EP1056944B1 - Moteur thermique - Google Patents

Moteur thermique Download PDF

Info

Publication number
EP1056944B1
EP1056944B1 EP98902602A EP98902602A EP1056944B1 EP 1056944 B1 EP1056944 B1 EP 1056944B1 EP 98902602 A EP98902602 A EP 98902602A EP 98902602 A EP98902602 A EP 98902602A EP 1056944 B1 EP1056944 B1 EP 1056944B1
Authority
EP
European Patent Office
Prior art keywords
rotor
housing
vanes
combustion chamber
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98902602A
Other languages
German (de)
English (en)
Other versions
EP1056944A4 (fr
EP1056944A1 (fr
Inventor
Amro Al-Qutub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT98902602T priority Critical patent/ATE335914T1/de
Priority claimed from PCT/US1998/000882 external-priority patent/WO1999036691A1/fr
Publication of EP1056944A1 publication Critical patent/EP1056944A1/fr
Publication of EP1056944A4 publication Critical patent/EP1056944A4/fr
Application granted granted Critical
Publication of EP1056944B1 publication Critical patent/EP1056944B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Definitions

  • the present invention relates to a heat driven combustion engine incorporating an air compressor, a combustion chamber, and an expansion chamber.
  • Pistons compress air on one side, and receive pressure from combustion gasses on the other side. Combustion is continuous, occurring in a dedicated combustion chamber. Sensors report data to a microprocessor, which controls fuel delivery to the combustion chamber.
  • German Pat- Document No. 40 23 299, dated February 21, 1991, describes a continuous internal combustion engine having a rotor of configuration similar to that of a helical screw positive displacement pump.
  • German Pat- Document No. 1815711 shows a heat engine having an air compressor, a combustion chamber, and an expansion chamber.
  • German '711 has a sliding vane type expander with a single passive vacuum relief valve. German '711 does not show an expander whose expansion ratio can be selectively set at a plurality of values.
  • Japanese Pat. Document No. 56-113087 shows a rotary pump or compressor with a rotor having pivoted vanes.
  • Japanese '087 does not show an expander having a selectable expansion ratio.
  • Japanese Pac. Document No. 55-78188 shows a rotary internal combustion engine having a rotor with pivoted vanes.
  • Japanese '188 does not show an engine having a separate compressor and expander. Further, Japanese '188 does not show an expander having a selectable expansion ratio.
  • the present invention provides a rotary expansible chamber device characterised in that said rotary expansible chamber device has an expansion ratio, and said expansion ratio is setable at a selcted one of a plurality of expansion ratio values by opening respective ones of said plurality of valves.
  • the vanes are biased, as by spring or fluid pressure, to contact the inner surface of the housing- This could lead to excessive friction, either between vane edge and housing, or between the vane and its supporting cavity walls, and further threatens to bind the vane against the housing.
  • vanes are controlled by arms having rollers.
  • the rollers roll along a cam or track which is configured to cooperate with the housing cross sectional configuration.
  • the rollers influence the arms, and therefore the vanes, to remain within a predetermined dimension of the housing wall.
  • venting valves automatically open to enable atmospheric pressure to compensate for the vacuum.
  • venting valves also provide variation of the dynamic expansion ratio. While the geometry of the rotor and housing are fixed, the mathematical expansion ratio is thus also fixed. Provision of the venting valves allows the expander geometry to be variable, thus allowing the expansion ratio to be set at a value selected from a plurality of values corresponding in number to the number of venting valves.
  • Lubrication and cooling are provided by the lubricant, which is slung under great force by centrifugal action, spreading through shaft bearings to the inside of the compressor and expander rotors.
  • a microprocessor and sensor system control fuel supply, so that the engine quickly responds to changes in power demand.
  • the same microprocessor controls the venting valves.
  • the compressor and expander are mounted to a common shaft and are of the positive displacement type. Therefore, air supply volume is linear with the volume being expanded.
  • the novel heat engine is able, therefore, to cause the torque curve to be substantially linear, within minor limits imposed by high speed friction and fluid flow characteristics.
  • Still another object of the invention is to provide for venting an expansion chamber to the atmosphere, whereby excessive pressure drop during expansion is prevented from reducing engine output.
  • An additional object of the invention is to provide a rotary vane engine having a torque curve which is substantially linear throughout the range of attainable rotational speeds.
  • the heat engine 10 of the present invention is seen in diagrammatic form in Fig. 1.
  • An air intake 12 communicating with the atmosphere or other suitable air source leads to a compressor assembly 14, which discharges compressed air to a combustor 16 having a combustion chamber 18.
  • Hot gaseous products of combustion are conducted to an expander assembly 20.
  • Compressor and expander assemblies 14,20 are mounted to a common shaft 22.
  • compressor assembly 14 has venting valves 42.
  • the venting valves 42 will be discussed in greater detail in the context of the detailed description of the expander 20.
