EP1056063B1 - Method and device for the determination of the traffic conditions of a roadsegment - Google Patents

Method and device for the determination of the traffic conditions of a roadsegment Download PDF

Info

Publication number
EP1056063B1
EP1056063B1 EP00108359A EP00108359A EP1056063B1 EP 1056063 B1 EP1056063 B1 EP 1056063B1 EP 00108359 A EP00108359 A EP 00108359A EP 00108359 A EP00108359 A EP 00108359A EP 1056063 B1 EP1056063 B1 EP 1056063B1
Authority
EP
European Patent Office
Prior art keywords
traffic
road segment
model
kalman filter
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00108359A
Other languages
German (de)
French (fr)
Other versions
EP1056063A1 (en
Inventor
Andreas Lagger
Kai Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP1056063A1 publication Critical patent/EP1056063A1/en
Application granted granted Critical
Publication of EP1056063B1 publication Critical patent/EP1056063B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the present invention relates to a method and a device according to the preamble of patent claim 1.
  • measuring devices For automatic monitoring and control of road traffic, measuring devices are often used which measure the traffic volume or the number of vehicles that pass a measuring point within a certain period of time. Based on the resulting measurement results, however, only a useful statement about the locally occurring traffic intensity can be made. No information is possible about the state of the traffic in the traffic section lying in front of said measuring point.
  • a determination of the traffic condition is also possible on the basis of the measurement of the vehicle speed or speed trend. Due to the speed measurements, however, traffic disruptions can only be detected so late that appropriate traffic regulation measures can no longer counteract the disruption.
  • a traffic section therefore serving at the entrance and exit of the traffic measurement sensor are provided.
  • the measurement results of the two sensors can be made a statement about the traffic condition within the monitored traffic section. Since the measured traffic intensity shows strong fluctuations, which occur as stochastic disturbances around a "true" value, the measured values are filtered.
  • Kalman filters or so-called observers use a model and the input and output information of the object whose state is to be determined or tracked.
  • the more object information can be determined more quickly and accurately the more information the object will use for the model, which should correctly reflect the relationships between input and output variables.
  • the use of a model is known that is based on the use of eight parameters, which are sometimes difficult to determine. Part of the parameters also depends on the weather. The results obtained in this system, despite the increased effort, therefore, deviate significantly from the results that can be ideally achieved.
  • the present invention is therefore based on the object of specifying a method and a device for rapid determination of the state of a traffic section.
  • a Kalman filter with a model of the monitored traffic section is used.
  • the advantageous choice of a simple model for the trouble-free case in conjunction with a Kalman filter KF the traffic condition can be determined quickly and accurately. In particular, faults are detected almost instantaneously, whereby in each case the necessary measures (congestion warning, etc.) can be delivered quickly. Further advantages of the invention or the selected model will be explained below.
  • Models differ in their inputs and outputs and their interdependence, as well as in the choice of quantities that reflect the "internal state" of the model. For metrological reasons, there is a local and a time discretization of the continuous traffic. Measured values are only available at specific locations and at certain times (sampling times).
  • a transport-oriented model is used for the state estimation.
  • the monitored traffic section is accordingly considered as a transport medium which, like a conveyor belt, transports or passes elements or vehicles at a certain speed. To simplify, it is provided that all vehicles in the traffic section travel at a constant speed.
  • the method according to the invention with the aid of a Kalman filter makes it possible to quickly and reliably determine traffic disruptions and other parameters from strongly fluctuating measured values of the traffic volume q and the speed v.
  • the model used describes the conditions of an "ideal" road, which has an infinite capacity. This characteristic in particular makes it possible to detect disturbances very quickly and reliably, since measured values in the event of a fault differ greatly from the values "predicted" by the model.
  • the model is not suitable for the simulation of road traffic. The use of this model is therefore only useful in conjunction with a Kalman filter. Due to its linearity, however, the transport model is optimally suited for this purpose.
  • a significant advantage of the method according to the invention is that all the parameters of the model result in a simple manner from the geometric arrangement of the measuring points. A complex identification of model parameters is thus eliminated.
  • the parameters of the model used do not depend on weather influences such as moisture or smoothness, which makes adaptation to different environmental conditions superfluous.
  • the model shows a traffic model corresponding to a traffic segment, to which the traffic volume q1 measured at the entrance of the traffic segment is fed as input parameter and the speed v1 measured at the entrance of the traffic segment as well as the course constant length I s of the traffic segment.
  • the model provides an output q 2 m , which, taking into account the calculated running time T L of the vehicles Fz, indicates the traffic volume at the exit of the traffic section. For the sake of simplification, it is assumed that all vehicles in the section travel at the same constant speed v1.
  • the change of the traffic volume q is thus described in analogy to the transport of material (for example sand) on a conveyor belt moving at a constant speed v.
  • the material appears after a time delay, which depends on the transport speed and the length of the conveyor belt, unchanged at the delivery location.
  • Kalman filter also requires a description of the process in the form of an ordinary and not a partial differential equation containing partial derivatives of an unknown function with multiple variables (for the difference between ordinary and partial differential equations see [3], page 435) ,
  • the traffic segment is subdivided into n segments s1, s2,..., S n whose inner limits do not have sensors or measuring sensors.
  • the speed is assumed to be constant.
  • the selected model is now suitable for the description of the transport process and thus the undisturbed traffic in a traffic section.
  • This shape is also very suitable for a Kalman filter because it is linear in the state quantities.
  • the model serves as a building block for a traffic section with two measuring points. With the help of this module, it is easy to set up models for arbitrarily complex topologies that have entrances, exits, branches and merges.
  • the measured values are available as time-discrete values for a specific measuring interval (sampling time Ts). Therefore, the discrete version of the model that results from the continuous model is chosen as follows (matrix C does not change):
  • B ⁇ 0 T S A ⁇ ⁇ d ⁇ ⁇ B ⁇
  • the sampling step k has been written as an index.
  • the index k identifies the interval for the time t kT s ⁇ t ⁇ k + 1 ⁇ T s
  • the deviations between the predictive values of the model q2 m and the actually measured values q2 are corrected by the Kalman filter, which calculates the estimates q2 e , in the undisturbed case. However, if there are errors that were not taken into account in the modeling, the Kalman filter also returns erroneous values. The accident is now taken into account by extending the model, as shown in FIG. 4, to virtual entrances and exits to a "parking space with infinite capacity".
  • the traffic flows on the virtual exits which are designated q2 d , are a measure of the effects of a fault that has occurred.
  • the Kalman filter estimates the values q2 d (value q2 de ).
  • x e k x 1 ⁇ e x 2 ⁇ e x 3 ⁇ e x 4 ⁇ e x de
  • the Kalman filter can compare measured values and estimated values of the model via the virtual traffic flows.
  • the vector x (k) is corrected by the Kalman filter KF (see Fig. 5), whereby the vector x e (k) with corrected values x 1e , ..., x 4e and x de arises.
  • the corrected (internal) state values x 4e plus x de and x de thus correspond to the estimates q2e and q2 de of the Kalman filter KF.
  • the values q2 de are an immediate measure of the degree of interference that has occurred in the monitored section (see FIG. 7).
  • the corrected model value q2 * m (k) thus corresponds to the value q2 (k) actually measured in the interval k.
  • the assumed disturbances result from the traffic process and correspond to the form of a frequency-independent noise with a gaussian distributed amplitude spectrum. If one observes measured progressions of the traffic volume q, one recognizes that the strong fluctuations are quite good as a noise process to represent a mean value.
  • the Kalman filter KF is an optimal filter that estimates the variance of the estimation error x err k ⁇ x k - x e k minimized.
  • the "true" state vector is unknown. It is therefore used x e (k) as an estimate for the unknown state vector x (k).
  • the matrix G (k) which just like the matrices A (k), B (k) by discretization G ⁇ ⁇ G k arises, indicates how the (unknown) disturbances are distributed among the internal state variables of the process. In the simplest case, it is assumed that these disturbances act uniformly on all internal state variables. The matrix G (k) therefore indicates where, but not with what intensity, the disturbing variables act on the model. The intensity of the perturbations is described by the covariance matrices Q and R described below.
  • the matrix G (k) is selected in such a way that process disturbances p influence all variables of the state vector x (k) in the same way.
  • the control parameters of the Kalman filter KF are the covariance matrices Q and R of the (assumed) noise processes which act on the process itself or on the measured values output by the sensors.
  • the matrix Q describes the intensity of the process disturbances p.
  • the matrix R describes the intensity of the sensor disturbances s.
  • the matrices Q and R may theoretically be time-variant, it is assumed that the fluctuations in the measured values are independent of the traffic situation and thus independent of time.
  • the matrices Q and R thus assume constant values.
  • the elements of the matrices Q and R are the design parameters of the Kalman filter KF, with which the settling time and susceptibility of the Kalman filter KF are set.
  • the signal flow in the Kalman filter KF according to the invention is shown in FIG.
  • the products are added from input value q1 (k) times matrix B (k) and estimated state vector x e (k) times matrix A (k) in addition stage ADD1.
  • the difference between the traffic volume q2 m (k) newly determined by the model and the actually measured traffic volume q2 (k) (at the exit of the traffic segment) is formed.
  • the resulting difference (q2 m (k) - q2 (k)) is multiplied by the Kalman matrix L (k), whereby values are formed with which the state vector x (k) is corrected by the adder ADD3 or in the estimated State vector x e (k) is converted.
  • the matrices C 1 and C 2 are constant.
  • the last element of the matrix C 2 is negative, in order to get a positive value for q2 de (k).
  • all arithmetic operations can be performed by a computer system known to those skilled in the art (eg: processor, signal processor).
  • FIG. 7 shows the course of the traffic force q2 e estimated by the Kalman filter KF and the estimated traffic volume q2 de on the virtual entry and exit, influenced by a disturbance that occurs at a time t1 and during the time T dist up to one Time t2 stops.
  • the vehicles can pass the traffic section unhindered, so that the at the entrance and exit determined traffic levels neglecting the transit time differences to the value q1.
  • a disturbance occurs through a bottleneck in the transport section, which can happen dist traffic only with the reduced traffic volume q2.
  • the malfunction in the traffic control center must be recognized immediately.
  • the traffic volume q2 de increases again from the virtual parking space back into the quadrilateral section and then falls back to zero as soon as the traffic volumes q1 and q2 at the entrance and exit of the traffic section are equalized.
  • the threshold values are selected according to the size of the disturbance to be detected. Preferably, several threshold values are provided which correspond to the states “slight traffic obstruction", “viscous traffic” or “traffic jam”. Upon the occurrence of the appropriate conditions, therefore, the appropriate measures (e.g., congestion) may be initialized.
  • the appropriate measures e.g., congestion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

