EP1057900A1 - Cast cylinder head and block - Google Patents

Cast cylinder head and block Download PDF

Info

Publication number
EP1057900A1
EP1057900A1 EP00111448A EP00111448A EP1057900A1 EP 1057900 A1 EP1057900 A1 EP 1057900A1 EP 00111448 A EP00111448 A EP 00111448A EP 00111448 A EP00111448 A EP 00111448A EP 1057900 A1 EP1057900 A1 EP 1057900A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
cylinder head
engine block
alloy
block casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00111448A
Other languages
German (de)
French (fr)
Other versions
EP1057900B1 (en
Inventor
Leonhard Heusler
Franz Josef Dr. Feikus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Original Assignee
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG, Vaw Aluminium AG filed Critical Vereinigte Aluminium Werke AG
Publication of EP1057900A1 publication Critical patent/EP1057900A1/en
Application granted granted Critical
Publication of EP1057900B1 publication Critical patent/EP1057900B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the invention relates to a cylinder head and engine block casting, consisting of an aluminum alloy with the following composition: Si 6.80 - 7.20, Fe 0.35 - 0.45, Cu 0.30 - 0.40, Mn 0.25 - 0.30, Mg 0.35 - 0.45, Ni 0.45 - 0.55 Zn 0.10 - 0.15, Ti 0.11 - 0.15, balance aluminum and unavoidable impurities, max. 0.05 each, together max. 0.15.
  • the main alloying elements are copper (Cu), silicon (Si), magnesium (Mg), zinc (Zn), manganese (Mn).
  • Ni nickel
  • Co cobalt
  • Silver Ag
  • Lithium Li
  • Vanadium V
  • Zr zirconium
  • Tin Sn
  • lead Pb
  • Cd bismuth
  • All alloy components are completely soluble in liquid aluminum at a sufficiently high temperature.
  • the solubility in the solid state with mixed crystal formation is limited for all elements; there is no alloy system with aluminum that has a complete mixed crystal row.
  • the undissolved parts form their own phases in the alloy structure, which are referred to as heterogeneous structural components. They are often hard and brittle crystals that consist of the elements themselves (e.g. for Si, Zn, Sn, Pb, Cd, Bi) or of intermetallic compounds with aluminum (e.g. Al 2 Cu, Al 8 Mg 5 , Al 6 Mn, Al 3 Fe, Al 7 Cr, Al 3 Ni, AlLi).
  • intermetallic compounds of the additives with each other e.g. Mg 2 Si, MgZn 2
  • ternary e.g. Al 8 Fe 2 Si, Al 2 Mg 3 Zn 3 , Al 2 CuMg
  • phases higher Phases.
  • the formation of mixed crystals and the formation of the heterogeneous structural components determine the physical, chemical and technological properties of an alloy.
  • Al mixed crystals after rapid cooling from higher temperatures, can contain higher contents than the equilibrium at room temperature.
  • the system is purely eutectic with a eutectic at 12.5% Si and 577 ° C. At this temperature, 1.65 is in the ⁇ mixed crystal % Si soluble. At 300 ° C it is still about 0.07%.
  • the crystallization The eutectic silicon can be reduced by small additions (e.g. sodium or strontium). This occurs hypothermia depending on the rate of solidification and shift in concentration of the eutectic point.
  • Mg The partial range from 0 to about 36% Mg is eutectic.
  • the eutectic is around 34% Mg and 450 ° C. At this temperature the (maximum) solubility is 17.4% Mg.
  • the (maximum) solubility is 17.4% Mg.
  • the (maximum) solubility is 17.4% Mg.
  • the (maximum) solubility is 17.4% Mg.
  • 300 ° C 6.6% at 100 ° C about 2.0% Mg is soluble in the ⁇ -mixed crystal. Undissolved Mg is usually present in the structure as a ⁇ phase (Al 8 Mg 5 ).
  • the alloys form a eutectic system with a zinc rich one Eutectic at 94.5% Zn and 382 ° C. Im interested here aluminum-rich region is 31.6% Zn in the ⁇ mixed crystal at 275 ° C. soluble.
  • the solubility is strongly temperature-dependent and goes to 14.5% at 200 ° C, to about 3.0 at 100 ° C % back.
  • the systems aluminum-manganese, aluminum-iron and aluminum-nickel have a low concentration eutectic. The melting point is lowered very little. With the exception The solubility of manganese in the solid state is low.
  • Such alloys must also have a high thermal conductivity have so that the castings for use in the engine area can be used.
  • the piston alloys used for comparison with 12% Si do not meet these requirements, just as little like the commonly used AlSi9Cu3.
  • the object of the present invention is therefore one for Suitable for use in cylinder head and engine block castings Alloy of high thermal conductivity with a corresponding Specify microstructure, which has high heat resistance, good Creep resistance and sufficient ductility at the same time has low susceptibility to corrosion and at the same time is easy to machine.
  • the workability assessment is based on a hardness comparison, the individual values using the Brinell indentation process were measured. It resulted for the alloy according to the invention a hardness of 100 - 105 HB in contrast to 85 - 90 HB at the comparison alloy.
  • a corrosion comparison with a copper-containing alloy (0.5 % Copper from leg. 6) showed a significant improvement in Corrosion resistance (compared to the state of the art) and especially compared to conventionally used alloys, e.g. Alloy No. 5, previously used to manufacture cylinder and Engine block castings was used. It can therefore be assumed that that with the alloy according to the invention an essential Improving the corrosion properties by compensating for the Copper with nickel could be achieved, being cheap Formation of the phases, i.e. for extensive molding or Rounding off the phases of the type aluminum-copper and magnesium-silicon the special heat treatment as stated above and defined in the salary limits of claim 1 to success contributed.
  • phase types used, but also their distribution and fineness as well as the amount, measured in volume%, were of decisive importance for the hardness values achieved.
  • the phase relationships were defined via the distribution of the elements.
  • the phase ratio was determined both by leveling out and by means of quantitative image analysis using statistically distributed sections, the phase types were determined by microsensor examinations.
  • the alloy according to the invention has finely divided intermetallic phases with an average length of at most 20 ⁇ m of the aluminum-nickel type, Aluminum-copper and aluminum-iron-manganese, with the volume fraction being at least 1% by volume, which is to be regarded as an essential reason for increasing the heat resistance.
  • the fineness of the individual phase types could be influenced by the respective casting temperature and the cooling conditions. At the casting temperatures between 720 and 740 ° C. proposed according to the invention, phases of the type Al-Fe-Mn, Al-Ni and AlCu with an average length of at most 15 ⁇ m are produced if the cooling rate is kept between 0.1-10 Ks -1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The present invention relates to a cylinder head and motor block casting and a method of making the same, including an aluminum alloy having the following composition: Si 6.80-7.20, Fe 0.35-0.45, Cu 0.30-0.40, Mn 0.25-0.30, Mg 0.35-0.45, Ni 0.45-0.55 Zn 0.10-0.15, Ti 0.11-0.15 with the remainder being aluminum as well as unavoidable impurities with a maximum content of 0.05 each, but not more than a maximum of 0.15 impurities in all.