  • the compressor 14 has a rotor 44 of circular cross section, mounted eccentrically, with respect to the center of mass of the cross sectional area of the interior of compressor housing 46, within compressor housing 46 and includes vanes 50 which project from the rotor 44.
  • Housing interior surface 54 has a portion parallel to the surface 52 of the rotor 44 from which the vanes 50 project. This surface portion would be projecting out of the plane of the page in the view shown in Fig. 2.
  • the portion of surface 54 parallel to surface 52 is displaced from the surface 52 by a variable amount. This displacement decreases monotonically from a maximum proximate the intake 72 to a minimum proximate the outlet 74.
  • Variable projection enables vanes 50 to seal the displacement, i.e. the dimension, between rotor surface 52 and the portion of the housing interior surface 54 parallel to surface 52.
  • the variable distance existing between rotor surface 52 and the portion of the housing interior surface 54 parallel to surface 52 arises from the eccentricity of rotor 44 with respect to the center of mass of the cross sectional area of the interior of housing 46. Accordingly, the projection of each of the vanes 50 varies monotonically between a maximum projection proximate intake 72 to a minimum projection proximate outlet 74.
  • each of the vanes 50 varies between a maximum and a minimum projection, and reaches the maximum projection once for every revolution of the rotor 44.
  • the housing interior surface 54 in cross section, may form a modified "figure-8", wherein two circles overlap but do not precisely overlie one another. Of course, other cross sectional configurations, for example, circles and ellipses, would be satisfactory, depending upon the actual application. Additional seals 56,58 seal gaps existing between rotor 44 and vanes 50, and between vanes 50 and housing interior surface 54.
  • the rotor 44 is generally cylindrical, and is mounted on shaft 22, which is coaxial therewith.
  • shaft 22 is common to both the compressor rotor and the expander rotor.
  • each vane 50 is secured at one end to an arm 60, which arm 60 is pivotally attached to rotor 44 about axis 62.
  • Arm 60 is mounted on an end wall 64 of cylindrical rotor 44, and extends into the hollow interior of rotor 44, in order to movably support vane 50 so as to allow vane 50 to move into and out of rotor 44.
  • Vane 50 is preferably arcuate about a radius swung about axis 62, to accommodate projection and retraction. Arm 60 oscillates as rotor 44 rotates, being guided by the following arrangement.
  • a rotatable guide bearing 66 is disposed upon arm 60.
  • Guide bearing 66 is located on the opposite side of arm 60 from end wall 64.
  • a groove or track 68 is formed in a housing end wall (not shown), and guide bearing 66 rolls just inside track 68.
  • track 68 acts as a camming surface controlling the amount of projection of vanes 50 out of the rotor 44.
  • the track 68 passes close to the surface 52 near the intake 72 and farther from the surface 52, and closer to the center of rotor 44, near the outlet 74. Therefore, as the rotor 44 rotates, the guide bearings 66 move close to and away from surface 52, correspondingly causing respective vanes 50 to project a greater amount, near intake 72, and a lesser amount, near outlet 74, from the surface 52.
  • Track 68 is configured to cooperate with or parallel the portion, parallel to surface 52, of interior surface 54 of housing 46, in the sense that a tip 70 of vane 50 is maintained spaced from the portion, parallel to surface 52, of interior surface 54 by a gap of predetermined dimension. This is an important feature of the invention, since vanes 50 are not subject to frictional contact with interior surface 54, nor with walls which would otherwise be required to support and guide vanes 50 within rotor 44. The possibility of a vane 50 binding against interior surface 54 is thereby forestalled.
  • Guide bearing 66 can be maintained in contact with track 68 by centrifugal force or by springs (not shown) biasing vanes 50 to project from surface 52 of rotor 44. It should be noted that many other means, for maintaining guide bearing 66 in contact with track 68, will readily be apparent to those skilled in the art and all such means are considered to be within the scope of the present invention.
  • Compressor 14 has inlet 72 and outlet 74 which define the inlet channel and the outlet channel of the compressor respectively. Compressor assembly 14 draws in fresh air, and compresses the same, releasing compressed air at a point of minimal expansible chamber volume 76, to the outlet 74.
  • the expander 20 has a rotor 78 of circular cross section, mounted eccentrically, with respect to the center of mass of the cross sectional area of the interior of expander housing 48, within expander housing 48, and includes vanes 80 which project from the rotor 78.
  • Housing interior surface 82 has a portion parallel to the surface 84 of the rotor 78 from which the vanes 80 project. This surface portion would be projecting out of the plane of the page in the view shown in Fig. 3.
  • the portion of surface 82 parallel to surface 84 is displaced from the surface 84 by a variable amount. This displacement increases monotonically from a minimum proximate the intake 86 to a maximum proximate the outlet 88.
  • Variable projection enables vanes 80 to seal the displacement, i.e. the dimension, between rotor surface 84 and the portion of the housing interior surface 82 parallel to surface 84.
