EP1054977A1 - Method for producing biotin - Google Patents

Method for producing biotin

Info

Publication number
EP1054977A1
EP1054977A1 EP99908923A EP99908923A EP1054977A1 EP 1054977 A1 EP1054977 A1 EP 1054977A1 EP 99908923 A EP99908923 A EP 99908923A EP 99908923 A EP99908923 A EP 99908923A EP 1054977 A1 EP1054977 A1 EP 1054977A1
Authority
EP
European Patent Office
Prior art keywords
seq
biotin
gene
sequences
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99908923A
Other languages
German (de)
French (fr)
Inventor
Hartwig Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1054977A1 publication Critical patent/EP1054977A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/185Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system
    • C12P17/186Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system containing a 2-oxo-thieno[3,4-d]imidazol nucleus, e.g. Biotin

Definitions

  • the invention relates to a gene construct containing an S-adenosyl-methionine synthase gene with the sequence SEQ ID No. 1 and a biotin biosynthesis gene bioSl, bioS2 and / or bioS3 with the sequences SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 and optionally at least one further biotin synthesis gene sequence selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR.
  • the invention further relates to organisms that contain this gene construct and the use of the gene construct for the production of biotin, and a method for the production of biotin.
  • biotin As a coenzyme, biotin (vitamin H) plays an essential role in enzyme-catalyzed carboxylation and decarboxylation reactions. Biotin is therefore an essential factor in living cells.
  • Biotin has to be absorbed from the outside by almost all Ti.eren and egg micro organisms, since they cannot synthesize biotin themselves. It is therefore an essential vitamin for these organisms. Bacteria, yeasts and plants, on the other hand, can synthesize biotin themselves from precursors (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295-326, DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al ASM Press, Washington DC, USA, 1996: 704-708, ISBN 1-55581-084-5).
  • Biotin synthesis was found in bacterial organisms, especially in the gram-negative bacterium Escherichia coli and in the gram-positive one
  • Pimelyl-CoA which originates from fatty acid synthesis (DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al. ASM Press, Washington DC), is regarded as the first intermediate known to date in E. coli. USA, 1996: 704-708, ISBN 1-55581-084-5 1996).
  • the synthetic route of this biotin precursor in E. coli is so far largely unknown (Lemoine et al., Mol. Microbiol. 19, 1996: 645-647).
  • BioH and BioC Two genes were identified, whose corresponding proteins are responsible for the synthesis of Pm-CoA.
  • the enzymatic function of the gene products BioH and BioC is not yet known (Lemoine et al., Mol. Microbiol. 19, 1996: 645-647, DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al. ASM Press , Washington DC, USA, 1996: 704-708, ISBN 1-55581-084-5).
  • Pm-CoA is converted to biotin in four further enzymatic steps.
  • KAPA 7-Keto-8-Arrdno-Pelargonic Acid
  • DAPA 7.8 diamino-pelargonic acid
  • the genes coding for the described proteins bioF, bioA, bioD and bioB are encoded in E. coli on a bidirectional operon. This operon is located between the ⁇ attachment site and the uvrB gene locus at about 17 minutes on the E. coli chromosome (Berlyn et al. 1996: 1715 - 1902). On this operon, two additional genes are encoded, one of which, bioC, has already described functions in the synthesis of Pm-CoA, whereas up to now no function could be assigned to an open reading frame behind bioA (WO94 / 8023, Otsuka et al., J. Biol. Chem. 263, 1988: 19577-85). Highly conserved homologs to the 0 E.
  • Biotin is an optically active substance with three chirality centers. So far, it will only be economically viable using a multi-stage, expensive chemical synthesis.
  • the object of the present invention was to develop a technical, fermentative process for the production of biotin which shows the highest possible biotin synthesis.
  • biotin characterized in that an S-adenosyl-methionine synthase (SAM synthase) gene with the sequence SEQ ID No. 1 and at least one other biotin biosynthetic gene bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 as well as their functional variants, analogs or derivatives in a prokaryotic or eukaryotic host organism that is able to synthesize, expresses, cultivates and synthesizes the biotin directly, after separating the biomass or after cleaning the biotin used, solved.
  • SAM synthase S-adenosyl-methionine synthase
  • the genes used in the method according to the invention, the SAM synthase gene with the sequence SEQ ID No. 1 and the biotin biosynthetic blessings bioSl, bioS2 and bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 are listed in the SwissProt database under the "Accession” numbers P04384 (metK), U29581 (bioSl), P39171 (bioS2) and D90811 (bioS3).
  • the database describes a number of homologues for MetK from E. coli. These homologs include organisms such as other eubacteria (eg H. infuenza, B. subtilis), as well as eukaryotes (eg yeasts: S. remplivisiae, Planta: P. deltoides, Arthropoda D. melanogaster, and Mammalia: R. norvegicus ).
  • the productivity of biotin biosynthesis can be significantly increased.
  • a combination of SAM synthase gene and biosl is preferably used for expression.
  • At least one further bioting gene selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR is advantageously also expressed at the same time.
  • the expression of the genes increases the synthesis of biotin by at least a factor of 2 compared to the control without these genes, preferably by a factor greater than 3.
  • the genes used in the method according to the invention the SAM synthase gene with the nucleotide sequence SEQ ID No. 1, the bioSl gene with the nucleotide sequence SEQ ID No. 3, the bioS2 gene with the nucleotide sequence SEQ ID No.
  • SEQ ID No.7 encodes or their allelic variations.
  • Variants include SEQ ID No. 1, SEQ ID No.3 or SEQ ID No.5, or SEQ ID No.7 variants to be understood, which have 30 to 100% homology at the amino acid level, preferably 50 to 100%, very particularly preferably 80 to 100% exhibit.
  • Allelic variants include, in particular, functional variants which, by deletion, insertion or substitution of nucleotides from the SEQ ID NO: 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 are available, but the enzymatic activity is retained.
  • functional variants are also equivalent to the genes, such as O-acetylserine sulfohydrolase A, O-acetylserine sulfohydrolase B, and ⁇ -cystathionase (see Flint et al., J. Biol. Chem., Vol. 271, 1996: 16053 - 16067) or nifS and its prokaryotic and eukaryotic homologues, e.g. from Klebsiella, Candida, yeast or Caenorhabditis, which are able to take over the enzymatic activity of bioSl, bioS2 or bioS3 in the biotin synthesis.
  • genes such as O-acetylserine sulfohydrolase A, O-acetylserine sulfohydrolase B, and ⁇ -cystathionase (see Flint et al., J. Biol. Chem., Vol. 271, 1996: 16053 -
  • SEQ ID NO: 1 SEQ ID NO: 3
  • SEQ ID NO: 5 and SEQ ID No. 7 are, for example, their prokaryotic or eukaryotic homologs, such as bacterial, fungal, plant, animal or human homologs.
  • Analogs are furthermore also to be understood as shortened sequences, single-stranded DNA or RNA of the coding and non-coding DNA sequence.
  • Derivatives are understood to mean, for example, promoter variants.
  • Promoters that are upstream of the specified nucleotide sequences can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without the functionality or effectiveness of the promoters being impaired. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
  • Derivatives are also to be understood as variants whose nucleotide sequence has been changed in the range from -1 to -30 before the start codon in such a way that gene expression and / or protein expression is increased. This is advantageously done by means of a modified Shine-Dalgarno sequence.
  • Gram-negative bacteria examples include Enterobacteriaceae such as the genera Escherichia, Aerobacter, Enterobacter, Citrobacter, Shigella, Klebsiella, Serratia, Erwinia or Salmonella, Pseudomonadaceae such as the genera Pseudomonas, Xanthomonas, Burkholderia, Gluco-nobacter, Nitrosomonasomonasrobas , Cellulomonas or Acetobacter, Azotobacteraceae such as the genera Azotobacter, Azomonas, Bei erinckia or Derxia, Neisseriaceae such as the genera Moraxella, Acinetobacter, Kingella, Neisseria or Branhamella, the Rhizobiaceae such as the genera Rhizobium or Zrobacterium or gramobacterium
  • gram-positive bacteria examples include the endospores-forming gram-positive aerobic or anaerobic bacteria such as the genera Bacillus, Sporolactobacillus or Clostridium, the coryneform bacteria such as the genera Arthrobacter, Cellulomonas, Curtobacterium, Corynebacterium, Brevibacterium or Microbacterium - hia, the Actinomycetales such as the genera Mycobacterium, Rhodococcus, Streptomyces or Nocardia, the Lactobacillaceae such as the genera Laetobacillus or Laetococeus, the gram-positive cocci such as the genera Micrococcus or Staphylococcus.
  • Genera and species such as Escherichia coli, Citro-bacter freundii, Serratia marcescens, Salmonella typhimurium, Pseudomonas mendocina, Pseudomonas aeruginosa, Pseudomonas mutabilis, Pseudomonas chlororaphis, Pseudomonas fluorescens, Comamonas aeidovoroni, Acaceobotactoroni, Acaceobotactoroni, Comaceotobacteria, Comamonasotobacteria, Comamonasotobacteria, Comamonasobacteria vinelandii, Chromobacterium violaceum, Bacillus subtilis, Bacillus sphaericus, Bacillus stearothermophilus, Bacillus pumilus, Bacillus licheniformis, Bacillus amyloliquefa- ciens
  • Bacteria are advantageously used which already have an increased natural biotin product own.
  • biotin-synthesizing organisms such as fungi, yeasts, plants or plant cells can be considered as eukaryotic host organisms of the process according to the invention.
  • the genera Rhodotorula, Yarrowia, Sporobolomyces, Saccharomyces or Schizosaccharomyces are preferred as yeasts.
  • the genera and species Rhodotorula rubra, Rhodotorula glutinis, Rhodotorula graminis, Yarrowia lipolytica, Sporobolomyces salmonicolor, Sporobolomyces shibatanus or Saccharomyces cerevisiae are particularly preferred.
  • plants can be used as the host organism; preference is given to plants which play a role in animal nutrition or in human nutrition, such as corn, wheat, barley, rye, potatoes, peas, beans, sunflowers, palm trees, millet, sesame, copra or Rapeseed. Plants such as Arabidopsis thaliana or Lavendula vera are also suitable. Plant cell cultures, protoplasts from plants or potassium cultures are particularly preferred.
  • microorganisms such as bacteria, fungi, yeast or plant cells are used in the method according to the invention, which are able to excrete biotin into the growth medium and which may already have an increased natural biotin synthesis.
  • these organisms can still be defective with regard to the regulation of their biotin biosynthesis, that is to say there is no or only a very reduced regulation of the synthesis.
  • the consequence of this regulatory defect is that these organisms already have a much higher bio-tin productivity.
  • a regulatory defect is known for example from Escherichia coli as a birA defect mutant and should preferably be present in the cells in the form of a defect which can be induced by external influences, for example temperature-induced.
  • organisms which have no natural biotin production after they have been transformed with the biotin genes In order to further increase the overall biotin productivity, the organisms in the process according to the invention should advantageously additionally selected at least one further biotin from the
  • genes can advantageously also be used in combination with the sequence SEQ ID No. 1, SEQ ID NO: 3, SEQ ID No.5 or SEQ ID NO.7 and their combinations, which stimulate biotin synthesis.
  • Genes that stimulate biotin synthesis are e.g. B. the Flavore- 0 doxin gene, the Flavoredoxin reductase gene.
  • This additional gene or these additional genes like the genes with the sequence SEQ ID No. 1, SEQ ID NO.3, SEQ ID No.5 or SEQ ID NO.7 or their combinations may be present in one or more copies in the cell. You can use the same vector as that
  • sequence SEQ ID No. 1, SEQ ID NO.3, SEQ ID No.5 and / or SEQ ID No.7 can be localized or integrated on separate vectors or chromosomally.
  • the sequences SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 can be together on one vector or on separate vectors or
  • analogs or derivatives that have been functionally linked to one or more regulation signals to increase gene expression.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also have a simpler structure, that is to say no additional regulation signals are placed in front of the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 and / or SEQ ID No.7 are inserted and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated in such a way that biotin regulation no longer takes place and gene expression is increased.
  • the sequences SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 can be separated under the regulation of a promoter or under the regulation.
  • genes with the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 or SEQ ID No. 7 can be contained in one or more copies in the gene construct.
  • Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lad « * -. Contain T7-, T5-, T3-, gal-, trc-, ara-, SP6-, -P R - or in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • promoters such as cos, tac, trp, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lad « * -. Contain T7-, T5-, T3-, gal-, trc-, ara-, SP6-, -P R - or in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • biotin genes can be selected from the gene construct
  • Group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR can be contained in one or more copies, which can have their own promoter or under the regulation of the promoter of one of the sequences or under the regulation of the promoter of the entire sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 or SEQ ID No.7.
  • the gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels P.H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018).
  • vectors are also understood to mean all other vectors known to those skilled in the art, such as phages, viruses, transposons, IS elements, phasmids, cosmids, linear or circular DNA. These vectors can be replicated autonomously in the host organism or can be replicated chromosomally.
  • expression systems include the combination of the host organisms mentioned above by way of example and the vectors which match the organisms, such as plasmids, viruses or phages such as, for example, plasmids with the RNA polymerase / promoter system, the phages ⁇ , Mu or other tempered phages or transposons and / or to understand further advantageous regulatory sequences.
  • Preferred under the term expression systems are the combination of Escherichia coli and its plasmids and phages and the associated promoters as well as Bacillus and its plasmids and
  • SEQ ID No. 1 For the advantageous expression of SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No. 7 further 3 'and / or 5' terminal regulatory sequences are also suitable.
  • These regulatory sequences are intended to enable the targeted expression of the biotin genes and the protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably have a positive influence on biotin expression and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • Enhancers are understood to mean, for example, DNA sequences which bring about increased expression of biotin via an improved interaction between RNA polymerase and DNA.
  • SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 derived proteins can be compared to the parent enzymes, for example, by changing the corresponding gene sequences or the sequences of its homologues by classic mutagenesis such as UV radiation or treatment with chemical mutants and / or by targeted mutagenesis such as site directed mutagenesis, deletion (s), insertion achieve (s) and / or substitution (s).
  • increased enzyme activity can also be achieved by eliminating factors which repress enzyme synthesis and / or by synthesizing active instead of inactive enzymes.
  • the process according to the invention is used to convert DTB into biotin and thus overall biotin productivity via the biotin genes with the sequence SEQ ID no. 1, SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 and the combinations of the genes of the sequence SEQ ID No.l and SEQ ID No.5 or SEQ ID No.l and SEQ ID No.7, preferably the combination of the genes of the sequence SEQ ID No. 1 and SEQ ID No.3 is advantageously increased device.
  • the microorganisms containing SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 are grown in a medium which enables these organisms to grow.
  • This medium can be a synthetic or a natural medium.
  • media known to the person skilled in the art are used.
  • the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
  • Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose-1, 6-bisphosp-, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as glutamic acid or aspartic acid or amino sugar, the can also be used simultaneously as a nitrogen source.
  • sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactos
  • Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds.
  • ammonium salts such as NH 4 CI or (H 4 ) 2 S ⁇ 4 , nitrates, urea, or complex nitrogen sources such as corn steep liquor, beer yeast autolysate, soybean flour, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which are often also used simultaneously as a nitrogen source can serve.
  • inorganic salts are the salts of calcium, magnesium, sodium, manganese, potassium, zinc, copper and iron.
  • the chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts.
  • An important factor for increasing productivity in the process according to the invention is the addition of Fe 2 + _ or Fe 3+ salts and / or potassium salts to the production medium.
  • growth factors are added to the nutrient medium, such as vitamins or growth promoters such as riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, asparagine, aspartic acid, glutamine, serine, methonine or lysine, carboxylic acids such as ci- tronic acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol.
  • Antibiotics can optionally be added to the medium to stabilize the vectors with the biotin genes in the cells.
  • the mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case.
  • the medium components can all be introduced at the start of the fermentation, after they have been sterilized separately if necessary or sterilized together, or after the fermentation has been added as required.
  • the breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved.
  • Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous.
  • the pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous.
  • an incubation period of 8 to 240 hours, preferably 8 to 120 hours, is sufficient. Within this time the maximum amount of biotin accumulates in the medium and / or is available after the cells have been disrupted.
  • the method according to the invention for the production of biotin can be carried out continuously or batch or fed-batch. If whole plants are regenerated from the plant cells transformed with the biotin genes, they can be grown and propagated in the normal way using the method according to the invention.
  • the gene coding for SAM synthase was amplified from the chromosome of E. coli by a polymerase chain reaction using two specific oligonucleotides based on genomic E. coli DNA.
  • the DNA amplified in this way was purified, digested with the restriction enzyme Acc65I and inserted into a vector cut with the same enzyme, which enables the gene to be overexpressed in E. coli strains.
  • One of the two oligonucleotides provided the gene construct with optimized translation signals
  • metK is to be amplified as an expression cassette consisting of a ribosomal binding site, the start codon of the coding sequence and the stop codon between two recognition sites for restriction enzymes.
  • the recognition sequence of Acc65l was chosen for both restriction sites.
  • the metK gene was amplified and cloned using the oligonucleotides PmetKl (5'-GCGGTACCAGGTGATATTAAATATG-GCAAAAC-3 ') and PmetK2 (5' -CGGGTACCGATTACTTCAGACCGGCAGC-3 ').
  • chromosomal DNA from E. coli W3110 was used as the template.
  • the oligonucleotides PmetKl and PmetK2 were used in a concentration of 15 pmol each.
  • the concentration of dNTP's was 200 ⁇ M.
  • 2.5 U Pwo DNA polymerase (Boehringer Mannheim) was used as the polymerase in the manufacturer's reaction buffer.
  • the volume of the PCR reaction was 100 ⁇ l.
  • the DNA was denatured at 94 ° C. for 2 min.
  • the oligonucleotides were then attached at 55 ° C. for 30 seconds.
  • the elongation was carried out for 75 seconds at 72 ° C.
  • the PCR reaction was carried out over 30 cycles.
  • the DNA product with a size of approx. 1145 bp was purified and digested with Acc65l in a suitable buffer.
  • pHSl metK can be found in SEQ ID No.9.
  • SEQ ID No.10 shows the deduced amino acid sequence of the coding region for metK.
  • SEQ ID No.12 shows the derived amino acid sequence of the coding region for bioSl] and pHSl metK SEQ ID No.9 were purified by a plasmid preparation method (Boehringer). The fragment carrying metK gene was isolated from pHSl metK by Acc65l digestion. pHSl bioSl was replaced by Acc65I
  • pHSl metK bioSl The sequence of pHSl metK bioSl can be found in SEQ ID No.13.
  • SEQ ID No.14 shows the deduced amino acid sequence of the coding region for metK,
  • SEQ ID No.15 shows the deduced amino acid sequence of the coding region for bioSl
  • the BM4086 strain (Ketner and Campbell J. Molec. Biology 1975 96:13) was spontaneously analyzed by plating on rifampycin plates.
  • the isolated, transformed strain (LU5560) was transformed with the plasmid pHSl, pHSl metK, pHSl bioSl or pHSl metK bioSl according to the CaCl 2 method and on LB agar with ampicillin 100 ⁇ g / ml and kanamycin 25 ⁇ g / ml

