EP1073843B1 - Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement - Google Patents

Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement Download PDF

Info

Publication number
EP1073843B1
EP1073843B1 EP99926255A EP99926255A EP1073843B1 EP 1073843 B1 EP1073843 B1 EP 1073843B1 EP 99926255 A EP99926255 A EP 99926255A EP 99926255 A EP99926255 A EP 99926255A EP 1073843 B1 EP1073843 B1 EP 1073843B1
Authority
EP
European Patent Office
Prior art keywords
ignition
spark
cylinder
produced
ion current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99926255A
Other languages
German (de)
French (fr)
Other versions
EP1073843A1 (en
Inventor
Markus Ketterer
Klaus-Jürgen WALD
Achim GÜNTHER
Jüergen FOERSTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1073843A1 publication Critical patent/EP1073843A1/en
Application granted granted Critical
Publication of EP1073843B1 publication Critical patent/EP1073843B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start

Definitions

  • Modern internal combustion engines are operated by means of an ECU (Electronic Control Unit) regulated and controlled. If the engine Injectors are then operated electrically by the ECU it is necessary to change the phase at the start of the Determine internal combustion engine.
  • the phase detection gives a 4-stroke gasoline engine, whether the piston is in the Upward movement in the compression stroke or in the discharge stroke located.
  • An ignition device is also known from US Pat. No. 5,067,462 known an ion current measurement. Based on the ion current measurement can be determined whether an ignitable in a cylinder Mixture was present or not.
  • EP 9 33 525 A1 describes a device and a method for cylinder detection in an internal combustion engine. There the success or failure of an ignition becomes primary detected.
  • the present invention relates to a method with Phase detection using an ion current measuring circuit performs.
  • the present method is illustrated in FIG. 1 using an exemplary embodiment. It uses the means 3 of the ion current measurement, by means of which the ignition, means 2, is observed. Means 2 usually serve to start the combustion process 1. If a spark arises at the spark plug and if ion current is measured on this spark plug during this time, then the spark current can be detected with the aid of means 3. The detection of an ignition spark can be used to determine the phase. According to the Paschen law, it is known that the higher the pressure between the electrodes, the higher the ignition voltage. If the engine is turned by the starter, the gas in the combustion chamber is compressed every 720 ° KW. This increase in pressure in the compressed gas, into which the fuel has not yet been injected, leads to an increased ignition voltage.
  • the difference between high and low ignition voltage can be determined by the ignition energy. If only enough energy is made available to the system that it is sufficient for ignition in the areas of low pressure, but not in the high pressure, then a distinctive feature can be formed by analyzing the spark current. If no ignition spark has jumped, then only the primary and secondary stray capacitance will be charged and in the next step the energy is fed back into the vehicle electrical system via the freewheeling diode D located in the igniter or externally. One will measure a very short ion current, which is simulated by the spark current.
  • the switch-off current provided with a sufficient signal-to-noise ratio is determined with a series of ignition sparks, so that ignition takes place safely. This adjustment may span 10 iterations. It is possible that some cylinders are currently in a compressed state. In this case the necessary energy level is incorrectly determined. At least half of the cylinders are in a sufficiently uncompressed state, so that there is still sufficient redundancy in this case as well.
  • the phase detection and ignition control is carried out continuously on all cylinders with the help of the ion current measuring circuit. After the ignition has been output, the ascertained feature value is recorded by the ECU as required and it is classified into whether the ignition has taken place or not.
  • the ion current measuring device can in any case detect a part of the spark current, and as a rule is fully controlled thereby. If an attempt is made to ignite according to the adjusted energy level, the ion current is integrated for the duration of an ignition spark, the result is recorded by a sample and hold and made available to the ECU.
  • An alternative possibility of the feature detection is to realize that the measured signal is low-pass filtered and observed with a peak value detection. The peak value is supplied to the ECU, this peak value is then compared with a threshold.
  • FIG. 3 shows an example of the signals occurring on the inductive ignition system. A distinction is made between “no ignition” and “ignition”. The following are shown: the secondary current which flows in L 2 (see FIG. 2); the ion current which is measured with the ion current measuring device and, for example, the low-pass signal of the measured ion current, which is intended to show the formation of features.
  • the ignition energy is introduced into the ignition coil via the primary side by closing the transistor.
  • the ignition transistor T is switched to high resistance and the energy in the coil now drives a current in the primary and secondary windings.
  • the current in the secondary winding is called i sec and can be seen in the first diagram.
  • the entire arrangement behaves like an LC resonant circuit with one coil each on the primary and secondary side.
  • the capacities are formed in each case by spreading and component capacities. On the secondary side, these are coil capacity, cable capacity and candle capacity.
  • the freewheeling diode D begins to conduct on the primary side and feeds the rest of the energy back into the battery. The energy is also withdrawn on the secondary side and the current flow quickly stops. Since the ion currents are very small, the signal level of the ion current measurement i ion is immediately maximally controlled. If the ion current signal i ion is low-pass filtered TP ⁇ i ion ⁇ , then only a low signal level is reached.
  • the low-pass filtered ion current signal TP ⁇ i ion ⁇ reaches a significantly higher level than the signal when the ignition has not occurred. The two cases are easy to distinguish from the ECU.
  • the core of the invention is the use of the ion current measurement for ignition spark observation and the phase detection derived therefrom. If an ion current measurement is available on a vehicle, phase detection can be installed with little additional technical effort. Since the process is based on existing resources, it is extremely cost-effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Technische AufgabeTechnical task