  • the variable distance existing between rotor surface 84 and the portion of the housing interior surface 82 parallel to surface 84 arises from the eccentricity of rotor 78 with respect to the center of mass of the cross sectional area of the interior of housing 48. Accordingly, the projection of each of the vanes 80 varies monotonically between a minimum projection proximate intake 86 to a maximum projection proximate outlet 88. Thus each of vanes 80 reaches the maximum projection once for every revolution of the rotor 78.
  • the housing interior surface 82 in cross section, may form a modified "figure-8", wherein two circles overlap but do not precisely overlie one another.
  • Other cross sectional configurations for example, circles and ellipses, would be satisfactory, depending upon the actual application.
  • Additional seals 90,92 seal gaps existing between rotor 78 and vanes 80, and between vanes 80 and housing interior surface 82.
  • the rotor 78 is generally cylindrical, and is mounted on shaft 22, which is coaxial therewith. As was noted previously, shaft 22 is common to both rotors 44 and 78.
  • each vane 80 is secured at one end to an arm 94, which arm 94 is pivotally attached to rotor 78 about axis 96.
  • Arm 94 is mounted on an end wall 98 of cylindrical rotor 78, and extends into the hollow interior of rotor 78, in order to movably support vane 80 so as to allow vane 80 to move into and out of rotor 78.
  • Vane 80 is preferably arcuate about a radius swung about axis 96, to accommodate projection and retraction. Arm 94 oscillates as rotor 78 rotates, being guided by the following arrangement.
  • a rotatable guide bearing 100 is disposed upon arm 94.
  • Guide bearing 100 is located on the opposite side of arm 94 from end wall 98.
  • a groove or track 102 is formed in a housing end wall (not shown), and guide bearing 100 rolls just inside track 102.
  • track 102 acts as a camming surface controlling the amount of projection of vanes 80 out of the rotor 78.
  • the track 102 passes close to the surface 84 near the outlet 88 and farther from the surface 84, and closer to the center of rotor 78, near the inlet 86.
  • Track 102 is configured to cooperate with or parallel the portion, parallel to surface 84, of interior surface 82 of housing 48, in the sense that a tip 104 of vane 80 is maintained spaced from the portion, parallel to surface 84, of interior surface 82 by a gap of predetermined dimension. This is an important feature of the invention, since vanes 80-are not subject to frictional contact with interior surface 82, nor with walls which would otherwise be required to support and guide vanes 80 within rotor 78. The possibility of a vane 80 binding against interior surface 82 is thereby forestalled.
  • Guide bearing 100 can be maintained in contact with track 102 by centrifugal force or by springs (not shown) biasing vanes 80 to project from surface 84 of rotor 78. It should be noted that many other means, for maintaining guide bearing 100 in contact with track 102, will readily be apparent to those skilled in the art and all such means are considered to be within the scope of the present invention.
  • the arm 94 and the respective vane 80 are identical in their general configuration to arm 60 and respective vane 50 shown in isolation in the detail of Fig. 5. Pivoting of arm 94 about axis 96 and the arcuate nature of vane 80, would be identical to the pivoting of arm 60 about axis 62 and the arcuate nature of vane 50 as shown in Fig. 5.
  • expander 20 is substantially similar to compressor 14, however expander 20 operates in reverse sequence to compressor 14.
  • Expander assembly 20 accepts heated combustion gasses within its inlet 86, which gasses are then introduced to a variable volume space defined by surface 84, surface 82, and a neighboring pair of vanes 80, at a point 106.
  • the variable volume space defined by surface 84, surface 82, and a neighboring pair of vanes 80 occupies its minimum volume at the point 106.
  • this variable volume space expands, heat energy is converted to mechanical energy, and exhaust is discharged to an exhaust system (not shown in its entirety) through outlet 88.
  • valves 42 are actively controlled which means that the valves 42 can be set in either the open position or the closed position independently of the pressure differential existing across any particular valve 42.
  • Valves 42 are preferably electromagnetically operated, for example by using solenoids, and are biased into the closed position by springs 108.
  • valves 42 may be mechanically actuated as, for example, by a cam arrangement, or the valves 42 may be actuated hydraulically using a hydraulic cylinder. Regardless of the actuating mechanism, most preferably the valves 42 are actively controlled by a microprocessor which selectively opens valves 42 in response to sensor inputs which will be described below.
  • the valves 42 in the rotary expansible chamber device housing 48 are provided to admit atmospheric air to the housing when the pressure in the housing drops below atmospheric pressure. During the expansion of a gas if the pressure in the rotary expansible chamber device housing drops below atmospheric, the rotor will have to do work to discharge the gas to the atmosphere thus losing efficiency. Opening the valves 42, effectively reduces the expansion ratio of the rotary expansible chamber device 20 of the present invention, thereby preventing the pressure inside the housing from falling below atmospheric pressure.
  • provision of three valves 42 effectively allows the expander 20 to have four actively selectable expansion ratios. With all three valves 42 closed, the expander has its highest expansion ratio. Opening the valve closest to the outlet 88 of the expander, reduces the expansion ratio to the next lower level. Simultaneously opening the two valves closest to the outlet of the expander, further reduces the expansion ratio to the second lowest level. Finally, opening all three valves reduces the expansion ratio of the expander 20 to its lowest value.