The method involves using a Kalman filter based on a model that can take into account the length of the traffic section and measured levels of traffic at the entry to and exit from the section. A transport-oriented model is selected in which a vector i formed contg. a correction value and a traffic level value for each of at least two segments using the length of the traffic sec and the sampled levels of traffic at the entry to and exit from the section. The vector is corrected using the Kalman filter to provide a precise estimate of the exit traffic level and of the traffic state. An Independent claim is also included for an arrangement for determining the traffic state of a section of traffic.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a method and a device according to the preamble of patent claim 1.

Zur automatischen Überwachung und Steuerung des Strassenverkehrs werden oft Messgeräte eingesetzt, welche die Verkehrsstärke bzw. die Zahl der Fahrzeuge messen, die innerhalb einer bestimmten Zeitdauer einen Messpunkt passieren. Anhand der dabei anfallenden Messresultate kann jedoch nur eine brauchbare Aussage über die lokal auftretende Verkehrsstärke gemacht werden. Über den Zustand des Verkehrs in dem vor dem genannten Messpunkt liegenden Verkehrsabschnitt ist keine Angabe möglich.For automatic monitoring and control of road traffic, measuring devices are often used which measure the traffic volume or the number of vehicles that pass a measuring point within a certain period of time. Based on the resulting measurement results, however, only a useful statement about the locally occurring traffic intensity can be made. No information is possible about the state of the traffic in the traffic section lying in front of said measuring point.

Auch anhand der Messung der Fahrzeuggeschwindigkeit bzw. Geschwindigkeitstendenz ist eine Bestimmung des Verkehrszustands möglich. Störungen im Verkehrsablauf sind aufgrund der Geschwindigkeitsmesswerte jedoch erst so spät feststellbar, dass entsprechende Massnahmen zur Verkehrsregulierung der Störung nicht mehr entgegenwirken können.A determination of the traffic condition is also possible on the basis of the measurement of the vehicle speed or speed trend. Due to the speed measurements, however, traffic disruptions can only be detected so late that appropriate traffic regulation measures can no longer counteract the disruption.

Zur Überwachung eines Verkehrsabschnittes werden daher an dessen Ein- und Ausgang der Verkehrsmessung dienende Messfühler vorgesehen. Durch einen Vergleich der Messresultate der beiden Messfühler kann eine Aussage über den Verkehrszustand innerhalb dem überwachten Verkehrsabschnitt gemacht werden. Da die gemessene Verkehrsstärke starke Schwankungen aufweist, die als stochastische Störungen um einen "wahren" Wert auftreten, werden die gemessenen Werte gefiltert.For monitoring a traffic section therefore serving at the entrance and exit of the traffic measurement sensor are provided. By comparing the measurement results of the two sensors can be made a statement about the traffic condition within the monitored traffic section. Since the measured traffic intensity shows strong fluctuations, which occur as stochastic disturbances around a "true" value, the measured values are filtered.

Bei der Filterung anhand von klassischen Tiefpass-, Bandpass- oder Hochpassfiltem entstehen Verzögerungen, die verhindern, dass eine rasche Aussage über den Verkehrszustand gemacht werden kann. Bekannt ist, dass Messwerte anhand eines Kalman-Filters praktisch verzögerungsfrei gefiltert werden können.When filtering on the basis of classic low-pass, bandpass or high-pass filters, there are delays that prevent a quick statement of the traffic status from being made. It is known that measured values can be filtered with virtually no delay using a Kalman filter.

Kalman-Filter oder sogenannte Beobachter verwenden ein Modell sowie die Ein- und Ausgangsinformationen des Objektes, dessen Zustand festgestellt bzw. verfolgt werden soll. Grundsätzlich gilt, dass die tatsächlichen Objektzustände umso schneller und genauer bestimmt werden können, je mehr Informationen des Objektes für das Modell verwendet werden, welches die Zusammenhänge zwischen den Ein- und Ausgangsgrössen korrekt widergeben soll. Aus [1] ist die Verwendung eines Modells bekannt, das auf der Verwendung von acht Parametern basiert, die sich zum Teil nur schwer ermitteln lassen. Ein Teil der Parameter hängt zudem von der Witterung ab. Die erreichten Resultate können bei diesem System, trotz des erhöhten Aufwandes, daher erheblich von den Resultaten abweichen, die sich idealerweise erzielen lassen.Kalman filters or so-called observers use a model and the input and output information of the object whose state is to be determined or tracked. As a general rule, the more object information can be determined more quickly and accurately, the more information the object will use for the model, which should correctly reflect the relationships between input and output variables. From [1] the use of a model is known that is based on the use of eight parameters, which are sometimes difficult to determine. Part of the parameters also depends on the weather. The results obtained in this system, despite the increased effort, therefore, deviate significantly from the results that can be ideally achieved.

Die Verwendung von Kalman Filtern in einem Verkehrsüberwachungssystem ist aus der US 5 801 943 bekannt.The use of Kalman filters in a traffic surveillance system is known from US 5,801,943.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur schnellen Ermittlung des Zustandes eines Verkehrsabschnittes anzugeben.The present invention is therefore based on the object of specifying a method and a device for rapid determination of the state of a traffic section.

Diese Aufgabe wird durch die Massnahmen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.This object is achieved by the measures of claim 1. Advantageous embodiments of the invention are specified in further claims.

Erfindungsgemäss wird ein Kaiman-Filter mit einem Modell des überwachten Verkehrsabschnittes verwendet. Durch die vorteilhafte Wahl eines einfachen Modells für den störungsfreien Fall in Verbindung mit einem Kalman-Filter KF kann der Verkehrszustand jeweils schnell und präzise ermittelt werden. Insbesondere werden Störungen nahezu verzögerungsfrei erkannt, wodurch jeweils die notwendigen Massnahmen (Stauwarnung, etc.) schnell abgegeben werden können. Weitere Vorteile der Erfindung bzw. des gewählten Modells werden nachfolgend erläutert.According to the invention, a Kalman filter with a model of the monitored traffic section is used. The advantageous choice of a simple model for the trouble-free case in conjunction with a Kalman filter KF, the traffic condition can be determined quickly and accurately. In particular, faults are detected almost instantaneously, whereby in each case the necessary measures (congestion warning, etc.) can be delivered quickly. Further advantages of the invention or the selected model will be explained below.

