EP1044323B1 - Electromagnetic injection valve - Google Patents

Electromagnetic injection valve Download PDF

Info

Publication number
EP1044323B1
EP1044323B1 EP99953630A EP99953630A EP1044323B1 EP 1044323 B1 EP1044323 B1 EP 1044323B1 EP 99953630 A EP99953630 A EP 99953630A EP 99953630 A EP99953630 A EP 99953630A EP 1044323 B1 EP1044323 B1 EP 1044323B1
Authority
EP
European Patent Office
Prior art keywords
current
phase
injection valve
circuit
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99953630A
Other languages
German (de)
French (fr)
Other versions
EP1044323A1 (en
Inventor
Matthias Philipp
Bernd Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1044323A1 publication Critical patent/EP1044323A1/en
Application granted granted Critical
Publication of EP1044323B1 publication Critical patent/EP1044323B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2041Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for controlling the current in the free-wheeling phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2044Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using pre-magnetisation or post-magnetisation of the coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to an electromagnetic Injector with double coil, in which a first and second solenoid with the same parameters on the same Magnetic circuit are arranged, one end of which together a supply voltage and its other ends individually with a first and second switching means of an electronic Drive circuit are connected, one of which Control circuit controllable hold circuit parallel to first solenoid is switched.
  • Such an electromagnetic injection valve is off DE-OS 2 306 007 known.
  • Electromagnetic injection valves serve two or more Magnet coils on the same magnetic circuit and one electronic functionally adapted to this arrangement Control device for this, the shut-off device of the Injector to open and close by by a first excitement a shut off from his closed state opening electromagnetic Attraction, by a second excitement one that Barrier after it has been opened once in its Electromagnetic holding open state Attraction, and finally through a third arousal an opposite magnetic flux is generated to to quench the induced magnetic flux so that Shut-off device closed from its open state becomes.
  • the necessary fast electricity and Force increase in the injection valve when switching on with higher voltage from a booster capacitor with a DC-DC converter or through Recharge is achieved.
  • the DC-DC converter is with magnetic circuits with high Eddy current losses necessary, because here a recharge is included the inductance of the valve is too bad Efficiency.
  • the recharge with the Valve too long charging times of the booster capacitor to lead. The recharge current leads to excitement in the Magnetic circuit that provides security against leakage and unwanted opening of the valve is reduced.
  • 1 is an equivalent circuit diagram of an electromagnetic injection valve with a double coil.
  • the magnetic circuit of the injection valve 1 consists of two magnet coils SP1 and SP2 wound in opposite directions.
  • Both solenoids SP1, SP2 have the same parameters, ie number of turns, inductance L and winding resistance R cu , and their force effect is canceled out due to the opposite winding direction at the same current ISP1, ISP2.
  • a first switching means S1 which is symbolically represented as a simple controllable switch, is in series with the first magnet coil SP1, is assigned to a current-controlled switching output stage 2 and is opened and closed by a control signal A1 / 2 thereof.
  • a current measuring element which in FIG. 1 is a resistor R sens in series with the first switching means S1, the voltage dropping across this resistor R sens being proportional to the current ISP1 flowing through it in the circuit of the first magnet coil SP1 is.
  • a first extinguishing means for example in the form of a Zener diode ZD1 with the Zener voltage U ZD1 , is connected in parallel with the first switching means S1 and the current measuring element R sens .
  • the first extinguishing agent ZD1 is used for quickly switching off the current ISP1 through the first magnet coil SP1, as will be explained in more detail below.
  • a holding circuit formed by a control signal 1/1 that can be opened and closed by the current-controlled switching output stage 2 and a diode and a diode is connected in parallel to the first solenoid coil SP1, which serves to hold the open state of the injection valve when the first switching means S1 is open, as explained in more detail below.
  • A2 Switching means S2 which is a second extinguishing agent in the form of a Zener diode ZD2 is connected in parallel.
  • the second Switching means S2 is of an unregulated simple Switching stage 3 actuated.
  • the parallel to the second Switching means S2, serving as second extinguishing means, Zener diode ZD2 is used to quickly switch off the current ISP2 through the second solenoid SP2 as below is explained.
  • the one below Description is in the order of phase 1 to Phase 4
  • both switching means S1, S2 are switched on; A2 and A1 / 2 are ON ( Figures 2A and B).
  • the currents ISP1, ISP2 rise relatively slowly (FIG. 2E).
  • Both coils SP1, SP2, that is, both switching means S1, S2 must therefore relatively early before the actual opening of valve 1 can be switched on.
  • the current in this phase can be controlled by a suitable choice of the closing time before phase 2 (opening time tl).
  • An alternative possibility is the current regulation in both coils SP1, SP2.
  • I 0 -OFF U ZD2 / Rcu
  • Tau L / Rcu.
  • U ZD2 of the Zener diode ZD2 the current gradient is significantly higher than when switching on.
  • the current ISP1 through the magnet coil SP1 remains switched on at the starting current level I 0 -ON. Alternatively, this can also be carried out by current regulation (cf. FIG. 2E).
  • the residual current Id (FIG. 2D) is lowered to the holding current level at the magnet coil SP1 in the holding phase with the current-controlled switching output stage 2, which contains the current regulator 4, and is regulated by the current control between Id-Hmax and Id-Hmin.
  • Switching off S1 with the control signal A1 / 2 takes place with current quenching by the first Zener diode ZD1. It also applies here that a correspondingly high Zener voltage U ZD1 accelerates the quenching and thus the switching off of the current ISP1.
  • the holding circuit ie the switching means S1 / 1
  • S1 is opened and closed intermittently (FIG. 2 ⁇ ).
  • the holding current ISP1-H is regulated in phase 3 between ISP1-Hmax and ISP1-Hmin.
  • FIG. 2 also shows in phases 2, 3 and 4 with the Measures according to the invention achievable high negative Current gradients through the entered time constants Dew are symbolized.
  • the actual switch-on process has a canceling effect of the electromagnetic injection valve, i.e. its opening in phase 2 in a shutdown in one of the two Magnetic coils converted.
  • the rapid power drop will determined by the dimensioning of the quenching voltage. Fast rise times of the force are without it Measures increasing supply voltage can be implemented.
  • the control of the electromagnetic injection valve is with conventional switching amplifier or, as in the above preferred embodiment, with current-controlled Switching stage can be implemented. By reversing the Residual current Id when switching off in phase 4 is also possible to shorten the closing process.
  • a major advantage of the invention thus lies in the Simplification of the final stage.
  • the booster capacitor and the DC-DC converter in the control unit omitted. This makes the power amplifier easier to use Integrate control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an electromagnetic injection valve (1) comprising two counterwound magnet coils (SP1, SP2) which have identical characteristic quantities and which are placed on the same magnetic circuit so that the force effects of the magnet coils (SP1, SP2) are nullified when they are flown through by the same excitation current. By virtue of the double coil (SP1, SP2) having a canceling effect, the actual energizing process of the valve (1), i.e. the opening of the same, is transformed in one of both coils in a deenergizing process. The rapid current decay is now determined by dimensioning the extinction voltage (UZD2). As a result, it is possible to obtain rapid force build-up times without increasing the supply voltage (Ubatt). The valve can be controlled by using a conventional switching output stage or by using a current-controlled switching output stage. It is also possible to shorten the closing process by reversing the differential current (Id) during deenergizing.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein elektromagnetisches Einspritzventil mit Doppelspule, bei dem eine erste und zweite Magnetspule mit gleichen Kenngrößen auf dem selben Magnetkreis angeordnet sind, deren eine Enden gemeinsam mit einer Speisespannung und deren andere Enden einzeln mit einem ersten und zweiten Schaltmittel einer elektronischen Ansteuerschaltung verbunden sind, wobei eine von der Ansteuerschaltung ansteuerbare Halteschaltung parallel zur ersten Magnetspule geschaltet ist.The invention relates to an electromagnetic Injector with double coil, in which a first and second solenoid with the same parameters on the same Magnetic circuit are arranged, one end of which together a supply voltage and its other ends individually with a first and second switching means of an electronic Drive circuit are connected, one of which Control circuit controllable hold circuit parallel to first solenoid is switched.