Description

Die Erfindung betrifft ein Zylinderkopf- und Motorblockgußteil, bestehend aus einer Aluminiumlegierung folgender Zusammensetzung: Si 6,80 - 7,20, Fe 0,35 - 0,45, Cu 0,30 - 0,40, Mn 0,25 - 0,30, Mg 0,35 - 0,45, Ni 0,45 - 0,55 Zn 0,10 - 0,15, Ti 0,11 - 0,15, Rest Aluminium sowie unvermeidbare Verunreinigungen, max. je 0,05 einzeln, zusammen max. 0,15.The invention relates to a cylinder head and engine block casting, consisting of an aluminum alloy with the following composition: Si 6.80 - 7.20, Fe 0.35 - 0.45, Cu 0.30 - 0.40, Mn 0.25 - 0.30, Mg 0.35 - 0.45, Ni 0.45 - 0.55 Zn 0.10 - 0.15, Ti 0.11 - 0.15, balance aluminum and unavoidable impurities, max. 0.05 each, together max. 0.15.

Stand der TechnikState of the art

Die Eigenschaften von Aluminium hängen von einer ganzen Reihe von Faktoren ab; dabei spielen insbesondere zugesetzte oder zufällig vorhandene Beimengungen anderer Elemente eine sehr wichtige Rolle.The properties of aluminum depend on a whole range depending on factors; in particular, added or random additions of other elements a very important role.

Hauptlegierungselemente sind Kupfer (Cu), Silizium (Si), Magnesium (Mg), Zink (Zn), Mangan (Mn).The main alloying elements are copper (Cu), silicon (Si), magnesium (Mg), zinc (Zn), manganese (Mn).

In kleineren Mengen sind häufig als Verunreinigungen oder Zusätze vorhanden: Eisen (Fe), Chrom (Cr), Titan (Ti). Für Sonderlegierungen verwendet man Zusätze von: Nickel (Ni), Kobalt (Co), Silber (Ag), Lithium (Li), Vanadium (V), Zirkonium (Zr), Zinn (Sn), Blei (Pb), Cadmium (Cd), Wismut (Bi).Smaller amounts are often considered impurities or additives present: iron (Fe), chrome (Cr), titanium (Ti). For special alloys additions of: nickel (Ni), cobalt (Co), Silver (Ag), Lithium (Li), Vanadium (V), Zirconium (Zr), Tin (Sn), lead (Pb), cadmium (Cd), bismuth (Bi).

Alle Legierungskomponenten sind im flüssigen Aluminium bei genügend hoher Temperatur vollständig löslich. Die Löslichkeit im festen Zustand unter Mischkristallbildung ist für alle Elemente begrenzt; es gibt kein Legierungssystem mit Aluminium, das eine lückenlose Mischkristallreihe aufweist. Die nicht gelösten Anteile bilden im Legierungsgefüge eigene Phasen, die man als heterogene Gefügebestandteile bezeichnet. Es sind oft harte und spröde Kristalle, die aus den Elementen selbst (z.B. bei Si, Zn, Sn, Pb, Cd, Bi) oder aus intermetallischen Verbindungen mit Aluminium bestehen (z.B. Al2Cu, Al8Mg5, Al6Mn, Al3Fe, Al7Cr, Al3Ni, AlLi). Zu den intermetallischen Verbindungen kommen in Legierungen mit drei oder mehreren Komponenten noch intermetallische Verbindungen der Zusätze untereinander (z.B. Mg2Si, MgZn2), ternäre (z.B. Al8Fe2Si, Al2Mg3Zn3, Al2CuMg) und höhere Phasen hinzu. Die Mischkristallbildung und die Ausbildung der heterogenen Gefügebestandteile (Menge, Größe, Form und Verteilung) bestimmen die physikalischen, chemischen und technologischen Eigenschaften einer Legierung. Die mit der Temperatur abnehmende Diffusionsgeschwindigkeit hat zur Folge, daß Al-Mischkristalle nach rascher Abkühlung von höheren Temperaturen höhere Gehalte gelöst enthalten können, als dem Gleichgewicht bei Raumtemperatur entspricht. In solchen übersättigten Mischkristallen können bei Raumtemperatur oder mäßig erhöhten Temperaturen Ausscheidungsvorgänge ablaufen (z.T. unter Bildung metastabiler Phasen), die von erheblichem Einfluß auf die Eigenschaften sein können. Diffusionsträge Elemente wie Mn können bei rascher Erstarrung aus der Schmelze sogar weit über die maximale Gleichgewichts-Löslichkeit hinaus übersättigt werden. Diese Übersättigung kann durch Glühen bei hohen Temperaturen aufgehoben werden. Die Zusätze werden dann feindispers ausgeschieden. Meist wird diese Glühung (Hochglühung) auch zum Ausgleich der Kristallseigerung angewendet.All alloy components are completely soluble in liquid aluminum at a sufficiently high temperature. The solubility in the solid state with mixed crystal formation is limited for all elements; there is no alloy system with aluminum that has a complete mixed crystal row. The undissolved parts form their own phases in the alloy structure, which are referred to as heterogeneous structural components. They are often hard and brittle crystals that consist of the elements themselves (e.g. for Si, Zn, Sn, Pb, Cd, Bi) or of intermetallic compounds with aluminum (e.g. Al 2 Cu, Al 8 Mg 5 , Al 6 Mn, Al 3 Fe, Al 7 Cr, Al 3 Ni, AlLi). In addition to the intermetallic compounds in alloys with three or more components there are intermetallic compounds of the additives with each other (e.g. Mg 2 Si, MgZn 2 ), ternary (e.g. Al 8 Fe 2 Si, Al 2 Mg 3 Zn 3 , Al 2 CuMg) and higher Phases. The formation of mixed crystals and the formation of the heterogeneous structural components (amount, size, shape and distribution) determine the physical, chemical and technological properties of an alloy. As a result of the rate of diffusion decreasing with temperature, Al mixed crystals, after rapid cooling from higher temperatures, can contain higher contents than the equilibrium at room temperature. In such supersaturated mixed crystals, precipitation processes can take place at room temperature or moderately elevated temperatures (sometimes with the formation of metastable phases), which can have a considerable influence on the properties. Diffusion-inert elements such as Mn can even be oversaturated far beyond the maximum equilibrium solubility if they solidify rapidly from the melt. This supersaturation can be removed by annealing at high temperatures. The additives are then finely dispersed. This annealing (high annealing) is usually also used to compensate for crystal segregation.

