EP1073534A1 - Method for hot pressing workpieces - Google Patents
Method for hot pressing workpiecesInfo
- Publication number
- EP1073534A1 EP1073534A1 EP99913052A EP99913052A EP1073534A1 EP 1073534 A1 EP1073534 A1 EP 1073534A1 EP 99913052 A EP99913052 A EP 99913052A EP 99913052 A EP99913052 A EP 99913052A EP 1073534 A1 EP1073534 A1 EP 1073534A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ejector
- die
- liquid
- workpiece
- gas discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/04—Shaping in the rough solely by forging or pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J13/00—Details of machines for forging, pressing, or hammering
- B21J13/08—Accessories for handling work or tools
- B21J13/14—Ejecting devices
Definitions
- the present invention relates to a method for hot pressing workpieces and an apparatus for carrying out this method, as defined in the preambles of independent claims 1 and 4.
- a cylindrical workpiece is usually first sheared off from a metal rod heated to the forging temperature. Due to the heating, the workpiece is covered by a scale coating, i.e. surrounded by an oxide layer that flakes off when the workpiece is formed.
- a scale coating i.e. surrounded by an oxide layer that flakes off when the workpiece is formed.
- the workpiece with scale is pre-compressed and descaled outside a die in a first forming station and inserted into the first or only die of the hot-forming machine in a second forming station and compression-molded there.
- a multi-stage hot-forming machine in which the scale in the die of the first forming station is broken off from the workpiece, is described in Japanese Utility Model No. 2521909.
- the flaking off of the scale inside the die has the disadvantage that the scale is largely pushed back into the workpiece. This has one - 2 - Inferior surface quality results, which requires more extensive post-processing and more machining allowance, which increases the material requirement and thus the cost per workpiece.
- hot forming machines in which descaling takes place in a separate first forming station.
- Such a hot forging press is described in CH 594 454, in which the workpieces are pre-compressed outside of a die by a press ram, which is also called free upsetting, the scale breaking off and falling off the workpieces.
- the descaled and pre-compressed workpiece is then transported with a pair of pliers to the second forming station and inserted into the die there, where it is pressed.
- the outer diameter of the pre-compressed workpiece varies, since the compressive force is greater with an empty adjacent forming station, which can occur, for example, after the metal rod ends have been dropped in normal operation, than with full neighboring forming stations.
- a self-centering transport tongs are therefore practically indispensable for transporting the workpiece.
- the invention is based on the following object.
- a method for hot pressing workpieces of the type mentioned at the outset is to be created, in which descaling of the workpieces takes place outside of a die, without additional shaping - 3 -
- Claim 4 relates to an inventive device for performing the method and claim 13 to a hot-forming machine with such a device. Preferred design variants result from the dependent patent claims.
- the essence of the invention is that in a method for hot pressing workpieces, in which a workpiece heated to the forging temperature is changed outside of a die by pre-upsetting by means of a press ram and then pressed into the desired shape in one or more dies Pre-upsetting and compression molding in the first or only die is carried out by the same press ram in the same movement cycle of the press ram.
- a workpiece to be pressed can be pre-compressed and descaled outside of a die in a movement cycle by means of a single press die in a movement cycle and then compression-molded in a die. Since descaling takes place outside a die, ie free-standing, the chipped scale is not pressed back into the workpiece, so that its surface quality is not impaired.
- a forming station can be saved, and a self-centering transport tongs is not necessary, since the transport to the next forming station takes place after the compression in the die, after which the workpieces have a fixed definition Have an outer contour.
- the hot pressing process according to the invention - 4 - thus combines the advantages of the two known descaling methods described above, without having their disadvantages.
- a preferred exemplary embodiment of a device for carrying out the method according to the invention comprises at least one die, an associated extendable and retractable ejector and a press die which can be moved forwards and backwards.
- means are available with which the pushing back of the extended ejector by the forward-moving press ram via a workpiece arranged between the ejector and the press ram can be delayed in such a way that the workpiece can be pre-compressed outside the die.
- the workpiece is compressed in the same movement cycle by the advancing press ram, pushed into the die, pressed there and finally pushed out of the die by the ejector.
- the workpiece is then transferred to the next forming station in a known manner.
- the means for delaying the pushing back of the ejector and the insertion of the workpiece into the die can be, for example, hydraulic, pneumatic, mechanical or electromechanical means.
- hydraulic or pneumatic delay means comprise a control piston which is arranged in a pressure chamber and is connected directly or indirectly to the ejector, and means for supplying and removing liquid or gas into and from the pressure chamber.