Ein derartiges elektromagnetisches Einspritzventil ist aus der DE-OS 2 306 007 bekannt. Bei dem bekannten elektromagnetischen Einspritzventil dienen zwei oder mehr Magnetspulen auf dem selben Magnetkreis und eine funktionell an diese Anordnung angepaßte elektronische Ansteuervorrichtung dazu, das Absperrorgan des Einspritzventils zu öffnen und zu schließen, indem durch eine erste Erregung eine das Absperrorgan aus seinem geschlossenen Zustand öffnende elektromagnetische Anziehungskraft, durch eine zweite Erregung eine das Absperrorgan, nachdem es einmal geöffnet wurde, in seinem geöffneten Zustand haltende elektromagnetische Anziehungskraft, und schließlich durch eine dritte Erregung ein entgegengesetzter magnetischer Fluß erzeugt wird, um den induzierten magnetischen Fluß zu löschen, damit das Absperrorgan aus seinem geöffneten Zustand geschlossen wird.Such an electromagnetic injection valve is off DE-OS 2 306 007 known. With the known Electromagnetic injection valves serve two or more Magnet coils on the same magnetic circuit and one electronic functionally adapted to this arrangement Control device for this, the shut-off device of the Injector to open and close by by a first excitement a shut off from his closed state opening electromagnetic Attraction, by a second excitement one that Barrier after it has been opened once in its Electromagnetic holding open state Attraction, and finally through a third arousal an opposite magnetic flux is generated to to quench the induced magnetic flux so that Shut-off device closed from its open state becomes.

Allgemein ist bei einem elektromagnetischen Einspritzventil der Stromanstieg und damit auch der Kraftanstieg im Anker im wesentlichen durch die Induktivität und den Widerstand der Ventilspule und die Versorgungsspannung Ubatt der Spule bestimmt. Die Induktivität ergibt sich durch die Windungszahl der Spule und die Bauform des Magnetkreises. Im Kraftfahrzeug ist die Versorgungsspannung auf 12 Volt begrenzt. Heutige Anforderungen an die Einschaltzeit eines im Kraftfahrzeug eingesetzten elektromagnetischen Einspritzventils führten bei einfacher Ventilspule zu sehr hohen Strömen, die mit bisherigen Schalttransistoren und den vorhandenen Leitungswiderständen nicht realisiert werden können.General is with an electromagnetic injection valve the current rise and thus the increase in force in the anchor essentially by inductance and resistance the valve coil and the supply voltage Ubatt of the coil certainly. The inductance results from the Number of turns of the coil and the design of the magnetic circuit. In the motor vehicle, the supply voltage is at 12 volts limited. Today's requirements for the on time of a electromagnetic used in motor vehicles Injector led too much with a simple valve coil high currents with previous switching transistors and the existing line resistances not realized can be.