Moderne Verbrennungsmotoren werden mittels einer ECU (Electronic Control Unit) geregelt und gesteuert. Falls bei Motoren die Einspritzventile elektrisch durch die ECU bedient werden, dann ist es notwendig die Phasenlage beim Start des Verbrennungsmotors zu bestimmen. Die Phasenerkennung gibt bei einem 4-Takt Otto-Motor an, ob sich der Kolben bei der Aufwärtsbewegung im Verdichtungsstakt oder im Ausstoßtakt befindet.Modern internal combustion engines are operated by means of an ECU (Electronic Control Unit) regulated and controlled. If the engine Injectors are then operated electrically by the ECU it is necessary to change the phase at the start of the Determine internal combustion engine. The phase detection gives a 4-stroke gasoline engine, whether the piston is in the Upward movement in the compression stroke or in the discharge stroke located.

Stand der TechnikState of the art

Bei bekannten Systemen wird dies beispielsweise durch ein zusätzliches Geberrad auf der Nockenwelle oder durch eine Auslauferkennung gelöst.In known systems, this is done, for example, by a additional encoder wheel on the camshaft or through a Leakage detection solved.

Aus der DE 196 08 526 A1 ist bereits ein Verfahren zur Regelung einer Mindestzündenergie bekannt, bei dem eine Ionenstrommessung verwendet wird. Anhand der Ionenstrommessung wird bestimmt, ob eine Zündung erfolgte oder nicht und so eine minimale Zündenergie eingestellt. DE 196 08 526 A1 already describes a control method a minimum ignition energy known, in which an ion current measurement is used. The ion current measurement determines whether an ignition occurred or not and so a minimal one Ignition energy set.

Aus der US 5 067 462 A ist ebenfalls eine Zündeinrichtung mit einer Ionenstrommessung bekannt. Anhand der Ionenstrommessung kann bestimmt werden, ob in einem Zylinder ein zündfähiges Gemisch vorlag oder nicht.An ignition device is also known from US Pat. No. 5,067,462 known an ion current measurement. Based on the ion current measurement can be determined whether an ignitable in a cylinder Mixture was present or not.

Aus der EP 9 33 525 A1 ist eine Vorrichtung und ein Verfahren zur Zylindererkennung in einer Brennkraftmaschine bekannt. Dabei wird das Erfolgen oder Ausbleiben einer Zündung primärseitig detektiert.EP 9 33 525 A1 describes a device and a method for cylinder detection in an internal combustion engine. there the success or failure of an ignition becomes primary detected.

