteten Tiefpässen besteht, ein Gleichanteil der Äußerung enthalten ist. Dann ist das Signal als Ganzes darstellbar durch seine Wavelet-Koeffizienten. Dies entspricht der vollständigen Transformation der Information des Signalausschnitts in den Wavelet-Raum.In particular, further training consists in the number of transformation stages of the wavelet transformation to be carried out by determining that in the last Transformation level, which consists of cascaded Low passports exist, contain a steady portion of the utterance is. Then the signal as a whole can be represented by its Wavelet coefficients. This corresponds to the complete one Transformation of the information of the signal section in the Wavelet space.
Wird insbesondere nur der jeweilige Tiefpaßanteil weiter transformiert (mittels eines Hochpaß- und eines Tiefpaßfilters), so verbleibt als Hochpaßanteil einer Transformationsstufe das Differenzsignal, wie oben erläutert. Kumuliert man Differenzsignale (Hochpaßanteile) über die Transformationsstufen, erhält man in der letzten Transformationsstufe als kumulierten Hochpaßanteil die Information der gesprochenen Äußerung ohne Gleichanteil.In particular, only the respective low-pass portion continues transformed (using a high pass and a Low-pass filter), one remains as a high-pass component Transformation stage the difference signal, as explained above. Cumulative difference signals (high-pass components) over the Transformation levels, you get in the last Transformation level as a cumulative high-pass component Information of the spoken utterance without a constant component.
Im Rahmen einer zusätzlichen Weiterbildung sind die
sprecherspezifischen Charakteristika identifizierbar als:
Die Schwingung des Hochpaßanteils der ersten oder der zweiten Transformationsstufe der Wavelet-Transformation läßt die Grundfrequenz der Äußerung erkennen. Die Grundfrequenz zeigt an, ob der Sprecher ein Mann oder einen Frau ist.
Die spektrale Hüllkurve enthält Information über eine Transferfunktion des Vokaltrakts bei der Artikulation. In einem stimmhaften Bereich wird die spektrale Hüllkurve von den Formanten dominiert. Der Hochpaßanteil einer höheren Transformationsstufe der Wavelet-Transformation enthält diese spektrale Hüllkurve.
Die Rauchigkeit in einer Stimme wird als negative Steigung im Verlauf des vorletzten Tiefpaßanteils sichtbar.
The oscillation of the high-pass component of the first or the second transformation stage of the wavelet transformation reveals the fundamental frequency of the utterance. The basic frequency indicates whether the speaker is a man or a woman.
The spectral envelope contains information about a transfer function of the vocal tract during articulation. In a voiced area, the spectral envelope is dominated by the formants. The high-pass component of a higher transformation level of the wavelet transformation contains this spectral envelope.
The smokiness in a voice becomes visible as a negative slope in the course of the penultimate low-pass portion.
Die sprecherspezifischen Charakteristika a) bis c) sind bei der Sprachsynthese von großer Bedeutung. Wie eingangs erwähnt, bedient man sich bei der konkatenativen Sprachsynthese großer Mengen realgesprochener Äußerungen, aus denen Beispiellaute ausgeschnitten und später zu einem neuen Wort zusammengesetzt werden (synthetisierte Sprache). Dabei sind Diskontinuitäten zwischen zusammengesetzten Lauten von Nachteil, da diese vom menschlichen Ohr als unnatürlich wahrgenommen werden. Um den Diskontinuitäten entgegenzuwirken ist es von Vorteil, direkt die perzeptiv relevanten Größen zu erfassen und ggf. zu vergleiche und/oder einander anzupassen.The speaker-specific characteristics a) to c) are in speech synthesis of great importance. As at the beginning mentioned, one uses the concatenative Speech synthesis of large amounts of uttered utterances cut out the example sounds and later to a new one Word to be put together (synthesized language). there are discontinuities between compound sounds of Disadvantage as these are considered unnatural by the human ear be perceived. To counteract the discontinuities it is advantageous to directly add the perceptually relevant sizes record and if necessary to compare and / or adapt to each other.