Modelle unterscheiden sich durch ihre Ein- und Ausgangsgrössen und deren gegenseitige Abhängigkeit sowie durch die Wahl der Zustandsgrössen, die den "inneren Zustand" des Modells widerspiegeln. Aus messtechnischen Gründen findet eine Orts- und eine Zeitdiskretisierung des kontinuierlichen Verkehrs statt. Messwerte stehen nur an bestimmten Orten sowie zu bestimmten Zeiten (Abtastzeitpunkten) zur Verfügung. Erfindungsgemäss wird für die Zustandsabschätzung ein transportorientiertes Modell verwendet. Der überwachte Verkehrsabschnitt wird demgemäss als Transportmedium betrachtet, welches, analog zu einem Förderband, Elemente bzw. Fahrzeuge mit einer bestimmten Geschwindigkeit transportiert bzw. passieren lässt. Vereinfachend wird vorgesehen, dass sich alle Fahrzeuge in dem Verkehrsabschnitt mit einer konstanten Geschwindigkeit fortbewegen. Trotz des einfachen Aufbaus des verwendeten Transportmodells ermöglicht das erfindungsgemässe Verfahren mit Hilfe eines Kalman-Filters eine schnelle und zuverlässige Bestimmung von Verkehrsstörungen und anderer Kenngrössen aus stark schwankenden Messwerten der Verkehrsstärke q und der Geschwindigkeit v.Models differ in their inputs and outputs and their interdependence, as well as in the choice of quantities that reflect the "internal state" of the model. For metrological reasons, there is a local and a time discretization of the continuous traffic. Measured values are only available at specific locations and at certain times (sampling times). According to the invention, a transport-oriented model is used for the state estimation. The monitored traffic section is accordingly considered as a transport medium which, like a conveyor belt, transports or passes elements or vehicles at a certain speed. To simplify, it is provided that all vehicles in the traffic section travel at a constant speed. Despite the simple structure of the transport model used, the method according to the invention with the aid of a Kalman filter makes it possible to quickly and reliably determine traffic disruptions and other parameters from strongly fluctuating measured values of the traffic volume q and the speed v.

Wesentlich ist, dass das verwendete Modell die Verhältnisse einer "idealen" Strasse beschreibt, die eine unendliche Kapazität aufweist. Gerade diese Eigenschaft ermöglicht es, Störungen sehr schnell und sicher zu erkennen, da sich gemessene Werte im Störungsfall von den durch das Modell "vorhergesagten" Werten stark unterscheiden. Das Modell ist hingegen für die Simulation des Strassenverkehrs nicht geeignet. Der Einsatz dieses Modells ist daher nur in Verbindung mit einem Kalman-Filter sinnvoll. Aufgrund dessen Linearität ist das Transportmodell zu diesem Zweck hingegen optimal geeignet.What is essential is that the model used describes the conditions of an "ideal" road, which has an infinite capacity. This characteristic in particular makes it possible to detect disturbances very quickly and reliably, since measured values in the event of a fault differ greatly from the values "predicted" by the model. The model, however, is not suitable for the simulation of road traffic. The use of this model is therefore only useful in conjunction with a Kalman filter. Due to its linearity, however, the transport model is optimally suited for this purpose.

Ein wesentlicher Vorteil des erfindungsgemässen Verfahrens besteht darin, dass sich alle Parameter des Modells in einfacher Weise aus der geometrischen Anordnung der Messstellen ergibt. Eine aufwendige Identifikation von Modellparametern entfällt damit. Insbesondere hängen die Parameter des verwendeten Modells nicht von Witterungseinflüssen wie Nässe oder Glätte ab, wodurch sich eine Anpassung an unterschiedliche Umgebungsbedingungen erübrigt.A significant advantage of the method according to the invention is that all the parameters of the model result in a simple manner from the geometric arrangement of the measuring points. A complex identification of model parameters is thus eliminated. In particular, the parameters of the model used do not depend on weather influences such as moisture or smoothness, which makes adaptation to different environmental conditions superfluous.

Die Erfindung wird nachfolgend anhand einer Zeichnung beispielsweise näher erläutert. Dabei zeigt:

Fig. 1
ein Verkehrsmodell mit Ein- und Ausgangsgrössen q1, q2,
Fig. 2
das Verkehrsmodell gemäss Fig. 1 für einen Verkehrsabschnitt, den Fahrzeuge mit einer bestimmten Gruppenlaufzeit durchfahren,
Fig. 3
den Verlauf der Verkehrsstärke q2 am Ausgang des Verkehrsabschnittes als Reaktion eines synthetischen Verlaufs der Verkehrsstärke q1 am Eingang des Verkehrsabschnittes für das kontinuierliche Modell,
Fig. 4
das Verkehrsmodell mit virtueller Ein- und Ausfahrt,
Fig. 5
das verwendete Kalman-Filter KF mit einem erweiterten diskreten Modell MOD,
Fig. 6
den Verlauf der Verkehrsstärke q2 am Ausgang des Verkehrsabschnittes als Reaktion eines synthetischen Verlaufs der Verkehrsstärke q1 am Eingang des Verkehrsabschnittes für das diskrete Modell und
Fig. 7
den vom Kalman-Filter KF geschätzten Verlauf der Verkehrsstärke q2e (verzögerungsfreie Glättung von q2) sowie die Verkehrsstärke q2d auf den virtuellen Ein- und Ausfahrten beim Auftreten einer Störung (Wert q2d durch das Kalman-Filter KF geschätzt, wird mit q2de bezeichnet).
The invention will be explained in more detail with reference to a drawing, for example. Showing:
Fig. 1
a traffic model with input and output variables q1, q2,
Fig. 2
the traffic model according to FIG. 1 for a traffic section which vehicles travel through with a specific group delay,
Fig. 3
the course of the traffic volume q2 at the exit of the traffic section in response to a synthetic course of the traffic volume q1 at the entrance of the traffic section for the continuous model,
Fig. 4
the traffic model with virtual entry and exit,
Fig. 5
the Kalman filter KF used with an extended discrete model MOD,
Fig. 6
the course of the traffic volume q2 at the exit of the traffic section in response to a synthetic course of the traffic volume q1 at the entrance of the traffic section for the discrete model and
Fig. 7
estimated by the Kalman filter KF course of traffic q2 e (smooth smoothing of q2) and the traffic q2 d on the virtual entrances and exits at the occurrence of a disturbance (value q2 d estimated by the Kalman filter KF, with q2 de designated).

Einleitend werden die verwendeten Bezeichnungen tabellarisch aufgelistet: Tabelle Bezeichnung Einheit Bedeutung ls km Länge eines durch zwei Messstellen begrenzten Verkehrsabschnittes TL s Laufzeit der Fahrzeuge durch den Verkehrsabschnitt Ts s Intervall, Abtastperiode v; v0 km/h Geschwindigkeit; konstante Geschwindigkeit v1 km/h Geschwindigkeit am Eingang des Verkehrsabschnittes v2 km/h Geschwindigkeit am Ausgang des Verkehrsabschnittes q Fz / Ts Fahrzeugstärke (Fahrzeuge pro Messperiode) q1 Fz/Ts Fahrzeugstärke am Eingang des Modells (gemessen) q2 Fz / Ts Fahrzeugstärke am Ausgang des Modells (gemessen) A, B, C Matrix Beschreibung des Modells G Matrix Eingangsmatrix für Prozessstörungen q2m Fz / Ts Fahrzeugstärke gemäss Modell berechnet    (m: Modell) q2e Fz / Ts durch das Kalman-Filter geschätzte Fahrzeugstärke    (e: estimated) q2de Fz / Ts geschätzte Abweichung der Verkehrsstärke    (d: Differenz) x(k) Vektor interner Zustandsvektor des Kalman-Filters beim Schritt k xe(k) Vektor Schätzwert des int. Zustandsvektors des Kalman-Filters beim Schritt k n - Anzahl der Segmente des Verkehrsabschnittes p Fz / Ts Prozessrauschen s Fz / Ts Sensorrauschen Initially, the terms used are listed in tabular form: table description unit importance l s km Length of a traffic section bounded by two measuring points T L s Running time of the vehicles through the traffic section T s s Interval, sampling period v; v 0 km / h Speed; constant speed v1 km / h Speed at the entrance of the traffic section v2 km / h Speed at the exit of the traffic section q Fz / Ts Vehicle strength (vehicles per measurement period) q1 Vehicles / Ts Vehicle strength at the entrance of the model (measured) q2 Fz / Ts Vehicle strength at the exit of the model (measured) A, B, C matrix Description of the model G matrix Input matrix for process faults q2 m Fz / Ts Vehicle strength calculated according to model (m: model) q2 e Fz / Ts vehicle strength estimated by the Kalman filter (e: estimated) q2 de Fz / Ts estimated deviation of the traffic volume (d: difference) x (k) vector internal state vector of the Kalman filter at step k x e (k) vector Estimate of the int. State vector of the Kalman filter at step k n - Number of segments of the traffic section p Fz / Ts process noise s Fz / Ts sensor noise

Fig. 1 zeigt ein zu einem Verkehrsabschnitt korrespondierendes Verkehrsmodell, dem als Eingangsgrösse die am Eingang des Verkehrsabschnittes gemessene Verkehrsstärke q1 sowie als Parameter die am Eingang des Verkehrsabschnittes gemessene Geschwindigkeit v1 sowie die selbstverständlich konstante Länge Is des Verkehrsabschnittes zugeführt werden. Das Modell liefert eine Ausgangsgrösse q2m, welche, unter Berücksichtigung der errechneten Laufzeit TL der Fahrzeuge Fz, die Verkehrsstärke am Ausgang des Verkehrsabschnittes angibt. Für das Modell wird vereinfachend angenommen, dass sich alle Fahrzeuge in dem Abschnitt mit der gleichen konstanten Geschwindigkeit v1 fortbewegen.1 shows a traffic model corresponding to a traffic segment, to which the traffic volume q1 measured at the entrance of the traffic segment is fed as input parameter and the speed v1 measured at the entrance of the traffic segment as well as the course constant length I s of the traffic segment. The model provides an output q 2 m , which, taking into account the calculated running time T L of the vehicles Fz, indicates the traffic volume at the exit of the traffic section. For the sake of simplification, it is assumed that all vehicles in the section travel at the same constant speed v1.