- the liquid or gas laxatives are - 5 - designed such that the liquid or gas discharge from the pressure chamber is partially delayed and the repulsion of the control piston and the ejector is delayed.
- They advantageously comprise a liquid or gas discharge line, in which a throttle or a pressure relief valve is arranged, which only opens at a certain liquid or gas pressure, or which is opened and closed with a control pin.
- An advantageous device according to the invention with mechanical delay means comprises a rotatable curve for controlling the extension and retraction of the ejector, which is shaped and the rotation of which is coordinated with the forward and backward movement of the press ram such that the retracted ejector is retarded.
- FIG. 1 shows a sectional view of a first exemplary embodiment of a device according to the invention with hydraulic delay means with a throttle during pre-upsetting;
- FIG. 2 shows a sectional view of a second exemplary embodiment of a device according to the invention with hydraulic delay means with a pressure-limiting valve instead of the throttle at the end of the compression molding;
- Fig. 3 - a sectional view of a third embodiment of an inventive device with hydraulic delay means with a control pin during pre-upsetting and
- Fig. 4 - a sectional view of a fourth embodiment of an inventive device with mechanical delay means.
- the illustrated first exemplary embodiment of a device comprises a die 5, which is arranged between an anvil 15 and an anvil cover 18 by means of a die holder 6 and which serves for receiving and compressing a workpiece 4.
- the bottom of the die 5 has a bore for an extendable and retractable ejector 7, which during pre-upsetting serves as a pressing resistor for the adjacent workpiece 4, during compression molding as a shaping part for the workpiece 4 and after compression molding for pushing out the deformed workpiece from the die 5 is used.
- the ejector 7 is connected to a control piston 8 which is displaceably arranged in a pressure chamber 28 and which is provided with a pressure ring 12 for adjusting the ejector position.
- the pressure chamber 28 is formed in a clamping ring 13 to which the die holder 6 is screwed via a position wedge 19.
- the control piston 8 is connected to an ejector pin 9 and this to an ejector rod 17, which can be displaced indirectly in the known manner in the direction of the die 5 by means of a curve, not shown.
- the ejector pin 9 is guided in a backing 14 which also serves to absorb pressing forces and which bears against a pressure plate 16.
- a cooling channel 141 In the backing 14 is a cooling channel 141 and in the ejector - 7 - bolt 9, a cooling channel 91 is arranged, through which coolant can be supplied to a die bore 10 extending axially in the control piston 8 and ejector 7.
- Outlet openings 11 are provided in the ejector 7 for cooling and rinsing cleaning the die 5.
- the clamping ring 13 is provided with a coolant relief opening 159 which leads through the anvil 15.
- the clamping ring 13 and the anvil cover 18 are provided with a liquid inlet bore 21 shown in dashed lines and a liquid outlet bore 24 also shown in dashed lines.
- a liquid supply line 20, in which a check valve 22 is arranged, is connected to the liquid inlet bore 21.
- a liquid discharge line 23 is connected to the liquid outlet bore 24, in which a throttle 25, which can be used up to a pressure of 350 bar, is arranged to delay the liquid outflow from the pressure chamber 28.
- the workpiece 4 is pressed by means of a press feed 1, which is shown here in half in two different positions.
- a press feed 1 which is shown here in half in two different positions.
- the still undeformed workpiece 4 is held between a holding pin 2, which is biased towards the die 5 by means of a tension spring 3, and the ejector 7.
- the pretensioning of the holding pin 2 can alternatively also be carried out by means of air pressure.
- the press ram 1 has already pre-compressed and descaled the workpiece 4 and is now beginning to push it into the die 5.
- the workpiece 4 is moved forward by the Press plunger 1 pre-compressed in that the ejector 7 is held in its extended position by the control piston 8 due to the resistance of the throttle 25 against a liquid outflow from the pressure chamber 28.
- a slight yielding, ie retraction, of the ejector 7 during pre-upsetting has no negative influence on the descaling and removal of the scale outside the die 5.
- the workpiece 4 is pushed into the die 5 by the press die 1 moving further forward, whereby the resistance of the throttle 25 against a liquid discharge is overcome by the increasing pressure, and compression-molded there.
- the second exemplary embodiment shown differs from the first in that a pressure limiting valve 26 with a control line 27 is arranged in the liquid discharge line 23 instead of a throttle 25.
- a pressure relief valve for up to approx. 350 bar from Bieri, Bern, can be used.
- the pressure on the control piston 8, and thus in the pressure chamber 28 and liquid discharge line 23 is increased so much by the forward-moving press ram 1 that the previously closed pressure relief valve 26 is opened via the control line 27 and liquid can thus flow off.