Im folgenden werden einige für die Praxis wichtige Zwei- und Dreistoff-Systeme mit kurzen Erläuterungen gebracht:In the following some important two and Three-substance systems with brief explanations:

Aluminium-KupferAluminum-copper

Im Bereich von 0 bis etwa 53 % Cu liegt ein einfaches eutektisches Teilsystem mit einem Eutektikum bei 33,2 % Cu und 547 °C vor. Die maximale Löslichkeit bei der eutektischen Temperatur im α-Mischkristall liegt bei 5,7 %. Die Löslichkeit fällt mit sinkender Temperatur und beträgt bei 300°C noch etwa 0,45 %. Nicht gelöstes Kupfer liegt im Gleichgewichtszustand als Al2Cu vor. Durch Ausscheidung aus dem übersättigten Mischkristall können sich bei mittleren Temperaturen metastabile Übergangsphasen bilden.In the range from 0 to about 53% Cu there is a simple eutectic subsystem with an eutectic at 33.2% Cu and 547 ° C. The maximum solubility at the eutectic temperature in the α mixed crystal is 5.7%. The solubility drops with falling temperature and is still about 0.45% at 300 ° C. Undissolved copper is in the equilibrium state as Al 2 Cu. Precipitation from the supersaturated mixed crystal can result in metastable transition phases at medium temperatures.

Aluminium-SiliziumAluminum-silicon

Das System ist rein eutektisch mit einem Eutektikum bei 12,5 % Si und 577°C. Im α-Mischkristall sind bei dieser Temperatur 1,65 % Si löslich. Bei 300°C sind es noch etwa 0,07 %. Die Kristallisation des eutektischen Siliziums läßt sich durch geringe Zusätze (z.B. von Natrium oder Strontium) beeinflussen. Dabei tritt eine von der Erstarrungsgeschwindigkeit abhängige Unterkühlung und Konzentrationsverschiebung des eutektischen Punktes ein.The system is purely eutectic with a eutectic at 12.5% Si and 577 ° C. At this temperature, 1.65 is in the α mixed crystal % Si soluble. At 300 ° C it is still about 0.07%. The crystallization The eutectic silicon can be reduced by small additions (e.g. sodium or strontium). This occurs hypothermia depending on the rate of solidification and shift in concentration of the eutectic point.

Aluminium-MagnesiumAluminum-magnesium

Der Teilbereich von 0 bis etwa 36 % Mg ist eutektisch. Das Eutektikum liegt bei etwa 34 % Mg und 450°C. Bei dieser Temperatur beträgt die (maximale) Löslichkeit 17,4 % Mg. Bei 300°C sind 6,6 %, bei 100°C etwa 2,0 % Mg im α-Mischkristall löslich. Nicht gelöstes Mg liegt im Gefüge meist als β-Phase (Al8Mg5) vor.The partial range from 0 to about 36% Mg is eutectic. The eutectic is around 34% Mg and 450 ° C. At this temperature the (maximum) solubility is 17.4% Mg. At 300 ° C 6.6%, at 100 ° C about 2.0% Mg is soluble in the α-mixed crystal. Undissolved Mg is usually present in the structure as a β phase (Al 8 Mg 5 ).

Aluminium-ZinkAluminum zinc

Die Legierungen bilden ein eutektisches System mit einem zinkreichen Eutektikum bei 94,5 % Zn und 382°C. Im hier interessierenden aluminiumreichen Gebiet sind bei 275°C 31,6 % Zn im α-Mischkristall löslich. Die Löslichkeit ist stark temperaturabhängig und geht bei 200°C auf 14,5 %, bei 100°C auf etwa 3,0 % zurück.The alloys form a eutectic system with a zinc rich one Eutectic at 94.5% Zn and 382 ° C. Im interested here aluminum-rich region is 31.6% Zn in the α mixed crystal at 275 ° C. soluble. The solubility is strongly temperature-dependent and goes to 14.5% at 200 ° C, to about 3.0 at 100 ° C % back.