Die Änderung der Verkehrsstärke q wird somit in Analogie zum Transport von Material (z.B. Sand) auf einem mit konstanter Geschwindigkeit v bewegten Fliessband beschrieben. Das Material erscheint nach einer zeitlichen Verzögerung, die von der Transportgeschwindigkeit und der Länge des Fliessbandes abhängig ist, unverändert am Abgabeort. Es bestehen keine Laufzeitunterschiede der transportierten Materialpartikel. Deshalb erscheinen die Fahrzeuge F1, F2 und F3 gemäss dem in Fig. 1 gezeigten idealisierten Modell ohne Laufzeitunterschiede, in gleichem gegenseitigen Abstand am Ausgang des Verkehrsabschnittes.The change of the traffic volume q is thus described in analogy to the transport of material (for example sand) on a conveyor belt moving at a constant speed v. The material appears after a time delay, which depends on the transport speed and the length of the conveyor belt, unchanged at the delivery location. There are no transit time differences of the transported material particles. Therefore, the vehicles F1, F2 and F3 appear according to the idealized model shown in Fig. 1 without transit time differences, in the same mutual distance at the exit of the traffic section.

Ein Transportvorgang dieser Art entspricht der partiellen Differentialgleichung (1): q s t t = - v q s t s

Figure imgb0001
A transport process of this kind corresponds to the partial differential equation (1): q s t t = - v q s t s
Figure imgb0001

Bei konstanter Geschwindigkeit v wiederholt sich also am Ende des Förderbandes nach der Laufzeit: T L = l s v 0

Figure imgb0002

exakt der Verlauf von q1, d.h. es gilt: q2(t) = q1 (t-TL).At a constant speed v thus repeats at the end of the conveyor belt after the runtime: T L = l s v 0
Figure imgb0002

exactly the course of q1, ie the following applies: q2 (t) = q1 (tT L ).

Dieser Sachverhalt wird dem Verhalten der Fahrzeuge jedoch nicht gerecht, da die Fahrzeuge, die in einem Zeitintervall gemessen werden, nicht dieselbe Geschwindigkeit besitzen und folglich, wie in Fig. 2 gezeigt, nach unterschiedlichen Laufzeiten den zweiten Messquerschnitt passieren.However, this situation does not do justice to the behavior of the vehicles, since the vehicles which are measured in a time interval do not have the same speed and consequently, as shown in FIG. 2, pass the second measuring cross section after different transit times.

Der vorgesehene Einsatz eines Kalman-Filters erfordert zudem eine Beschreibung des Prozesses in Form einer gewöhnlichen und nicht einer partiellen Differentialgleichung, welche partielle Ableitungen einer unbekannten Funktion mit mehreren Variablen enthält (bezüglich dem Unterschied von gewöhnlichen und partiellen Differentialgleichungen siehe [3], Seite 435).The intended use of a Kalman filter also requires a description of the process in the form of an ordinary and not a partial differential equation containing partial derivatives of an unknown function with multiple variables (for the difference between ordinary and partial differential equations see [3], page 435) ,

Man gelangt erfindungsgemäss zu einer gewöhnlichen Differentialgleichung, indem man nur noch diskrete Orte in dem Verkehrsabschnitt betrachtet. Der Verkehrsabschnitt wird hierzu in n Segmente s1, s2, ..., sn unterteilt, deren innere Grenzen nicht über Sensoren bzw. Messfühler verfügen. In jedem dieser Segmente wird die Geschwindigkeit als konstant angenommen.According to the invention, one obtains an ordinary differential equation by considering only discrete locations in the traffic section. For this purpose, the traffic segment is subdivided into n segments s1, s2,..., S n whose inner limits do not have sensors or measuring sensors. In each of these segments, the speed is assumed to be constant.

Beschreibt man das Verhalten eines der n Untersegmente durch eine diskrete Verzögerung 1. Ordnung, so verhält sich das gesamte Segment wie ein Laufzeitelement le, dessen Zeitkonstante wie folgt lautet: T le = T L n = l s n v 0

Figure imgb0003
If one describes the behavior of one of the n subsegments by a discrete delay of the first order, then the entire segment behaves like a delay element le whose time constant reads as follows: T le = T L n = l s n v 0
Figure imgb0003

Je grösser die Zahl n der Segmente ist, desto genauer lässt sich das Verhalten beschreiben. Der Transportvorgang wird somit abgebildet, indem n Verzögerungen 1. Ordnung hintereinander geschaltet werden: q 1 , t t = n T L q 1 i - 1 t - q 1 , t ,

Figure imgb0004
The larger the number n of the segments, the more accurately the behavior can be described. The transport process is thus mapped by placing n 1st order delays in a row: q 1 . t t = n T L q 1 i - 1 t - q 1 . t .
Figure imgb0004

Durch diese Massnahme erfolgt für gewählte Segmente s1, s2, ... (siehe Fig. 1) eine Ortsdiskretisierung, wodurch eine gewöhnliche Differentialgleichung erreicht wird. Der erste Wert der Kette q1, 0 ist der Wert q1 am Eingang q1; der letzte Wert der Kette q1,n ist identisch mit dem Wert q2 am Ausgang des Modells.As a result of this measure, location discretization takes place for selected segments s1, s2,... (See FIG. 1), as a result of which an ordinary differential equation is achieved. The first value of the chain q 1, 0 is the value q1 at the input q1; the last value of the string q 1, n is identical to the value q2 at the output of the model.

Fasst man die Werte q1,l zu einem den inneren Zustand des Systems beschreibenden Zustandsvektor X zusammen, so lässt sich das Differentialgleichungssystem in Zustandsform angeben. Ein System, das aus vier Segmenten besteht, besitzt mit Tle = 4 / TL folgende Darstellung: x ˙ = A ˜ x + B ˜ q 1 ,

Figure imgb0005
q 2 = C ˜ x
Figure imgb0006
If the values q 1, l are combined to form a state vector X describing the internal state of the system, the system of differential equations can be specified in the form of a state. A system consisting of four segments has the following representation with T le = 4 / T L : x ˙ = A ~ x + B ~ q 1 .
Figure imgb0005
q 2 = C ~ x
Figure imgb0006

Die einzelnen Matrizen lauten wie folgt: A ˜ = - 1 T le 0 0 0 1 T le - 1 T le 0 0 0 1 T le - 1 T le 0 0 0 1 T le - 1 T le , B ˜ = 1 T le 0 0 0 , C ˜ = 0 0 0 1

Figure imgb0007
The individual matrices are as follows: A ~ = - 1 T le 0 0 0 1 T le - 1 T le 0 0 0 1 T le - 1 T le 0 0 0 1 T le - 1 T le . B ~ = 1 T le 0 0 0 . C ~ = 0 0 0 1
Figure imgb0007

In Fig. 3 ist die Verkehrsstärke q2 als Reaktion auf einen synthetischen Verlauf von q1 für n=4 Segmente (bzw. Verzögerungen) dargestellt. Man erkennt, dass nun ein Teil der Fahrzeuge bereits vor Ablauf der Zeit TL eintrifft, während ein anderer Teil aufgrund einer etwas tieferen Geschwindigkeit mehr Zeit benötigt (siehe Fig. 2).In Fig. 3, the traffic intensity q2 is shown in response to a synthetic history of q1 for n = 4 segments (or delays, respectively). It can be seen that now some of the vehicles arrive already before the time T L , while another part due to a slightly lower speed requires more time (see Fig. 2).