Bis heute wird der notwendige schnelle Strom- und Kraftanstieg im Einspritzventil beim Einschalten mit höherer Spannung aus einem Boosterkondensator, der mit einem Gleichspannungs-Gleichspannungs-Umrichter oder durch Recharge aufgeladen wird, erzielt. Der Gleichspannungs-Gleichspannungs-Umrichter ist bei Magnetkreisen mit hohen Wirbelstromverlusten notwendig, da hier ein Recharge mit der Induktivität des Ventils einen zu schlechten Wirkungsgrad hat. Außerdem würde der Recharge mit dem Ventil zu zu langen Ladezeiten des Boosterkondensators führen. Der Rechargestrom führt zu einer Erregung im Magnetkreis, der die Sicherheit gegen Leckage und ungewolltes Öffnen des Ventils verringert. To date, the necessary fast electricity and Force increase in the injection valve when switching on with higher voltage from a booster capacitor with a DC-DC converter or through Recharge is achieved. The DC-DC converter is with magnetic circuits with high Eddy current losses necessary, because here a recharge is included the inductance of the valve is too bad Efficiency. In addition, the recharge with the Valve too long charging times of the booster capacitor to lead. The recharge current leads to excitement in the Magnetic circuit that provides security against leakage and unwanted opening of the valve is reduced.

Aufgaben und Vorteile der ErfindungObjects and advantages of the invention

Somit ist es Aufgabe dieser Erfindung, ein zuverlässig arbeitendes elektromagnetisch betätigtes Einspritzventil mit möglichst kurzen Ein- und Ausschaltzeiten und geringem Schaltungsaufwand zu erreichen.It is therefore an object of this invention to be a reliable working electromagnetically operated injection valve with the shortest possible on and off times and low Achieve circuit effort.

Die obige Aufgabe wird bei einem gattungsgemäßen elektromagnetischen Einspritzventil dadurch gelöst, daß die beiden Magnetspulen gegenläufig gewickelt sind, so daß sich ihre Kraftwirkungen bei gleichem Erregungsstrom aufheben, und daß die Ansteuerschaltung die Schaltmittel während eines kompletten Öffnungs-Halte-Schließzyklus des Ventiles so ansteuert, daß

  • in einer ersten Phase ein anfänglicher Ladevorgang bei geschlossenem Ventil stattfindet, wobei beide Schaltmittel bei inaktiver Halteschaltung geschlossen sind und ein relativ langsamer Anstieg des durch die beiden Magnetspulen fließenden Stroms stattfindet,
  • in einer zweiten Phase, die eine Öffnungsphase des Ventils ist, der Strom durch die zweite Magnetspule durch Öffnung des zweiten Schaltmittels schnell abgeschaltet wird, während das erste Schaltmittel geschlossen und die Halteschaltung inaktiv bleibt,
  • während einer dritten Phase, einer Haltephase, die Halteschaltung aktiviert und damit der Strom durch die erste Magnetspule auf eine Haltestromstärke abgesenkt wird, und
  • in einer vierten Phase, die eine Schließphase ist, zum Schließen des Ventils wenigstens die Halteschaltung inaktiviert und das erste Schaltmittel geöffnet wird.
The above object is achieved in a generic electromagnetic injection valve in that the two solenoids are wound in opposite directions, so that their force effects cancel out with the same excitation current, and in that the control circuit controls the switching means during a complete open-hold-close cycle of the valve so that
  • in a first phase, an initial charging process takes place with the valve closed, both switching means being closed when the holding circuit is inactive and the current flowing through the two solenoid coils increasing relatively slowly,
  • in a second phase, which is an opening phase of the valve, the current through the second magnet coil is quickly switched off by opening the second switching means, while the first switching means is closed and the holding circuit remains inactive,
  • during a third phase, a hold phase, the hold circuit is activated and thus the current through the first magnet coil is reduced to a hold current, and
  • in a fourth phase, which is a closing phase, at least the holding circuit is deactivated to close the valve and the first switching means is opened.

Durch die Doppelspule mit aufhebender Wirkung wird der eigentliche Einschaltvorgang des Ventils, d.h. das Öffnen des Ventils in der zweiten Phase in einen Abschaltvorgang in einer der beiden Spulen umgewandelt. Der schnelle Stromabfall wird jetzt durch die Dimensionierung der Löschspannung bestimmt. Schnelle Anstiegszeiten der Kraft sind damit ohne eine Erhöhung der Versorgungsspannung realisierbar. Die Ansteuerung des Einspritzventils ist mit herkömmlicher Schaltendstufe oder durch eine stromgeregelte Schaltendstufe realisierbar. Durch die Umkehrung des Differenzstroms beim Ausschalten ist es außerdem möglich, den Schließvorgang zu verkürzen. Ein wesentlicher Vorteil der Erfindung liegt somit in der Vereinfachung und Verbilligung der Endstufe. Der Boosterkondensator und der Gleichspannungs-Gleichspannungs-Umrichter können im Steuergerät entfallen. Dadurch ist die Endstufe auch einfacher im Steuergerät integrierbar.Due to the double coil with canceling effect Actual switching on of the valve, i.e. opening in the second phase in a shutdown process converted in one of the two coils. The fast one Power drop is now due to the sizing Extinguishing voltage determined. Rapid increases in strength are therefore without an increase in the supply voltage realizable. The control of the injection valve is with conventional switching output stage or by a current-controlled Switching stage can be implemented. By reversing the Residual current when switching off, it is also possible to shorten the closing process. A major advantage The invention thus lies in the simplification and Cheaper end stage. The booster capacitor and the DC-DC converters can be used in the Control unit is omitted. This makes the power amp too Easier to integrate in the control unit.

Weitere Merkmale und Vorteile der Erfindung werden in den abhängigen Ansprüchen sowie in der nachfolgenden Beschreibung einer bevorzugten Ausführungsform eines erfindungsgemäßen elektromagnetischen Einspritzventils mit Doppelspule deutlich, wenn diese Beschreibung unter Bezugnahme auf die beiliegende Zeichnung gelesen wird.Further features and advantages of the invention are described in the dependent claims as well as in the following Description of a preferred embodiment of a electromagnetic injection valve according to the invention with Double coil clearly if this description under Read reference to the accompanying drawing.

