EP1076727B1 - Revetement de liaison multicouche pour systeme de revetement a barriere thermique et procede y relatif - Google Patents
Revetement de liaison multicouche pour systeme de revetement a barriere thermique et procede y relatif Download PDFInfo
- Publication number
- EP1076727B1 EP1076727B1 EP99908549A EP99908549A EP1076727B1 EP 1076727 B1 EP1076727 B1 EP 1076727B1 EP 99908549 A EP99908549 A EP 99908549A EP 99908549 A EP99908549 A EP 99908549A EP 1076727 B1 EP1076727 B1 EP 1076727B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bond coat
- particles
- coat layer
- metallic powder
- bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/325—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
Definitions
- the present invention relates to protective coatings for components exposed to high temperatures, such as components of a gas turbine engine. More particularly, this invention is directed to a process for forming a bond coat of a thermal barrier coating system, and specifically a dense multilayer bond coat having a desirable level of surface roughness to promote mechanical interlocking between the bond coat and a thermal barrier coating deposited on the bond coat.
- the operating environment within a gas turbine engine is both thermally and chemically hostile.
- Significant advances in high temperature alloys have been achieved through the formulation of iron, nickel and cobalt-base superalloys though components formed from such alloys often cannot withstand long service exposures if located in certain high-temperature sections of a gas turbine engine, such as the turbine, combustor or augmentor. Examples of such components include buckets and nozzles in the turbine section of a gas turbine engine.
- a common solution is to protect the surfaces of such components with an environmental coating system, such as an aluminide coating, an overlay coating or a thermal barrier coating (TBC) system.
- TBC thermal barrier coating
- the latter includes a layer of thermal-insulating ceramic (thermal barrier coating, or TBC) adhered to the superalloy substrate with an environmentally-resistant bond coat.
- Metal oxides such as zirconia (ZrO 2 ) that is partially or fully stabilized by yttria (Y 2 O 3 ), magnesia (MgO) or another oxide, have been widely employed as the material for the thermal-insulating ceramic layer.
- the ceramic layer is typically deposited by air plasma spray (APS), vacuum plasma spray (VPS) (also called low pressure plasma spray (LPPS)), or a physical vapor deposition (PVD) technique, such as electron beam physical vapor deposition (EBPVD) which yields a strain-tolerant columnar grain structure.
- APS is often preferred over other deposition processes because of low equipment cost and ease of application and masking.
- the adhesion mechanism for plasma-sprayed ceramic layers is by mechanical interlocking with a bond coat having a relatively rough surface, preferably about 350 microinches to about 750 microinches (about 9 to about 19 ⁇ m) Ra.
- Bond coats are typically formed from an oxidation-resistant alloy such as MCrAlY where M is iron, cobalt and/or nickel, or from a diffusion aluminide or platinum aluminide that forms an oxidation-resistant intermetallic, or a combination of both. Bond coats formed from such compositions protect the underlying superalloy substrate by forming an oxidation barrier for the underlying superalloy substrate.
- the aluminum content of these bond coat materials provides for the slow growth of a dense adherent aluminum oxide layer (alumina scale) at elevated temperatures. This oxide scale protects the bond coat from oxidation and enhances bonding between the ceramic layer and bond coat.
- bond coats are typically applied by thermal spraying, e.g., APS, VPS and high velocity oxy-fuel (HVOF) techniques, all of which entail deposition of the bond coat from a metal powder.
- thermal spraying e.g., APS, VPS and high velocity oxy-fuel (HVOF) techniques, all of which entail deposition of the bond coat from a metal powder.
- the structure and physical properties of such bond coats are highly dependent on the process and equipment by which they are deposited. Little oxidation of the metal particles occurs during deposition by VPS methods, such that the resulting bond coats are dense and free of oxides, and therefore are protective at high temperatures (e.g., above 1000°C (about 1800°F)) because of their ability to grow a continuous protective oxide scale.
- VPS processes typically employ powders having a very fine particle size distribution, with the result that as-sprayed VPS bond coats are dense but have relatively smooth surfaces (typically 200 to 350 microinches (about 4 to about 9 ⁇ m)) Ra. Consequently, plasma-sprayed ceramic layers do not adhere well to VPS bond coats.
- air plasma possesses a higher heat capacity in the presence of air.
- the higher heat capacity of the APS process enables the melting of relatively large particles, permitting the use of metal powders that yield bond coats having a rougher surface than is possible with VPS.
- the adhesion of a ceramic layer to an APS bond coat is enhanced by the rough APS bond coat surface, e.g., in the 350 to 750 microinch (about 9 to about 19 ⁇ m) Ra range suitable for plasma-sprayed ceramic layers.
- the particle size distribution of such powders is Gaussian as a result of the sieving process, and is typically broad in order to provide finer particles that fill the interstices between larger particles to reduce porosity.
- Bond coats deposited by HVOF techniques are very sensitive to particle size distribution of the powder because of the relatively low spray temperature of the HVOF process. Accordingly, HVOF process parameters are adjusted to spray powders having a very narrow range of particle size distribution.
- a coarse powder must be used in an HVOF process.
- the resulting bond coat typically exhibits relatively high porosity and poor bonding between sprayed particles.
- a finer powder must typically be used, with the result that a thermal barrier coating does not adhere well to the bond coat due to the bond coat lacking surface features that provide micro-roughness.