Dies kann geschehen durch direkte Manipulation, indem ein Sprachlaut in mindestens einer seiner sprecherspezifischen Charakteristika angepaßt wird, so daß er in dem akustischen Kontext der konkatenativ verknüpften Laute nicht als störend wahrgenommen wird. Auch ist es möglich, die Auswahl eines passenden Lautes daran auszurichten, daß sprecherspezifische Charakteristika von zu verknüpfenden Lauten möglichst gut zueinander passen, z.B. daß den Lauten gleiche oder ähnliche Rauchigkeit zu eigen ist.This can be done through direct manipulation by a Speech in at least one of his speaker-specific Characteristics is adjusted so that it is in the acoustic Context of concatenated sounds not as disturbing is perceived. It is also possible to choose one to align the appropriate sound with the speaker-specific Characteristics of sounds to be linked as good as possible match each other, e.g. that the sounds are the same or similar Smokiness is inherent.
Ein Vorteil der Erfindung besteht darin, daß die spektrale Hüllkurve den Artikulationstrakt des Sprechers widerspiegelt und nicht, wie z.B. ein Polstellenmodell, auf Formanten gestützt ist. Weiterhin gehen bei der Wavelet-Transformation als nichtparametrischer Darstellung keine Daten verloren, die Äußerung kann stets vollständig rekonstruiert werden. Die aus den einzelnen Transformationsstufen der Wavelet-Transformation hervorgehenden Daten sind linear voneinander unabhängig, können somit getrennt voneinander beeinflußt und später wieder zu der beeinflußten Äußerung - verlustlos - zusammengesetzt werden.An advantage of the invention is that the spectral Envelope reflects the speaker's articulation tract and not, e.g. a pole position model, on formants is supported. Go further with the wavelet transformation as a nonparametric representation, no data is lost that The utterance can always be completely reconstructed. From the individual transformation levels of the wavelet transformation resulting data are linear from each other independently, can thus be influenced separately and later on to the influenced utterance - lossless - be put together.
Weiterhin wird eine Anordnung zur Bestimmung spektraler Sprachcharakteristika angegeben, die eine Prozessoreinheit aufweist, die derart eingerichtet ist, daß eine Äußerung digitalisierbar ist. Daraufhin wird die Äußerung einer Wavelet-Transformation unterzogen und anhand unterschiedlicher Transformationsstufen werden sprecherspezifische Charakteristika ermittelt.Furthermore, an arrangement for determining spectral Speech characteristics indicated a processor unit has, which is set up such that an utterance can be digitized. Then the utterance becomes a Wavelet transform and subjected to different levels of transformation speaker-specific characteristics determined.
Diese Anordnung ist insbesondere geeignet zur Durchführung des erfindungsgemäßen Verfahrens oder einer seiner vorstehend erläuterten Weiterbildungen.This arrangement is particularly suitable for implementation of the method according to the invention or one of its above explained further training.
Weiterbildungen der Erfindung ergeben sich auch aus den abhängigen Ansprüchen.Further developments of the invention also result from the dependent claims.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung dargestellt und erläutert.Exemplary embodiments of the invention are described below shown and explained in the drawing.
Es zeigen
- Fig.1
- eine Wavelet-Funktion;
- Fig.2
- eine Wavelet-Funktion, unterteilt nach Realteil und Imaginärteil;
- Fig.3
- eine kaskadierte Filterstruktur, die die Transformationsschritte der Wavelet-Transformation darstellt;
- Fig.4
- Tiefpaßanteile und Hochpaßanteile unterschiedlicher Transformationsstufen;
- Fig.5
- Schritte der konkatenativen Sprachsynthese.
- Fig.1
- a wavelet function;
- Fig.2
- a wavelet function, divided into real part and imaginary part;
- Figure 3
- a cascaded filter structure that represents the transformation steps of the wavelet transformation;
- Figure 4
- Low-pass components and high-pass components of different transformation levels;
- Figure 5
- Steps of concatenative speech synthesis.