Das gewählte Modell ist nun zur Beschreibung des Transportvorganges und damit des ungestörten Verkehrs in einem Verkehrsabschnitt geeignet. Diese Form ist zudem für ein Kalman-Filter sehr geeignet, da es linear in den Zustandsgrössen ist. Das Modell dient als Baustein für einen Verkehrsabschnitt mit zwei Messstellen. Mit Hilfe dieses Bausteins lassen sich leicht Modelle für beliebig komplexe Topologien aufstellen, die Einfahrten, Ausfahrten, Verzweigungen und Zusammenführungen aufweisen.The selected model is now suitable for the description of the transport process and thus the undisturbed traffic in a traffic section. This shape is also very suitable for a Kalman filter because it is linear in the state quantities. The model serves as a building block for a traffic section with two measuring points. With the help of this module, it is easy to set up models for arbitrarily complex topologies that have entrances, exits, branches and merges.

Die Messwerte liegen als zeitdiskrete Werte für ein bestimmtes Messintervall (Abtastzeit Ts) vor. Daher wird die diskrete Version des Modells gewählt, die sich aus dem kontinuierlichen Modell wie folgt ergibt (die Matrix C ändert sich nicht): A : = e A ˜ 1 T s = i = 0 A ˜ T s i ! , B = 0 T S A τ B ˜

Figure imgb0008
The measured values are available as time-discrete values for a specific measuring interval (sampling time Ts). Therefore, the discrete version of the model that results from the continuous model is chosen as follows (matrix C does not change): A : = e A ~ 1 T s = Σ i = 0 A ~ T s i ! . B = 0 T S A τ B ~
Figure imgb0008

Die unendliche Reihe konvergiert aufgrund der Fakultät im Nenner sehr schnell, so dass keine sehr hohe Rechenleistung notwendig ist. Allerdings muss die Diskretisierung in jedem Messintervall k neu durchgeführt werden, da die Matrizen A ˜ , B ˜

Figure imgb0009

von der gemessenen Geschwindigkeit abhängen und somit nicht konstant sind. Die Diskretisierung kontinuierlicher Systeme ist u.a. auch aus [4], Seiten 74-80, Kapitel 3.1 (Diskretisierung der Regelstrecke) bekannt. Für das diskrete Modell gelten somit die Gleichungen : x k + 1 = A k x e k + B k q 1 k ,
Figure imgb0010
q 2 m k = C 1 x k + D k q 1 k .
Figure imgb0011
The infinite series converges very quickly due to the faculty in the denominator, so that no very high computing power is necessary. However, the discretization needs to be redone every measurement interval k since the matrices A ~ . B ~
Figure imgb0009

depend on the measured speed and are therefore not constant. The discretization of continuous systems is also known from [4], pages 74-80, chapter 3.1 (discretization of the controlled system). The equations thus apply to the discrete model: x k + 1 = A k x e k + B k q 1 k .
Figure imgb0010
q 2 m k = C 1 x k + D k q 1 k ,
Figure imgb0011

Vereinfachend wurde der Abtastschritt k als Index geschrieben. Der Index k kennzeichnet für die Zeit t das Intervall kT s t < k + 1 T s

Figure imgb0012
For simplification, the sampling step k has been written as an index. The index k identifies the interval for the time t kT s t < k + 1 T s
Figure imgb0012

Erfindungsgemäss werden in einem Intervall alle Werte als konstant angenommen, wodurch eine einfache Berechnung möglich wird. Es ist zu beachten, dass die Parameter des Prozessmodells jedoch nicht konstant sind. Nach jedem Abtastintervall TS ergibt sich ein neuer Wert für die am Eingang des Verkehrsabschnittes gemessene Geschwindigkeit v1, mit der sich, gemäss Annahme, alle Fahrzeuge in dem überwachten Abschnitt fortbewegen.According to the invention, all values are assumed to be constant in one interval, which makes a simple calculation possible. It should be noted, however, that the parameters of the process model are not constant. After each sampling interval T S , a new value results for the speed v1 measured at the entrance of the traffic section, with which, as assumed, all vehicles in the monitored section travel.

Die Abweichungen zwischen den Vorhersagewerten des Modells q2m und den tatsächlich gemessenen Werten q2 werden vom Kalman-Filter, das die Schätzwerte q2e berechnet, im ungestörten Fall korrigiert. Falls jedoch Störungen auftreten, die bei der Modellierung nicht berücksichtigt wurden, liefert auch das Kalman-Filter fehlerhafte Werte. Der Störfall wird nun berücksichtigt, indem das Modell, wie in Fig. 4 gezeigt, um virtuelle Ein- und Ausfahrten zu einem "Parkplatz mit unendlicher Kapazität" erweitert wird.The deviations between the predictive values of the model q2 m and the actually measured values q2 are corrected by the Kalman filter, which calculates the estimates q2 e , in the undisturbed case. However, if there are errors that were not taken into account in the modeling, the Kalman filter also returns erroneous values. The accident is now taken into account by extending the model, as shown in FIG. 4, to virtual entrances and exits to a "parking space with infinite capacity".

Die Verkehrsströme auf den virtuellen Ausfahrten, die mit q2d bezeichnet sind, sind ein Mass für die Auswirkungen einer aufgetretenen Störung. Durch das Kalman-Filter werden die Werte q2d geschätzt (Wert q2de).The traffic flows on the virtual exits, which are designated q2 d , are a measure of the effects of a fault that has occurred. The Kalman filter estimates the values q2 d (value q2 de ).

Da das Modell, wie eingangs erwähnt, eine unbeschränkte Kapazität aufweist, kann aus der Eingangsinformation q1 und dem Messwert q2 nicht auf den Wert q2d geschlossen werden. Da das Kalman-Filter optimale Schätzungen nur basierend auf einem Modell durchführen kann, muss auch der Wert q2d durch das Modell berücksichtigt werden. Da das Modell für den störungsfreien Betrieb ausgelegt ist, wird konsequenterweise angenommen, dass der Anfangswert von q2d gleich Null ist und sich anschliessend von Abtastperiode zu Abtastperiode wie folgt verhält: q2d (k+1) = q2d(k). Das Modell sieht daher, wie modelliert, keine Störung vor, so dass der Wert q2d konstant ist bzw. mit jedem Intervall k nur durch das Kalman-Filter KF verändert werden kann (q2d (k+1) = q2d(k) + corrKF(k)). Dazu wird der für vier Segmente s1, s2, s3, s4 vorgesehene Zustandsvektor x wie folgt erweitert: x k = x 1 x 2 x 3 x 4 x d , x e k = x 1 e x 2 e x 3 e x 4 e x de

Figure imgb0013
Since the model, as mentioned above, has an unlimited capacity, it can not be deduced from the input information q1 and the measured value q2 to the value q2 d . Since the Kalman filter can only make optimal estimates based on a model, the q2 d value must also be taken into account by the model. Since the model is designed for trouble-free operation, it is consequently assumed that the initial value of q2 d is equal to zero and then behaves as follows from sample period to sample period: q2 d (k + 1) = q2 d (k). Therefore, as modeled, the model does not provide any disturbance, so that the value q2d is constant or can be changed with each interval k only by the Kalman filter KF (q2 d (k + 1) = q2 d (k) + corr KF (k)). For this purpose, the state vector x provided for four segments s1, s2, s3, s4 is expanded as follows: x k = x 1 x 2 x 3 x 4 x d . x e k = x 1 e x 2 e x 3 e x 4 e x de
Figure imgb0013

Im ungestörten Fall treten keine virtuellen Verkehrsflüsse (siehe Fig. 4) auf. Kommt es zu Störungen, so kann das Kalman-Filter über die virtuellen Verkehrsflüsse Messwerte und Schätzwerte des Modells abgleichen. Der Vektor x(k) wird durch das Kalman-Filter KF korrigiert (siehe Fig. 5), wodurch der Vektor xe(k) mit korrigierten Werten x1e, ..., x4e sowie xde entsteht. Die korrigierten (internen) Zustandswerte x4e plus xde bzw. xde entsprechen somit den Schätzwerten q2e und q2de des Kalman-Filters KF. Die Werte q2de sind ein unmittelbares Mass für den Grad der im überwachten Abschnitt aufgetretenen Störung (siehe Fig. 7).In the undisturbed case, no virtual traffic flows (see FIG. 4) occur. If malfunctions occur, the Kalman filter can compare measured values and estimated values of the model via the virtual traffic flows. The vector x (k) is corrected by the Kalman filter KF (see Fig. 5), whereby the vector x e (k) with corrected values x 1e , ..., x 4e and x de arises. The corrected (internal) state values x 4e plus x de and x de thus correspond to the estimates q2e and q2 de of the Kalman filter KF. The values q2 de are an immediate measure of the degree of interference that has occurred in the monitored section (see FIG. 7).