- a bond coat for a thermal barrier coating (TBC) system for components designed for use in a hostile thermal environment, such as turbine buckets and nozzles, combustor components, and augmentor components of a gas turbine engine. Also provided is a method of depositing the bond coat, which produces an adequate surface roughness for adhering a plasma-sprayed ceramic layer while also producing a bond coat that is sufficiently dense to inhibit diffusion of oxygen and other oxidizing agents to the component substrate. Consequently, bond coats produced by the method of this invention are protective and yield thermal barrier coating systems that are highly resistant to spallation.
- TBC thermal barrier coating
- the method generally entails forming a bond coat by depositing a first bond coat layer on a suitable substrate using a HVOF technique employing a first metallic powder having a maximum particle size of 55 micrometers, a suitable range being about 20 to 55 ⁇ m.
- the resulting bond coat layer has a surface roughness of about 200 to about 450 microinches (about 5 to about 11 ⁇ m) Ra.
- the first bond coat layer Prior to exposure to a high-temperature oxidizing environment, the first bond coat layer is heat treated in a vacuum or inert atmosphere to densify the first bond coat layer and diffusion bond the particles.
- a second bond coat layer is then deposited on the first bond coat layer by air plasma spraying a second metallic powder of particles having a size of from about 35 to about 110 micrometers.
- the particles are deposited to cause the second bond coat layer to have a porosity of less than 5% of theoretical density and a macro-surface roughness of about 450 to about 750 microinches (about 11 to about 19 ⁇ m) Ra.
- the first and second bond coat layers Prior to exposure to a high-temperature oxidizing environment, the first and second bond coat layers are heat treated in a vacuum or inert atmosphere to diffusion bond the second bond coat layer to the first bond coat layer. Thereafter, a thermal-insulating ceramic layer can be deposited that adheres to the bond coat through mechanical interlocking with the rough surface of the second bond coat layer.
- the surface roughness of the resulting bi-layer bond coat is attributable to particles of the second metallic powder being incompletely melted during deposition, yielding a macro-surface roughness of at least about 11 ⁇ m (450 microinches) Ra.
- the finer particles of the second metallic powder fill the interstices between the larger particles to a degree sufficient to achieve a density of at least about 95% of theoretical.
- the finer particles of the second metallic powder also contribute to the micro-surface roughness of the bond coat, which has been determined to greatly enhance the adhesion of the thermal barrier coating when combined with the macro-surface roughness provided by the coarser particles.
- the method of this invention produces a low-porosity bond coat having a surface roughness necessary for a plasma-sprayed ceramic layer of a thermal barrier coating system. Accordingly, bond coats produced by the present invention are able to adhere plasma-sprayed ceramic layers, such that the thermal barrier coating system exhibits a desirable level of spallation resistance while inhibiting oxidation of the underlying substrate.
- the present invention is generally applicable to metal components that are protected from a thermally and chemically hostile environment by a thermal barrier coating (TBC) system.
- TBC thermal barrier coating
- Notable examples of such components include the nigh and low pressure turbine nozzles and blades, shrouds, combustor liners and augmentor hardware of gas turbine engines, and buckets of industrial turbine engines. While the advantages of this invention are particularly applicable to turbine engine components, the teachings of this invention are generally applicable to any component on which a thermal barrier may be used to thermally insulate the component from its environment.
- FIG. 1 A partial cross-section of a turbine engine component 10 having a thermal barrier coating system 14 in accordance with this invention is represented in Figure 1.
- the coating system 14 is shown as including a thermal-insulating ceramic layer 18 bonded to a substrate 12 with a bi-layer bond coat 16.
- the substrate 12 may be formed of an iron, nickel or cobalt-base superalloy, though it is foreseeable that other high temperature materials could be used.
- the ceramic layer 18 is deposited by plasma spraying techniques, such as air plasma spraying (APS) and vacuum plasma spraying (VPS), the latter of which is also known as low pressure plasma spraying (LPPS).
- APS air plasma spraying
- VPS vacuum plasma spraying
- a preferred material for the ceramic layer 18 is an yttria-stabilized zirconia (YSZ), though other ceramic materials could be used, including yttria, partially stabilized zirconia, or zirconia stabilized by other oxides, such as magnesia (MgO), ceria (CeO 2 ) or scandia (Sc 2 O 3 ).
- YSZ yttria-stabilized zirconia
- MgO magnesia
- CeO 2 ceria
- Sc 2 O 3 scandia
- the bond coat 16 must be oxidation-resistant so as to protect the underlying substrate 12 from oxidation and to enable the plasma-sprayed ceramic layer 18 to more tenaciously adhere to the substrate 12. In addition, the bond coat 16 must be sufficiently dense to inhibit the diffusion of oxygen and other oxidizing agents to the substrate 12. Prior to or during deposition of the ceramic layer 18, an alumina (Al 2 O 3 ) scale (not shown) may be formed on the surface of the bond coat 16 by exposure to elevated temperatures, providing a surface to which the ceramic layer 18 tenaciously adheres.
- the bond coat 16 preferably contains alumina- and/or chromia-formers, i.e., aluminum, chromium and their alloys and intermetallics.
- Preferred bond coat materials include MCrAl and MCrAlY, where M is iron, cobalt and/or nickel.
- the bond coat 16 must have a sufficiently rough surface, preferably at least 350 microinches (about 9 ⁇ m) Ra in order to mechanically interlock the ceramic layer 18 to the bond coat 16.
