EP1041179B1 - Elément optique monocristallin avec une surface transparente inclinée par rapport à un plan de clivage - Google Patents

Elément optique monocristallin avec une surface transparente inclinée par rapport à un plan de clivage Download PDF

Info

Publication number
EP1041179B1
EP1041179B1 EP00106847A EP00106847A EP1041179B1 EP 1041179 B1 EP1041179 B1 EP 1041179B1 EP 00106847 A EP00106847 A EP 00106847A EP 00106847 A EP00106847 A EP 00106847A EP 1041179 B1 EP1041179 B1 EP 1041179B1
Authority
EP
European Patent Office
Prior art keywords
axis
light
single crystal
transmitting end
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00106847A
Other languages
German (de)
English (en)
Other versions
EP1041179A1 (fr
Inventor
Katoh c/o Fuji Photo Film Co. Ltd. Takayuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of EP1041179A1 publication Critical patent/EP1041179A1/fr
Application granted granted Critical
Publication of EP1041179B1 publication Critical patent/EP1041179B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/901Levitation, reduced gravity, microgravity, space
    • Y10S117/902Specified orientation, shape, crystallography, or size of seed or substrate

Definitions

  • the present invention relates to an optical element comprising a single crystal which has a light-transmitting end surface, and a process for manufacturing such an optical element.
  • the present invention also relates to a solid-state laser device comprising an optical element as a solid-state laser medium.
  • solid-state laser devices using a single crystal as a solid-state laser medium are known.
  • the single crystal is made of R' :RVO 4 or RVO 4 , where R' represents one or a combination of Nd, Er, Tm, Eu, Pr, Ho, Ce, Yb, Dy, Tb or Cr, and R represents Y or Gd.
  • the solid-state laser mediums used in the conventional solid-state laser devices are produced by cutting out a single crystal having a flat light-transmitting end surface, and polishing the cut-out light-transmitting end surface into a mirror finished surface.
  • the above single crystal is cut out with a plane perpendicular to an a-axis or a c-axis (in other words, parallel with an a-axis or a c-axis) for use as a solid-state laser medium.
  • a single crystal is cut out with a plane perpendicular to an a-axis, and the cut-out surface is polished so that the single crystal is used as a solid-state laser medium, where the solid-state laser devices are configured so that the direction of the linear polarization of the excitation light coincides with the direction of the c-axis of the solid-state laser medium.
  • the light-transmitting end surfaces of the conventional optical elements are prone to damage. Therefore, the yield rates of the conventional solid-state laser devices using the conventional optical elements as a solid-state laser medium are low, and the costs are high.
  • DE 195 32 440 discloses an optical element comprising a single crystal having light-transmitting end surfaces, which are cut at different angles to the plane perpendicular to the a-axis, one of the end faces is oriented parallel to the c-axis.
  • the publication does not disclose any specific value of the inclination angle.
  • US-A-5 667 583 discloses a method of producing single crystals of a rare earth silicate used for scintillators in which grown single crystals are cut and polished at an angle of at least 5 degrees to a natural cleavage plane.
  • An object of the present invention is to provide an optical element which includes a single crystal having a light-transmitting end surface, which can be manufactured at a high yield rate and a low cost.
  • Another object of the present invention is to provide a method for manufacturing an optical element which includes a single crystal having a light-transmitting end surface, whereby the optical element can be manufactured at a high yield rate and a low cost.
  • a further object of the present invention is to provide a solid-state laser device which comprises an optical element including a single crystal with a light-transmitting end surface, and can be manufactured at a high yield rate and a low cost.
  • an optical element which comprises a single crystal having a flat light-transmitting end surface.
  • the light-transmitting end surface is inclined at at least 0.5 degrees and at most 5 degrees relative to a plane perpendicular to one of an a-axis and a c-axis of the single crystal.