Zeichnungdrawing

Figur 1Figure 1
zeigt schematisch und in Form eines Blockschaltbilds eine bevorzugte Schaltung eines elektromagnetischen Einspritzventils mit Doppelspule in Verbindung mit Endstufen der Ansteuerschaltung; undshows schematically and in the form of a Block diagram of a preferred circuit of a electromagnetic injection valve with Double coil in connection with power amplifiers of the driving circuit; and
Figur 2A bis 2EFigure 2A to 2E
zeigt Signalverläufe von in der Schaltung von Figur 1 auftretenden Signalen in Abhängigkeit von der Zeit, zur Erläuterung der Funktionsweise der in Figur 1 dargestellten Schaltung.shows waveforms of in the circuit of Figure 1 occurring signals depending on the time to explain how the circuit shown in Figure 1.
Ausführungsbeispielembodiment

In der in Figur 1 dargestellten Schaltung ist mit 1 ein Ersatzschaltbild eines elektromagnetischen Einspritzventils mit Doppelspule dargestellt. Darin besteht der Magnetkreis des Einspritzventils 1 aus zwei gegenläufig gewickelten Magnetspulen SP1 und SP2. Beide Magnetspulen SP1, SP2 haben die selben Kenngrößen, d.h. Windungszahl, Induktivität L und Wicklungswiderstand Rcu, und ihre Kraftwirkung hebt sich aufgrund der gegenläufigen Wicklungsrichtung bei gleichem Strom ISP1, ISP2 auf. Beide Magnetspulen SP1 und SP2 sind mit ihrem einen Ende gemeinsam an eine Versorgungsspannung z.B. im Kraftfahrzeug Ubatt = 12 Volt gelegt. Ein erstes Schaltmittel S1, das symbolisch als einfacher steuerbarer Schalter dargestellt ist, liegt in Reihe zur ersten Magnetspule SP1, ist einer stromgeregelten Schaltendstufe 2 zugeordnet und wird von einem Ansteuersignal A1/2 derselben geöffnet und geschlossen. Im Stromkreis der ersten Magnetspule SP1 liegt ferner ein Strommessglied, das in Figur 1 ein in Reihe zum ersten Schaltmittel S1 liegender Widerstand Rsens ist, wobei die an diesem Widerstand Rsens abfallende Spannung proportinal zu dem durch ihn fließenden Strom ISP1 des Stromkreises der ersten Magnetspule SP1 ist.In the circuit shown in FIG. 1, 1 is an equivalent circuit diagram of an electromagnetic injection valve with a double coil. The magnetic circuit of the injection valve 1 consists of two magnet coils SP1 and SP2 wound in opposite directions. Both solenoids SP1, SP2 have the same parameters, ie number of turns, inductance L and winding resistance R cu , and their force effect is canceled out due to the opposite winding direction at the same current ISP1, ISP2. Both solenoids SP1 and SP2 are connected at one end to a supply voltage, for example, in the motor vehicle Ubatt = 12 volts. A first switching means S1, which is symbolically represented as a simple controllable switch, is in series with the first magnet coil SP1, is assigned to a current-controlled switching output stage 2 and is opened and closed by a control signal A1 / 2 thereof. In the circuit of the first magnet coil SP1 there is also a current measuring element, which in FIG. 1 is a resistor R sens in series with the first switching means S1, the voltage dropping across this resistor R sens being proportional to the current ISP1 flowing through it in the circuit of the first magnet coil SP1 is.

Parallel zum ersten Schaltmittel S1 und zum Strommessglied Rsens ist ein erstes Löschmittel, z.B. in Form einer Zenerdiode ZD1 mit der Zenerspannung UZD1, geschaltet. Alternativ kann eine RC-Löschung vorgesehen sein. Das erste Löschmittel ZD1 dient zum schnellen Abschalten des Stroms ISP1 durch die erste Magnetspule SP1, wie nachstehend noch näher erläutert wird. Ferner liegt eine aus einem durch ein Ansteuersignal 1/1 von der stromgeregelten Schaltendstufe 2 öffen- und schließbares Schaltmittel S/1 und einer Diode gebildete Halteschaltung parallel zur ersten Magnetspule SP1, die zum Halten des geöffneten Zustands des Einspritzventils bei geöffnetem ersten Schaltmittel S1 dient, wie nachstehend näher erläutert wird.A first extinguishing means, for example in the form of a Zener diode ZD1 with the Zener voltage U ZD1 , is connected in parallel with the first switching means S1 and the current measuring element R sens . Alternatively, an RC deletion can be provided. The first extinguishing agent ZD1 is used for quickly switching off the current ISP1 through the first magnet coil SP1, as will be explained in more detail below. Furthermore, a holding circuit formed by a control signal 1/1 that can be opened and closed by the current-controlled switching output stage 2 and a diode and a diode is connected in parallel to the first solenoid coil SP1, which serves to hold the open state of the injection valve when the first switching means S1 is open, as explained in more detail below.