- the present invention produces the bond coat 16 to have sufficient density and surface roughness by depositing a first bond coat layer 16a using a high velocity oxy-fuel (HVOF) process and a relatively fine powder having a relatively narrow particle size distribution, followed by a second bond coat layer 16b deposited by air plasma spraying (APS) and using a coarser powder having a relatively broader particle size distribution.
- HVOF high velocity oxy-fuel
- APS air plasma spraying
- prior art HVOF bond coats are typically either too smooth to adequately adhere a plasma-sprayed bond coat, or have adequate surface roughness but at the expense of lower coating density and poor integrity, while prior art APS bond coats can be deposited to have adequate surface roughness but undesirably high porosity, e.g., less than 95% of theoretical density.
- the present invention provides a dense multilayer bond coat 16 having desirable surface roughness, e.g., at least 9 ⁇ m (350 microinches) Ra.
- the HVOF and APS processes of this invention require the use of two metal powders with different particle size distributions.
- At least the second bond coat layer 16b, and preferably both bond coat layers 16a and 16b are formed of an oxide scale-forming metal composition, such as an aluminum-containing intermetallic, chromium-containing intermetallic, MCrAl, MCrAlY, or a combination thereof.
- a particularly suitable composition for both bond coat layers 16a and 16b has a nominal composition, in weight percent, of about 22% chromium, about 10% aluminum, about 1% yttrium, the balance nickel and incidental impurities.
- the HVOF bond coat layer 16a provides a very dense barrier to oxidation as a result of the fine powder having a narrow particle size distribution range, while the second layer 16b has a desirable micro-surface roughness and macro-surface roughness attributable to the finer and coarser particles, respectively, present in the powder used with the APS process.
- the resulting combination of micro- and macro-roughness has been found to promote the mechanical interlocking capability of the bond coat 16 with the subsequently-applied ceramic layer 18.
- the powder for the HVOF process has a maximum particle size of about 55 ⁇ m.
- a preferred particle size distribution is, in weight percent, about 19% particles from 44 to 55 ⁇ m, about 42% particles from 31 to 44 ⁇ m, about 31 % particles from 22 to 31 ⁇ m, and about 5% particles from 16 to 22 ⁇ m.
- Preferred parameters include a spray rate of about three to eight pounds (about 1.4 to 3.6 kg) per hour, a spray distance of about five to twelve inches (about 0.13 to 0.30 meter), a fuel gas mixture of oxygen, hydrogen and nitrogen, and a maximum surface temperature of about 350° F (about 175°C).
- the powder for the APS process preferably has a particle size range of about 35 to 110 ⁇ m.
- a preferred particle size distribution is, in weight percent, about 5% particles from 75 to 90 ⁇ m, about 25% particles from 63 to 75 ⁇ m, about 50% particles from 53 to 63 ⁇ m, about 15% particles from 45 to 53 ⁇ m, and about 5% particles from 38 to 45 ⁇ m.
- Preferred parameters include a spray rate of about twenty to sixty grams per minute, a spray distance of about three to six inches (about 0.08 to 0.15 meter), and a current level of about 350 to 650 amps using a gas mixture of hydrogen and nitrogen.
- a suitable thickness for the HVOF bond coat layer 16a is about 100 to about 300 micrometers.
- the HVOF process and powder described above produce a bond coat layer 16a having a surface roughness of about 200 to about 450 microinches (about 5 to about 11 ⁇ m) Ra and a density of at least about 99% of theoretical.
- the bond coat layer 16a Prior to exposure to a high-temperature oxidizing environment, the bond coat layer 16a is heat treated to diffusion bond the powder particles and densify the bond coat layer 16a.
- the heat treatment also preferably diffusion bonds the layer 16a to the substrate 12.
- a preferred treatment is a temperature of about 950°C to about 1150°C and a duration of about one to about six hours in a vacuum or inert atmosphere.
- the bond coat layer 16a is also preferably degreased to remove all dirt, grease and other potential contaminants.
- the APS bond coat layer 16b is then deposited on the HVOF bond coat layer 16a using the above-described process and powder.
- the preferred APS powder described above contains a sufficient amount of coarser particles to produce an adequate surface macro-roughness for the bond coat 16, and a sufficient amount of finer particles to yield an adequate surface micro-roughness for adhesion of the ceramic layer 18 and also fill the interstices between the coarser particles to increase the density of the APS bond coat layer 16b.
- the resulting bond coat 16 has a surface roughness of about 350 microinches to about 750 microinches (about 9 to about 19 ⁇ m) Ra.
- the bond coat layer 16b Prior to exposure to a high-temperature oxidizing environment, the bond coat layer 16b is also subjected to a heat treatment sufficient to diffusion bond the APS bond coat layer 16b to the HVOF bond coat layer 16a.
- a preferred treatment is a temperature of about 950°C to about 1150°C and a duration of about one to about six hours in a vacuum or inert atmosphere, and yields a coating density of at least about 95% of theoretical (i.e., porosity of not more than 5%).
- a suitable thickness for the APS bond coat layer 16b is about 100 to about 300 micrometers.
- the substrate material for all specimens was a nickel-base superalloy having a nominal composition, in weight percent, of 14 Cr, 9.5 Co, 3 Al, 4.9 Ti, 1.5 Mo, 3.8 W, 2.8 Ta, 0.010 C, balance Ni and incidental impurities.