  • a solid-state laser device having an optical element as a solid-state laser medium, wherein the optical element comprises a single crystal having a flat light-transmitting end surface, and the light-transmitting end surface is inclined at at least 0.5 degrees and at most 5 degrees relative to a plane perpendicular to one of an a-axis and a c-axis of the single crystal.
  • a process for producing an optical element which includes a single crystal having a light-transmitting end surface comprising the steps of: (a) cutting out the single crystal so that the single crystal has a surface which is inclined at at least 0.5 degrees and at most 5 degrees relative to a plane perpendicular to one of an a-axis and a c-axis of the single crystal; and (b) polishing the surface into the light-transmitting end surface.
  • the single crystal has a tetragonal lattice structure.
  • the present inventor found the cause of the aforementioned problem that the light-transmitting end surface of the conventional optical element is prone to damage. That is, edges of the single crystals of the conventional optical elements are prone to break when the single crystals are cut out with the planes perpendicular to the a-axes and the c-axes, since single crystals are prone to cleave through such planes. Therefore, the edges of the single crystals of the conventional optical elements are prone to break during an operation of polishing cut-out surfaces of the single crystals, and it is probable that the light-transmitting end surfaces are rubbed with fragments of the single crystals. Thus, the light-transmitting end surface of the conventional optical element is prone to damage.
  • the light-transmitting end surface is inclined at at least 0.5 degrees relative to the plane perpendicular to one of the a-axis and the c-axis of the single crystal. That is, the light-transmitting end surface is different from the cleavage planes. Therefore, the light-transmitting end surface of the optical element according to the present invention is not prone to break, and it is less probable that the light-transmitting end surfaces are rubbed with fragments of the single crystals during the polishing operation. Thus, according to the present invention, it is possible to prevent the damage of the light-transmitting end surface by the fragments of the crystals produced during the polishing operation, and achieve a high yield rate in production of the optical element.
  • the solid-state laser device using such an optical element as a solid-state laser medium can be manufactured at a low cost.
  • the effect of increasing the yield rate becomes manifest when the light-transmitting end surface is inclined at at least 0.5 degrees and at most 5 degrees relative to the plane perpendicular to one of the a-axis and the c-axis of the single crystal.
  • the yield rate increases with increase in the inclination angle above 0.5 degrees, and the rate of increase in the yield rate becomes moderate when the inclination angle exceeds 5 degrees.
  • the above optical element when used as a solid-state laser medium in some solid-state laser devices, it is not preferable to increase the inclination angle of the light-transmitting end surface in respect of luminous efficiency and the like. Since the yield rate reaches its ceiling when the inclination angle exceeds 20 degrees, it is preferable that the inclination angle of the light-transmitting end surface relative to the plane perpendicular to the one of the a-axis and the c-axis of the single crystal is at most 20 degrees. It is further preferable that the inclination angle of the light-transmitting end surface relative to the plane perpendicular to the one of the a-axis and the c-axis of the single crystal is at most 5 degrees.
  • the advantages of the great cross-section of stimulated emission and the great absorption coefficient are obtained, as in the case of the usual solid-state lasers of the c-axis end surface excitation type, and are not affected by the increase in the inclination angle of the light-transmitting end surface relative to the plane perpendicular to the a-axis of the single crystal.
  • the luminous efficiency and the like are not reduced by the increase in the inclination angle of the light-transmitting end surface relative to the plane perpendicular to the a-axis of the single crystal, as long as the direction of linear polarization of the excitation light which excites the solid-state laser medium is parallel with the c-axis of the single crystal.
  • the direction of linear polarization of the excitation light includes a c-axis component (component in the direction of the c-axis) and an a-axis component (component in the direction of an a-axis).