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a genetic recombination product, containing an S-adenosyle-methionine-synthase gene, with the sequence SEQ ID no. 1 and a biotin biosynthesis gene bioS1, bioS2 and/or bioS3 with the sequences SEQ ID no. 3, SEQ ID no. 5 or SEQ ID no.7 and possibly at least one additional biotin synthesis gene sequence chosen from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR. The invention also relates to organisms containing said genetic recombination product and to the use of same for producing biotin, as well as to a method for producing biotin.

Description

Verfahren zur Herstellung von BiotinProcess for the production of biotin
Beschreibungdescription
Die Erfindung betrifft ein Genkonstrukt, enthaltend ein S-Adeno- syl-Methionin-Synthasegen, mit der Sequenz SEQ ID No. 1 und ein Biotin-Biosynthesegen bioSl, bioS2 und/oder bioS3 mit den Sequenzen SEQ ID No.3, SEQ ID No .5 bzw. SEQ ID No.7 und gegebenenfalls mindestens einer weiteren Biotinsynthesegensequenz ausgewählt aus der Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR. Die Erfindung betrifft weiterhin Organismen, die dieses Genkonstrukt enthalten und die Verwendung des Genkon- strukts zur Herstellung von Biotin, sowie ein Verfahren zur Her- Stellung von Biotin.The invention relates to a gene construct containing an S-adenosyl-methionine synthase gene with the sequence SEQ ID No. 1 and a biotin biosynthesis gene bioSl, bioS2 and / or bioS3 with the sequences SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 and optionally at least one further biotin synthesis gene sequence selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR. The invention further relates to organisms that contain this gene construct and the use of the gene construct for the production of biotin, and a method for the production of biotin.
Als Coenzym spielt Biotin (Vitamin H) eine essentielle Rolle bei enzymkatalysierten Carboxylierungs- und Decarboxylierungsreaktio- nen. Biotin ist damit ein essentieller Faktor in lebenden Zellen.As a coenzyme, biotin (vitamin H) plays an essential role in enzyme-catalyzed carboxylation and decarboxylation reactions. Biotin is therefore an essential factor in living cells.
Biotin muß von fast allen Ti.eren und ei.ni.gen Mikroorganismen von außen aufgenommen werden, da sie Biotin nicht selber synthetisieren können. Es ist damit für diese Organismen ein essentielles Vitamin. Bakterien, Hefen und Planzen hingegen können Biotin aus Vorstufen selbst synthetisieren (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295 - 326, DeMoll, E. , Escherichia coli and Salmonella, eds. Neidhardt, F. C. et al. ASM Press, Washington DC, USA, 1996: 704 - 708, ISBN 1-55581-084-5).Biotin has to be absorbed from the outside by almost all Ti.eren and egg micro organisms, since they cannot synthesize biotin themselves. It is therefore an essential vitamin for these organisms. Bacteria, yeasts and plants, on the other hand, can synthesize biotin themselves from precursors (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295-326, DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al ASM Press, Washington DC, USA, 1996: 704-708, ISBN 1-55581-084-5).
Die Biotinsynthese wurde in bakteriellen Organismen speziell im gramnegativen Bakterium Escherichia coli und im grampositivenBiotin synthesis was found in bacterial organisms, especially in the gram-negative bacterium Escherichia coli and in the gram-positive one
Bakterium Bacillus sphaericus untersucht (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295 - 326). Als erstes bisher bekanntes Intermediat in E. coli wird Pimelyl-CoA (PmCoA) angesehen, das aus der Fettsäuresynthese stammt (DeMoll, E. , Escheri- chia coli and Salmonella, eds. Neidhardt, F. C. et al. ASM Press, Washington DC, USA, 1996: 704 - 708, ISBN 1-55581-084-5 1996). Der Syntheseweg dieser Biotin-Vorstufe in E. coli ist bisher weitgehend unbekannt (Lemoine et al., Mol. Microbiol. 19, 1996: 645 - 647) . Es wurden mit bioC und bioH zwei Gene identifiziert, deren korrespondierende Proteine für die Synthese von Pm-CoA verantwortlich sind. Die enzymatische Funktion der Genprodukte BioH und BioC ist bisher nicht bekannt (Lemoine et al., Mol. Microbiol. 19, 1996: 645 - 647, DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, F. C. et al. ASM Press, Washington DC, USA, 1996: 704 - 708, ISBN 1-55581-084-5). Pm-CoA wird in vier weiteren enzymatischen Schritten zum Biotin umgewandelt. Ausgehend vom Pm-CoA findet zuerst die Kondensation mit Alanin zu 7-Keto-8-Arrdno-Pelargonsäure (KAPA) durch BioF statt. Es folgt die Umsetzung von KAPA zu 7,8 Diamino-Pelargonsäure (DAPA) durchBacillus sphaericus bacterium was investigated (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295-326). Pimelyl-CoA (PmCoA), which originates from fatty acid synthesis (DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al. ASM Press, Washington DC), is regarded as the first intermediate known to date in E. coli. USA, 1996: 704-708, ISBN 1-55581-084-5 1996). The synthetic route of this biotin precursor in E. coli is so far largely unknown (Lemoine et al., Mol. Microbiol. 19, 1996: 645-647). With bioC and bioH two genes were identified, whose corresponding proteins are responsible for the synthesis of Pm-CoA. The enzymatic function of the gene products BioH and BioC is not yet known (Lemoine et al., Mol. Microbiol. 19, 1996: 645-647, DeMoll, E., Escherichia coli and Salmonella, eds. Neidhardt, FC et al. ASM Press , Washington DC, USA, 1996: 704-708, ISBN 1-55581-084-5). Pm-CoA is converted to biotin in four further enzymatic steps. Starting with the Pm-CoA, the condensation with alanine first takes place 7-Keto-8-Arrdno-Pelargonic Acid (KAPA) held by BioF. The conversion of KAPA to 7.8 diamino-pelargonic acid (DAPA) follows
BioA. Der nächste Schritt führt nach einer ATP-abhängigen Carbo- xylierungsreaktion zum Dethiobiotin (DTB) und wird durch BioD ka-BioA. The next step leads to dethiobiotin (DTB) after an ATP-dependent carboxylation reaction and is activated by BioD
5 talysiert. Im letzten Schritt findet die Umsetzung von DTB zu5 talysed. The final step is the implementation of DTB
Biotin statt. Dieser Schritt wird durch BioB katalysiert. Der chemische und enzymatische Mechanismus der Umwandlung von DTB zuBiotin instead. This step is catalyzed by BioB. The chemical and enzymatic mechanism of conversion of DTB to
Biotin ist bisher nur unvollständig verstanden und aufgeklärt.So far, biotin has only been incompletely understood and elucidated.
10 Eine Charakterisierung der Umwandlung von DTB zu Biotin wurde bisher ausschließlich in bakteriellen bzw. pflanzlichen Zellextrakten durchgeführt (WO94/8023, EP-B-0 449 724, Sanyal et al. Arch. Biochem. Biophys., Vol. 326, No. 1, 1996: 48 - 56 und Bio- che istry 33, 1994: 3625 - 3631, Baldet et al . Europ. J. Biochem.10 A characterization of the conversion of DTB to biotin has so far been carried out exclusively in bacterial or plant cell extracts (WO94 / 8023, EP-B-0 449 724, Sanyal et al. Arch. Biochem. Biophys., Vol. 326, No. 1 , 1996: 48-56 and Bio-istry 33, 1994: 3625-3631, Baldet et al. Europ. J. Biochem.
15 217, 1, 1993: 479 - 485, Mejean et al . Biochem. Biophys. Res .15 217, 1, 1993: 479-485, Mejean et al. Biochem. Biophys. Res.
Commun., Vol. 217, No. 3, 1995: 1231 - 1237, Ohshiro et al., Bio- sci. Biotechnol. Biochem., 58, 9, 1994: 1738 - 1741).Commun., Vol. 217, No. 3, 1995: 1231-1237, Ohshiro et al., Biosci. Biotechnol. Biochem., 58, 9, 1994: 1738-1741).
In vitro Studien haben gezeigt, daß niedermolekulare Faktoren wie 20 NADPH, Cystein, Thiamin, Fe2+, Asparagin, Serin, FruktoseIn vitro studies have shown that low molecular weight factors such as 20 NADPH, cysteine, thiamine, Fe 2+ , asparagine, serine, fructose
1-6-bisphosphat und S-Adenosylmethionin die Synthese von Biotin stimulieren können (Ohshiro et al., Biosci. Biotechnol. Biochem.,1-6-bisphosphate and S-adenosylmethionine can stimulate the synthesis of biotin (Ohshiro et al., Biosci. Biotechnol. Biochem.,
58, 9, 1994: 1738 - 1741, Birch et al. , J. Biol. Chem. 270, 32, 1995: 19158 - 19165, Ifuku et al . , Biosci. Biotechnol. Biochem.,58, 9, 1994: 1738-1741, Birch et al. , J. Biol. Chem. 270, 32, 1995: 19158-19165, Ifuku et al. , Biosci. Biotechnol. Biochem.,
25 59, 2, 1995: 185 - 189, Sanyal et al . Arch. Biochem. Biophys. 326, 1, 1996: 48 - 56) . 25, 59, 2, 1995: 185-189, Sanyal et al. Arch. Biochem. Biophys. 326, 1, 1996: 48-56).
Neben diesen niedermolekularen Faktoren wurden weitere Proteine identifiziert, die die Synthese von Biotin aus DTB in Gegenwart von BioB stimulieren. Dabei handelt es sich um Flavodoxin undIn addition to these low molecular weight factors, other proteins have been identified that stimulate the synthesis of biotin from DTB in the presence of BioB. It is Flavodoxin and
30 Flavodoxin-NADPH-Reduktase (Birch et al . , J. Biol. Chem. 270, 32, 1995: 19158 - 19165, Ifuk et al., Biosci. Biotechnol. Biochem.,30 Flavodoxin NADPH reductase (Birch et al., J. Biol. Chem. 270, 32, 1995: 19158-19165, Ifuk et al., Biosci. Biotechnol. Biochem.,
59, 2, 1995: 185 - 189, Sanyal et al., Arch. Biochem. Biophys. 326, 1, 1996: 48 - 56). Weitere Proteine, die eine Stimulation der Biotinsynthese bewirken, sind die in der deutschen Anmeldung59, 2, 1995: 185-189, Sanyal et al., Arch. Biochem. Biophys. 326, 1, 1996: 48-56). Other proteins that stimulate biotin synthesis are those in the German application
35 mit der Anmeldenummer 197.31274.8 (Priorität 22.7.97) beschriebenen Gene bioSl und bioS2.35 genes bioSl and bioS2 described with the application number 197.31274.8 (priority 22.7.97).
Über die Herkunft des Schwefels im Biotinmolekül existieren unterschiedliche Ergebnisse. Bei Untersuchungen der BiotinsyntheseThere are different results regarding the origin of the sulfur in the biotin molecule. In studies of biotin synthesis
40 in Gesamtzellextrakten wurde gezeigt, daß in Gegenwart von 35S- markiertem Cystein Radioaktivität in Biotin inkorporiert wurde; weder mit 35S-markiertem Methionin noch mit S-Adenosyl-Methionin konnte ein Schwefel-Einbau ins Biotinmolekül nachgewiesen werden (Ifuku et al., Biosci. Biotechnol. Biochem. 59, 2, 1995: 184 - 40 in whole cell extracts were shown to incorporate radioactivity in biotin in the presence of 35 S-labeled cysteine; sulfur incorporation into the biotin molecule could not be detected either with 35 S-labeled methionine or with S-adenosyl-methionine (Ifuku et al., Biosci. Biotechnol. Biochem. 59, 2, 1995: 184 -
45 189, Birch et al., J. Biol. Chem.270, 32, 1995: 19158 - 19165).45 189, Birch et al., J. Biol. Chem. 270, 32, 1995: 19158-19165).
Die für die beschriebenen Proteine kodierenden Gene bioF, bioA, bioD, und bioB sind in E. coli auf einem bidirektionalem Operon kodiert. Dieses Operon liegt zwischen der λ-attachement-site und dem uvrB Gen Locus bei ca. 17 Minuten auf dem E. coli Chromosom (Berlyn et al . 1996: 1715 - 1902). Auf diesem Operon sind zusätz- 5 lieh noch zwei weitere Gene kodiert, von denen das eine, bioC, bereits beschriebene Funktionen in der Synthese von Pm-CoA hat, während einem offenen Leseraster hinter bioA bisher keine Funktion zugeordnet werden konnte (WO94/8023, Otsuka et al . , J. Biol. Chem. 263, 1988: 19577 - 85). Hoch konservierte Homologe zu den 0 E. coli Proteinen BioF, A, D, B wurden in B. sphaericus, B. sub- tilis, Syneccocystis sp. (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295 - 326, Bower et al . , J. Bacteriol. 175, 1996: 4122 - 4130, Kaneko et al., DNA Res. 3, 3, 1996: 109 - 136), Ar- chaebakterien wie Methanococcus janaschi, Hefen wie Saccharomyces 5 cerevisiae (Zhang et al . , Arch. Biochem. Biophys. 309, 1, 1994: 29 - 35) oder in Pflanzen wie Arabidopsis thaliana (Baldet et al., C. R. Acad. Sei. III, Sei. Vie. 319, 2, 1996: 99 - 106)) gefunden .The genes coding for the described proteins bioF, bioA, bioD and bioB are encoded in E. coli on a bidirectional operon. This operon is located between the λ attachment site and the uvrB gene locus at about 17 minutes on the E. coli chromosome (Berlyn et al. 1996: 1715 - 1902). On this operon, two additional genes are encoded, one of which, bioC, has already described functions in the synthesis of Pm-CoA, whereas up to now no function could be assigned to an open reading frame behind bioA (WO94 / 8023, Otsuka et al., J. Biol. Chem. 263, 1988: 19577-85). Highly conserved homologs to the 0 E. coli proteins BioF, A, D, B were found in B. sphaericus, B. subtilis, Syneccocystis sp. (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295-326, Bower et al., J. Bacteriol. 175, 1996: 4122-4130, Kaneko et al., DNA Res. 3, 3, 1996: 109-136), arka bacteria such as Methanococcus janaschi, yeasts such as Saccharomyces 5 cerevisiae (Zhang et al., Arch. Biochem. Biophys. 309, 1, 1994: 29-35) or in plants such as Arabidopsis thaliana (Baldet et al., CR Acad. Sci. III, Sci. Vie. 319, 2, 1996: 99-106)).
o Die Synthese von Pm-CoA scheint in den beiden bisher untersuchten gram-positiven Mikroorganismen anders zu verlaufen als in E. coli. Es konnten keine Homologen von bioH und bioC gefunden werden (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295 - 326) . 5o The synthesis of Pm-CoA appears to be different in the two gram-positive microorganisms examined so far than in E. coli. No homologs of bioH and bioC could be found (Brown et al. Biotechnol. Genet. Eng. Rev. 9, 1991: 295-326). 5