Beschreibung der ErfindungDescription of the invention

Gegenstand der vorliegenden Erfindung ist ein Verfahren, das mit Hilfe eines Ionenstrommeßkreises eine Phasenerkennung durchführt. The present invention relates to a method with Phase detection using an ion current measuring circuit performs.

Figuren

Figur 1:
Überblick über das Gesamtsystem
1:
Zylinder
2:
Zündsystem
3:
Mittel zur Ionenstrommessung
4:
Mittel zur Merkmalsbildung
5:
ECU (= Electronic Control Unit)
Figur 2:
Beispielhafte Ausführung
Figur 3:
Signalformen
Figur 4:
Ablaufdiagramm
characters
Figure 1:
Overview of the overall system
1:
cylinder
2:
ignition system
3:
Means for ion current measurement
4:
Means for the formation of features
5:
ECU (= Electronic Control Unit)
Figure 2:
Exemplary execution
Figure 3:
waveforms
Figure 4:
flow chart

Gegenstand der ErfindungSubject of the invention

Das vorliegende Verfahren wird anhand eines Ausfürungsbeispiels in Figur 1 dargestellt. Es nutzt das Mittel 3 der Ionenstrommessung, indem mit Hilfe dieses Mittels die Zündung, Mittel 2, beobachtet wird. Mittel 2 dient gewöhnlich zum Start des Verbrennungsprozesses 1.
Entsteht an der Zündkerze ein Zündfunke und wird an dieser Zündkerze während dieser Zeit Ionenstrom gemessen, dann kann mit Hilfe des Mittel 3 der Funkenstrom nachgewiesen werden. Der Nachweis eines Zündfunkens kann zur Ermittlung der Phase genutzt werden.
Nach dem Paschengesetz ist bekannt, daß die Zündspannung um so höher ist, je größer der Druck zwischen den Elektroden ist. Wird der Motor vom Anlasser gedreht, dann wird das Gas im Verbrennungsraum nach jeweils 720° KW verdichtet. Dieser Druckanstieg im verdichteten Gas, in das noch keine Einspritzung des Kraftstoffes erfolgte, führt zu einer erhöhten Zündspannung. Der Unterschied zwischen hoher und niedriger Zündspannung kann durch die Zündenergie bestimmt werden. Wird dem System nur soviel Energie zur Verfügung gestellt, daß es in den Bereichen niedrigen Druckes zur Zündung ausreicht, in den hohen Druckes aber nicht, dann kann durch die Analyse des Funkenstroms ein Unterscheidungsmerkmal gebildet werden.
Ist kein Zündfunke übergesprungen, dann wird sich nur die primär- und sekundärseitige Streukapazität aufladen und im nächsten Schritt wird die Energie über die im Zünder oder extern befindliche Freilaufdiode D ins Bordnetz zurückgespeist. Man wird einen sehr kurzen Ionenstrom ,der durch den Funkenstrom vorgetäuscht wird, messen.
The present method is illustrated in FIG. 1 using an exemplary embodiment. It uses the means 3 of the ion current measurement, by means of which the ignition, means 2, is observed. Means 2 usually serve to start the combustion process 1.
If a spark arises at the spark plug and if ion current is measured on this spark plug during this time, then the spark current can be detected with the aid of means 3. The detection of an ignition spark can be used to determine the phase.
According to the Paschen law, it is known that the higher the pressure between the electrodes, the higher the ignition voltage. If the engine is turned by the starter, the gas in the combustion chamber is compressed every 720 ° KW. This increase in pressure in the compressed gas, into which the fuel has not yet been injected, leads to an increased ignition voltage. The difference between high and low ignition voltage can be determined by the ignition energy. If only enough energy is made available to the system that it is sufficient for ignition in the areas of low pressure, but not in the high pressure, then a distinctive feature can be formed by analyzing the spark current.
If no ignition spark has jumped, then only the primary and secondary stray capacitance will be charged and in the next step the energy is fed back into the vehicle electrical system via the freewheeling diode D located in the igniter or externally. One will measure a very short ion current, which is simulated by the spark current.