  • the inclination angle of the light-transmitting end surface relative to the plane perpendicular to the a-axis of the single crystal is as small as possible.
  • Fig. 1 is a diagram illustrating the construction of the laser crystal 10 as the first embodiment of the optical element according to the first aspect of the present invention
  • Fig. 2 is a diagram illustrating the way of cutting out the laser crystal 10 of Fig. 1 from a single crystal 10C.
  • the laser crystal 10 is, for example, a crystal of Nd:YVO 4 , e.g., YVO 4 doped with 3 atomic percent Nd.
  • a single crystal 10C is cut along planes which are inclined at an angle ⁇ around an a-axis (the first a-axis) relative to a plane (indicated by hatching) perpendicular to another a-axis (the second a-axis), and the cut-out surfaces are polished to produce light-transmitting end surfaces 10a and 10b, as illustrated in Fig. 1 .
  • the single crystal 10C is cut along planes perpendicular to an a-axis or a c-axis, such as the plane (indicated by hatching) perpendicular to the other a-axis (the second a-axis) illustrated in Fig. 2 .
  • the present inventor has measured yield rates of the laser crystal 10 for various inclination angles ⁇ .
  • the measurement has been performed under a specified condition that the laser crystal 10 has a dimension of 2.5 mm X 2.5 mm, the flatness of the light-transmitting end surfaces 10a and 10b is ⁇ /10, the parallelism of the light-transmitting end surfaces 10a and 10b is 30", and the surface roughness of the light-transmitting end surfaces 10a and 10b is 0.5 nm rms.
  • Ten samples of the laser crystal 10 are prepared for each value of the inclination angle ⁇ , and the light-transmitting end surfaces of the samples of the laser crystal 10 are examined for flaws.
  • the cut-out sample of the laser crystal 10 and a piece of glass (BK7) provided for blocking are stuck to a glass substrate of BK7 with wax, and the light-transmitting end surfaces of each sample are finished one by one.
  • free abrasive particles e.g., green carbon
  • pitch polishing is performed by using cerium oxide. The polishing operation is completed when the above specified condition of the flatness, parallelism, and surface roughness of the light-transmitting end surfaces 10a and 10b is satisfied.
  • Table 1 and Fig. 3 show a result of the above measurement. As indicated in Table 1 and Fig. 3 , the yield rate is remarkably increased when the inclination angle reaches 0.5 degrees. The yield rate increases with increase in the inclination angle above 0.5 degrees, and the rate of increase in the yield rate becomes moderate when the inclination angle exceeds 5 degrees. When the inclination angle exceeds 20 degrees, the yield rate reaches its ceiling.
  • the solid-state laser device of Fig. 4 comprises the above laser crystal 10, a semiconductor laser device 12, a condenser lenses 13a and 13b, and a resonator mirror 14.
  • the semiconductor laser device 12 emits a laser beam 11 for exciting the laser crystal 10.
  • the condenser lenses 13a and 13b condense the laser beam 11, which is converging light.
  • the resonator mirror 14 is provided on the forward (right) side of the laser crystal 10 for realizing a resonator.
  • the wavelength of the laser beam 11 emitted from the semiconductor laser device 12 is 810 nm.
  • the laser beam 11 excites neodymium ions in the laser crystal 10, and the laser crystal 10 emits light having a wavelength of 1,064 nm.
  • a coating is provided on a mirror surface 14a of the resonator mirror 14 so that the mirror surface 14a has reflectance of 99% at the wavelength of 1,064 nm.
  • Another coating is provided on the backward-side light-transmitting end surface 10a of the laser crystal 10 so that the backward-side light-transmitting end surface 10a has reflectance of less than 3% at the wavelength of 810 nm, and reflectance of more than 99.9% at the wavelength of 1,064 nm. Therefore, the laser beam 11 having the wavelength of 810 nm passes well through the backward-side light-transmitting end surface 10a, and the light having the wavelength of 1,064 nm is reflected well by the backward-side light-transmitting end surface 10a.
  • a further coating is provided on the forward-side light-transmitting end surface 10b of the laser crystal 10 so that the forward-side light-transmitting end surface 10b has reflectance of less than 0.5% at the wavelength of 1,064 nm. Therefore, the light having the wavelength of 1,064 nm passes well through the forward-side light-transmitting end surface 10b.