Grundlage des in Fig. 5 gezeigten Kalman-Filters KF ist das oben beschriebene, erweiterte diskrete Modell MOD, das den Verhältnissen im Idealzustand genügt. Zur Anpassung an die realen Verhältnisse wird zusätzlich angenommen, dass Prozess- und Sensorstörungen p bzw. s an den in Fig. 5 gezeigten Stellen wie folgt wirksam sind (Annahme D(k) =[0]): x k + 1 = A k x k + B k q 1 k + G k p k ,

Figure imgb0014
q 2 * m k = C k x k + D k q 1 k + s k q 2 k
Figure imgb0015
The basis of the Kalman filter KF shown in FIG. 5 is the extended discrete model MOD described above, which satisfies the conditions in the ideal state. In order to adapt to the real conditions, it is additionally assumed that process and sensor disturbances p and s are effective at the points shown in FIG. 5 as follows (assumption D (k) = [0]): x k + 1 = A k x k + B k q 1 k + G k p k .
Figure imgb0014
q 2 * m k = C k x k + D k q 1 k + s k q 2 k
Figure imgb0015

Der korrigierte Modellwert q2*m(k) entspricht somit dem im Intervall k tatsächlich gemessenen Wert q2(k). Die angenommenen Störungen resultieren aus dem Verkehrsprozess und entsprechen der Form eines frequenzunabhängigen Rauschens mit gaussverteiltem Amplitudenspektrum. Betrachtet man gemessene Verläufe der Verkehrsstärke q, so erkennt man, dass sich die starken Schwankungen recht gut als Rauschprozess um einen Mittelwert darstellen lassen. Das Kalman-Filter KF ist ein Optimalfilter, das die Varianz des Schätzfehlers x err k x k - x e k

Figure imgb0016

minimiert. Der "wahre" Zustandsvektor ist nicht bekannt. Man verwendet deshalb xe(k) als Schätzwert für den unbekannten Zustandsvektor x(k).The corrected model value q2 * m (k) thus corresponds to the value q2 (k) actually measured in the interval k. The assumed disturbances result from the traffic process and correspond to the form of a frequency-independent noise with a gaussian distributed amplitude spectrum. If one observes measured progressions of the traffic volume q, one recognizes that the strong fluctuations are quite good as a noise process to represent a mean value. The Kalman filter KF is an optimal filter that estimates the variance of the estimation error x err k x k - x e k
Figure imgb0016

minimized. The "true" state vector is unknown. It is therefore used x e (k) as an estimate for the unknown state vector x (k).

Die Matrix G(k), die genau wie die Matrizen A(k), B(k) durch Diskretisierung G ˜ G k

Figure imgb0017

entsteht, gibt an, wie sich die (unbekannten) Störgrössen auf die internen Zustandsgrössen des Prozesses verteilen. Im einfachsten Fall nimmt man an, dass diese Störgrössen gleichmässig auf alle internen Zustandsgrossen einwirken. Durch die Matrix G(k) wird daher angegeben wo nicht aber mit welcher Intensität die Störgrössen auf das Modell einwirken. Die Intensität der Störungen wird durch die nachstehend beschriebenen Kovarianzmatrizen Q und R beschrieben. Sofern zum Beispiel drei Zustandsgrössen und zwei Störgrössen vorhanden sind und die erste Störgrösse nur auf die erste Zustandsgrösse und die zweite Störgrösse nur auf die beiden folgenden Zustandsgrössen einwirkt, würde dieser Sachverhalt mit einer Matrix G(k) der nachstehend angegebenen Form berücksichtigt: G ˜ = 10 01 01 G k
Figure imgb0018
The matrix G (k), which just like the matrices A (k), B (k) by discretization G ~ G k
Figure imgb0017

arises, indicates how the (unknown) disturbances are distributed among the internal state variables of the process. In the simplest case, it is assumed that these disturbances act uniformly on all internal state variables. The matrix G (k) therefore indicates where, but not with what intensity, the disturbing variables act on the model. The intensity of the perturbations is described by the covariance matrices Q and R described below. If, for example, three state variables and two disturbance variables are present and the first disturbance variable acts only on the first state variable and the second disturbance variable only on the two following state variables, this situation would be considered with a matrix G (k) of the form given below: G ~ = 10 01 01 G k
Figure imgb0018

Erfindungsgemäss wird die Matrix G(k) derart gewählt, dass Prozessstörungen p alle Grössen des Zustandsvektors x(k) in gleicher Weise beeinflussen.According to the invention, the matrix G (k) is selected in such a way that process disturbances p influence all variables of the state vector x (k) in the same way.

Die Steuerparameter des Kalman-Filters KF sind die Kovarianzmatrizen Q und R der (angenommenen) Rauschprozesse, die auf den Prozess selbst bzw. auf die von den Sensoren abgegebenen Messwerte einwirken. Die Matrix Q beschreibt die Intensität der Prozessstörungen p. Die Matrix R beschreibt die Intensität der Sensorstörungen s. Obwohl die Matrizen Q und R theoretisch zeitvariant sein dürfen, wird angenommen, dass die Schwankungen der Messwerte unabhängig von der Verkehrssituation und somit zeitunabhängig sind. Die Matrizen Q und R nehmen damit konstante Werte an. Die Elemente der Matrizen Q und R sind die Entwurfsparameter des Kalman-Filters KF, mit denen die Einschwingzeit und Störempfindlichkeit des Kalman-Filters KF eingestellt werden.The control parameters of the Kalman filter KF are the covariance matrices Q and R of the (assumed) noise processes which act on the process itself or on the measured values output by the sensors. The matrix Q describes the intensity of the process disturbances p. The matrix R describes the intensity of the sensor disturbances s. Although the matrices Q and R may theoretically be time-variant, it is assumed that the fluctuations in the measured values are independent of the traffic situation and thus independent of time. The matrices Q and R thus assume constant values. The elements of the matrices Q and R are the design parameters of the Kalman filter KF, with which the settling time and susceptibility of the Kalman filter KF are set.

Mit den Initialisierungswerten P 0 = G 0 QG T 0

Figure imgb0019

und x 0 = 0
Figure imgb0020

sind folgende Gleichungen zu berechnen. Man unterscheidet zwischen den Gleichungen zur Bestimmung der optimalen Schätzwerte und den Gleichungen zur Berechnung des Folgezustandes.With the initialization values P 0 = G 0 QG T 0
Figure imgb0019

and x 0 = 0
Figure imgb0020

the following equations have to be calculated. A distinction is made between the equations for determining the optimal estimates and the equations for calculating the subsequent state.

Die Gleichungen zur Bestimmung der optimalen Schätzwerte lauten wie folgt (I ist die Einheitsmatrix) : L k = P k C 1 T ( C 1 P k C 1 T + R ) - 1 ,

Figure imgb0021
P e k = I - L k C 1 P k ,
Figure imgb0022
x e k = x k + L k q 2 ( k ) - C 1 x k - D k q 1 k
Figure imgb0023
q 2 e k = C 1 x e k + D k q 1 k
Figure imgb0024
The equations for determining the optimal estimates are as follows (I is the unit matrix): L k = P k C 1 T ( C 1 P k C 1 T + R ) - 1 .
Figure imgb0021
P e k = I - L k C 1 P k .
Figure imgb0022
x e k = x k + L k q 2 ( k ) - C 1 x k - D k q 1 k
Figure imgb0023
q 2 e k = C 1 x e k + D k q 1 k
Figure imgb0024

Die Gleichungen zur Berechnung des Folgezustandes lauten wie folgt: x k + 1 = A k x e k + B k q 1 k ,

Figure imgb0025
P k + 1 = A k P e k A T k + G k QG T k
Figure imgb0026
The equations for calculating the subsequent state are as follows: x k + 1 = A k x e k + B k q 1 k .
Figure imgb0025
P k + 1 = A k P e k A T k + G k QG T k
Figure imgb0026

Die obengenannten Gleichungen werden für jeden Abtastschritt berechnet. Die Reihenfolge, in der die Gleichungen berechnet werden, darf nicht vertauscht werden, da die Ergebnisse teilweise voneinander abhängen.The above equations are calculated for each sampling step. The order in which the equations are calculated must not be reversed, as the results are partly dependent on each other.