Fig.1 zeigt eine Wavelet-Funktion, die bestimmt ist durch wobei
- f
- die Frequenz,
- σ
- eine Standardabweichung und
- c
- eine vorgegebene Normierungskonstante
- f
- the frequency,
- σ
- a standard deviation and
- c
- a given standardization constant
Insbesondere ist die Standardabweichung σ bestimmt durch die
vorgebbare Stelle des Seitenbandminimums 101 in Fig.1.In particular, the standard deviation σ is determined by the
Predeterminable position of the
Fig.2 zeigt eine Wavelet-Funktion mit einem Realteil gemäß
Gleichung (1) und einer Hilbert-Transformierten H des
Realteils als Imaginärteil. Die komplexe Wavelet-Funktion
ergibt sich somit zu
Die Konstante c aus Gleichung (1) wird verwendet, um die
komplexe Wavelet-Funktion zu normieren:
wobei
Fig.3 zeigt die kaskadierte Anwendung der Wavelet-Transformation.
Ein Signal 301 wird sowohl durch einen
Hochpaß HP1 302 als auch durch einen Tiefpaß TP1 305
gefiltert. Dabei findet insbesondere ein Subsampling statt,
d.h. die Anzahl der abzuspeichernden Werte wird pro Filter
reduziert. Eine inverse Wavelet-Transformation gewährleistet,
daß aus dem Tiefpaßanteil TP1 305 und dem Hochpaßanteil HP1
304 wieder das ursprüngliche Signal 301 rekonstruierbar ist. 3 shows the cascaded application of the wavelet transformation. A
Im Hochpaß HP1 302 wird getrennt nach Realteil Re1 303 und
Imaginärteil Im1 304 gefiltert.In the
Das Signal 310 nach dem Tiefpaßfilter TP1 305 wird erneut
sowohl durch einen Hochpaß HP2 306 als auch durch einen
Tiefpaß TP2 309 gefiltert. Der Hochpaß HP2 306 umfaßt wieder
einen Realteil Re2 307 und einen Imaginärteil Im2 308. Das
Signal nach der zweiten Transformationsstufe 311 wird wieder
gefiltert, usf.The
Geht man von einem (FFT-transformierten) Kurzzeitspektrum mit 256 Werten aus, so werden acht Transformationsschritte durchgeführt (Subsamplingrate: 1/2), bis das Signal aus dem letzten Tiefpaßfilter TP8 dem Gleichanteil entspricht.If one goes with a (FFT-transformed) short-term spectrum 256 values, so there are eight transformation steps (subsampling rate: 1/2) until the signal from the last low-pass filter TP8 corresponds to the DC component.
In Fig.4 sind verschiedene Transformationsstufen der Wavelet-Transformation, unterteilt nach Tiefpaßanteilen (Figuren 4A, 4C und 4E) und Hochpaßanteilen (Figuren 4B, 4D und 4F) dargestellt. 4 shows various transformation stages of the wavelet transformation, divided into low-pass components (FIGS. 4A, 4C and 4E) and high-pass components (FIGS. 4B, 4D and 4F).
Aus dem Hochpaßanteil gemäß Fig.4B ist die Grundfrequenz der gesprochenen Äußerung ersichtlich. Neben den Schwankungen in der Amplitude ist deutlich eine überwiegende Periodizität im wavelet-gefilterten Spektrum zu erkennen, die Grundfrequenz des Sprechers. Anhand der Grundfrequenz ist es möglich, vorgegebene Äußerungen bei der Sprachsynthese einander anzupassen oder passende Äußerungen aus einer Datenbank mit vorgegebene Äußerungen zu bestimmen.From the high-pass component according to FIG. 4B, the fundamental frequency is spoken utterance evident. In addition to the fluctuations in the amplitude is clearly a predominant periodicity in Wavelet-filtered spectrum to recognize the fundamental frequency of the speaker. On the basis of the fundamental frequency it is possible given utterances in speech synthesis each other adapt or use appropriate statements from a database to determine given utterances.