  • the light having the wavelength of 1,064 nm resonates between the backward-side light-transmitting end surface 10a and the mirror surface 14a. That is, a Fabry-Perot resonator is formed by the laser crystal 10 and the resonator mirror 14, laser oscillation occurs at the wavelength of 1,064 nm, and a solid-state laser beam 15 exits from the resonator through the resonator mirror 14.
  • the light-transmitting end surfaces 10a and 10b are inclined at the angle ⁇ around the aforementioned first a-axis relative to the plane perpendicular to the aforementioned second a-axis, where the angle ⁇ is at least 0.5 degrees, as illustrated in Fig. 1 .
  • the semiconductor laser device 12 and the laser crystal 10 are arranged so that the direction of linear polarization of the laser beam 11 is perpendicular to the first a-axis which is contained in the plane perpendicular to the aforementioned second a-axis.
  • the direction of linear polarization of the laser beam 11 is indicated by the arrows P.
  • the direction of linear polarization of the excitation light includes a c-axis component (component in the direction of the c-axis) and an a-axis component (component in the direction of the first a-axis).
  • a c-axis component component in the direction of the c-axis
  • an a-axis component component in the direction of the first a-axis
  • the inclination angle ⁇ is at most 20 degrees, and it is further preferable that the inclination angle ⁇ is at most 5 degrees.
  • Fig. 5 is a diagram illustrating the construction of the laser crystal 20 as the second embodiment of the optical element according to the first aspect of the present invention
  • Fig. 6 is a diagram illustrating the way of cutting out the laser crystal 20 of Fig. 5 from a single crystal 20C.
  • the laser crystal 20 is, for example, a crystal of Nd:YVO 4 , e.g., YVO 4 doped with 3 atomic percent Nd.
  • a single crystal 20C is cut along planes which are inclined at an angle ⁇ ' around the c-axis relative to a plane (indicated by hatching) perpendicular to one of two a-axes, and the cut-out surfaces are polished to produce light-transmitting end surfaces 20a and 20b, as illustrated in Fig. 6 .
  • the present inventor has also measured yield rates of the laser crystal 20 for various inclination angles ⁇ '.
  • the measurement result is similar to the result indicated in Table 1 and Fig. 3 .
  • the solid-state laser device of Fig. 7 has the same construction as the construction of Fig. 4 except that the laser crystal 20, instead of the laser crystal 10, is provided, and the directions of the crystal axes of the laser crystal 20 relative to the direction P of linear polarization of the laser beam 11 in the construction of Fig. 7 are different from the relative directions of the crystal axes of the laser crystal 10 in the construction of Fig. 4 .
  • the light-transmitting end surfaces 20a and 20b are inclined at the angle ⁇ ' around the c-axis relative to the plane perpendicular to the a-axis, where the angle ⁇ ' is at least 0.5 degrees, as illustrated in Fig. 5 .
  • the semiconductor laser device 12 and the laser crystal 20 are arranged so that the direction of linear polarization of the laser beam 11 is parallel with the c-axis of the laser crystal 20.
  • the direction of linear polarization of the laser beam 11 is also indicated by the arrows P.
  • the advantages of the great cross-section of stimulated emission and the great absorption coefficient are obtained, as in the case of the usual the solid-state lasers of the c-axis end surface excitation type, and are not affected by the increase in the inclination angle ⁇ ' of the light-transmitting end surfaces relative to the plane perpendicular to the a-axis of the laser crystal 20. That is, the luminous efficiency and the like are not damaged by the increase in the inclination angle ⁇ ', as long as the direction of linear polarization of the laser beam 11 is parallel with the c-axis of the laser crystal 20.
  • the laser crystal 20 may be cut out along a plane inclined with respect to both the a-axis and the c-axis.
  • the laser crystal is doped with Nd in the above-described embodiment, it should be noted that the crystal may be a single crystal doped with other kind of rare earth element or may not be doped with such element. The same result has been confirmed with such a crystal as well.
  • the scope of the present invention is not limited to laser crystals.
  • the present invention can be applied to any type of an optical element being produced from a single crystal and having a light-transmitting end surface, and the same effects are obtained in such an optical element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Claims (23)