  • valves 42 may be opened in response to a drop in demand for power as detected by sensor 36 which will be described below. Opening valves 42 reduces power output by the expander. This in turn reduces power available to the compressor 14 causing a decrease in the air intake flow rate. Reduced air flow means that less power will be generated from combustion, which leads to an overall reduction in engine rpm. Thus opening valves 42 can effectively act as an engine control mechanism allowing quick braking of the engine.
  • Fuel is conducted from a fuel storage tank 24 to combustor 16. Fuel flow is controlled by a valve 26.
  • a microprocessor 28 processes input data generated by sensors, and adjusts fuel valve 26 accordingly.
  • Air flow sensor 34 located in the airstream of air intake 12, determines rate of intake of air mass, generating appropriate signals which are communicated to microprocessor 28 by communication cables, generally designated 38. Air flow sensor 34 is of any suitable common type currently in use in automotive applications, and need not be described in greater detail herein. Demand for power is inferred by demand sensor 36, which senses an operator control 40 essentially corresponding to a throttle.
  • microprocessor 28 In response to these inputs, microprocessor 28 generates four control signals.
  • One control signal modulates fuel valve 26 to suit conditions. Temperature and pressure sensors 30,32 indicate excessive or intolerable temperature or pressure, or failure of combustion. Fuel valve 26 is adjusted accordingly. Demand for power is the most significant variable influencing fuel flow under normal circumstances.
  • Air flow sensor 34 provides one input to microprocessor 28 enabling, in combination with other inputs, inferred determination of a low pressure condition which may exist within expander assembly 20.
  • the pressure within the expander housing can be inferred using well known thermodynamic principles given the pressure and temperature measured by sensors 32 and 30 (see Figure 1) respectively.
  • the calculation would begin by calculating the gas pressure after a small increment of time using equation 1.
  • the heat capacity ratio ⁇ is a function of temperature and can be calculated using readily available software. Because in engines of the present type the ratio of air to fuel is on the order of 50 to 1, the gas composition is assumed to be the same as air.
  • the engine rpm can be determined.
  • the volume of an elemental volume of the gas at the beginning and the end of the time interval is determined by the expander geometry and the engine rpm.
  • equation 1 the pressure at the end of the time interval can be calculated.
  • a new temperature for the gas can be calculated using equation 2.
  • An average of the new temperature and the initial temperature is used in equation 3 to calculate the heat loss from the gas during the time interval.
  • the heat transfer coefficient h is given in the literature as a function of surface type and Reynolds number.
  • a corrected gas temperature can be calculated.
  • a corrected pressure is calculated.
  • the heat capacity ratio ⁇ is evaluated at the corrected temperature, and the whole process is repeated for additional increments of time.
  • experimental correlations correlating the pressure in the expander housing with the pressure measured by sensor 32, the temperature measured by sensor 30, and the air flow measured by sensor 34 may be programmed into the microprocessor 28 allowing the microprocessor to determine the pressure in the expander housing at the location of the valves 42.
  • the correlations can be determined by routine experimentation using an experimental engine having a pressure sensor provided proximate the location of each of the valves 42, for directly measuring the pressure in the expander housing in the vicinity of each of the valves 42.
  • production engines may be provided with pressure sensors proximate the location of each of the valves 42, for directly measuring the pressure in the expander housing in the vicinity of each of the valves 42.
  • three signals control three venting valves 42 communicating between an expansion chamber (see Fig. 3) and the open atmosphere, should microprocessor 28 determine a low pressure condition wherein expansion drops pressure therein below ambient pressure. This provides another adjustment in response to low pressure, should conditions not warrant adjusting fuel flow.
  • Lubrication and cooling are provided by forced liquid lubrication, as seen in Fig. 4.
  • Liquid lubricant such as oil
  • a conduit 112 leads to an annulus 114 formed between shaft 22 and a shaft housing 116 enclosing shaft 22.
  • Annulus 114 is extended to both ends of shaft 22, and communicates with the cavities 118 and 120, formed by rotors 44 and 78 respectively, via bores 122.
  • Oil is constrained to flow through bores 122 by seals 124.
  • Suitable bearings 126 are located in annulus 114, and are lubricated by oil flow therethrough.
  • a flow path at 128 is then provided by vanes, conduits, or other suitable structure (none shown), so that flow path 128 extends radially outwardly towards circumferential walls 130 and 132 bounding rotors 44 and 78 respectively.
  • Storage enclosure 110 is located above the level of shaft 22, and preferably above the highest point of flow path 128, so that there is always oil subject to be pressurized immediately upon shaft rotation.