Die Systeme Aluminium-Mangan, Aluminium-Eisen und Aluminium-Nickel weisen ein Eutektikum bei niedriger Konzentration auf. Der Schmelzpunkt wird nur sehr wenig erniedrigt. Mit Ausnahme von Mangan ist die Löslichkeit im festen Zustand gering. The systems aluminum-manganese, aluminum-iron and aluminum-nickel have a low concentration eutectic. The melting point is lowered very little. With the exception The solubility of manganese in the solid state is low.

Aus der Zeitschrift AFS Transactions, Band 61, 1998, Seiten 225 bis 231 ist es bekannt, Aluminium-Silizium-Gußlegierungen für Zylinderköpfe durch Zugabe von Kupfer zu optimieren. Dabei steigt die Warmfestigkeit einer AlSi7Mg-Legierung, der 0,5 bis 1 % Kupfer zugegeben wurde, signifikant an, wobei gleichzeitig auch die Kriechfestigkeit verbessert wurde. Der Verbesserung der mechanischen Festigkeiten steht aber eine Verschlechterung der Duktilität sowie eine verminderte Korrosionsbeständigkeit gegenüber.From the journal AFS Transactions, volume 61, 1998, pages 225 to 231 it is known to cast aluminum-silicon alloys Optimize cylinder heads by adding copper. Here the heat resistance of an AlSi7Mg alloy increases from 0.5 to 1% copper was added significantly while taking the creep resistance has also been improved. The improvement of mechanical strength, however, there is a deterioration in Ductility as well as a reduced corrosion resistance.

Nach der gießtechnischen Herstellung von Zylinderkopf- und Motorblockgußteilen ist häufig eine spanende Bearbeitung erforderlich. Bei bestimmten Legierungen treten hier Probleme durch eine zu geringe Härte auf, da die Gußteile an der Oberfläche sehr weich sind, so daß bei der Zerspanung feine Riefen oder Verschmierungen auftreten können.After the casting of cylinder head and engine block castings machining is often required. With certain alloys, problems arise here too low hardness, because the castings on the surface very are soft, so that fine cuts or smears during machining may occur.

Derartige Legierungen müssen ferner eine hohe Wärmeleitfähigkeit aufweisen, damit die Gußteile für die Anwendung im Motorenbereich einsetzbar sind. Die zum Vergleich herangezogenen Kolbenlegierungen mit 12% Si erfüllen diese Anforderungen nicht, ebensowenig wie die üblicherweise verwendete AlSi9Cu3.Such alloys must also have a high thermal conductivity have so that the castings for use in the engine area can be used. The piston alloys used for comparison with 12% Si do not meet these requirements, just as little like the commonly used AlSi9Cu3.

Aufgabe der vorliegenden Erfindung ist es daher, eine für die Verwendung in Zylinderkopf- und Motorblockgußteilen geeignete Legierung hoher Wärmeleitfähigkeit mit einer entsprechenden Gefügeausbildung anzugeben, die eine hohe Warmfestigkeit, gute Kriechfestigkeit sowie ausreichende Duktilität bei gleichzeitig geringer Korrosionsanfälligkeit aufweist und die gleichzeitig gut zerspanbar ist.The object of the present invention is therefore one for Suitable for use in cylinder head and engine block castings Alloy of high thermal conductivity with a corresponding Specify microstructure, which has high heat resistance, good Creep resistance and sufficient ductility at the same time has low susceptibility to corrosion and at the same time is easy to machine.

Diese Aufgabe wird erfindungsgemäß durch die in den Patentansprüchen angegebenen Merkmale gelöst.This object is achieved by the in the claims specified features solved.

Nach den Untersuchungen der Erfinder weisen Zylinderkopf- und Motorblockgußteile, bestehend aus einer Aluminiumlegierung folgender Zusammensetzung:

  • Si 6,80 - 7,20
  • Fe 0,35 - 0,45
  • Cu 0,30 - 0,40
  • Mn 0,25 - 0,30
  • Mg 0,35 - 0,45
  • Ni 0,45 - 0,55
  • Zn 0,10 - 0,15
  • Ti 0,11 - 0,15
  • Rest Aluminium sowie unvermeidbare Verunreinigungen, max. je 0,05 einzeln, zusammen max. 0,15
    eine besonders hohe Kriech- und Warmfestigkeit auf, wenn Phasen vom Typ Aluminium-Nickel, Aluminium-Kupfer, Aluminium-Mangan, Aluminium-Eisen und Mischphasen der genannten Typen mit 1 bis 3 Vol.-% enthalten sind und insbesondere ein Verhältnis Ni : Mg: Cu = 5 : 4 : 3,5 eingehalten wird. Die Wärmeleitfähigkeit und die Duktilität werden bei einem Zylinderkopf- und Motorblockgußteil durch eine Gefügeausbildung, bestehend aus einem α-Aluminium-Matrixgefüge mit 40 - 55 Vol.-% und der Einhaltung eines Mn/Fe-Verhältnisses von mindestens 0,7 : 1 verbessert. Sofern die Elemente der Aluminiumlegierung in den folgenden Verhältnissen vorliegen:
    • Si : Fe : Cu = 7 : 0,4 : 0,35
    • Ni : Mg : Cu = 5 : 4 : 3,5
    weist das erfindungsgemäße Zylinderkopf- und Motorblockgußteil sehr gute Korrosionseigenschaften auf. Es wurde festgestellt, daß Zylinderkopf- und Motorblockgußteile besser zerspanbar sind und eine höhere Härte aufweisen, wenn sie wie folgt hergestellt wurden:
    Die Aluminiumlegierung wird bei Temperaturen von 720 bis 740 °C in eine Gußform eingegeben, darauf wird die Aluminiumlegierung einer Abkühlung mit einer Abkühlgeschwindigkeit 0,1 - 10 K s-1 unterzogen und nach einer Abkühlung auf Raumtemperatur wird eine Wärmebehandlung, bestehend aus einem Lösungsglühen bei 530 °C für 5 Stunden, einem Abschrecken in Wasser bei 80 °C sowie einem Warmauslagern bei einer Temperatur von 160 bis 200 °C für 6 Stunden durchgeführt.According to the inventors' investigations, cylinder head and engine block castings, consisting of an aluminum alloy, have the following composition:
  • Si 6.80 - 7.20
  • Fe 0.35-0.45
  • Cu 0.30-0.40
  • Mn 0.25-0.30
  • Mg 0.35-0.45
  • Ni 0.45-0.55
  • Zn 0.10-0.15
  • Ti 0.11-0.15
  • Rest of aluminum and unavoidable impurities, max. 0.05 each, together max. 0.15
    a particularly high creep and heat resistance when phases of the aluminum-nickel, aluminum-copper, aluminum-manganese, aluminum-iron and mixed phases of the types mentioned are contained with 1 to 3% by volume and in particular a ratio of Ni: Mg : Cu = 5: 4: 3.5 is observed. The thermal conductivity and ductility are improved in a cylinder head and engine block casting by means of a structure consisting of an α-aluminum matrix structure with 40-55% by volume and compliance with an Mn / Fe ratio of at least 0.7: 1. If the elements of the aluminum alloy are in the following proportions:
    • Si: Fe: Cu = 7: 0.4: 0.35
    • Ni: Mg: Cu = 5: 4: 3.5
    the cylinder head and engine block casting according to the invention has very good corrosion properties. It has been found that cylinder head and engine block castings are more machinable and have a higher hardness if made as follows:
    The aluminum alloy is put into a mold at temperatures of 720 to 740 ° C, then the aluminum alloy is subjected to cooling with a cooling rate of 0.1-10 K s -1 and after cooling to room temperature, a heat treatment consisting of solution annealing is carried out 530 ° C for 5 hours, quenching in water at 80 ° C and warm aging at a temperature of 160 to 200 ° C for 6 hours.