Ermittlung des richtigen EnergieniveausDetermination of the correct energy level

Noch bevor der Anlasser mit der Rotation beginnt, wird mit einer Reihe von Zündfunken der mit ausreichendem Störabstand versehene Abschaltstrom bestimmt, so daß eine Zündung sicher erfolgt. Diese Anpassung kann unter Umständen 10 Iterationen umfassen.
Es ist möglich, daß sich einige Zylinder gerade in komprimiertem Zustand befinden. In diesem Falle wird das notwendige Energieniveau falsch bestimmt. Mindestens die Hälfte der Zylinder befindet sich aber in ausreichend unkompremiertem Zustand, so daß auch in diesem Falle noch ausreichend Redundanz vorhanden ist.
Die Phasenerfassung und Zündregelung erfolgt an allen Zylindern mit Hilfe des Ionenstrommeßkreises kontinuierlich. Nach ausgegebener Zündung wird der ermittelte Merkmalswert von der ECU bei Bedarf erfaßt und es wird in erfolgte Zündung oder nicht erfolgte Zündung klassifiziert. Wird ein Zündaussetzter erkannt, können bei ausreichender Zündwiederholfrequenz mehrere Zündungen im Zeitraum des Überstreichen eines Kolbens des Verdichtungs-OT ausgewertet werden, so daß sich eine stabile Aussage bezüglich des 360° KW entfernten Zylinders ergibt. D.h. bei einem Zylinder unterbleibt die Zündung und beim 360° KW entfernten Zylinder bleibt der Zündfunke weiterhin bestehen. Von nun an ist die Phase bekannt.
Spätestens nach einer Umdrehung, nach Vorbeilaufen der Bezugsmarke auf dem Kurbelwellengeberrad, kann mit der Einspritzung am richtigen Zylinder begonnen werden.
Von entscheidender Bedeutung ist hierbei daß der Abschaltstrom (= die in die Spule eingebrachte Energie) konstant gehalten wird. Gegebenenfalls muß die Batteriespannung von der ECU erfaßt und die Schließzeit/ Schließwinkel korrigiert werden. Merkmalsbildung (als Beispiel am induktiven Zündsystem)
Die Ionenstrommeßeinrichtung kann auf jeden Fall einen Teil des Funkenstromes erfassen, und wird in der Regel dadurch voll ausgesteuert. Erfolgt nach angepaßten Energieniveaus ein Versuch der Zündung, wird während der Dauer eines Zündfunkens der Ionenstrom integriert, das Ergebnis wird durch ein Sample&Hold erfaßt und der ECU zur Verfügung gestellt.
Eine alternative Möglichkeit der Merkmalserfassung ist dadurch zu realisieren, daß das gemessene Signal tiefpaßgefiltert und mit einem Spitzenwerterfassung beobachtet wird. Der ECU wird der Spitzenwert zugeführt, dieser Spitzenwert wird anschließend mit einer Schwelle verglichen.
Even before the starter starts to rotate, the switch-off current provided with a sufficient signal-to-noise ratio is determined with a series of ignition sparks, so that ignition takes place safely. This adjustment may span 10 iterations.
It is possible that some cylinders are currently in a compressed state. In this case the necessary energy level is incorrectly determined. At least half of the cylinders are in a sufficiently uncompressed state, so that there is still sufficient redundancy in this case as well.
The phase detection and ignition control is carried out continuously on all cylinders with the help of the ion current measuring circuit. After the ignition has been output, the ascertained feature value is recorded by the ECU as required and it is classified into whether the ignition has taken place or not. If an ignition misfire is detected, several ignitions can be evaluated in the period of sweeping over a piston of the compression TDC if the ignition repetition frequency is sufficient, so that a stable statement regarding the cylinder removed by 360 ° KW results. This means that the ignition does not take place in the case of a cylinder and the ignition spark continues to exist in the cylinder which is removed by 360 °. From now on the phase is known.
After one revolution at the latest, after the reference mark on the crankshaft sensor wheel has passed, the right cylinder can be injected.
It is of crucial importance that the switch-off current (= the energy introduced into the coil) is kept constant. If necessary, the battery voltage must be detected by the ECU and the closing time / closing angle corrected. Feature formation (as an example on the inductive ignition system)
The ion current measuring device can in any case detect a part of the spark current, and as a rule is fully controlled thereby. If an attempt is made to ignite according to the adjusted energy level, the ion current is integrated for the duration of an ignition spark, the result is recorded by a sample and hold and made available to the ECU.
An alternative possibility of the feature detection is to realize that the measured signal is low-pass filtered and observed with a peak value detection. The peak value is supplied to the ECU, this peak value is then compared with a threshold.