Claims (15)

  1. Dispositif rotatif à chambre expansible (20), comprenant
    un carter (48) ayant un intérieur ouvert, une surface intérieure (82), une entrée, et une sortie (88), ledit carter ayant une pluralité d'ouvertures de soupapes communiquant entre ledit intérieur ouvert du carter et l'air libre, ladite pluralité d'ouvertures de soupapes étant répartie entre ladite entrée et ladite sortie en ordre de distance croissante de ladite sortie, une première de ladite pluralité d'ouvertures de soupapes étant positionnée le plus près de ladite sortie par rapport à d'autres ouvertures de ladite pluralité d'ouvertures de soupapes, et chaque ouverture subséquente de ladite pluralité d'ouvertures de soupapes étant positionnée plus loin de ladite sortie qu'une ouverture précédente de ladite pluralité d'ouvertures de soupapes dans ledit ordre ;
    une pluralité de soupapes (42) prévues pour chacune de ladite pluralité d'ouvertures de soupapes, chacune de ladite pluralité de soupapes pouvant être bougée sélectivement entre une position fermée et une position ouverte, chacune de ladite pluralité de soupapes obstruant la communication de fluide à travers une ouverture respective de ladite pluralité d'ouvertures de soupapes lorsqu'elle est dans ladite position fermée, et permettant la communication de fluide à travers ladite ouverture respective de ladite pluralité d'ouvertures de soupapes lorsqu'elle est dans ladite position ouverte ;
    un arbre (22) supporté dans ledit carter de manière à pouvoir tourner, ledit arbre ayant un axe (96) de rotation ; et
    un rotor (78) monté à l'intérieur dudit carter et sur ledit arbre, et ayant une dimension longitudinale disposée à l'intérieur dudit intérieur ouvert, ledit rotor ayant une pluralité d'aubes (80) supportées à l'intérieur de celui-ci, lesdites aubes étant disposées de manière sélective de façon à bouger d'un état rétracté à un état déployé et vice versa, lesdites aubes fermant de façon étanche un intervalle existant entre ladite surface intérieure du carter (82) et ledit rotor (78), cet intervalle s'étendant le long de ladite dimension longitudinale du rotor, un bras (94) étant prévu pour chaque aube, chaque dit bras étant monté, de façon à pivoter, sur ledit rotor autour d'un axe de pivot (96) et commandant une dite aube respective pour qu'elle se mette dans l'état rétracté et déployé, chaque dit bras (94) ayant un moyen palier de guidage faisant saillie de celui-ci de manière à pouvoir tourner et s'étendant depuis ledit rotor,
    ledit carter (48) comprenant également un moyen voie (102) définissant une surface de guidage coopérant avec ledit intérieur du carter, ledit moyen palier de guidage entrant contact avec la surface de guidage et étant guidé par celle-ci, lesdits bras (94) contraignant lesdites aubes (80) à faire saillie dudit rotor (22), en réponse à ladite surface de guidage, sur une dimension prédéterminée entre ledit rotor et ladite surface intérieure du carter (82),
    caractérisé en ce que
    ledit dispositif rotatif à chambre expansible a un taux d'expansion, et ledit taux d'expansion est réglable à une valeur sélectionnée d'une pluralité de valeurs de taux d'expansion en ouvrant les soupapes respectives de ladite pluralité de soupapes (42).
  2. Dispositif tel que revendiqué dans la revendication 1, lesdites aubes (80) étant arquées autour d'un rayon depuis ledit axe de pivot du bras (96).
  3. Dispositif tel que revendiqué dans la revendication 1 ou la revendication 2, ladite surface intérieure du carter (82) ayant
    une configuration de coupe transversale ayant un périmètre formé par deux cercles se chevauchant ayant différents centres.
  4. Dispositif tel que revendiqué dans l'une quelconque des revendications 1 à 3, ladite pluralité de soupapes (42) étant commandées électromagnétiquement.
  5. Dispositif tel que revendiqué dans l'une quelconque des revendications 1 à 4, ledit rotor (78) comprenant également un moyen définissant un espace radialement distant dudit axe de rotation de l'arbre, dispositif comportant également
    un carter d'arbre (116) enfermant ledit arbre (22), un espace annulaire étant prévu entre ledit arbre et ledit carter d'arbre ;
    une enceinte de stockage (110) pour contenir du lubrifiant liquide, disposée au-dessus dudit arbre (22) ;
    un conduit (112) pour conduire le lubrifiant liquide de ladite enceinte de stockage audit espace annulaire ; et
    un moyen conduisant le lubrifiant liquide dudit espace annulaire audit espace situé radialement, et restreignant le lubrifiant liquide afin de l'empêcher de s'échapper de celui-ci.