Außerdem liegt in Reihe zur zweiten Magnetspule SP2 ein zweites durch ein Ansteuersignal A2 öffen- und schließbares Schaltmittel S2, dem ein zweites Löschmittel in Form einer Zenerdiode ZD2 parallel geschaltet ist. Das zweite Schaltmittel S2 wird von einer ungeregelten einfachen Schaltendstufe 3 betätigt. Die parallel zum zweiten Schaltmittel S2 liegende, als zweites Löschmittel dienende, Zenerdiode ZD2 dient zum schnellen Abschalten des Stroms ISP2 durch die zweite Magnetspule SP2, wie nachstehend erläutert wird.There is also a series of SP2 solenoids second can be opened and closed by a control signal A2 Switching means S2, which is a second extinguishing agent in the form of a Zener diode ZD2 is connected in parallel. The second Switching means S2 is of an unregulated simple Switching stage 3 actuated. The parallel to the second Switching means S2, serving as second extinguishing means, Zener diode ZD2 is used to quickly switch off the current ISP2 through the second solenoid SP2 as below is explained.

Alternativ zu der in Figur 1 gezeigten bevorzugten Schaltungsausführung ist es auch möglich in anderen Ausführungen mit zwei einfachen Schaltendstufen ohne Stromregelung das Doppelspuleneinspritzventil 1 zu betreiben. Die nachstehend beschriebene Stromabsenkung der Haltephase ist dann allerdings nicht möglich. As an alternative to the preferred one shown in FIG Circuit design is also possible in others Versions with two simple switching amplifiers without Current control the double coil injector 1 too operate. The current reduction described below However, the holding phase is not possible.

Nachstehend werden Funktion und Wirkungsweise der beschriebenen und in Figur 1 dargestellten erfindungsgemäßen Schaltung des elektromagnetischen Doppelspuleneinspritzventils anhand des in Figur 2 dargestellten Signal-Zeitdiagramms beschrieben. In Figur 2A-2E sind die zeitlichen Abläufe jeweils des Ansteuersignals A2 für das zweite Schaltmittel (Figur 2A), des Ansteuersignals A1/2 für das erste Schaltmittel S1 (Figur 2β), des Ansteuersignals A1/1 für die Halteschaltung (Figur 2C), des Differenzstroms Id = ISP1 - ISP2 der Ströme durch die erste und zweite Magnetspule SP1 und SP2 (Figur 2D) sowie der Einzelströme ISP1, ISP2 durch die erste und zweite Magnetspule SP1 und SP2 über einen gesamten in vier Phasen, Phase 1, Phase 2, Phase 3, Phase 4 unterteilten Öffnungs-Halte-Schließzyklus von einem Zeitpunkt t0 bis zu einem Zeitpunkt t6 dargestellt. Die nachstehende Beschreibung erfolgt in der Reihenfolge der Phase 1 bis zur Phase 4.The function and mode of operation of the described and shown in Figure 1 circuit of the electromagnetic Double coil injector based on the in Figure 2 described signal-time diagram described. In figure 2A-2E are the timings of each Control signal A2 for the second switching means (Figure 2A), of the control signal A1 / 2 for the first switching means S1 (Figure 2β), the drive signal A1 / 1 for the hold circuit (Figure 2C), the differential current Id = ISP1 - ISP2 of the currents through the first and second solenoids SP1 and SP2 (FIG 2D) and the individual streams ISP1, ISP2 through the first and second solenoid coil SP1 and SP2 over a total in four Phases, phase 1, phase 2, phase 3, phase 4 divided Open-hold-close cycle from a time t0 to shown at a time t6. The one below Description is in the order of phase 1 to Phase 4

Ladevorgang, Phase 1; t0-t1:Charging, phase 1; t0-t1:

Bei t0 werden oder sind beide Schaltmittel S1, S2 eingeschaltet; A2 und A1/2 sind EIN (Figur 2A und B). Der Anstieg der Ströme ISP1, ISP2 erfolgt relativ langsam (Figur 2E). Der maximale Strom I0-EIN = Ubatt/Rcu ist bei Ubatt = 12 Volt kleiner als I0-AUS beim Abschalten in Phase 2. Beide Spulen SP1, SP2, d.h. beide Schaltmittel S1, S2 müssen daher relativ früh vor dem eigentlichen Öffnen des Ventils 1 eingeschaltet werden. Der Strom in dieser Phase kann durch geeignete Wahl der Schließzeit vor Phase 2 (Öffnungszeit tl) gesteuert werden. Eine alternative Möglichkeit stellt die Stromregelung in beiden Spulen SP1, SP2 dar. Die Steigung des Stromanstiegs zum Zeitpunkt t0 gibt die Zeitkonstante Tau = L/Rcu an. Aufgrund der gleichen Kenngrößen und der gegensinnigen Wicklung der beiden Magnetspulen SP1, SP2 ist der Differenzstrom Id = ISP1 - ISP2 = 0 (Figur 2D).At t0 both switching means S1, S2 are switched on; A2 and A1 / 2 are ON (Figures 2A and B). The currents ISP1, ISP2 rise relatively slowly (FIG. 2E). The maximum current I 0 -A = Ubatt / cu R is at Ubatt = 12 volts less than I 0 -AUS when switching off in phase 2. Both coils SP1, SP2, that is, both switching means S1, S2 must therefore relatively early before the actual opening of valve 1 can be switched on. The current in this phase can be controlled by a suitable choice of the closing time before phase 2 (opening time tl). An alternative possibility is the current regulation in both coils SP1, SP2. The increase in the current rise at time t0 indicates the time constant Tau = L / R cu . Due to the same parameters and the opposite winding of the two solenoids SP1, SP2, the differential current Id = ISP1 - ISP2 = 0 (Figure 2D).