Im Tiefpaßanteil von Fig.4C sind als ausgeprägte Minima und Maxima die Formanten des Sprachsignalausschnitts (die Länge des Sprachsignalausschnitts entspricht in etwa der doppelten Grundfrequenz) dargestellt. Die Formanten repräsentieren Resonanzfrequenzen im Vokaltrakt des Sprechers. Die deutliche Darstellbarkeit der Formanten ermöglicht eine Anpassung und/oder Auswahl passender Lautbausteine bei der konkatenativen Sprachsynthese.In the low-pass portion of Fig.4C are as pronounced minima and Maxima the formants of the speech signal section (the length of the speech signal section corresponds approximately to twice Fundamental frequency). The formants represent Resonance frequencies in the speaker's vocal tract. The clear one Representability of the formants enables an adjustment and / or selection of suitable sound modules at concatenative speech synthesis.
Im Tiefpaßanteil der vorletzten Transformationsstufe (bei 256 Frequenzwerten im Originalsignal: TP7), kann die Rauchigkeit einer Stimme ermittelt werden. Der Abstieg des Kurvenverlaufs zwischen Maximum Mx und Minimum Mi kennzeichnet den Grad der Rauchigkeit.In the low-pass portion of the penultimate transformation stage (at 256 Frequency values in the original signal: TP7), the smokiness one vote. The descent of the curve between maximum Mx and minimum Mi denotes the degree of Smokiness.
Die erwähnten drei sprecherspezifischen Charakteristika sind somit identifiziert und können für die Sprachsynthese gezielt beeinflußt werden. Dabei ist es insbesondere von Bedeutung, daß bei der inversen Wavelet-Transformation die Manipulation eines einzelnen sprecherspezifischen Charakteristikums nur dieses beeinflußt, die anderen perziptiv relevanten Größen bleiben unberührt. Somit kann die Grundfrequenz gezielt verstellt werden, ohne daß dadurch die Rauchigkeit der Stimme beeinflußt wird.The three speaker-specific characteristics mentioned are thus identified and targeted for speech synthesis to be influenced. It is particularly important that manipulation in the inverse wavelet transform of a single speaker-specific characteristic only this influences the other perceptually relevant variables stay untouched. Thus, the fundamental frequency can be targeted can be adjusted without changing the smokiness of the voice being affected.
Eine andere Einsatzmöglichkeit besteht in der Auswahl eines geeigneten Lautabschnitts zur konkatenativen Verknüpfung mit einem anderen Lautabschnitt, wobei beide Lautabschnitte ursprünglich von verschiedenen Sprechern in unterschiedlichen Kontexten aufgenommen wurden. Mit Ermittlung spektraler Sprachcharakteristika kann ein geeigneter zu verknüpfender Lautabschnitt gefunden werden, da mit den Charakteristika Kriterien bekannt sind, die einen Vergleich von Lautabschnitten untereinander und somit eine Auswahl des passenden Lautabschnitts automatisch nach bestimmten Vorgaben ermöglichen.Another possible application is the selection of one suitable sound section for concatenative linking with another sound section, both sound sections originally from different speakers in different Contexts were included. With determination spectral Speech characteristics can be a more suitable one to be linked Phonetic section can be found as with the characteristics Criteria are known that allow a comparison of Sound sections among themselves and thus a selection of the matching sound section automatically according to certain specifications enable.