- the ejector 7 is retracted and the workpiece 4 is inserted into the die 5 and compression-molded there.
- the workpiece 4 and the press ram 1 are shown here at the end of the compression molding. - 9 -
- the liquid discharge line 29 is guided through the clamping ring 13, the backing 14 and the anvil 15.
- the front part of a control pin 30 which is firmly connected to the ejector rod 17 can be moved forwards and backwards in a bore 31 in the backing 14, whereby depending on the position it closes the liquid discharge line 29 or leaves it completely or partially open.
- the pressing of the workpiece 4 at two different times is shown here.
- the undeformed workpiece 4 is held between the pretensioned retaining pin 2 and the ejector 7.
- the rear part of the control pin 30 lies against the ejector pin 9 and its front part closes the liquid discharge line 29, so that no liquid can flow out of the pressure chamber 28.
- the ejector rod 17 and the control pin 30 then begin to move backwards and the workpiece 4 is then pre-compressed by the press die 1 moving forward until the situation shown in the lower half of the figure is finally reached, ie the workpiece 4 is pre-compressed and descaled and the control pin 30 is about to open the liquid discharge line 29.
- the ejector rod 17 and the control pin 30 are moved even further backward, so that liquid can flow out of the pressure chamber 28 via the liquid discharge line 29, as a result of which the control piston 8 and the ejector 7 in the direction of the ejector rod 17 and the workpiece 4 into the die 5 be pushed.
- the length of the control pin 30 - 10 - can be selected according to the desired pre-compression path.
- the ejector rod 17 and the control pin 30 connected to it can be moved backwards in front of the ejector pin 9, the control piston 8 and the ejector 7, on the one hand the curve indirectly controlling the ejector rod 17 must be designed such that it permits such a backward movement, and on the other hand, means must be provided to ensure this backward movement.
- the backward movement is generated by a spring 32.
- the fourth exemplary embodiment of a device according to the invention shown comprises a machine body 130 and a tool block 100, in which a die 105 and an associated extendable and retractable ejector 107, which essentially corresponds to the ejector 7 of the first exemplary embodiment, are arranged.
- the ejector 107 is connected to an axially displaceable ejector rod 117 via an ejector pin 109.
- An ejector lever 150 which can be rotated about an axis 152 has a pressure pin 151 for the ejector rod 117 and a freely rotatable roller 153 which bears against a curve 160.
- the ejector lever 150 is pretensioned by means of a tension spring 170 such that the roller 153 is constantly in contact with the curve 160.
- the ejector lever 150 By rotating the curve 160 by means of a shaft 161 rotating in the direction of the arrow in operation, the ejector lever 150 is pivoted back and forth, the push bolt 151 pushing the ejector rod 117 in the direction of the die 105 during the forward movement that is imminent in the lever position shown, so that the ejector 107 is extended.
- the curve 160 is shaped and its rotation is coordinated with the forward and backward movement of the press ram, not shown here, in such a way that the ejector 107 is pushed back with a delay. If the roller 153 lies in the area A on the curve 160, the ejector 107 is in the extended position in the waiting position.
- the press stamp moves forward toward the die 105, but does not yet press against a workpiece arranged between the ejector 107 and the press stamp. While the roller 153 rolls on the curve 160 in region B, the press ram continues to move forward and compresses the workpiece, whereby the scale breaks off.
- the ejector lever 150 is pivoted back again and the press ram pushes the ejector 107 and the pre-compressed workpiece into the die 105, where the latter is pressed.
- the workpiece is then pushed out of the die 105 again and, for example, transferred to another forming station with a pair of transport tongs. With a next workpiece, the whole thing starts all over again.