Biotin ist eine optisch aktive Substanz mit drei Chiralitätszen- tren. Es wird bisher wirtschaftlich nur über eine vielstufige, teure chemische Synthese hergestellt werden.Biotin is an optically active substance with three chirality centers. So far, it will only be economically viable using a multi-stage, expensive chemical synthesis.
0 Alternativ zu dieser chemischen Synthese wurde eine Vielzahl von Versuchen unternommen, ein fermentatives Verfahren zur Herstellung von Biotin mit Mikroorganismen aufzubauen. Durch Klonierung des Biotin-Operons auf multi-copy-Plasmide konnte die Biotinsynthese in den mit diesen Genen transformierten Mikroorganismen er- 5 höht werden. Eine weitere Erhöhung der Biotinsynthese wurde durch die Deregulierung der Biotingenexpression über die Selektion von birA-Mutanten erreicht (Pai C. H. , J. Bacteriol. 112, 1972: 1280 - 1287). Die Kombination beider Ansätze, das heißt die Expression der Plasmid- odierten Biosynthesegene in einem regulationsdefi- 0 zienten Stamm (EP-B-0 236 429), brachte eine weitere Steigerung der Produktivität. Das Biotin-Operon kann dabei entweder unter Kontrolle seines nativen bidirektionalem Promotors verbleiben (EP-B-0 236 429), oder seine Gene können unter die Kontrolle eines extern regulierbaren Promotors gebracht werden (WO94/08023 ) . 50 As an alternative to this chemical synthesis, numerous attempts have been made to set up a fermentative process for producing biotin with microorganisms. By cloning the biotin operon on multi-copy plasmids, the biotin synthesis in the microorganisms transformed with these genes could be increased. A further increase in biotin synthesis was achieved by deregulating biotin expression via the selection of birA mutants (Pai C. H., J. Bacteriol. 112, 1972: 1280-1287). The combination of both approaches, that is to say the expression of the plasmid-coded biosynthesis genes in a regulation-deficient strain (EP-B-0 236 429), brought a further increase in productivity. The biotin operon can either remain under the control of its native bidirectional promoter (EP-B-0 236 429), or its genes can be brought under the control of an externally adjustable promoter (WO94 / 08023). 5
Durch die bisher verfolgten Ansätze zur fermentativen Herstellung von Biotin in E. coli konnte keine wirtschaftlich ausreichende Produktivität erreicht werden.The approaches pursued so far for the fermentative production of biotin in E. coli have not been able to achieve any economically sufficient ones Productivity can be achieved.
Aufgabe der vorliegenden Erfindung war es, ein technisches, fer- mentatives Verfahren zur Herstellung von Biotin zu entwickeln, daß eine möglichst hohe Biotinsynthese zeigt.The object of the present invention was to develop a technical, fermentative process for the production of biotin which shows the highest possible biotin synthesis.
Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Biotin, dadurch gekennzeichnet, daß man ein S-Adeno- syl-Methionin-Synthase(SAM-Synthase)-Gen mit der Sequenz SEQ ID No. 1 und mindestens ein weiteres Biotin Biosynthesegen bioSl, bioS2 oder bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No.7 sowie ihre funktioneilen Varianten, Analoge oder Derivate in einem prokaryontisehen oder eukaryontischen Wirtsorganismus, der in der Lage ist Biotin zu synthetisieren, exprimiert, diesen züchtet und das synthetisierte Biotin direkt, nach Abtrennung der Biomasse oder nach Reinigung des Biotins verwendet, gelöst.This object was achieved by the process according to the invention for the production of biotin, characterized in that an S-adenosyl-methionine synthase (SAM synthase) gene with the sequence SEQ ID No. 1 and at least one other biotin biosynthetic gene bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 as well as their functional variants, analogs or derivatives in a prokaryotic or eukaryotic host organism that is able to synthesize, expresses, cultivates and synthesizes the biotin directly, after separating the biomass or after cleaning the biotin used, solved.
Die im erfindungsgemäßen Verfahren verwendeten Gene, das SAM-Syn- thase-Gen mit der Sequenz SEQ ID No. 1 und die Biotin-Biosynthe- segene bioSl, bioS2 und bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No.7 werden in der SwissProt-Datenbank unter den "Accession"-Nummern P04384 (metK), U29581 (bioSl), P39171 (bioS2) und D90811 (bioS3 ) geführt. In der Datenbank sind eine Reihe von Homologen zu MetK aus E. coli beschrieben. Diese Homologe umfassen Organismen wie weitere Eubakterien (z.B. H. in- fluenza, B. subtilis) , wie auch Eukaryonten (z.B. Hefen: S. cere- visiae, Planta: P. deltoides, Arthropoda D. melanogaster, und Mammalia: R. norvegicus) .The genes used in the method according to the invention, the SAM synthase gene with the sequence SEQ ID No. 1 and the biotin biosynthetic blessings bioSl, bioS2 and bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 are listed in the SwissProt database under the "Accession" numbers P04384 (metK), U29581 (bioSl), P39171 (bioS2) and D90811 (bioS3). The database describes a number of homologues for MetK from E. coli. These homologs include organisms such as other eubacteria (eg H. infuenza, B. subtilis), as well as eukaryotes (eg yeasts: S. cererevisiae, Planta: P. deltoides, Arthropoda D. melanogaster, and Mammalia: R. norvegicus ).
Durch Expression einer oder mehrerer des SAM-Synthase-Gens mit der Sequenz SEQ ID No. 1, seiner funktionellen Varianten, Analoge oder Derivate in Kombination mit mindestens einem der Biotinsy- thesegene bioSl, bioS2 oder bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No.7 sowie deren funktioneile Varianten, Analoge oder Derivate in einem prokaryontisehen oder eukaryontischen Wirtsorganismus läßt sich die Produktivität der Biotinbio- synthese deutlich steigern. Bevorzugt wird wird eine Kombination von SAM-Synthase-Gen und biosl zur Expression verwendet. Vorteilhafterweise wird für eine gesteigerte Biotinsynthese gleichzeitig mindestens ein weiteres Biotingen ausgewählt aus der Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR mit exprimiert. Durch die Expression der Gene wird die Synthese von Biotin um mindestens den Faktor 2 gegenüber der Kontrolle ohne diese Gene, bevorzugt um einen Faktor größer 3, gesteigert. Nach Isolierung und Sequenzierung sind die im erfindungsgemäßen Verfahren verwendeten Gene, das SAM-Synthase-Gen mit der Nukleo- tidsequenz SEQ ID No. 1, das bioSl Gen mit der Nukleotidsequenz SEQ ID No. 3, das bioS2 Gen mit der Nukleotidsequenz SEQ ID No. 5 und das bioS3 Gen mit der Nukleotidsequenz SEQ ID No.7 erhältlich, die für die in SEQ ID NO: 2, respektive SEQ ID No. 4, respektive SEQ ID No. 6 und SEQ ID No.8 angegebenen Aminosäuresequenzen oder deren Allelvariationen kodieren. Unter Varianten sind SEQ ID No. 1-, SEQ ID No.3- bzw. SEQ ID No.5, respektive SEQ ID No.7-Varianten zu verstehen, die 30 bis 100 % Homologie auf Aminosäureebene, bevorzugt 50 bis 100 %, ganz besonders bevorzugt 80 bis 100 % aufweisen. Allelvarianten umfassen insbesondere funktioneile Varianten, die durch Deletion, Insertion oder Substitution von Nukleotiden aus den in SEQ ID NO: 1, SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No.7 dargestellten Sequenzen erhältlich sind, wobei die enzymatische Aktivität aber erhalten bleibt.By expressing one or more of the SAM synthase genes with the sequence SEQ ID No. 1, its functional variants, analogs or derivatives in combination with at least one of the biotin synthesis genes bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 and their functional variants, analogs or derivatives in a prokaryotic or eukaryotic host organism, the productivity of biotin biosynthesis can be significantly increased. A combination of SAM synthase gene and biosl is preferably used for expression. For an increased biotin synthesis, at least one further bioting gene selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR is advantageously also expressed at the same time. The expression of the genes increases the synthesis of biotin by at least a factor of 2 compared to the control without these genes, preferably by a factor greater than 3. After isolation and sequencing, the genes used in the method according to the invention, the SAM synthase gene with the nucleotide sequence SEQ ID No. 1, the bioSl gene with the nucleotide sequence SEQ ID No. 3, the bioS2 gene with the nucleotide sequence SEQ ID No. 5 and the bioS3 gene with the nucleotide sequence SEQ ID No.7, which are available for those in SEQ ID NO: 2 or SEQ ID No. 4 or SEQ ID No. 6 and SEQ ID No.8 encode specified amino acid sequences or their allelic variations. Variants include SEQ ID No. 1, SEQ ID No.3 or SEQ ID No.5, or SEQ ID No.7 variants to be understood, which have 30 to 100% homology at the amino acid level, preferably 50 to 100%, very particularly preferably 80 to 100% exhibit. Allelic variants include, in particular, functional variants which, by deletion, insertion or substitution of nucleotides from the SEQ ID NO: 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No.7 are available, but the enzymatic activity is retained.
Weiterhin sind unter Varianten auch funktioneile Äquivalente der Gene wie die O-Acetyl-serinsulfohydrolase A, die O-Acetyl-serin- sulfohydrolase B, die ß-Cystathionase (siehe Flint et al., J. Biol. Chem., Vol. 271, 1996: 16053 - 16067) oder nifS und seine prokaryontisehen und eukaryontischen Homologen beispielsweise aus Klebsiella, Candida, Hefen oder aus Caenorhabditis zu verstehen, die in der Lage sind die enzymatische Aktivität von bioSl, bioS2 oder bioS3 in der Biotinsynthese zu übernehmen.Furthermore, functional variants are also equivalent to the genes, such as O-acetylserine sulfohydrolase A, O-acetylserine sulfohydrolase B, and β-cystathionase (see Flint et al., J. Biol. Chem., Vol. 271, 1996: 16053 - 16067) or nifS and its prokaryotic and eukaryotic homologues, e.g. from Klebsiella, Candida, yeast or Caenorhabditis, which are able to take over the enzymatic activity of bioSl, bioS2 or bioS3 in the biotin synthesis.
Unter funktioneilen Analogen von SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 und SEQ ID No. 7 sind beispielsweise ihre prokaryon- tischen oder eukaryontischen Homologen wie bakterielle, pilzliche, pflanzliche, tierische oder menschliche Homologen zu verstehen. Unter Analogen sind weiterhin auch verkürzte Sequenzen, Einzelstrang-DNA oder RNA der codierenden und nichtcodierenden DNA- Sequenz zu verstehen.Among functional analogs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID No. 7 are, for example, their prokaryotic or eukaryotic homologs, such as bacterial, fungal, plant, animal or human homologs. Analogs are furthermore also to be understood as shortened sequences, single-stranded DNA or RNA of the coding and non-coding DNA sequence.
Derivate sind beispielsweise Promotorvarianten zu verstehen. DieDerivatives are understood to mean, for example, promoter variants. The
Promotoren, die den angegebenen Nukleotidsequenzen vorgeschalten sind, können durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) verändert sein, ohne daß aber die Funktionalität bzw. Wirksamkeit der Promotoren beeinträchtigt wird. Des weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.Promoters that are upstream of the specified nucleotide sequences can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without the functionality or effectiveness of the promoters being impaired. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
Unter Derivaten sind auch Varianten zu verstehen, deren Nukleotidsequenz im Bereich von -1 bis -30 vor dem Startkodon so verändert wurden, daß die Genexpression und/oder die Proteinexpression erhöht wird. Vorteilhafterweise geschieht dies durch eine veränderte Shine-Dalgarno-Sequenz .Derivatives are also to be understood as variants whose nucleotide sequence has been changed in the range from -1 to -30 before the start codon in such a way that gene expression and / or protein expression is increased. This is advantageously done by means of a modified Shine-Dalgarno sequence.
Als prokaryontische Wirtsorganismen des erfindungsgemäßen Verfah- rens kommen prinzipiell alle Biotin synthetisierenden gram-negativen oder gram-positiven Bakterien in Frage. Als gram-negative Bakterien seien beispielhaft Enterobacteriaceae wie die Gattungen Escherichia, Aerobacter, Enterobacter, Citrobacter, Shigella, Klebsiella, Serratia, Erwinia oder Salmonella, Pseudomonadaceae wie die Gattungen Pseudomonas, Xanthomonas, Burkholderia, Gluco- nobacter, Nitrosomonas, Nitrobacter, Methanomonas , Comamonas, Cellulomonas oder Acetobacter, Azotobacteraceae wie die Gattungen Azotobacter, Azomonas, Bei erinckia oder Derxia, Neisseriaceae wie die Gattungen Moraxella, Acinetobacter, Kingella, Neisseria oder Branhamella, die Rhizobiaceae wie die Gattungen Rhizobium oder Agrobacterium oder die gram-negativen Gattungen Zymomonas, Chromobacterium oder Flavobacterium, genannt. Als gram-positive Bakterien seien beispielhaft die Endosporen-bildenden gram-positiven aeroben oder anaeroben Bakterien wie die Gattungen Bacil- lus, Sporolactobacillus oder Clostridium, die coryneformen Bakterien wie die Gattungen Arthrobacter, Cellulomonas, Curtobacte- rium, Corynebacterium, Brevibacterium, Microbacterium oder Kurt- hia, die Actinomycetales wie die Gattungen Mycobacterium, Rhodo- coccus, Streptomyces oder Nocardia, die Lactobacillaceae wie die Gattungen Laetobacillus oder Laetococeus, die gram-positiven Kokken wie die Gattungen Micrococcus oder Staphylococcus, genannt.In principle, all gram-negative or gram-positive bacteria synthesizing biotin can be considered as prokaryotic host organisms of the method according to the invention. Examples of Gram-negative bacteria are Enterobacteriaceae such as the genera Escherichia, Aerobacter, Enterobacter, Citrobacter, Shigella, Klebsiella, Serratia, Erwinia or Salmonella, Pseudomonadaceae such as the genera Pseudomonas, Xanthomonas, Burkholderia, Gluco-nobacter, Nitrosomonasomonasrobas , Cellulomonas or Acetobacter, Azotobacteraceae such as the genera Azotobacter, Azomonas, Bei erinckia or Derxia, Neisseriaceae such as the genera Moraxella, Acinetobacter, Kingella, Neisseria or Branhamella, the Rhizobiaceae such as the genera Rhizobium or Zrobacterium or gramobacterium, or gr Called Flavobacterium. Examples of gram-positive bacteria are the endospores-forming gram-positive aerobic or anaerobic bacteria such as the genera Bacillus, Sporolactobacillus or Clostridium, the coryneform bacteria such as the genera Arthrobacter, Cellulomonas, Curtobacterium, Corynebacterium, Brevibacterium or Microbacterium - hia, the Actinomycetales such as the genera Mycobacterium, Rhodococcus, Streptomyces or Nocardia, the Lactobacillaceae such as the genera Laetobacillus or Laetococeus, the gram-positive cocci such as the genera Micrococcus or Staphylococcus.