Der Signalfluss im erfindungsgemässen Kalman-Filter KF ist in Fig. 5 gezeigt. Für jedes Intervall erfolgt die Addition der Produkte aus Eingangswert q1(k) mal Matrix B(k) sowie geschätzter Zustandsvektor xe(k) mal Matrix A(k) in der Additionsstufe ADD1. Die Summe ergibt nach der zeitlichen Verschiebung den neuen unkorrigierten internen Zustandsvektor x(k) der mit der Matrix C1= [00011] multipliziert wird, wodurch die Summe der Werte x4 plus xd gebildet wird (q2m = x4 + xd). Anschliessend wird anhand der Differenzstufe DIFF die Differenz zwischen der vom Modell neu bestimmten Verkehrsstärke q2m(k) und der tatsächlich gemessenen Verkehrsstärke q2(k) (am Ausgang des Verkehrsabschnittes) gebildet. Die resultierende Differenz (q2m(k) - q2(k)) wird mit der Kalman-Matrix L(k) multipliziert, wodurch Werte gebildet werden, mit denen der Zustandsvektor x(k) anhand der Additionsstufe ADD3 korrigiert bzw. in den geschätzten Zustandsvektor xe(k) umgewandelt wird. Die geschätzten Werte x4e und xde werden anhand der Matrizen C1=[00011] und C2=[0000-1] ausgelesen. Anhand von C1 wird die Summe der geschätzten Werte x4e und xde gebildet, welche den Schätzwert q2e(k) ergibt. Wie bereits erwähnt, sind die Matrizen C1 und C2 konstant. Das letzte Element der Matrix C2 ist negativ, damit man bei Stau einen positiven Wert für q2de(k) erhält. Selbstverständlich können alle Rechenoperationen durch ein dem Fachmann bekanntes Rechnersystem (z.B.: Prozessor, Signalprozessor) durchgeführt werden.The signal flow in the Kalman filter KF according to the invention is shown in FIG. For each interval, the products are added from input value q1 (k) times matrix B (k) and estimated state vector x e (k) times matrix A (k) in addition stage ADD1. After the time shift, the sum yields the new uncorrected internal state vector x (k) which is multiplied by the matrix C 1 = [00011], whereby the sum of the values x 4 plus x d is formed (q 2 m = x 4 + x d ). Then, based on the difference stage DIFF, the difference between the traffic volume q2 m (k) newly determined by the model and the actually measured traffic volume q2 (k) (at the exit of the traffic segment) is formed. The resulting difference (q2 m (k) - q2 (k)) is multiplied by the Kalman matrix L (k), whereby values are formed with which the state vector x (k) is corrected by the adder ADD3 or in the estimated State vector x e (k) is converted. The estimated values x4 e and x de are read out using the matrices C 1 = [00011] and C 2 = [0000-1]. Based on C 1 , the sum of the estimated values x4 e and x de is formed, which yields the estimated value q2 e (k). As already mentioned, the matrices C 1 and C 2 are constant. The last element of the matrix C 2 is negative, in order to get a positive value for q2 de (k). Of course, all arithmetic operations can be performed by a computer system known to those skilled in the art (eg: processor, signal processor).

Fig. 7 zeigt den vom Kalman-Filter KF geschätzten Verlauf der Verkehrsstärke q2e sowie die geschätzte Verkehrsstärke q2de auf der virtuellen Ein- und Ausfahrt, beeinflusst durch eine Störung, die zu einem Zeitpunkt t1 auftritt und während der Zeit Tdist bis zu einem Zeitpunkt t2 anhält. Bis zum Zeitpunkt t1 können die Fahrzeuge den Verkehrsabschnitt ungehindert passieren, so dass die am Ein- und Ausgang festgestellten Verkehrsstärken unter Vernachlässigung der Laufzeitunterschiede dem Wert q1 entsprechen. Zum Zeitpunkt t1 tritt eine Störung auf, durch die innerhalb dem Verkehrsabschnitt ein Engpass entsteht, der den Verkehr nur noch mit der reduzierten Verkehrsstärke q2dist passieren lässt. Damit entsprechende Korrektur- und Sicherheitsmassnahmen rechtzeitig ergriffen werden können, muss die Störung in der Verkehrsleitzentrale unverzüglich erkannt werden. In Fig. 7 ist zusätzlich ein für die Messgrössen q1 und q2 typischer Verlauf angegeben. Dabei ist ersichtlich, dass die Messgrössen q1, q2 auch im ungestörten Fall grosse statistische Schwankungen aufweisen und dass die Auswirkung einer Störung innerhalb des Verkehrsabschnittes erst nach einer erheblichen Verzögerung feststellbar ist. Die erfindungsgemässe Vorrichtung und das Verfahren, durch die Ein- und Ausgangsgrössen q1, q2 anhand des Kalman-Filters KF verarbeitet werden, erlauben nun, das Auftreten der Störung praktisch verzögerungsfrei zu erfassen. Unmittelbar nach Auftreten der Störung läuft der Wert q2de hoch. Dies entspricht einem Anstieg der geschätzten Verkehrsstärke q2de auf der Zufahrt zum virtuellen Parkplatz. Nach Aufhebung der Störung zum Zeitpunkt t2 steigt die Verkehrsstärke q2de vom virtuellen Parkplatz zurück in den Vierkehrsabschnitt wieder an und fällt anschliessend mit der Angleichung der Verkehrsstärken q1 und q2 am Ein- und Ausgang des Verkehrsabschnittes wieder auf Null zurück. Durch Vergleich der geschätzten Verkehrsstärken q2de zwischen dem virtuellen Parkplatz und dem überwachten Verkehrsabschnitt mit positiven und negativen Schwellwerten thp; thm kann daher jeweils schnell festgestellt werden, ob eine Störung aufgetreten ist oder aufgehoben wurde.7 shows the course of the traffic force q2 e estimated by the Kalman filter KF and the estimated traffic volume q2 de on the virtual entry and exit, influenced by a disturbance that occurs at a time t1 and during the time T dist up to one Time t2 stops. Until the time t1, the vehicles can pass the traffic section unhindered, so that the at the entrance and exit determined traffic levels neglecting the transit time differences to the value q1. At time t1, a disturbance occurs through a bottleneck in the transport section, which can happen dist traffic only with the reduced traffic volume q2. In order to be able to take appropriate corrective and safety measures in good time, the malfunction in the traffic control center must be recognized immediately. In FIG. 7, a course typical for the measured quantities q1 and q2 is additionally indicated. It can be seen that the measured variables q1, q2 have large statistical fluctuations even in the undisturbed case and that the effect of a disturbance within the traffic segment can only be determined after a considerable delay. The device according to the invention and the method by which input and output variables q1, q2 are processed on the basis of the Kalman filter KF now make it possible to record the occurrence of the disturbance virtually instantaneously. Immediately after the fault has occurred, the value q2 de runs high. This corresponds to an increase in the estimated traffic volume q2 de on the approach to the virtual parking lot. After cancellation of the disturbance at the time t2, the traffic volume q2 de increases again from the virtual parking space back into the quadrilateral section and then falls back to zero as soon as the traffic volumes q1 and q2 at the entrance and exit of the traffic section are equalized. By comparing the estimated traffic volumes q2 de between the virtual parking lot and the monitored traffic segment with positive and negative threshold values thp; thm can therefore be quickly determined in each case whether a fault has occurred or has been canceled.

Die Schwellwerte werden entsprechend der Grösse der zu erfassenden Störung gewählt. Vorzugsweise werden mehrere Schwellwerte vorgesehen, welche den Zuständen "leichte Verkehrsbehinderung",, "zähflüssiger Verkehr" oder "Stau" entsprechen. Beim Eintreten der entsprechenden Zustände können daher die geeigneten Massnahmen (z.B. Stauwamung) initialisiert werden.The threshold values are selected according to the size of the disturbance to be detected. Preferably, several threshold values are provided which correspond to the states "slight traffic obstruction", "viscous traffic" or "traffic jam". Upon the occurrence of the appropriate conditions, therefore, the appropriate measures (e.g., congestion) may be initialized.

Zudem können verschiedene Strassenabschnitte miteinander verbunden werden. Die Modelle unterschiedlicher Strassenabschnitte lassen sich einfach aneinander reihen, wobei für jedes Modell wiederum Länge, Ausgangs- und Eingangsgrössen des betreffenden Verkehrsabschnittes zu berücksichtigen sind. Messwerte am Ausgang eines Verkehrsabschnittes können daher gleichzeitig als Eingangsgrössen für den anschliessenden Verkehrsabschnitt verwendet werden. Durch Verbindung mehrerer Verkehrsabschnitte kommt eine verzögerungsfreie Glättungswirkung zum tragen.In addition, different road sections can be interconnected. The models of different road sections can be simply lined up, whereby for each model again length, output and input quantities of the traffic section concerned are to be considered. Measured values at the output of a traffic segment can therefore be used simultaneously as input variables for the subsequent traffic segment. By connecting several sections of traffic a delay-free smoothing effect comes to bear.