- the curve 160 can be rotated on the shaft 161 with respect to the shaft 161, so that a time shift of the pre-upsetting can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
- Press Drives And Press Lines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH93498 | 1998-04-24 | ||
CH93498 | 1998-04-24 | ||
PCT/CH1999/000155 WO1999055475A1 (en) | 1998-04-24 | 1999-04-19 | Method for hot pressing workpieces |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1073534A1 true EP1073534A1 (en) | 2001-02-07 |
EP1073534B1 EP1073534B1 (en) | 2002-10-23 |
Family
ID=4198579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99913052A Expired - Lifetime EP1073534B1 (en) | 1998-04-24 | 1999-04-19 | Method and apparatus for hot pressing workpieces |
Country Status (13)
Country | Link |
---|---|
US (1) | US6286350B1 (en) |
EP (1) | EP1073534B1 (en) |
JP (1) | JP3524496B2 (en) |
KR (1) | KR100400706B1 (en) |
CN (1) | CN1089653C (en) |
AU (1) | AU3135399A (en) |
CZ (1) | CZ296945B6 (en) |
DE (1) | DE59903173D1 (en) |
EA (1) | EA002505B1 (en) |
ES (1) | ES2182502T3 (en) |
TW (1) | TW453913B (en) |
UA (1) | UA54590C2 (en) |
WO (1) | WO1999055475A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100386166C (en) * | 2006-07-10 | 2008-05-07 | 北京科技大学 | One-forge-to-multipiece superplastic forming device for amorphous alloy precise parts |
CN101885033B (en) * | 2009-05-11 | 2012-08-29 | 福光企业股份有限公司 | Jacking and guiding device of forging product forming machine |
JP5556649B2 (en) * | 2010-12-22 | 2014-07-23 | 三菱自動車工業株式会社 | Hot forging press forming method and apparatus |
RU2552819C1 (en) * | 2011-05-23 | 2015-06-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Method of hot pressing and mould for hot pressing |
GB201116668D0 (en) * | 2011-09-27 | 2011-11-09 | Imp Innovations Ltd | A method of forming parts from sheet steel |
NL2011052C2 (en) * | 2013-06-27 | 2015-01-05 | Bosch Sprang Beheer B V | THERMO FORM DEVICE. |
CN103769860A (en) * | 2013-11-27 | 2014-05-07 | 山东建筑大学 | Die forging forming method for high-speed railway bridge support |
KR102264554B1 (en) * | 2019-11-29 | 2021-06-14 | 대산전자(주) | Method for manufacturing busbar and manufacturing busbar through the same and reel |
CN111673586A (en) * | 2020-06-17 | 2020-09-18 | 龙岩市武平县谨行科技有限公司 | Novel surface burr clearance for stainless steel goods production device |
CN113245492B (en) * | 2021-05-19 | 2023-07-04 | 中国第二重型机械集团德阳万航模锻有限责任公司 | Preparation method of large integral frame forging die and extrusion reaming method |
CN116372071B (en) * | 2023-06-06 | 2023-08-08 | 江苏金源高端装备股份有限公司 | Casting equipment of supporting component of planetary gear box of rail transit gearbox |
CN117696817B (en) * | 2024-02-05 | 2024-05-10 | 山西天宝集团有限公司 | Intelligent automatic rotary workbench for forging new energy wind power generation flange and method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1120848B (en) | 1959-04-30 | 1961-12-28 | Fritz Bernhard Hatebur | Press for deforming rod sections by upsetting |
US3120769A (en) * | 1960-08-29 | 1964-02-11 | Hatebur Fritz Bernhard | Pressing device for cold forming or hot forming workpieces |
US3584498A (en) * | 1967-11-09 | 1971-06-15 | Hans Beche | Fluid-operated drop-forge press |
US3748887A (en) * | 1971-10-01 | 1973-07-31 | Ladish Co | Method and apparatus for locating stock in forming dies |
JPS5118259A (en) | 1974-08-06 | 1976-02-13 | Tomio Ishida | Netsukanfuoomaaniokeru naigairindojiseizosochi |
JPS57177845A (en) | 1981-02-07 | 1982-11-01 | Aida Eng Ltd | Press-forming method for bevel gear and its die |
JPS6030545A (en) | 1983-07-28 | 1985-02-16 | Sumitomo Heavy Ind Ltd | Closed forging device |
-
1999
- 1999-04-19 UA UA2000105919A patent/UA54590C2/en unknown
- 1999-04-19 KR KR10-2000-7011740A patent/KR100400706B1/en not_active IP Right Cessation
- 1999-04-19 WO PCT/CH1999/000155 patent/WO1999055475A1/en active IP Right Grant
- 1999-04-19 CZ CZ20003924A patent/CZ296945B6/en not_active IP Right Cessation
- 1999-04-19 JP JP2000545659A patent/JP3524496B2/en not_active Expired - Fee Related
- 1999-04-19 ES ES99913052T patent/ES2182502T3/en not_active Expired - Lifetime
- 1999-04-19 US US09/673,685 patent/US6286350B1/en not_active Expired - Fee Related
- 1999-04-19 DE DE59903173T patent/DE59903173D1/en not_active Expired - Fee Related
- 1999-04-19 CN CN99805386A patent/CN1089653C/en not_active Expired - Fee Related
- 1999-04-19 AU AU31353/99A patent/AU3135399A/en not_active Abandoned
- 1999-04-19 EP EP99913052A patent/EP1073534B1/en not_active Expired - Lifetime
- 1999-04-19 EA EA200001100A patent/EA002505B1/en not_active IP Right Cessation
- 1999-04-20 TW TW088106302A patent/TW453913B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO9955475A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE59903173D1 (en) | 2002-11-28 |