Fig.5 zeigt Schritte einer konkatenativen Sprachsynthese. Eine Datenbank wird mit einer vorgegebenen Menge natürlichgesprochener Sprache verschiedener Sprecher erstellt, wobei Lautabschnitte in der natürlichgesprochenen Sprache identifiziert und abgespeichert werden. Es ergeben sich zahlreiche Repräsentanten für die verschiedenen Lautabschnitte einer Sprache, auf die die Datenbank zugreifen kann. Die Lautabschnitte sind insbesondere Phoneme einer Sprache oder eine Aneinanderreihung solcher Phoneme. Je kleiner der Lautabschnitt, desto größer sind die Möglichkeiten bei der Zusammensetzung neuer Wörter. So umfaßt die deutsche Sprache eine vorgegebene Menge von ca. 40 Phonemen, die zur Synthese nahezu aller Wörter der Sprache ausreichen. Dabei sind unterschiedliche akustische Kontexte zu berücksichtigen, je nachdem, in welchem Wort das jeweilige Phonem auftritt. Nun ist es wichtig, die einzelnen Phoneme in den akustischen Kontext derart einzubetten, daß Diskontinuitäten, die vom menschlichen Gehör als unnatürlich und "synthetisch" empfunden werden, vermieden werden. Wie erwähnt stammen die Lautabschnitte von unterschiedlichen Sprechern und weisen somit verschiedene sprecherspezifische Charakteristika auf. Um eine möglichst natürlich wirkende Äußerung zu synthetisieren, ist es wichtig, die Diskontinuitäten zu minimieren. Dies kann erfolgen durch Anpassung der identifizierbaren und modifizierbaren sprecherspezifischen Charakteristika oder durch Auswahl passender Lautabschnitte aus der Datenbank, wobei ebenfalls die sprecherspezifischen Charakteristika bei der Auswahl ein entscheidendes Hilfsmittel darstellen. 5 shows steps of a concatenative speech synthesis. A database is created with a predetermined amount of naturally-spoken language from different speakers, sound sections in the naturally-spoken language being identified and stored. There are numerous representatives for the different sound sections of a language that the database can access. The sound sections are in particular phonemes of a language or a series of such phonemes. The smaller the section of the sound, the greater the possibilities when composing new words. For example, the German language contains a predetermined amount of approximately 40 phonemes, which are sufficient for the synthesis of almost all words in the language. Different acoustic contexts must be taken into account, depending on the word in which the respective phoneme appears. Now it is important to embed the individual phonemes in the acoustic context in such a way that discontinuities which are perceived by the human ear as unnatural and "synthetic" are avoided. As mentioned, the sound sections come from different speakers and thus have different speaker-specific characteristics. In order to synthesize a statement that looks as natural as possible, it is important to minimize the discontinuities. This can be done by adapting the identifiable and modifiable speaker-specific characteristics or by selecting suitable sound sections from the database, the speaker-specific characteristics also being a decisive aid in the selection.
In Fig.5 sind beispielhaft zwei Laute A 507 und B 508
dargestellt, die jeweils einzelne Lautabschnitte 505 bzw. 506
aufweisen. Die Laute A 507 und B 508 stammen jeweils aus
einer gesprochenen Äußerung, wobei der Laut A 507 deutlich
vom Laut B 508 verschieden ist. Eine Trennlinie 509 zeigt an,
wo der Laut A 507 mit dem Laut B 508 verknüpft werden soll.
Im vorliegenden Fall sollen die ersten drei Lautabschnitte
des Lautes A 507 mit den letzten drei Lautabschnitten des
Lautes B 508 konkatenativ verknüpft werden.5 shows two sounds A 507 and
Es wird entlang der Trennlinie 509 ein zeitliches Dehnen oder
Stauchen (vergleiche Pfeil 503) der aufeinanderfolgenden
Lautabschnitte durchgeführt, um den diskontinuierlichen
Eindruck am Übergang 509 zu vermindern.There is a temporal stretching or along the
Eine Variante besteht in einem abrupten Übergang der entlang
der Trennlinie 509 geteilten Laute. Dabei kommt es jedoch zu
den erwähnten Diskontinuitäten, die das menschliche Gehör als
störend wahrnimmt. Fügt man hingegen einen Laut C zusammen,
daß die Lautabschnitte innerhalb eines Übergangsbereichs 501
oder 502 berücksichtigt werden, wobei ein spektrales
Abstandsmaß zwischen zwei einander zuordenbaren
Lautabschnitten in dem jeweiligen Übergangsbereich 501 oder
502 angepaßt wird (allmählicher Übergang zwischen den
Lautabschnitten). Als das Abstandsmaß herangezogen wird
insbesondere im Wavelet-Raum der euklidische Abstand zwischen
den in diesem Bereich relevanten Koeffizienten. A variant consists in an abrupt transition along the
the
Claims (10)
- Method for determining spectral speech characteristics in a spoken utterance,a) in which the utterance is digitisedb) in which the digitised utterance is subjected to a wavelet transformation, andc) in which the speaker-specific characteristics are determined with the aid of different transformation stages of the wavelet transformation.