Signalesignals

In Figur 3 sind beispielhaft, die am induktiven Zündsystem auftretenden Signale aufgezeichnet. Unterschieden wird in "nicht erfolgte Zündung" und "erfolgte Zündung". Dargestellt sind: der Sekundärstrom, welcher in L2 zu fließen kommt (siehe Figur 2); der Ionenstrom, der mit der Ionenstrommeßeinrichtung gemessen wird und beispielhaft das Tiefpaßsignal des gemessenen Ionenstromes, das die Merkmalsbildung aufzeigen soll. FIG. 3 shows an example of the signals occurring on the inductive ignition system. A distinction is made between "no ignition" and "ignition". The following are shown: the secondary current which flows in L 2 (see FIG. 2); the ion current which is measured with the ion current measuring device and, for example, the low-pass signal of the measured ion current, which is intended to show the formation of features.

Wie ein induktives Zündsystem funktioniert wird als hinreichend bekannt vorausgesetzt. Zunächst wird in die Zündspule die Zündenergie über die Primärseite eingebracht, indem der Transistor geschlossen wird. Zum Zeitpunkt To wird der Zündtransistor T hochohmig geschaltet und die Energie in der Spule treibt nun einen Strom in der Primär- und Sekundärwicklung. Der Strom in der Sekundärwicklung wird als isec bezeichnet und ist im jeweils ersten Diagramm zu sehen.How an inductive ignition system works is assumed to be sufficiently known. Initially, the ignition energy is introduced into the ignition coil via the primary side by closing the transistor. At time T o , the ignition transistor T is switched to high resistance and the energy in the coil now drives a current in the primary and secondary windings. The current in the secondary winding is called i sec and can be seen in the first diagram.

Nicht erfolgte ZündungIgnition failed

Reicht die Energie in der Zündspule nicht aus, so daß der Zündfunke überspringt, dann verhält sich die gesamte Anordnung wie ein LC-Schwingkreis mit jeweils einer Spule im Primär- und Sekundärseite. Die Kapazitäten werden jeweils durch Streu- und Bauelementekapazitäten gebildet. Auf der Sekundärseite sind dies Spulenkapazität, Kabelkapazität und Kerzenkapazität.
Ist die Hälfte der Schwingung vorbei, wird der Strom in Primärund Sekundärseite negativ. Nun beginnt auf der Primärseite die Freilaufdiode D zu leiten und speist den Rest der Energie in die Batterie zurück. Auch auf der Sekundärseite wird so die Energie entzogen und der Stromfluß kommt schnell zum erliegen. Da die Ionenströme sehr klein sind wird der Signalpegel der Ionenstrommessung iion sofort maximal ausgesteuert. Wird das Ionenstromsignal iion tiefpaßgefiltert TP{iion}, dann wird nur ein geringer Signalpegel erreicht.
If the energy in the ignition coil is not sufficient so that the ignition spark jumps, then the entire arrangement behaves like an LC resonant circuit with one coil each on the primary and secondary side. The capacities are formed in each case by spreading and component capacities. On the secondary side, these are coil capacity, cable capacity and candle capacity.
When half of the vibration is over, the current on the primary and secondary sides becomes negative. Now the freewheeling diode D begins to conduct on the primary side and feeds the rest of the energy back into the battery. The energy is also withdrawn on the secondary side and the current flow quickly stops. Since the ion currents are very small, the signal level of the ion current measurement i ion is immediately maximally controlled. If the ion current signal i ion is low-pass filtered TP {i ion }, then only a low signal level is reached.