- the bond coat composition for all specimens was the NiCrAlY material described above, having a nominal composition, in weight percent, of about 22% chromium, about 10% aluminum, about 1% yttrium, the balance nickel and incidental impurities.
- the HVOF and APS bond coat layers of this invention were deposited from powders having the preferred particle size distributions stated above, while the powder deposited by VPS had a particle size range of about 10 to about 90 ⁇ m.
- the HVOF process parameters included a hydrogen gas flow of about 45.31 m 3 per hour (1600 standard cubic feet per hour (scfh)), an oxygen gas flow of about 12.7 m 3 per hour (450 scfh) a nitrogen gas flow of about 22.7 m 3 per hour (800 scfh), and a carrier (nitrogen) gas flow of about 0.85 m 3 per hour (30 scfh).
- the APS process parameters included a nitrogen gas flow of about 3.54 m 3 per hour (125 scfh), a hydrogen gas flow of about 0.25 m 3 per hour (9 scfh), and a carrier (nitrogen) gas flow of about 0.57 m 3 per hour (20 scfh) (two injectors, 0.28 m 3 per hour (10 scfh) per injector).
- the HVOF and APS bond coat layers had thicknesses of about 200 and about 100 ⁇ m, respectively, while the VPS bond coats had thicknesses of about 300 ⁇ m. All specimens were heat treated at about 1080°C for a duration of about four hours in a vacuum after each deposition step.
- the bond coats of this invention were characterized by a surface roughness of about 11 to 15 ⁇ m (450 to 600 microinches) Ra and a density (APS layer) of about 98% of theoretical, while the VPS bond coats were characterized by a surface roughness of about 11 to 15 ⁇ m (450 to 600 microinches) Ra and a density of about 99% of theoretical.
- furnace testing was performed. Some of the specimens were subjected to thermal cycle testing that consisted of 45 minute cycles at about 2000 F (about 1095°C) over a 20-hour period, by which spallation resistance of the ceramic layer was evidenced by the number of thermal cycles survived before spallation. A second test entailed subjecting specimens to 2000°F (1095°C) for 1000 hours, by which depletion of aluminum in the substrate was determined by post-test examination. The results of the furnace tests are summarized below. Cycles to 1000 hrs. Specimens Spallation @2000°F (1095°C) HVOF/APS bond coat 65 6% VPS bond coat 58 0
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Claims (22)
- Procédé de dépôt d'un revêtement de liaison 16 à deux couches d'un système de revêtement 14 constituant une barrière thermique, qui comprend les étapes consistant à :prendre un support en superalliage 12,déposer une première couche 16a de revêtement de liaison sur le support 12 par une technique « oxy-fuel » à grande vitesse, en utilisant une première poudre métallique dont les particules ont une taille maximale de 55 µm, la première couche 16a de revêtement de liaison présentant une rugosité de surface Ra d'environ 5 à environ 10 µm (200 à environ 400 micropouces),soumettre la première couche 16a de revêtement de liaison, avant l'exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, pour densifier la première couche 16a de revêtement de liaison et lier par diffusion les particules de la première poudre métallique,déposer une seconde couche 16b de revêtement de liaison sur la première couche 16a de revêtement de liaison, en pulvérisant par un procédé plasma-air une seconde poudre métallique dont les particules ont une taille allant d'environ 35 à environ 110 µm, la seconde couche 16b de revêtement de liaison ayant une porosité inférieure à 5 % et présentant une rugosité de surface Ra d'environ 11 à environ 19 µm (450 à environ 750 micropouces) qui est attribuable aux particules plus grosses de la seconde poudre métallique, etsoumettre la première couche 16a et la seconde couche 16b de revêtement de liaison, avant l'exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, pour lier par diffusion la seconde couche 16b de revêtement de liaison à la première couche 16a de revêtement de liaison.
- Procédé selon la revendication 1, dans lequel la première poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Procédé selon la revendication 1, dans lequel la seconde poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Procédé selon la revendication 1, dans lequel la première poudre métallique et la seconde poudre métallique sont constituées de compositions métalliques formant des écailles d'oxyde, choisies parmi les composés intermétalliques contenant de l'aluminium, les composés intermétalliques contenant du chrome, MCrAl où M représente le fer, le nickel et/ou le cobalt, MCrAlY où M représente le fer, le nickel et/ou le cobalt, et leurs combinaisons.
- Procédé selon la revendication 1, dans lequel la première poudre métallique est une poudre présentant la distribution suivante des tailles des particules, en pourcentages en poids : environ 19 % de particules ayant une taille de 44 à 55 µm, environ 42 % de particules ayant une taille de 31 à 44 µm, environ 31 % de particules ayant une taille de 22 à 31 µm, et environ 5 % de particules ayant une taille de 16 à 22 µm,
et dans lequel la seconde poudre métallique est une poudre présentant la distribution suivante des tailles des particules, en pourcentages en poids : environ 5 % de particules ayant une taille de 75 à 90 µm, environ 25 % de particules ayant une taille de 63 à 75 µm, environ 50 % de particules ayant une taille de 53 à 63 µm, environ 15 % de particules ayant une taille de 45 à 53 µm, et environ 5 % de particules ayant une taille de 38 à 45 µm. - Procédé selon la revendication 1, qui comprend en outre une étape de dégraissage de la première couche 16a de revêtement de liaison avant le dépôt de la seconde couche 16b de revêtement de liaison.