Öffnen des Ventils, Phase 2; t1-t3:Opening the valve, phase 2; t1-t3:

Zu Beginn zum Zeitpunkt t1 wird der Strom Isp2 durch Öffnen von S2 durch A2 = AUS mit der einfachen Schaltendstufe 3 schnell mit Löschung durch die zweite Zenerdiode ZD2 abgeschaltet (Figur 2A). Der Stromgradient beim Abschalten zum Zeitpunkt t1 wird durch I0-AUS = UZD2/Rcu und Tau = L/Rcu bestimmt. Bei entsprechend hoher Löschspannung UZD2 der Zenerdiode ZD2 ist dieser Stromgradient wesentlich höher als beim Einschalten. Der Strom ISP1 durch die Magnetspule SP1 bleibt auf Anzugsstromniveau I0-EIN eingeschaltet. Dies kann alternativ auch durch eine Stromregelung durchgeführt werden (vgl. Figur 2E). Der Kraftanstieg im Ventil ist proportional dem Quadrat des Differenzstrom Id = ISP1 - ISP2 und daher sehr schnell (kurze Einschaltzeit).At the beginning at time t1, the current Isp2 is quickly switched off by opening S2 through A2 = OFF with the simple switching output stage 3 with quenching by the second Zener diode ZD2 (FIG. 2A). The current gradient when switching off at time t1 is determined by I 0 -OFF = U ZD2 / Rcu and Tau = L / Rcu. With a correspondingly high quenching voltage U ZD2 of the Zener diode ZD2, this current gradient is significantly higher than when switching on. The current ISP1 through the magnet coil SP1 remains switched on at the starting current level I 0 -ON. Alternatively, this can also be carried out by current regulation (cf. FIG. 2E). The increase in force in the valve is proportional to the square of the differential current Id = ISP1 - ISP2 and therefore very fast (short switch-on time).

Haltephase 3 bei geöffnetem Ventil: t3-t5:Hold phase 3 with valve open: t3-t5:

Der Differenzstrom Id (Figur 2D) wird in der Haltephase mit der stromgeregelten Schaltendstufe 2, die den Stromregler 4 enthält, an der Magnetspule SP1 auf das Haltestromniveau abgesenkt und durch die Stromregelung zwischen Id-Hmax und Id-Hmin geregelt. Das Abschalten von S1 mit dem Ansteuersignal A1/2 erfolgt mit Stromlöschung durch die erste Zenerdiode ZD1. Auch hier gilt, daß eine entsprechend hohe Zenerspannung UZD1 das Löschen und damit den Abschaltvorgang des Stroms ISP1 beschleunigt. Zum Halten des Haltestromniveaus wird die Halteschaltung, d.h. das Schaltmittel S1/1 durch das Ansteuersignal A1/1 geschlossen (Figur 2C) und S1 intermittierend geöffnet und geschlossen (Figur 2β). Der Haltestrom ISP1-H wird in Phase 3 zwischen ISP1-Hmax und ISP1-Hmin geregelt.The residual current Id (FIG. 2D) is lowered to the holding current level at the magnet coil SP1 in the holding phase with the current-controlled switching output stage 2, which contains the current regulator 4, and is regulated by the current control between Id-Hmax and Id-Hmin. Switching off S1 with the control signal A1 / 2 takes place with current quenching by the first Zener diode ZD1. It also applies here that a correspondingly high Zener voltage U ZD1 accelerates the quenching and thus the switching off of the current ISP1. To hold the holding current level, the holding circuit, ie the switching means S1 / 1, is closed by the control signal A1 / 1 (FIG. 2C) and S1 is opened and closed intermittently (FIG. 2β). The holding current ISP1-H is regulated in phase 3 between ISP1-Hmax and ISP1-Hmin.

Schließen des Ventil; Phase 4, t5-t6:Closing the valve; Phase 4, t5-t6:

Zum Schließen des Ventils wird entweder nur der Strom ISP1 durch die Magnetspule SP1 abgeschaltet oder, was in Figur 2 nicht dargestellt ist, zur Unterstützung des Schließvorgangs mit noch kürzeren Ausschaltzeiten der Strom ISP1 durch die Spule SP1 bei gleichzeitigem kurzen Einschalten des Stroms ISP2 durch die Magnetspule 2 abgeschaltet. Der Differenzstrom Id und damit die Kraftwirkung werden dadurch umgekehrt.To close the valve either only the current ISP1 switched off by the magnet coil SP1 or, as shown in FIG. 2 is not shown in support of the Closing process with even shorter power off times ISP1 through the coil SP1 with simultaneous short Turning on the current ISP2 through the solenoid 2 off. The differential current Id and thus the The effect of the force is reversed.

Figur 2 zeigt außerdem in den Phasen 2, 3 und 4 die mit den erfindungsgemäßen Maßnahmen erreichbaren hohen negativen Stromgradienten, die durch die eingetragenen Zeitkonstanten Tau symbolisiert sind.Figure 2 also shows in phases 2, 3 and 4 with the Measures according to the invention achievable high negative Current gradients through the entered time constants Dew are symbolized.

Durch die erfindungsgemäß vorgesehene Doppelmagnetspule mit aufhebender Wirkung wird der eigentliche Einschaltvorgang des elektromagnetischen Einspritzventils, d.h. sein Öffnen in der Phase 2 in einen Abschaltvorgang in einer der beiden Magnetspulen umgewandelt. Der schnelle Stromabfall wird durch die Dimensionierung der Löschspannung bestimmt. Schnelle Anstiegszeiten der Kraft sind damit ohne die Versorgungsspannung hochsetzende Maßnahmen realisierbar. Die Ansteuerung des elektromagnetischen Einspritzventils ist mit herkömmlicher Schaltendstufe bzw., wie im o.b. bevorzugten Ausführungsbeispiel, mit stromgeregelter Schaltendstufe realisierbar. Durch Umkehrung des Differenzstroms Id beim Ausschalten in Phase 4 ist es außerdem möglich den Schließvorgang zu verkürzen.With the double magnetic coil provided according to the invention the actual switch-on process has a canceling effect of the electromagnetic injection valve, i.e. its opening in phase 2 in a shutdown in one of the two Magnetic coils converted. The rapid power drop will determined by the dimensioning of the quenching voltage. Fast rise times of the force are without it Measures increasing supply voltage can be implemented. The control of the electromagnetic injection valve is with conventional switching amplifier or, as in the above preferred embodiment, with current-controlled Switching stage can be implemented. By reversing the Residual current Id when switching off in phase 4 is also possible to shorten the closing process.