- Method according to Claim 1, in which a windowed transformation of the digitised utterance is carried out in a frequency band prior to the wavelet transformation.
- Method according to Claim 2, in which the transformation is carried out in the frequency band by means of Fast Fourier Transformation.
- Method according to one of the preceding claims, in which a low-pass component and a high-pass component of a signal to be transformed are determined in each stage of the wavelet transformation.
- Method according to one of the preceding claims, in which a high-pass component is subdivided according to a real part and an imaginary part.
- Method according to one of the preceding claims, in which the wavelet transformation comprises a plurality of transformation stages, the last transformation stage supplying a direct component of the utterance in repeated low-pass filtering corresponding to the number of transformation stages.
- Method according to one of the preceding claims, in which the speaker-specific characteristics are determined by means of:a) a fundamental frequency of the spoken utterance;b) a spectral envelope; andc) a spectral tilt of the spoken utterance.
- Use of the method according to one of Claims 1 to 7 for speech synthesis, in which individual speaker-specific characteristics are adapted with regard to a naturally sounding juxtaposition of speech sounds.
- Use of the method according to one of Claims 1 to 7 for speech synthesis, in which those speech sounds which ensure a naturally sounding juxtaposition of speech sounds are selected from a prescribed data volume with the aid of individual spectral speech characteristics.
- Arrangement for determining spectral speech characteristics in a spoken utterance, having a processor unit which is set up in such a way that the following steps can be carried out:a) the utterance is digitised;b) the digitised utterance is subjected to a wavelet transformation; andc) the speaker-specific characteristics are determined with the aid of different transformation stages of the wavelet transformation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19821031 | 1998-05-11 | ||
DE19821031 | 1998-05-11 | ||
PCT/DE1999/001308 WO1999059134A1 (en) | 1998-05-11 | 1999-05-03 | Method and device for determining spectral voice characteristics in a spoken expression |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1078354A1 EP1078354A1 (en) | 2001-02-28 |
EP1078354B1 true EP1078354B1 (en) | 2002-03-20 |
Family
ID=7867382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99929088A Expired - Lifetime EP1078354B1 (en) | 1998-05-11 | 1999-05-03 | Method and device for determining spectral voice characteristics in a spoken expression |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1078354B1 (en) |
JP (1) | JP2002515608A (en) |
AT (1) | ATE214831T1 (en) |
DE (1) | DE59901018D1 (en) |
ES (1) | ES2175988T3 (en) |
WO (1) | WO1999059134A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10031832C2 (en) | 2000-06-30 | 2003-04-30 | Cochlear Ltd | Hearing aid for the rehabilitation of a hearing disorder |
US8554551B2 (en) | 2008-01-28 | 2013-10-08 | Qualcomm Incorporated | Systems, methods, and apparatus for context replacement by audio level |
JP6251145B2 (en) * | 2014-09-18 | 2017-12-20 | 株式会社東芝 | Audio processing apparatus, audio processing method and program |
JP2018025827A (en) * | 2017-11-15 | 2018-02-15 | 株式会社東芝 | Interactive system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2678103B1 (en) * | 1991-06-18 | 1996-10-25 | Sextant Avionique | VOICE SYNTHESIS PROCESS. |
GB2272554A (en) * | 1992-11-13 | 1994-05-18 | Creative Tech Ltd | Recognizing speech by using wavelet transform and transient response therefrom |
JP3093113B2 (en) * | 1994-09-21 | 2000-10-03 | 日本アイ・ビー・エム株式会社 | Speech synthesis method and system |
-
1999
- 1999-05-03 JP JP2000548866A patent/JP2002515608A/en active Pending
- 1999-05-03 ES ES99929088T patent/ES2175988T3/en not_active Expired - Lifetime
- 1999-05-03 DE DE59901018T patent/DE59901018D1/en not_active Expired - Fee Related