- Procédé selon la revendication 1, dans lequel l'étape de traitement thermique de la première couche 16a de revêtement de liaison provoque la liaison par diffusion de la première poudre métallique au support 12.
- Procédé selon la revendication 1, qui comprend en outre une étape de dépôt d'une couche thermiquement isolante 18 sur la seconde couche 16b de revêtement de liaison.
- Procédé selon la revendication 1, dans lequel le support 12 est constitué d'un superalliage à base de nickel.
- Procédé de dépôt d'un système de revêtement 14 constituant une barrière thermique, qui comprend les étapes consistant à :prendre un support 12 en superalliage à base de nickel,déposer une première couche 16a de revêtement de liaison sur le support 12 par une technique « oxy-fuel » à grande vitesse (dite HVOF), en utilisant une première poudre métallique dont les particules ont une taille d'environ 20 à environ 55 µm, la première couche 16a de revêtement de liaison présentant une rugosité de surface Ra d'environ 5 à environ 10 µm (200 à environ 400 micropouces),soumettre la première couche 16a de revêtement de liaison, avant l'exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, pour densifier la première couche 16a de revêtement de liaison, lier par diffusion les particules de la première poudre métallique, et lier par diffusion la première poudre métallique au support 12,déposer une seconde couche 16b de revêtement de liaison sur la première couche 16a de revêtement de liaison en pulvérisant par un procédé plasma-air une seconde poudre métallique dont les particules ont une taille d'environ 35 à environ 110 µm, la seconde couche 16b de revêtement de liaison ayant une porosité inférieure à 5 % et présentant une rugosité de surface Ra d'environ 11 à environ 19 µm (450 à environ 750 micropouces) qui est attribuable aux particules plus grosses de la seconde poudre métallique,soumettre la première couche 16a et la seconde couche 16b de revêtement de liaison, avant l'exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, pour lier par diffusion la seconde couche 16b de revêtement de liaison à la première couche 16a de revêtement de liaison, etdéposer une couche thermiquement isolante 18 sur la seconde couche 16b de revêtement de liaison par pulvérisation par un procédé plasma-air.
- Procédé selon la revendication 10, dans lequel la première poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Procédé selon la revendication 10, dans lequel la seconde poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Procédé selon la revendication 10, dans lequel la première poudre métallique et la seconde poudre métallique sont constituées de compositions métalliques formant des écailles d'oxyde, choisies parmi les composés intermétalliques contenant de l'aluminium, les composés intermétalliques contenant du chrome, MCrAl, MCrAlY, et leurs combinaisons.
- Procédé selon la revendication 10, dans lequel la première poudre métallique et la seconde poudre métallique sont des poudres ayant la composition nominale suivante, en pourcentages en poids : environ 22 % de chrome, environ 10 % d'aluminium, environ 1 % d'yttrium, le complément étant constitué de nickel et d'impuretés accidentelles.
- Procédé selon la revendication 10, qui comprend en outre une étape de dégraissage de la première couche 16a de revêtement de liaison avant le dépôt de la seconde couche 16b de revêtement de liaison.
- Procédé selon la revendication 10, dans lequel le support 12 est constitué d'un superalliage à base de nickel, ayant la composition nominale suivante, en pourcentages en poids : 14 % de Cr, 9,5 % de Co, 3 % de Al, 4,9 % de Ti, 1,5 % de Mo, 3,8 % de W, 2,8 % de Ta, 0,010 % de C, le complément étant constitué de Ni et d'impuretés accidentelles.
- Procédé de dépôt d'un système de revêtement 14 constituant une barrière thermique, qui comprend les étapes consistant à :prendre un support 12 en superalliage à base de nickel,déposer une première couche 16a de revêtement de liaison sur le support 12 par une technique HVOF, en utilisant une première poudre métallique ayant une distribution des tailles des particules comprenant, en pourcentages en poids, environ 19 % de particules ayant une taille de 44 à 55 µm, environ 42 % de particules ayant une taille de 31 à 44 µm, environ 31 % de particules ayant une taille de 22 à 31 µm, et environ 5 % de particules ayant une taille de 16 à 22 µm, la première poudre métallique étant constituée d'une composition métallique formant des écailles d'oxyde, choisie parmi les composés intermétalliques contenant de l'aluminium, les composés intermétalliques contenant du chrome, MCrAI, MCrAlY, et leurs combinaisons, et la première couche 16a de revêtement de liaison présentant une rugosité de surface Ra d'environ 5 à environ 10 µm (200 à 400 micropouces),soumettre la première couche 16a de revêtement de liaison, avant exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, à une température d'environ 950 °C à environ 1150 °C, pendant une durée d'environ une à environ six heures, pour réduire la porosité de la première couche 16a de revêtement de liaison et l'amener à une valeur inférieure à 1 %, lier par diffusion les particules de la première poudre métallique, et lier par diffusion la première poudre métallique au support 12,dégraisser la première couche 16a de revêtement de liaison,déposer une seconde couche 16b de revêtement de liaison sur la première couche 16a de revêtement de liaison en pulvérisant par un procédé plasma-air une seconde poudre métallique ayant une distribution des tailles des particules comprenant, en pourcentages en poids, environ 5 % de particules ayant une taille de 75 à 90 µm, environ 25 % de particules ayant une taille de 63 à 75 µm, environ 50 % de particules ayant une taille de 53 à 63 µm, environ 15 % de particules ayant une taille de 45 à 53 µm, et environ 5 % de particules ayant une taille de 38 à 45 µm, la seconde poudre métallique étant constituée d'une composition métallique formant des écailles d'oxyde, choisie parmi les composés intermétalliques contenant de l'aluminium, les composés intermétalliques contenant du chrome, MCrAl, MCrAlY, et leurs combinaisons, et la seconde couche 16b de revêtement de liaison ayant une porosité inférieure à 5 % et présentant une rugosité de surface Ra d'environ 11 à environ 19 µm (450 à environ 750 micropouces) qui est attribuable aux particules plus grosses de la seconde poudre métallique, soumettre la première couche 16a et la seconde couche 16b de revêtement de liaison, avant l'exposition à un environnement oxydant à haute température, à un traitement thermique dans le vide ou dans une atmosphère inerte, à une température d'environ 950 °C à environ 1150 °C, pendant une durée d'environ une à environ 6 heures, pour lier par diffusion la seconde couche 16b de revêtement de liaison à la première couche 16a de revêtement de liaison, etdéposer une couche thermiquement isolante 18 sur la seconde couche 16b de revêtement de liaison par pulvérisation par un procédé plasma-air.