Erfolgte ZündungIgnition done

Springt der Funke über bevor noch die gesamte Energie auf die Streukapazitäten geladen wurde, dann kommt der für eine induktive Zündanlage typische dreieckförmige Funkenstrom in der Sekundärseite zu fließen. Dieser reicht wiederum aus den Pegel der Ionenstrommeßeinrichtung komplett auszusteuern. Das tiefpaßgefilterte Ionenstromsignal TP{iion} erreicht einen deutlich höheren Pegel, als das Signal bei nicht erfolgter Zündung.
Die beiden Fälle sind von der ECU leicht zu unterscheiden.
If the spark jumps before all the energy has been charged to the stray capacitors, then the triangular spark current typical of an inductive ignition system will flow in the secondary side. This in turn is sufficient to completely control the level of the ion current measuring device. The low-pass filtered ion current signal TP {i ion } reaches a significantly higher level than the signal when the ignition has not occurred.
The two cases are easy to distinguish from the ECU.

Ablaufdiagrammflow chart

Das in Figur 4 beschriebene Ablaufdiagramm gilt für alle oder entsprechend ausgewählte Zylinder, die für die Phasenerkennung beobachtet werden sollen. Bei einem hochzylindrigen Motor wird man wohl nicht alle Zylinder für die Phasenerkennung benötigen. Dieses beispielhafte Ablaufdiagramm soll einen schnellen Überblick über das Verfahren geben.The flow chart described in FIG. 4 applies to all or accordingly selected cylinders for phase detection should be observed. With a high-cylinder engine you probably don’t need all cylinders for phase detection. This exemplary flow chart is intended to be a quick one Give an overview of the procedure.

Kern und Vorteile der ErfindungCore and advantages of the invention

Kern der Erfindung ist die Nutzung der Ionenstrommessung zur Zündfunkenbeobachtung und die daraus abgeleitete Phasenerkennung.
Ist eine Ionenstrommessung an einem Fahrzeug vorhanden, kann durch geringen technische Mehraufwand eine Phasenerkennung installiert werden.
Da sich das Verfahren auf schon vorhandene Ressourcen abstützt, ist es äußerst kostengünstig.
The core of the invention is the use of the ion current measurement for ignition spark observation and the phase detection derived therefrom.
If an ion current measurement is available on a vehicle, phase detection can be installed with little additional technical effort.
Since the process is based on existing resources, it is extremely cost-effective.

Claims (12)