Anhand der gewonnen Kenntnisse über die Verkehrsstärken lassen sich ferner auch die zu erwartenden Reisezeiten schnell und präzise berechnen. Dadurch können für die Verkehrsteilnehmer auch optimale Reiserouten festgelegt werden.On the basis of the gained knowledge about traffic volumes, the expected travel times can be calculated quickly and precisely. As a result, optimum itineraries can be determined for road users.

Literaturverzeichnisbibliography

  1. [1] Michael Cremer, Der Verkehrsfluss auf Schnellstrassen, Springer Verlag, Berlin 1979[1] Michael Cremer, The Traffic Flow on Expressways, Springer Verlag, Berlin 1979
  2. [2] Kai Müller, Entwurf robuster Regelungen, Teubner Verlag, Stuttgart 1996[2] Kai Müller, Draft of Robust Regulations, Teubner Verlag, Stuttgart 1996
  3. [3] Lothar Papula, Mathematik für Ingenieure und Naturwissenschaftler, Vieweg Verlag, Wiesbaden 1997, 8. Auflage[3] Lothar Papula, Mathematics for Engineers and Scientists, Vieweg Verlag, Wiesbaden 1997, 8th edition
  4. [4] Jürgen Ackermann, Abtastregelung, Springer Verlag, 3. Auflage, Berlin 1988[4] Jürgen Ackermann, Abtastregelung, Springer Verlag, 3rd edition, Berlin 1988

Claims (5)

  1. Method for determining the traffic conditions within a road segment using a Kalman filter based on a model, by means of which the length ls of the road segment as well as the traffic volumes q1 and/or q2 measured at the entry and exit of the road segment are taken into account, with
    a transport-oriented model being selected, in which a vector x(k) containing a correction value (xd ) as well as a traffic volume value (x1; ...; x n ) for each segment (s1; ...; sn) in each instance is formed for at least two segments (s1; ...; sn ) of the road segment on the basis of the length ls as well as the traffic volume q1 measured at the entry of the road segment and the vehicle speed v1(k) in scanning intervals, said vector x(k) being corrected by comparison with the traffic volume q2 measured at the exit of the road segment on the basis of the Kalman filter, with the corrected vector xe (k) comprising more precise estimated values q2 e for the traffic volume at the exit of the road segment and a estimated value q2 de for a difference traffic volume q2 d representing the internal condition of the road segment.
  2. Method according to claim 1,
    characterised in that
    a new vector x(k+1) is calculated on the basis of new matrices A(k) and B(k) of the extended traffic model determined as a function of the speed v1(k) for each scanning interval k, as follows: x k + 1 = A k x e k + B k q 1 k ,
    Figure imgb0029

    with the old vector x(k) being carried over into the corrected vector x e by means of the Kalman Filter (KF): x k = x 1 x 2 x n x d x e k = x 1 e x 2 e x ne x de ,
    Figure imgb0030

    by multiplying the difference between the measured value q2(k) and the sum of the values x n (k) and x d (k) with a Kalman matrix L(k) newly determined for each scanning interval.
  3. Method according to claim 1 or 2,
    characterised in that
    the estimated values q2 de for the difference traffic volumes q2 d
    representing the inner condition of the road segment are compared with at least one threshold value thp; thm, a condition change being determined within the road segment after said threshold value has been exceeded.
  4. Method according to claim 3,
    characterised in that
    gradual reductions and/or increases in the capacity of the road segment are determined as a function of the polarity and amplitude of the estimated values q2 de and measures for informing the parties involved in the traffic and/or for controlling the traffic are taken as a function thereof.
  5. Method according to one of claims 1 to 4,
    characterised in that
    a number of road segments are linked in a model and are monitored by a Kalman Filter and/or that travel times and/or optimal traffic routes are calculated as a function of the determined conditions.
EP00108359A 1999-05-17 2000-04-17 Method and device for the determination of the traffic conditions of a roadsegment Expired - Lifetime EP1056063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH93199 1999-05-17
CH93199 1999-05-17

Publications (2)

Publication Number Publication Date
EP1056063A1 EP1056063A1 (en) 2000-11-29
EP1056063B1 true EP1056063B1 (en) 2007-06-06

Family

ID=4198504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00108359A Expired - Lifetime EP1056063B1 (en) 1999-05-17 2000-04-17 Method and device for the determination of the traffic conditions of a roadsegment

Country Status (3)

Country Link
EP (1) EP1056063B1 (en)
AT (1) ATE364211T1 (en)
DE (1) DE50014383D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2822576B1 (en) * 2001-03-22 2003-07-04 Renault ROAD TRAFFIC RECOGNITION PROCESS
EP1280118B1 (en) * 2001-07-25 2004-09-22 Siemens Schweiz AG Method for determining road traffic states
DE102004009898B4 (en) * 2004-02-26 2009-05-20 Siemens Ag A method for determining the traffic condition on a section of a road network and traffic management center for performing the method
DE102005043471A1 (en) * 2005-09-13 2007-03-15 Daimlerchrysler Ag Vehicle-sided traffic-adaptive assistance system controlling method for use in control device, involves evaluating two spatially and/or temporally sections of road from environment information and selecting parameters for controlling system
DE102006032162A1 (en) * 2006-07-12 2007-11-29 Daimlerchrysler Ag Control of traffic-adaptive assistance system comprises measuring e.g. speed gradient for sections of road ahead of vehicle and associating with time constants for controlling system which decrease with proximity of stretch to vehicle
CN113160555B (en) * 2021-03-01 2022-07-05 武汉理工大学 Road-state ripple processing method and system based on road side sensing equipment and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801943A (en) * 1993-07-23 1998-09-01 Condition Monitoring Systems Traffic surveillance and simulation apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE50014383D1 (en) 2007-07-19
ATE364211T1 (en) 2007-06-15
EP1056063A1 (en) 2000-11-29

Similar Documents

Publication Publication Date Title
DE10133945A1 (en) Method and device for exchanging and processing data
WO2015139864A1 (en) Method and device for operating a vehicle
DE10354322A1 (en) Method and system for determining the driving situation
DE102018107867B4 (en) Systems for estimating road surface friction coefficient and vehicle lateral velocity using a decoupled dynamic model
EP2280383B1 (en) Method for determining traffic information for a section of a road network and traffic calculator to implement the method
EP2534011A1 (en) Vehicle sensor node
DE102005013524A1 (en) Vehicle control device
WO2015135688A1 (en) Apparatus and method for operating a vehicle
EP3068643B1 (en) Method for controlling an actuator
DE102008003039A1 (en) Vehicle traffic condition recognizing method for traffic assistance system, involves differentiating traffic jam conditions on basis of measured speed, and recognizing traffic jam condition if another traffic jam condition is not recognized
DE102008051962A1 (en) A reconfigurable structure method for estimating the lateral velocity of a vehicle
EP2121417B1 (en) Method and device for determining a steering angle offset
EP3751466A1 (en) Method for predicting a pollutant value in the air
DE102019211052A1 (en) Method for training a neural network to estimate a coefficient of friction
EP1056063B1 (en) Method and device for the determination of the traffic conditions of a roadsegment
EP1152933A1 (en) Method and device for monitoring a plurality of sensors detecting a process, notably for an esp system for vehicles
DE102008021380B4 (en) Method and device for predicting a course of a roadway and driver assistance system
DE102017108107A1 (en) METHOD, DEVICE AND COMPUTER READABLE STORAGE MEDIUM WITH INSTRUCTIONS FOR ESTIMATING A POSE OF A MOTOR VEHICLE
AT502459B1 (en) METHOD FOR DETERMINING TRANSPORT CONDITION
EP3698103B1 (en) Estimating the measurement accuracy of different sensors for the same measurand
DE102021133977A1 (en) Method and system for classifying virtual test scenarios and training methods
WO2021254672A1 (en) Method, device, computer program, and computer-readable storage medium for determining a neural network and for operating a vehicle
DE102013217879A1 (en) Method for monitoring a transmission path
DE102013202255B4 (en) Method and device for determining traffic volumes
EP3782868A2 (en) Method for calibrating a speed sensor of a railway vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001218

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50014383

Country of ref document: DE

Date of ref document: 20070719

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070917

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070606

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071106

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

26N No opposition filed

Effective date: 20080307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080312

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080424

Year of fee payment: 9

Ref country code: BE

Payment date: 20080422

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080708

Year of fee payment: 9

Ref country code: DE

Payment date: 20080620

Year of fee payment: 9

Ref country code: NL

Payment date: 20080417

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: SIEMENS SCHWEIZ AG;FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

BERE Be: lapsed

Owner name: SIEMENS SCHWEIZ A.G.

Effective date: 20090430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090417

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080422

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090417