    Im folgenden sind mehrere Ausführungsbeispiele dargestellt, aus denen sich die Verarbeitungsvorteile durch eine gesteigerte Härte und damit verbunden eine bessere Zerspanbarkeit sowie eine geringerer Korrosionsanfälligkeit bei gleichbleibend guten mechanischen Eigenschaften ergeben (Tabelle 1). Im Vergleich zu den erfindungsgemäßen Legierungen wurde die aus dem Aluminium-Taschenbuch 14. Auflage, Seite 35 bekannte Aluininium-Silizium-Nickel-Legierung untersucht. Es ergab sich, daß hier nur eine geringe Wärmeleitfähigkeit wegen des hohen eutektischen Anteils gemessen werden konnte.Several exemplary embodiments are shown below which the processing advantages through an increased Hardness and associated better machinability and one less susceptibility to corrosion with good mechanical properties Properties result (Table 1). Compared to the alloys according to the invention were those from the aluminum paperback 14th edition, page 35 known aluminum-silicon-nickel alloy examined. It turned out that there was only one low thermal conductivity due to the high eutectic content could be measured.

    Die Beurteilung der Verarbeitbarkeit basiert auf einem Härtevergleich, wobei die Einzelwerte im Eindruckverfahren nach Brinell gemessen wurden. Es ergab sich für die erfindungsgemäße Legierung eine Härte von 100 - 105 HB im Gegensatz zu 85 - 90 HB bei der Vergleichslegierung.The workability assessment is based on a hardness comparison, the individual values using the Brinell indentation process were measured. It resulted for the alloy according to the invention a hardness of 100 - 105 HB in contrast to 85 - 90 HB at the comparison alloy.

    Die besonders hohen Härtewerte der erfindungsgemäßen Legierung konnten durch eine besondere Warmaushärtung erzielt werden, wie sie im Anspruch 4 definiert ist. Dabei wurden folgende Parameter eingehalten:

  • Gießtemperatur 730 °C
  • Abkühlgeschwindigkeit ca. 1 - 5 k/s
  • Lösungsglühen 530° für 5 Stunden
  • Abschrecken in 80° Wasser
  • Warmauslagern bei 180° für 6 Stunden
  • The particularly high hardness values of the alloy according to the invention could be achieved by a special hot hardening as defined in claim 4. The following parameters were observed:
  • Casting temperature 730 ° C
  • Cooling rate approx. 1 - 5 k / s
  • Solution annealing 530 ° for 5 hours
  • Quench in 80 ° water
  • Heat aging at 180 ° for 6 hours
  • Ein Korrosionsvergleich mit einer kupferhaltigen Legierung (0,5 % Kupfer aus Leg. 6) zeigte eine deutliche Verbesserung der Korrosionsbeständigkeit (gegenüber dem Stand der Technik) und insbesondere gegenüber herkömmlich verwendeten Legierungen, z.B. Legierung Nr. 5, die bisher zur Herstellung von Zylinder- und Motorblockgußteilen eingesetzt wurde. Somit ist davon auszugehen, daß mit der erfindungsgemäßen Legierung eine wesentliche Verbesserung der Korrosionseigenschaften durch Kompensierung des Kupfers mit Nickel erreicht werden konnte, wobei zur günstigen Ausbildung der Phasen, d.h. zur weitgehenden Einformung bzw. Abrundung der Phasen vom Typ Aluminium-Kupfer und Magnesium-Silizium die besondere Wärmebehandlung wie vorstehend angegeben und in den Gehaltsgrenzen von Anspruch 1 definiert zum Erfolg beitrug.A corrosion comparison with a copper-containing alloy (0.5 % Copper from leg. 6) showed a significant improvement in Corrosion resistance (compared to the state of the art) and especially compared to conventionally used alloys, e.g. Alloy No. 5, previously used to manufacture cylinder and Engine block castings was used. It can therefore be assumed that that with the alloy according to the invention an essential Improving the corrosion properties by compensating for the Copper with nickel could be achieved, being cheap Formation of the phases, i.e. for extensive molding or Rounding off the phases of the type aluminum-copper and magnesium-silicon the special heat treatment as stated above and defined in the salary limits of claim 1 to success contributed.