- Revêtement de liaison 16 à deux couches, formé par le procédé selon la revendication 17, qui comprend :une première couche 16a de revêtement de liaison, utilisant une première poudre métallique dont les particules ont une taille maximale de 55 µm, la première couche 16a de revêtement de liaison présentant une rugosité de surface Ra d'environ 5 à environ 10 µm (200 à environ 400 micropouces), etune seconde couche 16b de revêtement de liaison, déposée sur la première couche 16a de revêtement de liaison et utilisant une seconde poudre métallique dont les particules ont une taille d'environ 35 à environ 110 µm, la seconde couche 16b de revêtement de liaison présentant une rugosité de surface Ra d'environ 11 à environ 19 µm (450 à environ 750 micropouces) et étant déposée par pulvérisation par un procédé plasma-air.
- Revêtement de liaison 16 à deux couches selon la revendication 18, pour lequel la première poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Revêtement de liaison 16 à deux couches selon la revendication 18, pour lequel la seconde poudre métallique est constituée d'une composition formant des écailles d'oxyde.
- Revêtement de liaison 16 à deux couches selon la revendication 18, pour lequel la première poudre métallique et la seconde poudre métallique sont constituées de compositions choisies parmi les composés intermétalliques contenant de l'aluminium, les composés intermétalliques contenant du chrome, MCrAl où M représente le fer, le nickel et/ou le cobalt, MCrAlY où M représente le fer, le nickel et/ou le cobalt, et leurs mélanges.
- Revêtement de liaison 16 à deux couches selon la revendication 18, pour lequel la première poudre métallique est une poudre ayant une distribution des tailles des particules comprenant, en pourcentages en poids, environ 19 % de particules de 44 à 55 µm, environ 42 % de particules de 31 à 44 µm, environ 31 % de particules de 22 à 31 µm, et environ 5 % de particules de 16 à 22 µm, et pour lequel la seconde poudre métallique est une poudre ayant une distribution des tailles des particules comprenant, en pourcentages en poids, environ 5 % de particules de 75 à 90 µm, environ 25 % de particules de 63 à 75 µm, environ 50 % de particules de 53 à 63 µm, environ 15 % de particules de 45 à 53 µm, et environ 5 % de particules de 38 à 45 µm.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US259649 | 1988-10-19 | ||
US7639198P | 1998-02-28 | 1998-02-28 | |
US76391P | 1998-02-28 | ||
US25964999A | 1999-02-26 | 1999-02-26 | |
PCT/US1999/004339 WO1999043861A1 (fr) | 1998-02-28 | 1999-02-26 | Revetement de liaison multicouche pour systeme de revetement a barriere thermique et procede y relatif |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1076727A1 EP1076727A1 (fr) | 2001-02-21 |
EP1076727B1 true EP1076727B1 (fr) | 2005-06-01 |
Family
ID=26758051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99908549A Expired - Lifetime EP1076727B1 (fr) | 1998-02-28 | 1999-02-26 | Revetement de liaison multicouche pour systeme de revetement a barriere thermique et procede y relatif |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1076727B1 (fr) |
CZ (1) | CZ300909B6 (fr) |
DE (1) | DE69925590T2 (fr) |
WO (1) | WO1999043861A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722144B2 (en) | 2002-08-02 | 2014-05-13 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating method, masking pin and combustor transition piece |
DE102016002630A1 (de) | 2016-03-07 | 2017-09-07 | Forschungszentrum Jülich GmbH | Haftvermittlerschicht zur Anbindung einer Hochtemperaturschutzschicht auf einem Substrat, sowie Verfahren zur Herstellung derselben |
CN107740024A (zh) * | 2017-09-28 | 2018-02-27 | 中国航发动力股份有限公司 | 高温可磨耗涂层及其制备工艺 |
CN110835755A (zh) * | 2019-11-12 | 2020-02-25 | 中北大学 | 一种核用锆合金涂层的制备方法 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6368672B1 (en) * | 1999-09-28 | 2002-04-09 | General Electric Company | Method for forming a thermal barrier coating system of a turbine engine component |
EP1292721A2 (fr) * | 2000-06-08 | 2003-03-19 | Surface Engineered Products Corporation | Systeme de revetement pour acier refractaire inoxydable |
EP1260608A1 (fr) * | 2001-05-25 | 2002-11-27 | ALSTOM (Switzerland) Ltd | Procédé pour la déposition d'un couche de liaison à base de MCrAlY |
EP1327702A1 (fr) * | 2002-01-10 | 2003-07-16 | ALSTOM (Switzerland) Ltd | Revêtement de liaison de type MCrAlY et procédé de depôt de ce revêtement de liason de type MCrAlY |
CN100360701C (zh) * | 2002-02-28 | 2008-01-09 | 肯桑特拉控股股份公司 | 活塞环的热喷涂 |
WO2003072844A1 (fr) * | 2002-02-28 | 2003-09-04 | Man B & W Diesel A/S | Pulverisation thermique d'une partie d'une machine |