Bevorzugt werden Bakterien der Gattungen Escherichia, Citrobacter, Serratia, Klebsiella, Salmonella, Pseudomonas, Comamonas, Acinetobacter, Azotobacter, Chromobacterium, Bacillus, Clostridium, Arthrobacter, Corynebacterium, Brevibacterium, Laetococeus, Laetobacillus, Streptomyces, Rhizobium, Agrobacterium oder Staphylococcus im erfindungsgemäßen Verfahren verwendet. Besonders bevorzugt werden Gattungen und Arten wie Escherichia coli, Citro- bacter freundii, Serratia marcescens, Salmonella typhimurium, Pseudomonas mendocina, Pseudomonas aeruginosa, Pseudomonas muta- bilis, Pseudomonas chlororaphis , Pseudomonas fluorescens, Comamonas aeidovorans, Comamonas testosteroni, Acinetobacter calcoace- ticus, Azotobacter vinelandii, Chromobacterium violaceum, Bacil- lus subtilis, Bacillus sphaericus, Bacillus stearothermophilus, Bacillus pumilus, Bacillus licheniformis, Bacillus amyloliquefa- ciens, Bacillus megaterium, Bacillus cereus, Bacillus thuringien- sis, Arthrobacter citreus, Arthrobacter paraffineus, Corynebacterium glutamicum, Corynebacterium primorioxydans, Corynebacterium sp . , Brevibacterium ketoglutamicum, Brevibacterium linens, Brevi- bacteπum sp., Streptomyces lividans, Rhizobium leguminosarum oder Agrobacterium tumefaciens. Vorteilhafterweise werden Bakterien verwendet, die schon eine erhöhte natürliche Biotinproduk- tion besitzen.Bacteria of the genera Escherichia, Citrobacter, Serratia, Klebsiella, Salmonella, Pseudomonas, Comamonas, Acinetobacter, Azotobacter, Chromobacterium, Bacillus, Clostridium, Arthrobacter, Corynebacterium, Brevibacterium, Laetococeus, Laetobacillrobium, Streptomycobacterium, Streptomycobacterium, Streptomycobacterium, Streptomycobacterium, Streptomycum . Genera and species such as Escherichia coli, Citro-bacter freundii, Serratia marcescens, Salmonella typhimurium, Pseudomonas mendocina, Pseudomonas aeruginosa, Pseudomonas mutabilis, Pseudomonas chlororaphis, Pseudomonas fluorescens, Comamonas aeidovoroni, Acaceobotactoroni, Acaceobotactoroni, Comaceotobacteria, Comamonasotobacteria, Comamonasotobacteria, Comamonasobacteria vinelandii, Chromobacterium violaceum, Bacillus subtilis, Bacillus sphaericus, Bacillus stearothermophilus, Bacillus pumilus, Bacillus licheniformis, Bacillus amyloliquefa- ciens, Bacillus megaterium, Bacillus cereus, Bacillus thuringien- sis, Arthrobacter citreus, Arthrobacter paraffineus, Corynebacterium glutamicum, Corynebacterium primorioxydans, Corynebacterium sp. , Brevibacterium ketoglutamicum, Brevibacterium linens, Brevibacteπum sp., Streptomyces lividans, Rhizobium leguminosarum or Agrobacterium tumefaciens. Bacteria are advantageously used which already have an increased natural biotin product own.
Die taxono ische Stellung der aufgeführten Gattungen unterlag in den letzten Jahren einem starken Wandel und befindet sich noch immer im Fluß, da falsche Gattungs- und Artnamen korrigiert werden. Aufgrund dieser in der Vergangenheit häufig erforderlichen taxonomisehen Umgruppierungen der genannten Gattungen innerhalb der bakteriellen Systematik sind auch andere als die oben genannten Familien, Gattungen und Arten für das erfindungsgemäße Ver- fahren geeignet.The taxonical position of the genera listed has undergone a major change in recent years and is still in flux because incorrect genus and species names have been corrected. Because of the taxonomic regrouping of the above-mentioned genera within the bacterial system, which has often been required in the past, families, genera and species other than those mentioned above are also suitable for the method according to the invention.
Als eukaryontische Wirtsorganismen des erfindungsgemäßen Verfahrens kommen prinzipiell alle Biotin synthetisierenden Organismen in Frage wie Pilze, Hefen, Pflanzen oder pflanzliche Zellen. Als Hefen seien die Gattungen Rhodotorula, Yarrowia, Sporobolomyces, Saccharomyces oder Schizosaccharomyces bevorzugt genannt. Besonders bevorzugt sind die Gattungen und Arten Rhodotorula rubra, Rhodotorula glutinis, Rhodotorula graminis, Yarrowia lipolytica, Sporobolomyces salmonicolor, Sporobolomyces shibatanus oder Sac- charomyces cerevisiae.In principle, all biotin-synthesizing organisms such as fungi, yeasts, plants or plant cells can be considered as eukaryotic host organisms of the process according to the invention. The genera Rhodotorula, Yarrowia, Sporobolomyces, Saccharomyces or Schizosaccharomyces are preferred as yeasts. The genera and species Rhodotorula rubra, Rhodotorula glutinis, Rhodotorula graminis, Yarrowia lipolytica, Sporobolomyces salmonicolor, Sporobolomyces shibatanus or Saccharomyces cerevisiae are particularly preferred.
Als Wirtsorganismus können prinzipiell alle Pflanzen verwendet werden, bevorzugt werden Pflanzen, die in der Tierernährung oder in der humanen Ernährung eine Rolle spielen wie Mais, Weizen, Gerste, Roggen, Kartoffeln, Erbsen, Bohnen, Sonnenblumen, Palmen, Hirse, Sesam, Kopra oder Raps. Auch Pflanzen wie Arabidopsis tha- liana oder Lavendula vera sind geeignet. Besonders bevorzugt werden pflanzliche Zellkulturen, Protoplasten aus Pflanzen oder Ka- luskulturen.In principle, all plants can be used as the host organism; preference is given to plants which play a role in animal nutrition or in human nutrition, such as corn, wheat, barley, rye, potatoes, peas, beans, sunflowers, palm trees, millet, sesame, copra or Rapeseed. Plants such as Arabidopsis thaliana or Lavendula vera are also suitable. Plant cell cultures, protoplasts from plants or potassium cultures are particularly preferred.
Vorteilhafterweise werden im erfindungsgemäßen Verfahren Mikroorganismen wie Bakterien, Pilze, Hefen oder pflanzliche Zellen verwendet, die in der Lage sind Biotin in das Anzuchtsmedium auszuscheiden und die gegebenenfalls zusätzlich schon eine erhöhte na- türliche Biotinsynthese haben. Vorteilhafterweise können diese Organismen noch bezüglich der Regulation ihrer Biotinbiosynthese defekt sein, das heißt es findet keine oder nur eine sehr verringerte Regulation der Synthese statt. Dieser Regulationsdefekt hat zur Folge, daß diese Organismen schon eine wesentlich höhere Bio- tinproduktivität besitzen. Ein solcher Regulationsdefekt ist beispielsweise von Escherichia coli als birA-Defektmutanten bekannt und sollte vorzugsweise in Form eines durch äußere Einflüsse induzierbaren Defektes, beispielsweise temperaturinduzierbar, in den Zellen vorhanden sein. Es können im Prinzip auch Organismen verwendet werden, die keine natürliche Biotinproduktion aufweisen, nachdem sie mit den Biotingenen transformiert wurden. Um die Biotinproduktivität insgesamt weiter zu steigern sollten die Organismen im erfindungsgemäßen Verfahren vorteilhafterweise zusätzlich mindesten ein weiteres Biotingen ausgewählt aus derAdvantageously, microorganisms such as bacteria, fungi, yeast or plant cells are used in the method according to the invention, which are able to excrete biotin into the growth medium and which may already have an increased natural biotin synthesis. Advantageously, these organisms can still be defective with regard to the regulation of their biotin biosynthesis, that is to say there is no or only a very reduced regulation of the synthesis. The consequence of this regulatory defect is that these organisms already have a much higher bio-tin productivity. Such a regulatory defect is known for example from Escherichia coli as a birA defect mutant and should preferably be present in the cells in the form of a defect which can be induced by external influences, for example temperature-induced. In principle, it is also possible to use organisms which have no natural biotin production after they have been transformed with the biotin genes. In order to further increase the overall biotin productivity, the organisms in the process according to the invention should advantageously additionally selected at least one further biotin from the
Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioYGroup bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY
5 oder bioR enthalten. Vorteilhafterweise können auch solche Gene in Kombination mit der Sequenz SEQ ID No. 1 , der SEQ ID NO: 3, der SEQ ID No.5 oder der SEQ ID NO.7 und ihrer Kombinationen in der Zelle vorhanden sein, die die Biotinsynthese stimulieren.5 or bioR included. Such genes can advantageously also be used in combination with the sequence SEQ ID No. 1, SEQ ID NO: 3, SEQ ID No.5 or SEQ ID NO.7 and their combinations, which stimulate biotin synthesis.
Gene die die Biotinsynthese stimmulieren sind z. B. das Flavore- 0 doxin-Gen, die Flavoredoxin-Reduktase-Gen. Dieses zusätzliche Gen oder diese zusätzlichen Gene können wie auch die Gene mit der Sequenz SEQ ID No. 1 , der SEQ ID NO.3, SEQ ID No.5 oder der SEQ ID NO.7 oder deren Kombinationen in ein oder mehreren Kopien in der Zelle vorhanden sein. Sie können auf dem gleichen Vektor wie dieGenes that stimulate biotin synthesis are e.g. B. the Flavore- 0 doxin gene, the Flavoredoxin reductase gene. This additional gene or these additional genes, like the genes with the sequence SEQ ID No. 1, SEQ ID NO.3, SEQ ID No.5 or SEQ ID NO.7 or their combinations may be present in one or more copies in the cell. You can use the same vector as that
15 Sequenz SEQ ID No. 1, SEQ ID NO.3, SEQ ID No.5 und/oder SEQ ID No.7 lokalisiert sein oder auf getrennten Vektoren oder aber chromosomal integriert worden sein. Auch die Sequenzen SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 und/oder SEQ ID No .7 können zusammen auf einem Vektor oder auf getrennten Vektoren sein oder 15 sequence SEQ ID No. 1, SEQ ID NO.3, SEQ ID No.5 and / or SEQ ID No.7 can be localized or integrated on separate vectors or chromosomally. The sequences SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 can be together on one vector or on separate vectors or
__ ins Genom inseriert werden. 20__ be inserted into the genome. 20th
Unter dem erfindungsgemäßen Genkonstrukt sind die Gensequenzen des SAM-Synthase-Gens SEQ ID No. 1 und der Biotinsynthegene SEQ ID No.3, SEQ ID No .5 und/oder SEQ ID No.7, sowie deren funktio-Under the gene construct according to the invention, the gene sequences of the SAM synthase gene SEQ ID No. 1 and the biotin synthetic genes SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7, as well as their functional
25 nelle Varianten, Analoge oder Derivate zu verstehen, die mit einem oder mehreren Regulationssignalen zur Erhöhung der Genexpression funktioneil verknüpft wurden. Zusätzlich zu diesen neuen Regulationssequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so daß die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor die Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 und/oder SEQ ID No.7 inseriert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Stattdessen wird die natürliche Regulationssequenz so mutiert, daß keine Regulation durch Biotin mehr erfolgt und die Genexpression gesteigert wird. Die Sequenzen SEQ ID No. 1, SEQ ID No.3, SEQ ID No .5 und/oder SEQ ID No.7 können unter der Regulation eines Promotors oder unter der Regulation getrenn-To understand 25 different variants, analogs or derivatives that have been functionally linked to one or more regulation signals to increase gene expression. In addition to these new regulatory sequences, the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased. However, the gene construct can also have a simpler structure, that is to say no additional regulation signals are placed in front of the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 and / or SEQ ID No.7 are inserted and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated in such a way that biotin regulation no longer takes place and gene expression is increased. The sequences SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 can be separated under the regulation of a promoter or under the regulation.