CZ20003924A3 (en) | 2001-05-16 |
WO1999055475A1 (en) | 1999-11-04 |
KR100400706B1 (en) | 2003-10-08 |
EP1073534B1 (en) | 2002-10-23 |
CN1298329A (en) | 2001-06-06 |
ES2182502T3 (en) | 2003-03-01 |
JP3524496B2 (en) | 2004-05-10 |
EA002505B1 (en) | 2002-06-27 |
EA200001100A1 (en) | 2001-04-23 |
UA54590C2 (en) | 2003-03-17 |
AU3135399A (en) | 1999-11-16 |
US6286350B1 (en) | 2001-09-11 |
CZ296945B6 (en) | 2006-08-16 |
TW453913B (en) | 2001-09-11 |
JP2002512888A (en) | 2002-05-08 |
KR20010042922A (en) | 2001-05-25 |
CN1089653C (en) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1981663B1 (en) | Method and deep-drawing device for the deep drawing of sheet metal | |
EP1073534B1 (en) | Method and apparatus for hot pressing workpieces | |
EP3242760B1 (en) | Device and method for setting a connecting element on a workpiece | |
DE1577951A1 (en) | Feeding device for blanks in a press | |
DE69218139T2 (en) | Vacuum extrusion press for metal | |
DE2723109A1 (en) | STRIPPING METHOD AND STRIPPER | |
DE2509490A1 (en) | INDIRECT METAL EXTRUSION PRESS FOR LIGHT AND HEAVY METAL | |
EP1984132B1 (en) | Hydraulic processing pincers | |
EP3283243B1 (en) | Ring rolling device having axially fixed rolling-element bearings | |
DE3787891T2 (en) | INDIRECT EXTRUSION PRESS WITH TOOL REVOLVER HEAD ATTACHED TO THE PISTON. | |
DE102005027032B4 (en) | Device for producing a molded part | |
EP1345715B1 (en) | Forging press comprising an adjusting device on the matrix side thereof | |
DE1677088B1 (en) | Device for burr-free cold or hot pressing, in particular also by forward extrusion, of rod sections | |
DE69024059T2 (en) | DEVICE AND METHOD FOR PUNCHING BLOCKS. | |
WO2023240371A1 (en) | Method and forming device for producing annular molded parts | |
EP4355511A1 (en) | Method and forming device for producing annular molded parts | |
DE69004658T2 (en) | Device for regulating a hydraulic pressure, in particular for ceramic molding presses with a movable lower punch and counter punch. | |
DE2856842A1 (en) | multistage cold forging press for bolts - has optional deburring operation controlled by pneumatic cylinder and piston according to bolt type | |
DE596999C (en) | Self-acting multiple printing press, especially double printing press | |
DE415370C (en) | Cold press for the production of nails, rivets, etc. like | |
DE2555205C3 (en) | Device for feeding blanks to a press | |
DE2825988C2 (en) | Process and cold forming press for cold forming cylindrical wire sections into spherical, cylindrical or similar workpieces | |
DE67034C (en) | Machine for the production of heads on nail and screw workpieces | |
DE2747169C2 (en) | Method and device for the production of hollow bodies by extrusion of solid bodies | |
EP0760439A1 (en) | Device for applying a fastener to the end of a conveyor belt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001113 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE ES FR GB IT LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RTI1 | Title (correction) |
Free format text: METHOD AND APPARATUS FOR HOT PRESSING WORKPIECES |
|
17Q | First examination report despatched |
Effective date: 20020423 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR GB IT LI NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021023 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE |
|
REF | Corresponds to: |
Ref document number: 59903173 Country of ref document: DE Date of ref document: 20021128 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2182502 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030724 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: HATEBUR UMFORMMASCHINEN AG Free format text: HATEBUR UMFORMMASCHINEN AG#GENERAL GUISAN-STRASSE 21#CH-4153 REINACH (CH) -TRANSFER TO- HATEBUR UMFORMMASCHINEN AG#GENERAL GUISAN-STRASSE 21#CH-4153 REINACH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090408 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090424 Year of fee payment: 11 Ref country code: IT Payment date: 20090415 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090508 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090409 Year of fee payment: 11 Ref country code: DE Payment date: 20090629 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: *HATEBUR UMFORMMASCHINEN A.G. Effective date: 20100430 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20101101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101103 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100419 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100419 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090421 Year of fee payment: 11 |