DE10332938B4 (de) * | 2003-07-19 | 2016-12-29 | General Electric Technology Gmbh | Thermisch belastetes Bauteil einer Gasturbine |
ITRM20030602A1 (it) * | 2003-12-24 | 2005-06-25 | Ct Sviluppo Materiali Spa | Procedimento di produzione di rivestimento multistrato |
JP4607530B2 (ja) | 2004-09-28 | 2011-01-05 | 株式会社日立製作所 | 遮熱被覆を有する耐熱部材およびガスタービン |
DE102005053531A1 (de) * | 2005-11-08 | 2007-05-10 | Man Turbo Ag | Wärmedämmende Schutzschicht für ein Bauteil innerhalb des Heißgasbereiches einer Gasturbine |
EP1845171B1 (fr) | 2006-04-10 | 2016-12-14 | Siemens Aktiengesellschaft | Utilisation de poudres métalliques ayant des particles de taille diverse pour fabriquer un système de couches |
DE102006040360A1 (de) * | 2006-08-29 | 2008-03-06 | FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH | Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit |
CN101139470B (zh) * | 2006-09-07 | 2012-04-18 | 梯西艾燃气轮机材料技术(上海)有限公司 | 一种燃气轮机热通道部件高温合金涂料 |
US8053089B2 (en) | 2009-09-30 | 2011-11-08 | General Electric Company | Single layer bond coat and method of application |
DE102010017859B4 (de) * | 2010-04-22 | 2012-05-31 | Mtu Aero Engines Gmbh | Verfahren zum Bearbeiten einer Oberfläche eines Bauteils |
US9428650B2 (en) | 2012-12-11 | 2016-08-30 | General Electric Company | Environmental barrier coatings and methods therefor |
EP2743369A1 (fr) | 2012-12-11 | 2014-06-18 | Siemens Aktiengesellschaft | Système de revêtement, procédé de revêtement d'un substrat et composant de turbine à gaz |
ITPR20130041A1 (it) * | 2013-05-10 | 2014-11-11 | Turbocoating S P A | Processo per prolungare la durata di rivestimenti mcraly di parti metalliche di turbine a gas |
US9561986B2 (en) | 2013-10-31 | 2017-02-07 | General Electric Company | Silica-forming articles having engineered surfaces to enhance resistance to creep sliding under high-temperature loading |
US9151175B2 (en) | 2014-02-25 | 2015-10-06 | Siemens Aktiengesellschaft | Turbine abradable layer with progressive wear zone multi level ridge arrays |
US9243511B2 (en) | 2014-02-25 | 2016-01-26 | Siemens Aktiengesellschaft | Turbine abradable layer with zig zag groove pattern |
US8939706B1 (en) | 2014-02-25 | 2015-01-27 | Siemens Energy, Inc. | Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface |
WO2015130521A2 (fr) | 2014-02-25 | 2015-09-03 | Siemens Aktiengesellschaft | Trou de refroidissement de pièce de turbine à l'intérieur d'un élément de microsurface qui protège un revêtement attenant formant une barrière thermique |
WO2016133982A1 (fr) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Formation de passages de refroidissement dans des composants en superalliage de turbine à combustion recouverts d'isolant thermique |
WO2016133581A1 (fr) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Carénage de turbine à couche abradable ayant des arêtes et rainures composites non fléchies à trois angles |
US20170122561A1 (en) * | 2015-10-28 | 2017-05-04 | General Electric Company | Methods of repairing a thermal barrier coating of a gas turbine component and the resulting components |
US20170122560A1 (en) * | 2015-10-28 | 2017-05-04 | General Electric Company | Gas turbine component with improved thermal barrier coating system |
EP3461925A1 (fr) * | 2017-09-29 | 2019-04-03 | General Electric Technology GmbH | Procédé de fabrication d'un revêtement |
US11142818B1 (en) * | 2020-09-14 | 2021-10-12 | Honeywell International Inc. | Grit-blasted and densified bond coat for thermal barrier coating and method of manufacturing the same |
CN114182191B (zh) * | 2021-12-09 | 2023-12-08 | 上海电气燃气轮机有限公司 | 一种热障涂层及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4095003A (en) * | 1976-09-09 | 1978-06-13 | Union Carbide Corporation | Duplex coating for thermal and corrosion protection |
US5236745A (en) * | 1991-09-13 | 1993-08-17 | General Electric Company | Method for increasing the cyclic spallation life of a thermal barrier coating |
JPH05263212A (ja) * | 1992-03-16 | 1993-10-12 | Toshiba Corp | 耐熱被覆 |
US5579534A (en) * | 1994-05-23 | 1996-11-26 | Kabushiki Kaisha Toshiba | Heat-resistant member |
GB9612811D0 (en) * | 1996-06-19 | 1996-08-21 | Rolls Royce Plc | A thermal barrier coating for a superalloy article and a method of application thereof |
-
1999
- 1999-02-26 CZ CZ20004537A patent/CZ300909B6/cs not_active IP Right Cessation
- 1999-02-26 EP EP99908549A patent/EP1076727B1/fr not_active Expired - Lifetime
- 1999-02-26 DE DE69925590T patent/DE69925590T2/de not_active Expired - Fee Related
- 1999-02-26 WO PCT/US1999/004339 patent/WO1999043861A1/fr active IP Right Grant