4^ ter Promotoren liegen. Auch am 3 '-Ende der DNA-Sequenzen können zusätzliche vorteilhafte regulatorische Elemente inseriert werden. Die Gene mit den Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 oder SEQ ID No. 7 können in einer oder mehreren Kopien im Genkonstrukt enthalten sein. 4 ^ th promoters. Additional advantageous regulatory elements can also be inserted at the 3 'end of the DNA sequences. The genes with the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 or SEQ ID No. 7 can be contained in one or more copies in the gene construct.
4545
Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lad«*-. T7-, T5-, T3-, gal-, trc-, ara-, SP6-, -PR- oder im λ-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden.Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lad « * -. Contain T7-, T5-, T3-, gal-, trc-, ara-, SP6-, -P R - or in the λ-P L promoter, which are advantageously used in gram-negative bacteria.
Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den HefepromotorenFurther advantageous regulation sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast promoters
ADC1, MFα , AC, P-60, CYC1, GAPDH oder in den PflanzenpromotorenADC1, MFα, AC, P-60, CYC1, GAPDH or in the plant promoters
CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor enthalten.CaMV / 35S, SSU, OCS, lib4, usp, STLS1, B33, nos or contained in the ubiquitin or phaseolin promoter.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.In principle, all natural promoters with their regulatory sequences such as those mentioned above can be used for the method according to the invention. In addition, synthetic promoters can also be used advantageously.
im Genkonstrukt können weitere Biotingene ausgewählt aus derfurther biotin genes can be selected from the gene construct
Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR in einer oder mehreren Kopien enthalten sein, die einen eigenen Promotor haben können oder aber unter der Regulation des Promotors einer der Sequenzen oder unter der Regulation des Pro- motors der gesamten Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 oder SEQ ID No.7 liegen können.Group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR can be contained in one or more copies, which can have their own promoter or under the regulation of the promoter of one of the sequences or under the regulation of the promoter of the entire sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No.5 or SEQ ID No.7.
Das Genkonstrukt wird zur Expression in den oben genannten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor inseriert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren wie beispielsweise Pha- gen, Viren, Transposons, IS-Elemente, Phasmide, Cosmide, lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.For expression in the above-mentioned host organism, the gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host. Vectors are well known to those skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels P.H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). In addition to plasmids, vectors are also understood to mean all other vectors known to those skilled in the art, such as phages, viruses, transposons, IS elements, phasmids, cosmids, linear or circular DNA. These vectors can be replicated autonomously in the host organism or can be replicated chromosomally.
unter Expressionssysteme sind die Kombination aus den oben beispielhaft genannten Wirtsorganismen und den zu den Organismen passenden Vektoren wie Plasmide, Viren oder Phagen wie beispielsweise Plasmide mit dem RNA-Polymerase/Promoter System, die Phagen λ, Mu oder andere temperänte Phagen oder Transposons und/oder wei- teren vorteilhaften regulatorischen Sequenzen zu verstehen.expression systems include the combination of the host organisms mentioned above by way of example and the vectors which match the organisms, such as plasmids, viruses or phages such as, for example, plasmids with the RNA polymerase / promoter system, the phages λ, Mu or other tempered phages or transposons and / or to understand further advantageous regulatory sequences.
Bevorzugt sind unter dem Begriff Expressionssysteme die Kombination aus Escherichia coli und seinen Plasmiden und Phagen und den dazugehörenden Promotoren sowie Bacillus und seine Plasmide undPreferred under the term expression systems are the combination of Escherichia coli and its plasmids and phages and the associated promoters as well as Bacillus and its plasmids and
Promotoren zu verstehen. Für die vorteilhafte erfindungsgemäße Expression der SEQ ID No.l, SEQ ID No.3, SEQ ID No.5 und/oder SEQ ID No. 7 sind außerdem weitere 3' und/oder 5' Terminale regulatorische Sequenzen geeignet.Understand promoters. For the advantageous expression of SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No. 7 further 3 'and / or 5' terminal regulatory sequences are also suitable.
Diese regulatorischen Sequenzen sollen die gezielte Expression der Biotingene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, daß das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder daß es sofort exprimiert und/oder überexprimiert wird.These regulatory sequences are intended to enable the targeted expression of the biotin genes and the protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Biotingenexpression positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can preferably have a positive influence on biotin expression and thereby increase it. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA.
Unter "Enhancer" sind beispielsweise DNA-Sequenzen zu verstehen, die über eine verbesserte Wechselwirkung zwischen RNA-Polymerase und DNA eine erhöhte Biotingenexpression bewirken.“Enhancers” are understood to mean, for example, DNA sequences which bring about increased expression of biotin via an improved interaction between RNA polymerase and DNA.
Eine Steigerung der von der Sequenz SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 und SEQ ID No.7 abgeleiteten Proteinen (siehe SEQ ID No.2, SEQ ID No.4, SEQ ID No.6 und SEQ ID No.8) und ihrer Enzymaktivität läßt sich zum Beispiel gegenüber den Ausgangsenzymen durch Veränderung der entsprechenden Gensequenzen oder der Se- quenzen seiner Homologen durch klassische Mutagenese wie UV-Bestrahlung oder Behandlung mit chemischen Mutagentien und/oder durch gezielte Mutagenese wie site directed mutagenesis, Dele- tion(en), Insertion(en) und/oder Substitution(en) erzielen. Auch kann eine erhöhte Enzymaktivität neben der beschriebenen Genam- plifikation durch Ausschaltung von Faktoren, die die Enzymbiosynthese reprimieren und/oder durch Synthese aktiver statt inaktiver Enzyme erreicht werden.An increase in the sequence SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 derived proteins (see SEQ ID No.2, SEQ ID No.4, SEQ ID No.6 and SEQ ID No.8) and their enzyme activity can be compared to the parent enzymes, for example, by changing the corresponding gene sequences or the sequences of its homologues by classic mutagenesis such as UV radiation or treatment with chemical mutants and / or by targeted mutagenesis such as site directed mutagenesis, deletion (s), insertion achieve (s) and / or substitution (s). In addition to the gene amplification described, increased enzyme activity can also be achieved by eliminating factors which repress enzyme synthesis and / or by synthesizing active instead of inactive enzymes.
Durch das erfindungsgemäße Verfahren wird die Umwandlung von DTB in Biotin und damit die Biotinproduktivität insgesamt über die in die Organismen über Vektoren und/oder chromosomal klonierten eingebrachten Biotingene mit der Sequenz SEQ ID No. 1, der SEQ ID No.3, SEQ ID No.5 und der SEQ ID No.7 und der Kombinationen der Gene der Sequenz SEQ ID No.l und der SEQ ID No.5 oder SEQ ID No.l und der SEQ ID No.7, bevorzugterweise die Kombination der Gene der Sequenz SEQ ID No.l und der SEQ ID No.3 vorteilhaft gestei- gert .The process according to the invention is used to convert DTB into biotin and thus overall biotin productivity via the biotin genes with the sequence SEQ ID no. 1, SEQ ID No.3, SEQ ID No.5 and SEQ ID No.7 and the combinations of the genes of the sequence SEQ ID No.l and SEQ ID No.5 or SEQ ID No.l and SEQ ID No.7, preferably the combination of the genes of the sequence SEQ ID No. 1 and SEQ ID No.3 is advantageously increased device.
Im erfindungsgemäßen Verfahren werden die SEQ ID No.l, SEQ ID No.3, SEQ ID No.5 und/oder SEQ ID No.7 enthaltenen Mikroorganis- men in einem Medium, das das Wachstum dieser Organismen ermöglicht, angezüchtet. Dieses Medium kann ein synthetisches oder ein natürliches Medium sein. Je nach Organismus werden dem Fachmann bekannte Medien verwendet . Für das Wachstum der Mikroorganismen enthalten die verwendeten Medien eine Kohlenstoffquelle, eine Stickstoffquelle, anorganische Salze und gegebenenfalls geringe Mengen an Vitamine und Spurenelemente.In the method according to the invention, the microorganisms containing SEQ ID No. 1, SEQ ID No.3, SEQ ID No.5 and / or SEQ ID No.7 are grown in a medium which enables these organisms to grow. This medium can be a synthetic or a natural medium. Depending on the organism, media known to the person skilled in the art are used. For the growth of the microorganisms, the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
Vorteilhafte Kohlenstoffquellen sind beispielsweise Zucker wie Mono-, Di- oder Polysaccharide wie Glucose, Fructose, Mannose, Xylose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose, komplexe Zucker- σuellen wie Melasse, Zuckerphosphate wie Fructose-1, 6-bisphosp- hat, Zuckeralkohole wie Mannit, Polyole wie Glycerin, Alkohole wie Methanol oder Ethanol, Carbonsäuren wie Citronensäure, Milch- säure oder Essigsäure, Fette wie Sojaöl oder Rapsöl, Aminosäuren wie Glutaminsäure oder Asparaginsäure oder Aminozucker, die auch gleichzeitig als Stickstoff uelle verwendet werden können.Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose-1, 6-bisphosp-, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as glutamic acid or aspartic acid or amino sugar, the can also be used simultaneously as a nitrogen source.
Vorteilhafte Stickstoffquellen sind organische oder anorganische StickstoffVerbindungen oder Materialien, die diese Verbindungen enthalten. Beispiele sind Ammoniumsalze wie NH4CI oder ( H4)24, Nitrate, Harnstoff, oder komplexe Stickstoffquellen wie Maisquellwasser, Bierhefeautolysat, Sojabohnenmehl, Weizengluten, Hefeextrakt, Fleischextrakt, Caseinhydrolysat, Hefe oder Kartoffelpro- tein, die häufig auch gleichzeitig als Stickstoffquelle dienen können.Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds. Examples are ammonium salts such as NH 4 CI or (H 4 ) 24 , nitrates, urea, or complex nitrogen sources such as corn steep liquor, beer yeast autolysate, soybean flour, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which are often also used simultaneously as a nitrogen source can serve.
Beispiele für anorganische Salze sind die Salze von Calcium, Magnesium, Natrium, Mangan, Kalium, Zink, Kupfer und Eisen. Als An- ion dieser Salze sind besonders das Chlor-, Sulfat- und Phosphation zu nennen. Ein wichtiger Faktor zur Steigerung der Produktivität im erfindungsgemäßen Verfahren ist der Zusatz von Fe2+_ oder Fe3+-Salzen und/oder Kaliumsalzen zum Produktionsmedium.Examples of inorganic salts are the salts of calcium, magnesium, sodium, manganese, potassium, zinc, copper and iron. The chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts. An important factor for increasing productivity in the process according to the invention is the addition of Fe 2 + _ or Fe 3+ salts and / or potassium salts to the production medium.
Gegebenenfalls werden dem Nährmedium weitere Wachstumsfaktoren zugesetzt, wie beispielsweise Vitamine oder Wachstumsförderer wie Riboflavin, Thiamin, Folsäure, Nicotinsäure, Pantothenat oder Py- ridoxin, Aminosäuren wie Alanin, Cystein, Asparagin, Asparaginsäure, Glutamin, Serin, Methonin oder Lysin, Carbonsäuren wie Ci- tronensäure, Ameisensäure, Pimelinsäure oder Milchsäure, oder Substanzen wie Dithiothreitol . Zur Stabilisierung der Vektoren mit den Biotingenen in den Zellen können gegebenenfalls Antibiotika dem Medium zugesetzt werden.If necessary, further growth factors are added to the nutrient medium, such as vitamins or growth promoters such as riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, asparagine, aspartic acid, glutamine, serine, methonine or lysine, carboxylic acids such as ci- tronic acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol. Antibiotics can optionally be added to the medium to stabilize the vectors with the biotin genes in the cells.
Das Mischungsverhältnis der genannten Nährstoffe hängt von der Art der Fermentation ab und wird im Einzelfall festgelegt. Die Mediumkomponenten können alle zu Beginn der Fermentation vorgelegt werden, nachdem sie falls erforderlich getrennt sterilisiert oder gemeinsam sterilisiert wurden, oder aber je nach Bedarf während der Fermentation nachgegeben werden.The mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case. The medium components can all be introduced at the start of the fermentation, after they have been sterilized separately if necessary or sterilized together, or after the fermentation has been added as required.