  6. Dispositif tel que revendiqué dans l'une quelconque des revendications 1 à 5, chacune de ladite pluralité d'aubes (80) faisant saillie dudit rotor (78) entre une distance minimum et une distance maximum, et chacune de ladite pluralité d'aubes atteignant ladite distance maximum, pour faire saillie dudit rotor, une fois pour chaque tour accompli par ledit rotor.
  7. Dispositif tel que revendiqué dans l'une quelconque des revendications 1 à 6, ladite surface intérieure du carter (82) ayant
    une configuration de coupe transversale ayant un périmètre formé par deux cercles se chevauchant ayant différents centres.
  8. Moteur thermique (10) comprenant un deuxième dispositif rotatif à chambre expansible (20) tel que revendiqué dans la revendication 1, et un premier dispositif rotatif à chambre expansible (14), chaque dispositif ayant une première et une deuxième entrée et sortie respective et un premier et un deuxième carter, ledit moteur comprenant également :
    une chambre de combustion (18) ayant une troisième entrée et une troisième sortie, ladite troisième entrée de ladite chambre de combustion (18) communiquant avec ladite première sortie dudit premier dispositif rotatif à chambre expansible ; ladite troisième sortie de ladite chambre de combustion communiquant avec ladite deuxième entrée dudit deuxième dispositif rotatif à chambre expansible ; et
    un arbre commun (22) étant supporté par ledit premier carter et ledit deuxième carter de manière à pouvoir tourner, lesdits premier et deuxième rotors respectifs de chacun desdits premier et deuxième dispositifs rotatifs à chambre expansible étant montés sur ledit arbre commun (22), ce qui fait que l'air est comprimé dans ledit premier dispositif rotatif à chambre expansible, qu'il est refoulé dans ladite chambre de combustion (18) et soutient la combustion dans celle-ci, et que les produits de la combustion sont conduits audit deuxième dispositif rotatif à chambre expansible et détendus à l'intérieur de celui-ci, fournissant ainsi une énergie utile de forme rotative.
  9. Moteur thermique tel que revendiqué dans la revendication 8, ladite pluralité de soupapes étant commandées électromagnétiquement.
  10. Moteur thermique tel que revendiqué dans la revendication 9, chacune de ladite première pluralité d'aubes (80) faisant saillie dudit premier rotor (78) entre une première distance minimum et une première distance maximum, et chacune de ladite première pluralité d'aubes atteignant ladite première distance maximum, pour faire saillie dudit premier rotor, une fois pour chaque tour accompli par ledit premier rotor, et chacune de ladite deuxième pluralité d'aubes faisant saillie dudit deuxième rotor entre une deuxième distance minimum et une deuxième distance maximum, et chacune de ladite deuxième pluralité d'aubes atteignant ladite deuxième distance maximum, pour faire saillie dudit deuxième rotor, une fois pour chaque tour accompli par ledit deuxième rotor.
  11. Moteur thermique tel que revendiqué dans la revendication 10, comprenant également une alimentation en carburant, conduisant un carburant à ladite chambre de combustion (18), une soupape à carburant contrôlant ladite alimentation en carburant, un capteur de demande (36) détectant la demande de puissance et produisant un signal de commande, et un microprocesseur commandant ladite soupape à carburant en réponse audit signal de commande ; et comprenant aussi facultativement,
    (a) un capteur de température (30) détectant la température à ladite deuxième sortie de ladite chambre de combustion (18) et produisant un signal de température, et ledit microprocesseur réduisant l'alimentation en carburant à ladite chambre de combustion (18) lorsque ledit signal de température indique une valeur de température dépassant une valeur de température prédéterminée et/ou comprenant également
    (b) un capteur de pression (32) détectant la pression à ladite deuxième sortie de ladite chambre de combustion (18) et produisant un signal de pression, et ledit microprocesseur réduisant l'alimentation en carburant à ladite chambre de combustion (18) lorsque ledit signal de pression indique une valeur de pression dépassant une valeur de pression prédéterminée.
  12. Moteur thermique tel que revendiqué dans l'une quelconque des revendications 8 à 11, ledit premier rotor comprenant un moyen définissant un premier espace distant radialement de l'axe de rotation dudit arbre commun et ledit deuxième rotor comprenant un moyen définissant un deuxième espace distant radialement de l'axe de rotation dudit arbre commun, ce moteur comportant également :