    Für die jeweils erreichten Härtewerte waren nicht alleine die jeweils eingesetzten Phasentypen sondern auch ihre Verteilung und Feinheit sowie die Menge, gemessen in Volumen-%, von entscheidender Bedeutung. In den untersuchten Legierungen 1 - 6 gemäß Tabelle 1 erfolgte die Definition der Phasenverhältnisse über die Verteilung der Elemente. Zur Kontrolle der Menge wurde das Phasenverhältnis sowohl durch Ausplanemetrieren als auch mittels quantitativer Bildanalysen anhand statistisch verteilter Schliffe bestimmt, die Phasentypen wurden durch Mikrosondenuntersuchungen ermittelt. Während die dem Stand der Technik entsprechende Legierung 6 (Tabelle 1) lediglich 0,5 Vol.-% der Cu-haltigen Phase enthielt, weist die erfindungsgemäße Legierung fein verteilte intermetallische Phasen mit einer mittleren Länge von höchstens 20 µm des Typs Aluminium-Nickel, Aluminium-Kupfer und Aluminium-Eisen-Mangan auf, wobei der Volumenanteil mindestens 1 Vol.-% beträgt, was als ein wesentlicher Grund zur Steigerung der Warmfestigkeit anzusehen ist. Die Feinheit der einzelnen Phasentypen konnte durch die jeweilige Gießtemperatur und die Abkühlungsbedingungen beeinflußt werden. Bei den erfindungsgemäß vorgeschlagenen Gießtemperaturen zwischen 720 und 740°C werden Phasen des Typs Al-Fe-Mn, Al-Ni und AlCu mit einer mittleren Länge von höchstens 15 µm erzeugt, wenn die Abkühlungsgeschwindigkeit zwischen 0,1 - 10 Ks-1 gehalten wird.

    Figure 00080001
    Not only the phase types used, but also their distribution and fineness as well as the amount, measured in volume%, were of decisive importance for the hardness values achieved. In the alloys 1-6 examined according to Table 1, the phase relationships were defined via the distribution of the elements. To check the quantity, the phase ratio was determined both by leveling out and by means of quantitative image analysis using statistically distributed sections, the phase types were determined by microsensor examinations. While the prior art alloy 6 (Table 1) contained only 0.5% by volume of the Cu-containing phase, the alloy according to the invention has finely divided intermetallic phases with an average length of at most 20 μm of the aluminum-nickel type, Aluminum-copper and aluminum-iron-manganese, with the volume fraction being at least 1% by volume, which is to be regarded as an essential reason for increasing the heat resistance. The fineness of the individual phase types could be influenced by the respective casting temperature and the cooling conditions. At the casting temperatures between 720 and 740 ° C. proposed according to the invention, phases of the type Al-Fe-Mn, Al-Ni and AlCu with an average length of at most 15 μm are produced if the cooling rate is kept between 0.1-10 Ks -1 .
    Figure 00080001

    Claims (5)

    Zylinderkopf- und Motorblockgußteil, bestehend aus einer Aluminiumlegierung folgender Zusammensetzung: Si 6,80 - 7,20 Fe 0,35 - 0,45 Cu 0,30 - 0,40 Mn 0,25 - 0,30 Mg 0,35 - 0,45 Ni 0,45 - 0,55 Zn 0,10 - 0,15 Ti 0,11 - 0,15 Rest Aluminium sowie unvermeidbare Verunreinigungen, max. je 0,05 einzeln, zusammen max. 0,15
    und ferner gekennzeichnet durch mindestens 1 Vol.-% an folgenden Phasen vom Typ Aluminium-Nickel, Aluminium-Kupfer, Aluminium-Mangan, Aluminium-Eisen und Mischphasen der genannten Typen.
    Cylinder head and engine block casting, consisting of an aluminum alloy of the following composition: Si 6.80 - 7.20 Fe 0.35-0.45 Cu 0.30-0.40 Mn 0.25-0.30 Mg 0.35-0.45 Ni 0.45-0.55 Zn 0.10-0.15 Ti 0.11-0.15 Rest of aluminum and unavoidable impurities, max. 0.05 each, together max. 0.15
    and further characterized by at least 1% by volume of the following phases of the aluminum-nickel, aluminum-copper, aluminum-manganese, aluminum-iron and mixed phases of the types mentioned.
    Zylinderkopf- und Motorblockgußteil nach Anspruch 1,
    gekennzeichnet durch folgende Gefügeausbildung: a) einem α-Aluminium-Matrixgefüge mit 40 - 60 Vol.-%, b) einer eutektischen Aluminium-Silizium-Phase mit 40 bis 55 Vol.-%, c) weitere Phasen mit 1 bis 3 Vol.-% von Aluminium und den Legierungsbestandteilen Eisen, Kupfer, Magnesium, Nickel, Mangan und Silizium.
    Cylinder head and engine block casting according to claim 1,
    characterized by the following structure: a) an α-aluminum matrix structure with 40-60% by volume, b) a eutectic aluminum-silicon phase with 40 to 55 vol .-%, c) further phases with 1 to 3 vol .-% of aluminum and the alloy components iron, copper, magnesium, nickel, manganese and silicon.
    Zylinderkopf- und Motorblockgußteil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die Elemente der Aluminiumlegierung in den folgenden Verhältnissen vorliegen: a) Si : Fe : Cu = 7 : 0,4 : 0,35 b) Fe : Mn = 1 : 0,7 c) Mg : Ni = 4 : 5
    Cylinder head and engine block casting according to one of the preceding claims,
    characterized,
    that the aluminum alloy elements are present in the following proportions: a) Si: Fe: Cu = 7: 0.4: 0.35 b) Fe: Mn = 1: 0.7 c) Mg: Ni = 4: 5
    Zylinderkopf- und Motorblockgußteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die Elemente der Aluminiumlegierung in den folgenden Verhältnissen vorliegen: a) Si : Fe : Cu = 7 : 0,4 : 0,35 b) Fe : Mn = 1 : 0,7 c) Ni : Mg : Cu = 5 : 4 : 3,5
    Cylinder head and engine block casting according to claim 1 or 2,
    characterized,
    that the aluminum alloy elements are present in the following proportions: a) Si: Fe: Cu = 7: 0.4: 0.35 b) Fe: Mn = 1: 0.7 c) Ni: Mg: Cu = 5: 4: 3.5
    Verfahren zur Herstellung eines Zylinderkopf- und Motorblockgußteils nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß a) eine Aluminiumlegierung bei Temperaturen von 720 bis 740 °C in die Gußform eingegeben wird, b) die Aluminiumlegierung einer Abkühlung mit einer Abkühlgeschwindigkeit 0,1 - 10 K s-1 unterzogen wird, c) nach der Abkühlung auf Raumtemperatur eine Wärmebehandlung unter folgenden Bedingungen durchgeführt wird:
    einem Lösungsglühen bei 530 °C für 5 Stunden, einem Abschrecken in Wasser bei 80 °C sowie einem Warmauslagern bei einer Temperatur von 160 bis 200 °C für 6 Stunden.
    Method for producing a cylinder head and engine block casting according to one of the preceding claims,
    characterized,
    that a) an aluminum alloy is introduced into the mold at temperatures of 720 to 740 ° C., b) the aluminum alloy is cooled with a cooling rate of 0.1-10 K s -1 , c) after cooling to room temperature, a heat treatment is carried out under the following conditions:
    solution annealing at 530 ° C for 5 hours, quenching in water at 80 ° C and heat aging at a temperature of 160 to 200 ° C for 6 hours.
    EP00111448A 1999-06-04 2000-05-27 Cast cylinder head and block Expired - Lifetime EP1057900B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19925666 1999-06-04
    DE19925666A DE19925666C1 (en) 1999-06-04 1999-06-04 Cast cylinder head and engine block component is made of an aluminum-silicon alloy containing aluminum-nickel, aluminum-copper, aluminum-manganese and aluminum-iron and their mixed phases