Die Züchtungsbedingungen werden so festgelegt, daß die Organismen optimal wachsen und daß die bestmöglichen Ausbeuten erreicht werden. Bevorzugte Züchtungstemperaturen liegen bei 15 °C bis 40 °C. Besonders vorteilhaft sind Temperaturen zwischen 25 °C und 37 °C. vorzugsweise wird der pH-Wert in einem Bereich von 3 bis 9 festgehalten. Besonders vorteilhaft sind pH-Werte zwischen 5 und 8. Im allgemeinen ist eine Inkubationsdauer von 8 bis 240 Stunden bevorzugt von 8 bis 120 Stunden ausreichend. Innerhalb diser Zeit reichert sich die maximale Menge an Biotin im Medium an und/oder ist nach Aufschluß der Zellen verfügbar.The breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved. Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous. the pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous. In general, an incubation period of 8 to 240 hours, preferably 8 to 120 hours, is sufficient. Within this time the maximum amount of biotin accumulates in the medium and / or is available after the cells have been disrupted.
Das erfindungsgemäße Verfahren zur Herstellung von Biotin kann kontinuierlich oder batch- oder fed-batch-weise durchgeführt werden. Werden aus den mit den Biotingenen transformierten Pflanzen- zellen ganze Pflanzen regeneriert, so können diese nach dem erfindungsgemäßen Verfahren ganz normal angezüchtet und vermehrt werden.The method according to the invention for the production of biotin can be carried out continuously or batch or fed-batch. If whole plants are regenerated from the plant cells transformed with the biotin genes, they can be grown and propagated in the normal way using the method according to the invention.
Beispiele:Examples:
1. Klonierung des S-Adenosyl-Methionin-Synthase-Gens (SEQ ID No.l) :1. Cloning of the S-adenosyl methionine synthase gene (SEQ ID No. 1):
Das Gen, das für SAM-Synthase (metK) kodiert, wurde aus dem Chromosom von E. coli durch eine Polymerase-Kettenreaktion mit Hilfe zweier spezifischer Oligonukleotide ausgehend von genomischer E. coli DNA amplifiziert . Die derart amplifizierte DNA wurde aufgereinigt, mit dem Restriktionsenzym Acc65I verdaut und in einen mit dem gleichen Enzym geschnittenen Vektor inseriert, der eine Überexpression des Gens in E. coli Stämmen ermöglicht. Durch eines der beiden Oligonukleotide wurde das Genkonstrukt mit oti- mierten Translationssignalen versehenThe gene coding for SAM synthase (metK) was amplified from the chromosome of E. coli by a polymerase chain reaction using two specific oligonucleotides based on genomic E. coli DNA. The DNA amplified in this way was purified, digested with the restriction enzyme Acc65I and inserted into a vector cut with the same enzyme, which enables the gene to be overexpressed in E. coli strains. One of the two oligonucleotides provided the gene construct with optimized translation signals
a. ) Entwicklung von Oligonukleotiden zur Amplifizierung des metK Gens aus dem E. coli Chromosom: metK soll als Expressionskassette bestehend aus einer ribosomalen Bindungstelle, dem Startkodon der kodierenden Sequenz und dem Stopkodon zwischen zwei Erkennungstellen für Restriktionsenzyme amplifiziert werden. Für beide Restriktionsschnittstellen wurde die Erkennungssequenz von Acc65l gewählt. Das metK Gen wurde mit Hilfe der Oligonucleotide PmetKl (5'- GCGGTACCAGGTGATATTAAATATG- GCAAAAC-3') und PmetK2 (5 '-CGGGTACCGATTACTTCAGACCGGCAGC-3 ' ) amplifiziert und kloniert.a. ) Development of oligonucleotides for the amplification of the metK gene from the E. coli chromosome: metK is to be amplified as an expression cassette consisting of a ribosomal binding site, the start codon of the coding sequence and the stop codon between two recognition sites for restriction enzymes. The recognition sequence of Acc65l was chosen for both restriction sites. The metK gene was amplified and cloned using the oligonucleotides PmetKl (5'-GCGGTACCAGGTGATATTAAATATG-GCAAAAC-3 ') and PmetK2 (5' -CGGGTACCGATTACTTCAGACCGGCAGC-3 ').
b. ) Durchführung der PCR:b. ) Execution of the PCR:
Bedingungen:Conditions:
Als Matrize wurden 0,5 μg chromosomale DNA von E. coli W3110 ver- wendet. Die Oligonukleotide PmetKl und PmetK2 wurden in einer Konzentration von je 15 pMol eingesetzt. Die Konzentration an dNTP's betrug 200 μM. Als Polymerase wurden 2,5 U Pwo DNA-Polyme- rase (Boehringer Mannheim) im Reaktionspuffer des Herstellers eingesetzt. Das Volumen der PCR-Reaktion betrug 100 μl .0.5 μg of chromosomal DNA from E. coli W3110 was used as the template. The oligonucleotides PmetKl and PmetK2 were used in a concentration of 15 pmol each. The concentration of dNTP's was 200 μM. 2.5 U Pwo DNA polymerase (Boehringer Mannheim) was used as the polymerase in the manufacturer's reaction buffer. The volume of the PCR reaction was 100 μl.
Amplifikationsbedingungen:Amplification conditions:
Die Denaturierung der DNA erfolgte für 2 min bei 94 °C. Anschließend wurden die Oligonukleotide für 30 sec bei 55 °C angelagert. Die Elongation erfolgte für 75 sec bei 72 °C. Die PCR-Reaktion wurde über 30 Zyklen durchgeführt.The DNA was denatured at 94 ° C. for 2 min. The oligonucleotides were then attached at 55 ° C. for 30 seconds. The elongation was carried out for 75 seconds at 72 ° C. The PCR reaction was carried out over 30 cycles.
Das erhaltene DNA-Produkt mit einer Größe von ca. 1145 bp wurde aufgereinigt und durch Acc65l im geeigneten Puffer verdaut.The DNA product with a size of approx. 1145 bp was purified and digested with Acc65l in a suitable buffer.
c. ) Klonierung von metK in Expressionsvektorc. ) Cloning of metK in expression vector
2 μg des Vektors pHSl (Konstruktion wurde in DE 197.31274.8, Priorität 22.7.97, Beispiele 1. Seite 14 bis 17 beschrieben) wurden duch Acc65I verdaut und durch Shrimp Alkalische Phosphatase (SAP) (Boehringer Mannheim) dephosphoryliert. Nach Denaturierung der SAP wurden Vektor und Fragment in einem molaren Verhältnis von 1:3 durch den Rapid-DNA-Ligation Kit nach der Vorschrift des Herstellers ligiert. Die Transformation des Ligationsansatzes er- fogte in den Stamm E. coli XL-1-blue. Positive Klone wurden durch Plasmidpräparation und Restriktionsanalyse identifiziert. Die richtige Orientierung des MetK-Fragments in pHSl wurde durch Re- striktionsverdau und Sequenzierung bestimmt. Das erhaltene Kon- strukt wurde pHSl metK (Figur 1) genannt. Die Sequenz von pHSl metK ist SEQ ID No.9 zu entnehmen. SEQ ID No.10 zeigt die abgeleitete Aminosäuresequenz der codierenden Region für metK. 2. Konstruktion der Plasmide pHBbiol4 und pHSl bioSl2 μg of the vector pHSl (construction was described in DE 197.31274.8, priority 22.7.97, examples 1. page 14 to 17) were digested with Acc65I and dephosphorylated by Shrimp Alkaline Phosphatase (SAP) (Boehringer Mannheim). After the SAP had been denatured, the vector and fragment were ligated in a molar ratio of 1: 3 using the Rapid DNA ligation kit according to the manufacturer's instructions. The transformation of the ligation approach took place in the strain E. coli XL-1-blue. Positive clones were identified by plasmid preparation and restriction analysis. The correct orientation of the MetK fragment in pHSl was determined by restriction digestion and sequencing. The construct obtained was called pHS1 metK (FIG. 1). The sequence of pHSl metK can be found in SEQ ID No.9. SEQ ID No.10 shows the deduced amino acid sequence of the coding region for metK. 2. Construction of the plasmids pHBbiol4 and pHSl bioSl
Die Konstruktion der Plasmide pHBbiol4 und pHSl bioSl wurde bereits beschrieben (DE 197.31274.8, Priorität 22.7.97, Beispiele 5 1, 2 und 5 ) .The construction of the plasmids pHBbiol4 and pHSl bioSl has already been described (DE 197.31274.8, priority 22.7.97, examples 5 1, 2 and 5).
3. Konstruktion von pHSl metK bioSl3. Construction of pHSl metK bioSl
Die Plasmide pHSl bioSl [SEQ ID No.ll, (DE 197.31274.8, PrioritätThe plasmids pHSl bioSl [SEQ ID No.ll, (DE 197.31274.8, priority
10 22.7.97), SEQ ID No.12 zeigt die abgeleitete Aminosäuresequenz der codierenden Region für bioSl] und pHSl metK SEQ ID No.9 wurden durch einen Plasmid-Präparationsmethode (Boehringer) aufgereinigt. Aus pHSl metK wurde das metK-Gen tragende Fragment durch einen Acc65l-Verdau isoliert. pHSl bioSl wurde durch Acc65I ver-10 22.7.97), SEQ ID No.12 shows the derived amino acid sequence of the coding region for bioSl] and pHSl metK SEQ ID No.9 were purified by a plasmid preparation method (Boehringer). The fragment carrying metK gene was isolated from pHSl metK by Acc65l digestion. pHSl bioSl was replaced by Acc65I
15 daut, und durch Shrimp Alkalische Phosphatase (SAP) (Boehringer Mannheim) dephosphoryliert . Nach Denaturierung der SAP nach Vorschrift des Herstellers wurden Vektor und das metK Fragment in einem molaren Verhältnis von 1:3 durch den Rapid-DNA-Ligation Kit nach der Vorschrift des Herstellers ligiert. Die Transformation15 daut, and dephosphorylated by Shrimp Alkaline Phosphatase (SAP) (Boehringer Mannheim). After the SAP had been denatured according to the manufacturer's instructions, the vector and the metK fragment were ligated in a molar ratio of 1: 3 using the Rapid DNA ligation kit according to the manufacturer's instructions. The transformation
20 des Ligationsansatzes erfogte in den Stamm E. coli XL-1-blue. Positive Klone wurden durch Plasmidpräparation und Restriktionsanalyse identifiziert. Die richtige Orientierung des metK-Fragments in pHSl bioSl wurde durch Restriktionsverdau und Sequenzierung bestimmt. Das erhaltene Konstrukt wurde pHSl metK bioSl (Figur 2)20 of the ligation mixture was carried out in the strain E. coli XL-1-blue. Positive clones were identified by plasmid preparation and restriction analysis. The correct orientation of the metK fragment in pHSl bioSl was determined by restriction digestion and sequencing. The construct obtained was pHSl metK bioSl (Figure 2)
25 genannt. Die Sequenz von pHSl metK bioSl ist SEQ ID No.13 zu entnehmen. SEQ ID No.14 zeigt die abgeleitete Aminosäuresequenz der codierenden Region für metK, SEQ ID No.15 zeigt die abgeleitete Aminosäuresequenz der codierenden Region für bioSl25 called. The sequence of pHSl metK bioSl can be found in SEQ ID No.13. SEQ ID No.14 shows the deduced amino acid sequence of the coding region for metK, SEQ ID No.15 shows the deduced amino acid sequence of the coding region for bioSl
30 4. Erhöhung der Biotin-Produktivität durch Überexpression von metK, bioSl und metK in Kombination mit bioSl.30 4. Increasing biotin productivity through overexpression of metK, bioSl and metK in combination with bioSl.
Vom Stamm BM4086 (Ketner und Campbell J. Molec. Biology 1975 96:13) wurde durch Plattieren auf Rifampycin-Platten spontan-Ri-The BM4086 strain (Ketner and Campbell J. Molec. Biology 1975 96:13) was spontaneously analyzed by plating on rifampycin plates.
35 fampycin-resistente Kolonien isoliert. Von einem dieser resisten- ten Stämme wurde ein Pl-Lysat erzeugt. Mit diesem Pl-Lysat wurde der Stamm W3110 transduziert und anschließend Klone durch Rifam- pycin selektioniert . Der erhaltene Stamm mit dem Plasmid pHBbiol4 nach der CaCl2-Methode transformiert (Maniatis et al.Molecular35 fampycin-resistant colonies isolated. A PI lysate was generated from one of these resistant strains. The W3110 strain was transduced with this PI lysate and then clones were selected by rifampycin. The strain obtained was transformed with the plasmid pHBbiol4 by the CaCl 2 method (Maniatis et al. Molecular
40 Cloning Cols Spring Harbour Laboratory Press 1989) und auf LB-Am- pizillin 100 μg/ml angezogen. Der isolierte trnsformierte Stamm (LU5560) , wurde jeweils mit dem Plasmiden pHSl, pHSl metK, pHSl bioSl oder pHSl metK bioSl nach der CaCl2-Methode transformiert und auf LB-Agar mit Ampizillin 100 μg/ml und Kanamyzin 25 μg/ml40 Cloning Cols Spring Harbor Laboratory Press 1989) and drawn on LB ampicillin 100 μg / ml. The isolated, transformed strain (LU5560) was transformed with the plasmid pHSl, pHSl metK, pHSl bioSl or pHSl metK bioSl according to the CaCl 2 method and on LB agar with ampicillin 100 μg / ml and kanamycin 25 μg / ml
45 selektioniert. Je eine Kolonie der jeweiligen Transformanden wurde in einer DYT- Kultur mit dem entsprechendem Antibiotika angeimpft und für 12 h inkubiert. Die Übernachtkultur (= ÜNK) wurde eingesetzt um eine 10 ml Kultur in TB-Medium(Sambrook, J. Fritsch, E F. Maniatis, T. 2nd ed. Cold Spring Harbor Laboratory Press., 198945 selected. One colony each of the respective transformants was inoculated with the appropriate antibiotics in a DYT culture and incubated for 12 h. The overnight culture (= ÜNK) was used for a 10 ml culture in TB medium (Sambrook, J. Fritsch, E F. Maniatis, T. 2nd ed. Cold Spring Harbor Laboratory Press., 1989
ISBN 0-87969-373-8), das 30g/l Glycerol enthält, mit den entsprechenden Antibiotika anzuimpfen. Im Fall der Gegenwart der Plasmide pHSl, pHSl metK, pHSlbioSl und pHSl metK bioSl erfolgte gleichzeitig der Zusatz von ImM IPTG und 0,5% Arabinose zur Induktion der Genexpression von metK und bioSl bzw. der Kombination beider Gene. Nach 24h Stunden wurden die Zellen vom Kulturüberstand durch Zentrifugation abgetrennt und die Biotin-Konzentration durch einen kompetitiven ELISA mit Streptavidin im Überstand bestimmt. Die Ergebnisse dieser Bestimmung sind Tabelle I zu ent- nehmen.ISBN 0-87969-373-8), which contains 30g / l glycerol, with the appropriate antibiotics. In the presence of the plasmids pHSl, pHSl metK, pHSlbioSl and pHSl metK bioSl, ImM IPTG and 0.5% arabinose were added simultaneously to induce gene expression of metK and bioSl or the combination of both genes. After 24 hours, the cells were separated from the culture supernatant by centrifugation and the biotin concentration was determined by a competitive ELISA with streptavidin in the supernatant. The results of this determination can be found in Table I.
Tabelle I: Bestimmung der BiotinkonzentrationTable I: Determination of the biotin concentration