- 1999-05-03 EP EP99929088A patent/EP1078354B1/en not_active Expired - Lifetime
- 1999-05-03 WO PCT/DE1999/001308 patent/WO1999059134A1/en active IP Right Grant
- 1999-05-03 AT AT99929088T patent/ATE214831T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2002515608A (en) | 2002-05-28 |
ES2175988T3 (en) | 2002-11-16 |
ATE214831T1 (en) | 2002-04-15 |
WO1999059134A1 (en) | 1999-11-18 |
DE59901018D1 (en) | 2002-04-25 |
EP1078354A1 (en) | 2001-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60000074T2 (en) | Linear predictive cepstral features organized in hierarchical subbands for HMM-based speech recognition | |
DE69028072T2 (en) | Method and device for speech synthesis | |
DE69726526T2 (en) | Scheme and model adaptation for pattern recognition based on Taylor expansion | |
DE69718284T2 (en) | Speech synthesis system and waveform database with reduced redundancy | |
DE69719654T2 (en) | Prosody databases for speech synthesis containing fundamental frequency patterns | |
DE69534942T2 (en) | SYSTEM FOR SPEAKER IDENTIFICATION AND VERIFICATION | |
DE69031165T2 (en) | SYSTEM AND METHOD FOR TEXT-LANGUAGE IMPLEMENTATION WITH THE CONTEXT-DEPENDENT VOCALALLOPHONE | |
DE69720861T2 (en) | Methods of sound synthesis | |
DE69627865T2 (en) | VOICE SYNTHESIZER WITH A DATABASE FOR ACOUSTIC ELEMENTS | |
DE4237563A1 (en) | ||
WO2002017303A1 (en) | Method and device for artificially enhancing the bandwidth of speech signals | |
DE102007001255A1 (en) | Audio signal processing method and apparatus and computer program | |
EP0925579A1 (en) | Process for adaptation of a hidden markov sound model in a speech recognition system | |
EP1280138A1 (en) | Method for audio signals analysis | |
EP0285222B1 (en) | Method for detecting associatively pronounced words | |
EP1282897B1 (en) | Method for creating a speech database for a target vocabulary in order to train a speech recognition system | |
DE3228757A1 (en) | METHOD AND DEVICE FOR PERIODIC COMPRESSION AND SYNTHESIS OF AUDIBLE SIGNALS | |
DE19920501A1 (en) | Speech reproduction method for voice-controlled system with text-based speech synthesis has entered speech input compared with synthetic speech version of stored character chain for updating latter | |
EP1435087B1 (en) | Method for producing reference segments describing voice modules and method for modelling voice units of a spoken test model | |
DE69723930T2 (en) | Method and device for speech synthesis and data carriers therefor | |
EP1078354B1 (en) | Method and device for determining spectral voice characteristics in a spoken expression | |
DE69425591T2 (en) | Training procedure for a speech recognizer | |
DE69607928T2 (en) | METHOD AND DEVICE FOR PROVIDING AND USING DIPHONES FOR MULTI-LANGUAGE TEXT-BY-LANGUAGE SYSTEMS | |
DE69715343T2 (en) | Distance calculation for use in a speech recognizer | |
EP1062659B1 (en) | Method and device for processing a sound signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FR GB NL |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7G 10L 13/06 A |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010904 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB NL |
|
REF | Corresponds to: |
Ref document number: 214831 Country of ref document: AT Date of ref document: 20020415 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020424 Year of fee payment: 4 |
|
REF | Corresponds to: |
Ref document number: 59901018 Country of ref document: DE Date of ref document: 20020425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020523 Year of fee payment: 4 Ref country code: BE Payment date: 20020523 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020528 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020722 Year of fee payment: 4 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2175988 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20021223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030503 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20030531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030505 |