    un carter d'arbre enfermant ledit arbre commun (22), un espace annulaire existant entre ledit arbre et ledit carter d'arbre ;
    une enceinte de stockage pour contenir du lubrifiant liquide, disposée au-dessus dudit arbre (22) ;
    un conduit pour conduire le lubrifiant liquide de ladite enceinte de stockage audit espace annulaire ; et
    un moyen conduisant le lubrifiant liquide dudit espace annulaire audit premier espace et audit deuxième espace, et restreignant le lubrifiant liquide pour l'empêcher de s'échapper de celui-ci.
  13. Moteur thermique tel que revendiqué dans l'une quelconque des revendications 8 à 12, ladite surface intérieure du premier carter (82) ayant une configuration de coupe transversale ayant un périmètre formé par un premier et un deuxième cercle se chevauchant ayant différents centres, et ladite surface intérieure du deuxième carter ayant une configuration de coupe transversale ayant un périmètre formé par un troisième et un quatrième cercle se chevauchant ayant différents centres.
  14. Moteur thermique tel que revendiqué dans la revendication 9, comprenant également une alimentation en carburant conduisant un carburant à ladite chambre de combustion (18), une soupape à carburant contrôlant ladite alimentation en carburant, un capteur de demande (36) détectant la demande de puissance et produisant un signal de commande, un microprocesseur commandant ladite soupape à carburant en réponse audit signal de commande ; et un capteur de température (30) détectant la température à ladite deuxième sortie de ladite chambre de combustion (18) et produisant un signal de température, ledit microprocesseur réduisant l'alimentation en carburant à ladite chambre de combustion (18) lorsque ledit signal de température indique une valeur de température dépassant une valeur de température prédéterminée et comprenant aussi facultativement un capteur de pression (32) détectant la pression à ladite deuxième sortie de ladite chambre de combustion et produisant un signal de pression, et ledit microprocesseur réduisant l'alimentation en carburant à ladite chambre de combustion (18) lorsque ledit signal de pression indique une valeur de pression dépassant une valeur de pression prédéterminée.
  15. Moteur thermique (10) comprenant un deuxième dispositif rotatif à chambre expansible (20) tel que revendiqué dans la revendication 1, et un premier dispositif rotatif à chambre expansible (14), chaque dispositif ayant une première et une deuxième entrée et sortie respectives et un premier et un deuxième carter, ledit moteur comprenant également :
    une chambre de combustion (18) ayant une troisième entrée et une troisième sortie, ladite troisième entrée de ladite chambre de combustion communiquant avec ladite première sortie dudit premier dispositif rotatif à chambre expansible (20) ; ladite troisième sortie de ladite chambre de combustion (18) communiquant avec ladite deuxième entrée dudit deuxième dispositif rotatif à chambre expansible ;
    chacune desdites soupapes étant commandée électromécaniquement, et chacune desdites soupapes étant ouverte sélectivement lorsqu'une condition de basse pression existe à l'intérieur dudit deuxième dispositif rotatif à chambre expansible, ce qui fait que ladite condition de basse pression est soulagée par la pression atmosphérique ; et
    un arbre commun (22) étant supporté par ledit premier carter et ledit deuxième carter, de façon à pouvoir tourner, lesdits premier et deuxième rotors respectifs de chacun desdits premier et deuxième dispositifs rotatifs à chambre expansible étant montés sur ledit arbre commun (22), ce qui fait que l'air est comprimé dans ledit premier dispositif rotatif à chambre expansible, qu'il est refoulé dans ladite chambre de combustion (18) et soutient la combustion dans celle-ci, et que les produits de la combustion sont conduits jusqu'audit deuxième dispositif rotatif à chambre expansible à l'intérieur duquel ils sont détendus, produisant ainsi une énergie utile sous forme rotative.
EP98902602A 1998-01-20 1998-01-20 Moteur thermique Expired - Lifetime EP1056944B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT98902602T ATE335914T1 (de) 1998-01-20 1998-01-20 Thermischer motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/000882 WO1999036691A1 (fr) 1995-05-16 1998-01-20 Moteur thermique