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Biotin, dadurch gekennzeichnet, daß man ein S-Adenosyl-Methionin-Synthasegen mit der Sequenz SEQ ID No. 1 und mindestens ein weiteres Biotin-Biosynthese- gen bioSl, bioS2 oder bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 oder SEQ ID No. 7 sowie ihre funktioneilen Varianten, Analoge oder Derivate in einem prokaryontischen oder eukaryontischen Wirtsorganismus, der in der Lage ist Biotin zu synthetisieren, exprimiert, diesen züchtet und das synthetisierte Biotin direkt, nach Abtrennung der Biomasse oder nach Reinigung des Biotins verwendet.1. A process for the preparation of biotin, characterized in that an S-adenosyl-methionine synthase gene with the sequence SEQ ID No. 1 and at least one other biotin biosynthetic gene bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 or SEQ ID No. 7 and their functional variants, analogs or derivatives in a prokaryotic or eukaryotic host organism which is able to synthesize, expresses, cultivates and uses the synthesized biotin directly after separating off the biomass or after purifying the biotin.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Varianten der Gene mit den Sequenzen SEQ ID No.l, SEQ ID No. 3, SEQ ID No . 5 und SEQ ID No. 7 um Gene handelt, die auf der von den Sequenzen nach Anspruch 1 abgeleiteten Aminosäureebene eine Homologie von 30 bis 100 % auf- weisen und eine gesteigerte Biotinsynthese ermöglichen.2. The method according to claim 1, characterized in that it is in the variants of the genes with the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 are genes which have a homology of 30 to 100% at the amino acid level derived from the sequences according to claim 1 and enable increased biotin synthesis.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Wirtsorganismus ein Organismus ausgewählt aus der Gruppe der Gattungen Escherichia, Citrobacter, Serratia, Klebsiella, Salmonella, Pseudomonas, Comamonas, Acinetobacter, Azotobacter, Chromobacterium, Bacillus, Chlostridium, Arthrobacter, Corynebacterium, Brevibacterium, Laetococeus, Laetobacillus, Streptomyces, Rhizobium, Agrobacterium, Staphylococcus, Rhodotorula, Sprorobolomyces, Yarrowia, Schizosaccharomyces oder Saccharomyces verwendet wird.3. The method according to claim 1 or 2, characterized in that an organism selected from the group of the genera Escherichia, Citrobacter, Serratia, Klebsiella, Salmonella, Pseudomonas, Comamonas, Acinetobacter, Azotobacter, Chromobacterium, Bacillus, Chlostridium, Arthrobacter, Corynebacterium as host organism , Brevibacterium, Laetococeus, Laetobacillus, Streptomyces, Rhizobium, Agrobacterium, Staphylococcus, Rhodotorula, Sprorobolomyces, Yarrowia, Schizosaccharomyces or Saccharomyces is used.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Wirtsorganismus eine regulationsdefekte Biotin- mutante verwendet wird.4. Process according to claims 1 to 3, characterized in that a regulation-defective biotin mutant is used as the host organism.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Expression mindestens einer Kopie der Gene mit den Sequenzen SEQ ID No .1, SEQ ID No . 3 , SEQ ID No. 5 und SEQ ID No. 7 nach Anspruch 1 allein oder mit einer oder mehreren Kopien mindestens eines weiteren Biotingens ausgewählt aus der Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR in einem prokaryontischen oder eukaryontischen Wirtsorganismus erfolgt.5. The method according to claims 1 to 4, characterized in that the expression of at least one copy of the genes with the sequences SEQ ID No .1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 according to claim 1 alone or with one or more copies of at least one further bioting gene selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR in a prokaryotic or eukaryotic host organism.
Zeichn. '■> . Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Expression mindestens einer Kopie der Gene mit den Sequenzen SEQ ID No.l, SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No. 7 nach Anspruch 1 allein oder mit einer oder mehreren Kopien mindestens eines weiteren Biotingens ausgewählt aus der Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR in einem prokaryontischen oder eukaryontischen Wirtsorganismus auf einem gemeinsamen oder auf getrennten Vektoren erfolgt.Sign. '■ >. Process according to claims 1 to 5, characterized in that the expression of at least one copy of the genes with the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 according to claim 1 alone or with one or more copies of at least one further bioting gene selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR in a prokaryotic or eukaryotic host organism on a common or done on separate vectors.
7. Genkonstrukt enthaltend ein S-Adenosyl-Methionin-Synthasegen mit der SEQ ID No. 1 und mindestens ein weiteres Biotin-Bio- synthesegen bioSl, bioS2 oder bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No . 7 sowie ihre funktionellen Varianten, Analoge oder Derivate, das mit einem oder mehreren Regulationssignalen zur Erhöhung der Genexpression und/oder Proteinexpression funktionell verknüpft ist und/oder dessen natürliche Regulation ausgeschaltet wurde.7. Gene construct containing an S-adenosyl-methionine synthase gene with SEQ ID No. 1 and at least one other biotin bio-synthesis gene bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 and their functional variants, analogs or derivatives, which is functionally linked to one or more regulation signals to increase gene expression and / or protein expression and / or whose natural regulation has been switched off.
8. Genkonstrukt nach Anspruch 7, dadurch gekennzeichnet, daß es in einem Vektor inseriert wurde, der für die Expression des Gens in einem prokaryontischen oder eukaryontischen Wirtsorganismus geeignet ist.8. A gene construct according to claim 7, characterized in that it has been inserted in a vector which is suitable for the expression of the gene in a prokaryotic or eukaryotic host organism.
9. Genkonstukt nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Gene mit den Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No. 7 sowie ihre funktioneilen Varianten, Analoge oder Derivate in mehreren Kopien im Genkonstrukt vorliegen.9. gene construct according to claim 7 or 8, characterized in that the genes with the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 and their functional variants, analogs or derivatives are present in multiple copies in the gene construct.
10. Genkonstrukt nach Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß das S-Adenosyl-Methionin-Synthasegen SEQ ID No. 1 und mindestens ein weiteres Biotin-Biosynthesegen bioSl, bioS2 oder bioS3 mit den Sequenzen SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No. 7 sowie ihre funktionellen Varianten, Analoge oder Derivate nach Anspruch 7 zusammen mit einer oder mehreren Kopien mindestens eines weiteren Gens ausgewählt aus der Gruppe bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR im Genkonstrukt oder Vektor vorliegt.10. Gene construct according to claims 7 to 9, characterized in that the S-adenosyl-methionine synthase gene SEQ ID No. 1 and at least one other biotin biosynthetic gene bioSl, bioS2 or bioS3 with the sequences SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 and their functional variants, analogs or derivatives according to claim 7 together with one or more copies of at least one further gene selected from the group bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY or bioR in the gene construct or Vector is present.
11. Organismen enthaltend ein Genkonstrukt gemäß den Ansprüchen 7 bis 10.11. organisms containing a gene construct according to claims 7 to 10.
12. Verwendung der Sequenzen gemäß Anspruch 1 zur Herstellung von Biotin. 12. Use of the sequences according to claim 1 for the production of biotin.
13. Verwendung des bioS3-Gens mit der Sequenz SEQ ID No. 7 seiner funktionellen Varianten, Analoge oder Derivate allein oder in Kombination mit mindestens einem weiteren Gen ausgewählt aus der Gruppe S-Adenosyl-Methionin-Synthasegen, bioSl, bioS2 , bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX, bioY oder bioR zur Herstellung von Biotin.13. Use of the bioS3 gene with the sequence SEQ ID No. 7 of its functional variants, analogs or derivatives alone or in combination with at least one further gene selected from the group S-adenosyl methionine synthase genes, bioSl, bioS2, bioA, bioB, bioF, bioC, bioD, bioH, bioP, bioW, bioX , bioY or bioR for the production of biotin.
14. Verwendung eines Genkonstrukts gemäß den Ansprüchen 7 bis 10 zur Herstellung von Biotin. 14. Use of a gene construct according to claims 7 to 10 for the production of biotin.
EP99908923A 1998-02-19 1999-02-17 Method for producing biotin Withdrawn EP1054977A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19806872A DE19806872A1 (en) 1998-02-19 1998-02-19 Production of biotin by expressing S-adenosyl-methionine synthase and second biotin synthesis gene in host cells
DE19806872 1998-02-19
PCT/EP1999/001052 WO1999042591A1 (en) 1998-02-19 1999-02-17 Method for producing biotin