Ein wesentlicher Vorteil der Erfindung liegt somit in der Vereinfachung der Endstufe. Der Boosterkondensator und der Gleichspannungs-Gleichspannungsumrichter im Steuergerät entfallen. Dadurch läßt sich die Endstufe einfacher im Steuergerät integrieren.A major advantage of the invention thus lies in the Simplification of the final stage. The booster capacitor and the DC-DC converter in the control unit omitted. This makes the power amplifier easier to use Integrate control unit.

Claims (11)

  1. Electromagnetic injection valve (1) with a double coil, in which a first and second solenoid (SP1, SP2) with identical characteristic variables are arranged on the same magnetic circuit, the one ends of which are jointly connected to a feed voltage (Ubatt) and the other ends of which are individually connected to first and second setting means (S1, S2) of an electronic driving circuit (2, 3), a holding circuit (S1/1) which can be driven by the driving circuit being connected in parallel with the first solenoid (SP1), characterized in that the two solenoids (SP1, SP2) are wound in opposite directions so that their force effects cancel one another out when they have the same excitation current, and in that the driving circuit actuates the setting means (S1, S2) during a complete opening/holding/closing cycle (t0-t6) of the valve (1) in such a way that
    in a first phase (t0-t1), an initial charging process takes place with the valve closed, both the setting means (S1, S2) being closed when the holding circuit (S1/1) is inactive, and a relatively slow rise in the current (ISP1, ISP2) which flows through the two solenoids taking place,
    in a second phase (t1-t3), which is an opening phase of the valve, the current (ISP2) through the second solenoid (SP2) is switched off quickly by opening the second switching means (S2), while the first setting means (S1) remains closed and the holding circuit (S1/1) remains inactive,
    during a third phase, a holding phase (t3-t5), the holding circuit (S1/1) is activated and as a result the current (ISP1) through the first solenoid (SP1) is lowered to a holding current strength (ISP1-H), and
    in a fourth phase (t5-t6), which is a closing phase, at least the holding circuit (S1/1) is deactivated in order to close the valve, and the first switching means (S1) is opened.
  2. Injection valve according to Claim 1, characterized in that the driving circuit sets the currents flowing through the two coils (SP1, SP2) in the first phase (t0-t1), by determining the closing time of the two switching means (S1, S2).
  3. Injection valve according to Claim 1, characterized in that, in the first phase (t0-t1), the driving circuit (2, 3) sets the strength of the current flowing through the solenoids (SP1, SP2) by regulating the current flowing through both solenoids.
  4. Injection valve according to one of Claims 1-3, characterized in that first extinguishing means (ZD1) which increase the current gradient when the current through the first switching means (S1) is switched off are connected in parallel with the first switching means (S1).
  5. Injection valve according to one of Claims 1-4, characterized in that second extinguishing means (ZD2) which increase the current gradient when the current through the second switching means (S2) is switched off, and thus accelerate the opening of the valve at the start of the second phase (t1-t3), are connected in parallel with the second switching means (S2).
  6. Injection valve according to Claim 4 or 5, characterized in that the extinguishing means each have a Zener diode (ZD).
  7. Injection valve according to one of the preceding claims, characterized in that a current measuring element (Rsens) is provided in the circuit of the first solenoid (SP1), and the driving circuit (2, 3) has a current regulator (4) which is connected to the current measuring element (Rsens), at least for regulating the current (ISP1) flowing in the circuit of the first solenoid (SP1).
  8. Injection valve according to Claim 7, characterized in that the current measuring element (Rsens) is a resistor which is connected in series with the first switching means (S1).
  9. Injection valve according to Claim 7 or 8, characterized in that, in the second phase (t1-t3), the current regulator (4) of the driving circuit (2, 3) regulates the current (ISP1) flowing through the magnetic circuit of the first solenoid (SP1).
  10. Injection valve according to one of Claims 7-9, characterized in that, during the holding phase (t3-t5), the current regulator (4) of the driving circuit (2, 3) regulates the current flowing through the magnetic circuit of the first solenoid (SP1) by intermittently activating/deactivating the holding circuit (S1/1) between a minimum and maximum holding current (ISP1-H-min., ISP1-H-max.) when the first switching means (S1) is closed.
  11. Injection valve according to one of the preceding claims, characterized in that, at the start of the fourth phase (t5-t6), the driving circuit (2, 3) briefly closes the second switching means (S2) when the first switching means (S1) are opened.
EP99953630A 1998-09-02 1999-08-28 Electromagnetic injection valve Expired - Lifetime EP1044323B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839863 1998-09-02
DE19839863A DE19839863C1 (en) 1998-09-02 1998-09-02 Electromagnetic fuel injection valve for automobile internal combustion engine
PCT/DE1999/002699 WO2000014395A1 (en) 1998-09-02 1999-08-28 Electromagnetic injection valve

Publications (2)

Publication Number Publication Date
EP1044323A1 EP1044323A1 (en) 2000-10-18
EP1044323B1 true EP1044323B1 (en) 2003-10-29

Family

ID=7879469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953630A Expired - Lifetime EP1044323B1 (en) 1998-09-02 1999-08-28 Electromagnetic injection valve

Country Status (5)