    Publications (2)

    Publication Number Publication Date
    EP1057900A1 true EP1057900A1 (en) 2000-12-06
    EP1057900B1 EP1057900B1 (en) 2001-08-08

    Family

    ID=7910273

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00111448A Expired - Lifetime EP1057900B1 (en) 1999-06-04 2000-05-27 Cast cylinder head and block

    Country Status (9)

    Country Link
    US (1) US6511555B2 (en)
    EP (1) EP1057900B1 (en)
    AT (1) ATE204026T1 (en)
    CA (1) CA2310351C (en)
    CZ (1) CZ293797B6 (en)
    DE (2) DE19925666C1 (en)
    ES (1) ES2163386T3 (en)
    MX (1) MXPA00005392A (en)
    PL (1) PL193871B1 (en)

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2841164A1 (en) * 2002-06-25 2003-12-26 Pechiney Aluminium ALLOY MOLDING WITH HIGH FLUID RESISTANCE
    KR100427282B1 (en) * 2001-09-10 2004-04-14 현대자동차주식회사 A composition of cylinder head for diesel and gasoline
    DE10026626C5 (en) * 1999-06-04 2006-10-05 Vaw Aluminium Ag Cylinder head and engine block casting
    CN100366782C (en) * 2001-11-05 2008-02-06 萨尔茨堡炼铝厂股份公司 Aluminum-silicon alloys having improved mechanical properties
    CN104962785A (en) * 2015-05-29 2015-10-07 柳州普亚贸易有限公司 Preparation method of aluminum alloy for anti-oxidation doors and windows

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7407196B2 (en) 2003-08-06 2008-08-05 Swagelok Company Tube fitting with separable tube gripping device
    KR20030051051A (en) * 2001-12-20 2003-06-25 현대자동차주식회사 Composition of alloy for cylinder head improved strength and fatigue with high-frequency
    DE10222098B4 (en) * 2002-05-17 2011-01-13 Bayerische Motoren Werke Aktiengesellschaft Process for the heat treatment of a component made of a hardenable light metal alloy
    US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy
    DE10330400A1 (en) 2003-07-04 2005-01-20 Alutec-Belte Ag Process for quenching cast part made from light metal alloy comprises using gaseous quenching medium
    DE602004004028T2 (en) * 2003-10-17 2007-07-05 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute Aluminum casting alloy, aluminum casting alloys and their manufacturing processes
    US7087125B2 (en) * 2004-01-30 2006-08-08 Alcoa Inc. Aluminum alloy for producing high performance shaped castings
    DE102004013777B4 (en) * 2004-03-20 2005-12-29 Hydro Aluminium Deutschland Gmbh Method for producing a cast part from an AL / Si casting alloy
    CN1317410C (en) * 2005-03-09 2007-05-23 沈阳工业大学 Abrasion resistant, heat resistant high silicone aluminium alloy and its shaping technology
    US8083871B2 (en) * 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
    CN100420544C (en) * 2005-11-11 2008-09-24 武汉重工铸锻有限责任公司 Technique for manufacturing cylinder cover of diesel engine in use for forging stele ingot without casting head
    US20080060723A1 (en) * 2006-09-11 2008-03-13 Gm Global Technology Operations, Inc. Aluminum alloy for engine components
    DE102007012423A1 (en) * 2007-03-15 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Cast aluminum alloy
    DE102007033827A1 (en) 2007-07-18 2009-01-22 Technische Universität Clausthal Aluminum casting alloy and its use
    US8636855B2 (en) * 2009-03-05 2014-01-28 GM Global Technology Operations LLC Methods of enhancing mechanical properties of aluminum alloy high pressure die castings
    DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
    AT14019U1 (en) * 2014-02-14 2015-02-15 Amag Casting Gmbh cast alloy
    CZ2015521A3 (en) * 2015-07-28 2016-12-14 Univerzita J. E. Purkyně V Ústí Nad Labem Aluminium alloy intended especially for manufacture of castings of mold segments for molding pneumatic tires and heat treatment process of mold segment castings
    CA2995250A1 (en) 2015-08-13 2017-02-16 Alcoa Usa Corp. Improved 3xx aluminum casting alloys, and methods for making the same
    KR101756016B1 (en) * 2016-04-27 2017-07-20 현대자동차주식회사 Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof
    CN110218885B (en) * 2019-06-24 2020-08-14 广东工程职业技术学院 High-strength and high-toughness extrusion casting aluminum alloy and preparation method thereof