  1. Elément optique comprenant un cristal unique qui a au moins un axe a, un axe c, et une surface d'extrémité d'émission de lumière plate, dans lequel
    ladite surface d'extrémité d'émission de lumière est inclinée à au moins 0,5 degré et au plus 5 degrés par rapport à un plan perpendiculaire à l'un dudit au moins un axe a et dudit axe c du cristal unique, et
    ledit cristal unique a une structure maillée quadratique.
  2. Elément optique selon la revendication 1, dans lequel ledit cristal unique est constitué de l'un du R':RVO4 et du RVO4, R' représentant l'un ou une combinaison du Nd, Er, Tm, Eu, Pr, Ho, Ce, Yb, Dy, Tb ou Cr, et R représentant le Y ou Gd.
  3. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour dudit axe c.
  4. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire audit axe a forment un angle d'au moins 0,5 degré autour d'un autre dudit au moins un axe a dudit cristal unique.
  5. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière est inclinée à au plus 3,0 degrés et de préférence au plus 1,0 degré par rapport audit plan perpendiculaire audit un dudit au moins un axe a et dudit axe c du cristal unique.
  6. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour dudit axe c, et ledit cristal unique est du Nd:YVO4.
  7. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour d'un autre dudit au moins un axe a dudit cristal unique, et ledit cristal unique est du Nd:YVO4 .
  8. Elément optique selon la revendication 1, dans lequel ladite surface d'extrémité d'émission de lumière est inclinée à au plus 20 degrés par rapport audit plan perpendiculaire audit un dudit au moins un axe a et dudit axe c du cristal unique, et ledit cristal unique est du Nd:YVO4.
  9. Dispositif laser à semi-conducteur comprenant un élément optique en tant que milieu laser semi-conducteur, dans lequel
    ledit élément optique comprend un cristal unique ayant au moins un axe a, un axe c, et une surface d'extrémité d'émission de lumière plate ;
    ladite surface d'extrémité d'émission de lumière est inclinée à au moins 0,5 degré et au plus 5 degrés par rapport à un plan perpendiculaire à l'un dudit au moins un axe a et dudit axe c du cristal unique, et
    ledit cristal unique a une structure maillée quadratique.
  10. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ledit cristal unique est constitué de R':RVO4 ou de RVO4, R' représentant l'un ou une combinaison du Nd, Er, Tm, Eu, Pr, Ho, Ce, Yb, Dy, Tb ou Cr, et R représentant le Y ou Gd.
  11. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour dudit axe c.
  12. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour d'un autre dudit au moins un axe a dudit cristal unique.
  13. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière est inclinée à au plus 3,0 degrés et de préférence au plus 1,0 degré par rapport audit plan perpendiculaire audit un dudit au moins un axe a et dudit axe c du cristal unique.
  14. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour dudit axe c, et ledit cristal unique est du Nd:YVO4.
  15. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour d'un autre dudit au moins un axe a dudit cristal unique, et ledit cristal unique est du Nd:YVO4.
  16. Dispositif laser à semi-conducteur selon la revendication 9, dans lequel ladite surface d'extrémité d'émission de lumière est inclinée à au plus 20 degrés par rapport audit plan perpendiculaire audit un dudit au moins un axe a et dudit axe c du cristal unique, et ledit cristal unique est du Nd:YVO4.
  17. Dispositif laser à semi-conducteur selon la revendication 11, dans lequel une direction de polarisation linéaire de la lumière d'excitation qui excite ledit milieu laser semi-conducteur est parallèle audit axe c dudit cristal unique.
  18. Dispositif laser à semi-conducteur selon la revendication 12, dans lequel une direction de polarisation linéaire de la lumière d'excitation qui excite ledit milieu laser semi-conducteur est perpendiculaire audit un autre dudit au moins un axe a, qui est contenu dans ladite surface d'extrémité d'émission de lumière.
  19. Processus pour réaliser un élément optique, comprenant les étapes consistant à :
    (a) découper un cristal unique de sorte que le cristal unique ait au moins un axe a, un axe c, et une surface qui est inclinée à au moins 0,5 degré et au plus 5 degrés par rapport à un plan perpendiculaire à l'un dudit au moins un axe a et dudit axe c du cristal unique ; et
    (b) polir ladite surface en une surface d'extrémité d'émission de lumière ;
    dans lequel ledit cristal unique a une structure maillée quadratique.
  20. Processus selon la revendication 19, dans lequel ledit cristal unique est constitué de R':RVO4 ou de RVO4, R' représentant l'un ou une combinaison du Nd, Er, Tm, Eu, Pr, Ho, Ce, Yb, Dy, Tb ou Cr, et R représentant le Y ou Gd.
  21. Processus selon la revendication 19, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour dudit axe c.
  22. Processus selon la revendication 19, dans lequel ladite surface d'extrémité d'émission de lumière et un plan perpendiculaire à l'un dudit au moins un axe a forment un angle d'au moins 0,5 degré autour d'un autre dudit au moins un axe a dudit cristal unique.
  23. Processus selon la revendication 19, dans lequel ladite surface d'extrémité d'émission de lumière est inclinée à au plus 3,0 degrés et de préférence au plus 1,0 degré par rapport audit plan perpendiculaire audit un dudit axe a et dudit axe c du cristal unique.
EP00106847A 1999-03-31 2000-03-30 Elément optique monocristallin avec une surface transparente inclinée par rapport à un plan de clivage Expired - Lifetime EP1041179B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9304799 1999-03-31
JP9304799 1999-03-31