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722144B2 (en) | 2002-08-02 | 2014-05-13 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating method, masking pin and combustor transition piece |
US9051879B2 (en) | 2002-08-02 | 2015-06-09 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating method, masking pin and combustor transition piece |
DE102016002630A1 (de) | 2016-03-07 | 2017-09-07 | Forschungszentrum Jülich GmbH | Haftvermittlerschicht zur Anbindung einer Hochtemperaturschutzschicht auf einem Substrat, sowie Verfahren zur Herstellung derselben |
WO2017152891A1 (fr) | 2016-03-07 | 2017-09-14 | Forschungszentrum Jülich GmbH | Couche d'adhésif destinée à se lier à une couche de protection à haute temperature sur un substrat et procédé de production |
CN108603275A (zh) * | 2016-03-07 | 2018-09-28 | 于利奇研究中心有限公司 | 用于将高温保护层粘合在基底上的增粘剂层及其制造方法 |
CN107740024A (zh) * | 2017-09-28 | 2018-02-27 | 中国航发动力股份有限公司 | 高温可磨耗涂层及其制备工艺 |
CN107740024B (zh) * | 2017-09-28 | 2020-01-07 | 中国航发动力股份有限公司 | 高温可磨耗涂层及其制备工艺 |
CN110835755A (zh) * | 2019-11-12 | 2020-02-25 | 中北大学 | 一种核用锆合金涂层的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE69925590T2 (de) | 2006-04-27 |
EP1076727A1 (fr) | 2001-02-21 |
CZ300909B6 (cs) | 2009-09-09 |
WO1999043861A1 (fr) | 1999-09-02 |
DE69925590D1 (de) | 2005-07-07 |
CZ20004537A3 (cs) | 2002-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1076727B1 (fr) | Revetement de liaison multicouche pour systeme de revetement a barriere thermique et procede y relatif | |
EP0909831B1 (fr) | Procédé de dépôt d'une couche de liaison pour un revêtement de barrière thermique | |
US6096381A (en) | Process for densifying and promoting inter-particle bonding of a bond coat for a thermal barrier coating | |
US7150921B2 (en) | Bi-layer HVOF coating with controlled porosity for use in thermal barrier coatings | |
US5866271A (en) | Method for bonding thermal barrier coatings to superalloy substrates | |
US9034479B2 (en) | Thermal barrier coating systems and processes therefor | |
US6255001B1 (en) | Bond coat for a thermal barrier coating system and method therefor | |
EP1829984B1 (fr) | Procédé de fabrication d'un revêtement de barrière thermique à forte densité | |
US6274201B1 (en) | Protective coatings for metal-based substrates, and related processes | |
US9023486B2 (en) | Thermal barrier coating systems and processes therefor | |
EP1591550B2 (fr) | Revêtement thermique ayant une couche d'interface pour une haute résistance à l'écaillage et basse conductivité thermique | |
US6306515B1 (en) | Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers | |
US6562483B2 (en) | Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings | |
EP1088909B1 (fr) | Système de revêtement formant barrière thermique pour élément de moteur à turbine | |
EP2305852B1 (fr) | Procédé de fabrication d'une couche de liaison de couche simple. | |
EP2108715A2 (fr) | Système de revêtement de barrière thermique et procédés de revêtement pour plateau de moteur de turbine à gaz | |
EP0969117A2 (fr) | Procédé pour la production d'un système de revêtement de barrière thermique | |
EP2947173B1 (fr) | Revêtement à barrière thermique résistante en aluminosilicate de calcium magnésium (cmas) et procédé de revêtement correspondant | |
EP1074637B1 (fr) | Procédé pour la production d'un revêtement de barrière thermique par dépôt physique en phase vapeur par faisceaux d'électrons | |
Feuerstein et al. | Thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD-A technical and economic comparison | |
Feuerstein et al. | Process and Equipment for Advanced Thermal Barrier Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 20020326 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SERVOPATENT GMBH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69925590 Country of ref document: DE Date of ref document: 20050707 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060302 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GENERAL ELECTRIC COMPANY Free format text: GENERAL ELECTRIC COMPANY#1 RIVER ROAD#SCHENECTADY, NY 12345 (US) -TRANSFER TO- GENERAL ELECTRIC COMPANY#1 RIVER ROAD#SCHENECTADY, NY 12345 (US) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090227 Year of fee payment: 11 Ref country code: CH Payment date: 20090225 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090227 Year of fee payment: 11 Ref country code: DE Payment date: 20090331 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100224 Year of fee payment: 12 Ref country code: FR Payment date: 20100303 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100227 |