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS53115407A (en) 1977-03-17 1978-10-07 Mitsubishi Keikinzoku Kogyo Kk Engine cylinder block and the manufacture thereof
    US4419143A (en) 1981-11-16 1983-12-06 Nippon Light Metal Company Limited Method for manufacture of aluminum alloy casting
    US5571346A (en) 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
    SE505823C2 (en) * 1995-10-10 1997-10-13 Opticast Ab Process for the preparation of iron-containing aluminum alloys free of flaky phase of Al5FeSi type

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    W.HUFNAGEL: "Aluminium-Taschenbuch 14 Auflage, Seiten 872 bis 877", 1986, ALUMINIUM VERLAG, DUSSELDORF, DE, XP002146538 *

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10026626C5 (en) * 1999-06-04 2006-10-05 Vaw Aluminium Ag Cylinder head and engine block casting
    KR100427282B1 (en) * 2001-09-10 2004-04-14 현대자동차주식회사 A composition of cylinder head for diesel and gasoline
    CN100366782C (en) * 2001-11-05 2008-02-06 萨尔茨堡炼铝厂股份公司 Aluminum-silicon alloys having improved mechanical properties
    FR2841164A1 (en) * 2002-06-25 2003-12-26 Pechiney Aluminium ALLOY MOLDING WITH HIGH FLUID RESISTANCE
    WO2004001079A2 (en) * 2002-06-25 2003-12-31 Aluminium Pechiney Part cast from aluminium alloy with high hot strength
    WO2004001079A3 (en) * 2002-06-25 2004-04-15 Pechiney Aluminium Part cast from aluminium alloy with high hot strength
    CN104962785A (en) * 2015-05-29 2015-10-07 柳州普亚贸易有限公司 Preparation method of aluminum alloy for anti-oxidation doors and windows

    Also Published As

    Publication number Publication date
    CA2310351C (en) 2004-02-03
    MXPA00005392A (en) 2002-06-04
    ES2163386T3 (en) 2002-02-01
    CZ20002066A3 (en) 2001-11-14
    CA2310351A1 (en) 2000-12-04
    DE19925666C1 (en) 2000-09-28
    EP1057900B1 (en) 2001-08-08
    PL340325A1 (en) 2000-12-18
    US6511555B2 (en) 2003-01-28
    CZ293797B6 (en) 2004-08-18
    PL193871B1 (en) 2007-03-30
    ATE204026T1 (en) 2001-08-15
    US20020053373A1 (en) 2002-05-09
    DE50000009D1 (en) 2001-09-13

    Similar Documents

    Publication Publication Date Title
    EP1057900B1 (en) Cast cylinder head and block
    DE102011105587B4 (en) Improved aluminum casting alloys
    DE102016103261B4 (en) Method of forming a cast automotive component
    DE69606060T2 (en) METHOD FOR REDUCING THE FORMATION OF PLATE-SHAPED BETAPHASES IN IRON-CONTAINING ALSI ALLOYS, IN PARTICULAR AL-Si-Mn-Fe ALLOYS
    DE10352932B4 (en) Cast aluminum alloy
    DE102007042099B4 (en) Aluminum alloy for engine components
    DE102009012073B4 (en) Use of an aluminum casting alloy
    EP1997924B1 (en) High-temperature aluminium alloy
    DE602004008934T2 (en) AL-SI-CU ALUMINUM ALLOY FORMING HIGH WARM PROOF RESISTANCE
    DE102009015316B4 (en) Metal treatment for the elimination of hot crack defects in low silicon aluminum alloys
    DE102015105558A1 (en) IMPROVED ALUMINUM ALLOYING CASTING COMPONENTS
    DE602004004028T2 (en) Aluminum casting alloy, aluminum casting alloys and their manufacturing processes
    DE19727096B4 (en) Aluminum alloy with excellent machinability and process for its production
    DE4436481C2 (en) Process for producing an aluminum alloy forging
    DE102013212439A1 (en) Cast aluminum alloy for structural components
    DE112008000587T5 (en) Forgings made of an aluminum alloy and process for their production
    DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
    DE3823476C2 (en) Process for producing an aluminum alloy with improved shear cutting properties
    WO2009010264A2 (en) Cast aluminum alloy, and use thereof
    DE112006001375T5 (en) High-pressure die-cast magnesium alloy
    DE10333103B4 (en) Made of a cast aluminum alloy piston
    DE102009036056A1 (en) Impact-resistant aluminum alloy suitable for thick-walled die castings, especially crank cases, has specified composition
    EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
    DE102019100250A1 (en) ALUMINUM ALLOYING AND METHOD OF MANUFACTURING
    DE102017113216A1 (en) Monotectic aluminum plain bearing alloy and process for its production and thus manufactured sliding bearing

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000930

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010226

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010808

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010808

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010808

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010808

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010808

    REF Corresponds to:

    Ref document number: 204026

    Country of ref document: AT

    Date of ref document: 20010815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50000009

    Country of ref document: DE

    Date of ref document: 20010913

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011108

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011109

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011108

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2163386

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020510

    Year of fee payment: 3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20020513

    Year of fee payment: 3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020527

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020531

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030528

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20080523

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20080527

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080521

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080521

    Year of fee payment: 9

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090527

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090527

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20090528

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090528

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090527

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110517

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50000009

    Country of ref document: DE

    Effective date: 20121201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080527