Country Link
US (1) US6657846B1 (en)
EP (1) EP1044323B1 (en)
JP (1) JP2002524683A (en)
DE (2) DE19839863C1 (en)
WO (1) WO2000014395A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922485B4 (en) * 1999-05-15 2008-06-12 Robert Bosch Gmbh Method and circuit arrangement for driving a double-coil high-pressure injection solenoid valve for fuel injection
DE10005424A1 (en) * 2000-02-08 2001-08-09 Bosch Gmbh Robert Control circuit for fitting to a controllable electro-magnetic valve for a motor vehicle braking installation feeds actual control range values like deceleration, wheel slippage or vehicle speed back into preset tolerance band
US6392865B1 (en) * 2000-03-31 2002-05-21 Siemens Automotive Corporation High-speed dual-coil electromagnetic valve and method
DE10234265A1 (en) * 2001-08-16 2003-02-27 Bosch Gmbh Robert Controlling electromagnetic load, especially magnetic valve for combustion engine fuel system, involves determining switching time and/or correction value starting from current value
JP4063188B2 (en) 2003-10-07 2008-03-19 株式会社日立製作所 Fuel injection device and control method thereof
DE102005042110A1 (en) * 2005-09-05 2007-03-08 Siemens Ag Device for driving electromagnetic actuator, e.g. for combustion engine injection valve, passes reverse current through solenoid during magnetic flux decay
DE102006011805A1 (en) * 2006-03-15 2007-10-04 Zf Friedrichshafen Ag Method and device for controlling a circuit arrangement with electric actuators
US7789072B2 (en) * 2006-06-01 2010-09-07 Continental Automotive Systems Us, Inc. Fuel injection circuit with selectable peak injection currents
JP5698938B2 (en) 2010-08-31 2015-04-08 日立オートモティブシステムズ株式会社 Drive device for fuel injection device and fuel injection system
DE102011078873A1 (en) * 2011-07-08 2013-01-10 Robert Bosch Gmbh Method for driving an electromagnetic consumer
DE102011089228A1 (en) * 2011-12-20 2013-06-20 Robert Bosch Gmbh Device for controlling electrically actuated valves in various modes
JP2013194827A (en) * 2012-03-20 2013-09-30 Ckd Corp Solenoid valve
US9970380B2 (en) * 2015-12-14 2018-05-15 Delphi Technologies Ip Limited Fuel injector driver for cold start of high resistance injector
JP7110613B2 (en) * 2018-02-21 2022-08-02 株式会社デンソー load driver

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2150099A1 (en) 1970-10-07 1972-05-25 Hitachi Ltd Fuel injection system
JPS61140113A (en) 1984-12-12 1986-06-27 Koushinraido Hakuyo Suishin Plant Gijutsu Kenkyu Kumiai Apparatus for driving electromagnet
US5363270A (en) 1992-09-18 1994-11-08 General Motors Corporation Rapid response dual coil electromagnetic actuator with capacitor
US5291170A (en) 1992-10-05 1994-03-01 General Motors Corporation Electromagnetic actuator with response time calibration
JPH07189787A (en) * 1993-12-28 1995-07-28 Honda Motor Co Ltd Fuel injection valve driving control device
DE19803567A1 (en) 1998-01-30 1999-08-05 Mannesmann Rexroth Ag Hydraulic valve, in particular hydraulic directional seat valve

Also Published As

Publication number Publication date
US6657846B1 (en) 2003-12-02
DE19839863C1 (en) 1999-10-28
EP1044323A1 (en) 2000-10-18
JP2002524683A (en) 2002-08-06
DE59907542D1 (en) 2003-12-04
WO2000014395A1 (en) 2000-03-16

Similar Documents

Publication Publication Date Title
EP1044323B1 (en) Electromagnetic injection valve
DE19907505B4 (en) Method and apparatus for controlling a current rise time during multiple fuel injection events
DE3503289A1 (en) DRIVER CIRCUIT
EP0319669B1 (en) Current regulator
DE10020896A1 (en) Position detection method for armature of electromagnetic setting device e..g. for gas changing valve of IC engine
EP0091648A1 (en) Energizing circuit for magnetic valves
DE102006062153A1 (en) Solenoid valve control
DE2257213B2 (en) 3- or 4-way solenoid valve
DE1239732B (en) Magnetization process for a magnetic storage element
DE19650437C2 (en) Grains device for electromagnets
DE3910810A1 (en) Circuit arrangement for a solenoid (electromagnetic) valve
DE4104538A1 (en) ACTUATING DEVICE FOR CLUTCHES
DE19735560B4 (en) Method and device for controlling a consumer
EP0693756A1 (en) Method and device for driving an electromagnetic consumer
DE2913576A1 (en) CONTROL CIRCUIT FOR INDUCTIVE CONSUMERS
EP0246357A1 (en) System for controlling an electrical injector valve
DE19836769C1 (en) Electromagnetic actuator armature position determining method e.g. for IC engine gas-exchange valve
DE3438215C2 (en) Arrangements for the control of several solenoid valves
DE4002883C2 (en)
DE19646052A1 (en) Method and device for controlling a consumer
DE19521676A1 (en) Armature pick=up control e.g. for operating magnet or solenoid of IC engine gas exchange valves
DE3909141A1 (en) Circuit arrangement for operating an electromagnetic load
EP1276120A2 (en) Device to control an electromagnet
DE2922777C2 (en) Circuit arrangement for operating a double coil magnet
EP0245540A2 (en) Method for actuating an injection valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20000918

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907542

Country of ref document: DE

Date of ref document: 20031204

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100825

Year of fee payment: 12

Ref country code: FR

Payment date: 20100901

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101025

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110828

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907542

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110828

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301