  1. Device for detecting the phase of an internal combustion engine having a plurality of cylinders, each cylinder having at least one spark-plug so that ignition sparks can be triggered, an ion current measuring device and an electronic control unit being provided, it being possible for the electronic control unit to determine, by means of the signal of the ion current measuring device, whether or not ignition sparks have been produced in at least one of the cylinders, characterized in that second means are provided which set the energy of the ignition spark in the at least one cylinder in such a way that when there is a low internal pressure in the at least one cylinder an ignition spark is produced and when there is a high internal pressure in the at least one cylinder an ignition spark is not produced, and in that third means are provided which determine the phase angle in the at least one cylinder by observing at least one case in which an ignition spark has been produced and at least one case in which an ignition spark has not been produced.
  2. Device according to Claim 1, characterized in that an ion current can be integrated during the duration of the ignition spark by means of the ion current measuring device.
  3. Device according to Claim 1, characterized in that a peak value of a low-pass-filtered part of the spark current can be registered by means of the ion current measuring device.
  4. Device according to Claim 3, characterized in that the peak value of a low-pass-filtered part of the spark current can be compared with a threshold by means of the electronic control unit.
  5. Device according to one of the preceding claims, characterized in that the phase angle of at least one of the cylinders can be determined by observing at least one case in which an ignition spark has been produced, and at least one case in which simultaneously an ignition spark has not been produced, in two cylinders which are 360° CA apart.
  6. Device according to one of the preceding claims, characterized in that fourth means are present so that a revolution can be carried out in order to convey combustible residual gas out of the cylinder.
  7. Method for detecting the phase of an internal combustion engine having a plurality of cylinders, each cylinder having at least one spark-plug so that ignition sparks are triggered, an electronic control unit being used to determine, by means of the signal of an ion current measuring device, whether or nor ignition sparks have been produced in at least one cylinder, characterized in that the energy of the ignition spark is set in such a way that the production of the ignition spark is dependent on the internal pressure in the at least one cylinder, and in that the phase angle of the at least one cylinder is determined by observing at least one case in which an ignition spark has been produced and at least one case in which an ignition spark has not been produced.
  8. Method according to Claim 7, characterized in that an ion current is integrated during the duration of the ignition spark, by means of the ion current measuring device.
  9. Method according to Claim 7, characterized in that a peak value of a low-pass-filtered part of the spark current is registered by means of the ion current measuring device.
  10. Method according to Claim 9, characterized in that the peak value of a low-pass-filtered part of the spark current is compared with a threshold by means of the electronic control unit.
  11. Method according to Claim 7, characterized in that the phase angle of at least one of the cylinders is determined by observing at least one case in which an ignition spark has been produced and at least one case in which an ignition spark has simultaneously not been produced in two cylinders which are 360° CA apart.
  12. Method according to Claim 7, characterized in that, before the start of the phase detection, a revolution takes place so that combustible residual gas is conveyed out of the cylinder.
EP99926255A 1998-04-20 1999-04-16 Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement Expired - Lifetime EP1073843B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19817447A DE19817447A1 (en) 1998-04-20 1998-04-20 Method of phase detection for a 4-stroke internal combustion engine using ion current measurement
DE19817447 1998-04-20
PCT/DE1999/001147 WO1999054622A1 (en) 1998-04-20 1999-04-16 Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement

Publications (2)

Publication Number Publication Date
EP1073843A1 EP1073843A1 (en) 2001-02-07
EP1073843B1 true EP1073843B1 (en) 2002-08-07

Family

ID=7865103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99926255A Expired - Lifetime EP1073843B1 (en) 1998-04-20 1999-04-16 Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement

Country Status (6)

Country Link
US (1) US6584955B1 (en)
EP (1) EP1073843B1 (en)
JP (1) JP2002512343A (en)
KR (1) KR20010042831A (en)
DE (2) DE19817447A1 (en)
WO (1) WO1999054622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213539A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Method for determining a phase position of an adjustable camshaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817447A1 (en) * 1998-04-20 1999-10-21 Bosch Gmbh Robert Method of phase detection for a 4-stroke internal combustion engine using ion current measurement
KR20030041470A (en) * 2001-11-20 2003-05-27 현대자동차주식회사 Cylinder determining method for internal combustion engine
DE10201164A1 (en) 2002-01-15 2003-08-14 Bosch Gmbh Robert Method and device for recognizing a phase of a four-stroke gasoline engine
DE10208942A1 (en) * 2002-02-28 2003-09-11 Siemens Ag Method for determining the injection timing and system for carrying it out
US8584650B2 (en) 2007-11-07 2013-11-19 Ford Global Technologies, Llc Ignition energy control for mixed fuel engine
CN110446849B (en) * 2017-03-30 2021-06-29 马勒电驱动日本株式会社 Ignition device for engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073843A1 (en) * 1998-04-20 2001-02-07 Robert Bosch Gmbh Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134247A (en) * 1989-10-19 1991-06-07 Mitsubishi Electric Corp Device and method for controlling internal combustion engine
US5174267A (en) * 1991-07-22 1992-12-29 Ford Motor Company Cylinder identification by spark discharge analysis for internal combustion engines
JP2909345B2 (en) * 1993-03-23 1999-06-23 三菱電機株式会社 Internal combustion engine control device
IT1268605B1 (en) * 1994-09-30 1997-03-06 Marelli Autronica SYNCHRONIZATION DEVICE FOR AN ICE ENGINE WITHOUT CAM POSITION SENSOR.
SE508753C2 (en) * 1995-10-24 1998-11-02 Saab Automobile Method and apparatus for identifying which combustion chamber of an internal combustion engine is at compression rate and method of starting an internal combustion engine
US5777216A (en) * 1996-02-01 1998-07-07 Adrenaline Research, Inc. Ignition system with ionization detection
DE19608526C2 (en) * 1996-03-06 2003-05-15 Bremi Auto Elek K Bremicker Gm Process for regulating the minimum ignition energy in an internal combustion engine
SE507393C2 (en) * 1996-11-18 1998-05-25 Mecel Ab Arrangement and method of communication between ignition module and control unit in an internal combustion engine ignition system
JPH10252635A (en) * 1997-03-17 1998-09-22 Hitachi Ltd Engine combustion condition detecting device having trouble diagnosing device
JPH1113619A (en) * 1997-06-25 1999-01-19 Denso Corp Combustion state detecting device for internal combustion state for internal combustion engine
DE19727004A1 (en) * 1997-06-25 1999-01-07 Bosch Gmbh Robert Combustion failure recognition method for IC engines
EP0933525B1 (en) 1998-02-03 2003-10-01 VOGT electronic AG Cylinder recognition apparatus and method for a combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073843A1 (en) * 1998-04-20 2001-02-07 Robert Bosch Gmbh Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213539A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Method for determining a phase position of an adjustable camshaft