Publications (3)

Publication Number Publication Date
EP1056944A1 EP1056944A1 (fr) 2000-12-06
EP1056944A4 EP1056944A4 (fr) 2003-04-16
EP1056944B1 true EP1056944B1 (fr) 2006-08-09

Family

ID=22266217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98902602A Expired - Lifetime EP1056944B1 (fr) 1998-01-20 1998-01-20 Moteur thermique

Country Status (3)

Country Link
EP (1) EP1056944B1 (fr)
AU (1) AU5921998A (fr)
DE (1) DE69835542T2 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1324260A (en) * 1919-01-28 1919-12-09 Bulldog Pump Co Rotary pump.
US2248639A (en) * 1935-01-04 1941-07-08 Miksits Reinhold Rotary piston machine
US2435476A (en) * 1944-04-03 1948-02-03 Orran B Summers Internal-combustion power unit having a rotor with pivoted impulse elements
US2463155A (en) * 1944-04-10 1949-03-01 Bailey P Dawes Rotary engine

Also Published As

Publication number Publication date
AU5921998A (en) 1999-08-02
DE69835542T2 (de) 2007-08-09
EP1056944A4 (fr) 2003-04-16
EP1056944A1 (fr) 2000-12-06
DE69835542D1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US5709188A (en) Heat engine
EP1952001B1 (fr) Moteur a combustion interne
US8312859B2 (en) Wankel and similar rotary engines
US4760701A (en) External combustion rotary engine
US8905735B2 (en) Gerotor apparatus for a quasi-isothermal Brayton cycle engine
US4553513A (en) Thermodynamic rotary engine
US4390328A (en) Machine with rotary piston including a flexible annular member
US4169451A (en) Rotary piston internal combustion engine and method for influencing its operation
US3797975A (en) Rotor vane motor device
US4022178A (en) Valves
US5154149A (en) Rotary motor/pump
EP0192761A1 (fr) Moteur rotatif
EP1056944B1 (fr) Moteur thermique
US4362014A (en) Rotary machines and power systems using said machines
US4149835A (en) Temperature responsive seal lubrication for rotary mechanisms
US3671146A (en) Fluid energy machine
EP3126637B1 (fr) Moteur rotatif acch à régulation de taux de compression variable
US4032268A (en) Rotary piston engine
US3762844A (en) Positive displacement rotary heat engine
US4477240A (en) Rotor bearing lubricating system
EP0111781A2 (fr) Dispositif de contrôle pour turbosuflante
US4192221A (en) Radial piston engine
WO1993014299A1 (fr) Moteur rotatif
RU2043518C1 (ru) Газовая машина
EP0246567A2 (fr) Système réversible de transfert de l'énergie d'un fluide à un arbre de rotation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20000821;LT PAYMENT 20000821;LV PAYMENT 20000821;MK PAYMENT 20000821;RO PAYMENT 20000821;SI PAYMENT 20000821

A4 Supplementary search report drawn up and despatched

Effective date: 20030304

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 01C 21/16 B

Ipc: 7F 02G 3/00 A

17Q First examination report despatched

Effective date: 20041129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Ipc: F01C 20/00 20060101AFI20060608BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69835542

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160120

Year of fee payment: 19

Ref country code: FR

Payment date: 20160121

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69835542

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170120