Publications (1)

Publication Number Publication Date
EP1054977A1 true EP1054977A1 (en) 2000-11-29

Family

ID=7858233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99908923A Withdrawn EP1054977A1 (en) 1998-02-19 1999-02-17 Method for producing biotin

Country Status (8)

Country Link
EP (1) EP1054977A1 (en)
JP (1) JP2002504338A (en)
KR (1) KR20010041062A (en)
CN (1) CN1210403C (en)
CA (1) CA2321264A1 (en)
DE (1) DE19806872A1 (en)
IL (1) IL137310A0 (en)
WO (1) WO1999042591A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023788B1 (en) * 2008-04-18 2011-03-21 주식회사 콧데 Recombinant plasmid, biotin producing microorganism transformed by the recombinant plasmid and method for manufacturing biotin using the transformed biotin producing microorganism
AU2014233711B2 (en) * 2013-03-15 2020-05-28 Monsanto Technology Llc Compositions and Methods for the Production and Delivery of RNA
CN107099497B (en) * 2017-06-09 2020-08-11 浙江大学 Plasmid and cell for promoting biotin synthesis and promoting method thereof
CN112473700A (en) * 2020-12-07 2021-03-12 南昌航空大学 Preparation method and application of bismuth oxybromide/biochar composite visible-light-driven photocatalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224690A (en) * 1996-02-21 1997-09-02 Shiseido Co Ltd Production of biotin
DK0806479T3 (en) * 1996-05-06 2003-10-06 Hoffmann La Roche Production of biotin by fermentation
DE19731274A1 (en) * 1997-07-22 1999-01-28 Basf Ag Process for the production of biotin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9942591A1 *

Also Published As

Publication number Publication date
CA2321264A1 (en) 1999-08-26
CN1210403C (en) 2005-07-13
CN1291232A (en) 2001-04-11
JP2002504338A (en) 2002-02-12
DE19806872A1 (en) 1999-08-26
KR20010041062A (en) 2001-05-15
WO1999042591A1 (en) 1999-08-26
IL137310A0 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
EP2356211B1 (en) Improved production of riboflavin
DE60030988T2 (en) Process for producing L-amino acids by increasing cellular NADPH
RU2588657C2 (en) Microorganism for producing simultaneously l-amino acid and riboflavin and method for production of l-amino acid and riboflavin using said method
CN109913398B (en) Gene engineering bacterium for high yield of pantothenic acid without addition of β -alanine, construction and application
KR20190090657A (en) A microorganism of the genus Corynebacterium producing purine nucleotide and method for producing purine nucleotide using the same
EP1224296A1 (en) L-pantolactone-hydrolase and a method for producing d-pantolactone
KR20190026851A (en) Method for fermentative production of methionine or its hydroxy analog form by a microorganism comprising a gene encoding a sugar phosphotransferase system (PTS)
EP1082438A2 (en) Genetic method for producing riboflavin
DE69931162T2 (en) METABOLICALLY MODIFIED MICROBIAL CELL WITH CHANGED METABOLITE GENERATION
EP1924694B1 (en) Method for producing amino acids using micro-organisms
EP2358893A2 (en) Method for producing riboflavin
DE69920568T2 (en) Process for the preparation of optically active 4-halo-3-hydroxybutyric acid ester
WO1999042591A1 (en) Method for producing biotin
EP0977867B1 (en) Method for producing biotin
EP1483398A2 (en) Method for producing riboflavin
WO1999036432A2 (en) Orotidine 5'-phosphate decarboxylase-gene, gene construct containing said gene and the utilization thereof
DE60314430T2 (en) RECOMBINANT MICRO-ORGANISMS FOR THE PRODUCTION OF VITAMIN B6
US6277609B1 (en) Method to produce biotin
KR20020064788A (en) Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
DE60313340T2 (en) MICROORGANISM AND PROCESS FOR THE PRODUCTION OF VITAMIN B6
DE102007051452A1 (en) Microbial reaction system, useful for the fermentative preparation of alpha-ketoglutaric acid, comprises recombinant microorganism and reaction medium, where an inactivation of the glutamate dehydrogenase is present in the microorganism
WO2009053489A1 (en) Fermentative production of alpha-ketoglutaric acid
JPH07177895A (en) Production of biotin
DE19952501A1 (en) New nucleic acid encoding L-pantolactone hydrolase, useful for producing pure D-pantolactone, an intermediate for vitamins, from its racemate
WO2001073038A2 (en) Method for the biotechnological production of l-alaninol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FI FR GB IT LI NL

17Q First examination report despatched

Effective date: 20040624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051027