Also Published As

Publication number Publication date
WO1999054622A1 (en) 1999-10-28
JP2002512343A (en) 2002-04-23
DE19817447A1 (en) 1999-10-21
DE59902273D1 (en) 2002-09-12
KR20010042831A (en) 2001-05-25
EP1073843A1 (en) 2001-02-07
US6584955B1 (en) 2003-07-01

Similar Documents

Publication Publication Date Title
DE4207140C2 (en) Misfire detector system for detecting misfire in an internal combustion engine
DE10009877C2 (en) Combustion state detector device for internal combustion engines
DE19733869C2 (en) Device for determining the combustion state of an internal combustion engine
DE69417843T2 (en) Method of detecting autoignition
DE4126782C2 (en) Device and method for detecting misfires in an internal combustion engine
DE4239592C2 (en) Knock detector for an internal combustion engine
DE69615698T2 (en) METHOD FOR IGNITION CONTROL IN COMBUSTION ENGINES
DE10021569A1 (en) Misfire detector for internal combustion engine detects ion current dependent on number of ions produced inside engine cylinder immediately after combustion of air/fuel mixture in cylinder
DE4437480C1 (en) Method for monitoring the function of an internal combustion engine for detecting misfires
DE4242124C2 (en) Misfire detector system for internal combustion engines
DE10257383B4 (en) Misfire detection device for an internal combustion engine
EP1893868B1 (en) Circuit for detecting combustion-related variables
EP1476648B1 (en) Method and device for identifying a phase of a four-stroke spark ignition engine
EP1073843B1 (en) Method and device for phase recognition in a 4-stroke otto engine with ion flow measurement
DE69331790T2 (en) Misfire detector using various methods at high and low engine speeds
DE19720535A1 (en) Method for detecting knocking combustion in an internal combustion engine with an AC ignition system
DE19648951C2 (en) Misfire detection device for an internal combustion engine
DE10252567A1 (en) Combustion state detection device for an internal combustion engine
EP0897061B1 (en) Misfire detection method for internal combustion engine having two spark plugs per cylinder
DE60119879T2 (en) Device for detecting misfires in an internal combustion engine
DE69417841T2 (en) Misfire Detection Method
DE19681614B4 (en) Method for identifying the combustion chamber of an internal combustion engine located in the compression stroke, method for starting an internal combustion engine, and device for an internal combustion engine
DE19648969C2 (en) Device for detecting the state of combustion in an internal combustion engine
DE10229848B4 (en) Combustion status determination system for internal combustion engines
DE4244181A1 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 20010518

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59902273

Country of ref document: DE

Date of ref document: 20020912

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021025

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060420

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060426

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090626

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103