Publications (2)

Publication Number Publication Date
EP1041179A1 EP1041179A1 (fr) 2000-10-04
EP1041179B1 true EP1041179B1 (fr) 2010-01-27

Family

ID=14071606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00106847A Expired - Lifetime EP1041179B1 (fr) 1999-03-31 2000-03-30 Elément optique monocristallin avec une surface transparente inclinée par rapport à un plan de clivage

Country Status (3)

Country Link
US (2) US6558465B1 (fr)
EP (1) EP1041179B1 (fr)
DE (1) DE60043761D1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128630A1 (de) 2001-06-13 2003-01-02 Freiberger Compound Mat Gmbh Vorrichtung und Verfahren zur Bestimmung der Orientierung einer kristallografischen Ebene relativ zu einer Kristalloberfläche sowie Vorrichtung und Verfahren zum Trennen eines Einkristalls in einer Trennmaschine
JP4334864B2 (ja) * 2002-12-27 2009-09-30 日本電波工業株式会社 薄板水晶ウェハ及び水晶振動子の製造方法
US7769060B1 (en) 2005-09-14 2010-08-03 Panasonic Corporation Laser light source, and display device using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469500A (en) * 1981-01-26 1984-09-04 Rca Corporation Method of cleaving a crystal to produce a high optical quality corner
EP0363914A3 (fr) * 1988-10-13 1991-07-31 Nec Corporation Dispositif optique avec polarisateur/analyseur en vanadate d'yttrium
JPH04137775A (ja) * 1990-09-28 1992-05-12 Nec Corp 半導体レーザ励起固体レーザ
US5315433A (en) * 1991-02-28 1994-05-24 Fuji Photo Film Co., Ltd. Optical wavelength converting apparatus
JPH06209135A (ja) * 1992-11-06 1994-07-26 Mitsui Petrochem Ind Ltd 固体レーザ装置
US5667583A (en) * 1994-03-30 1997-09-16 Hitachi Chemical Co. Ltd. Method of producing a single crystal of a rare-earth silicate
DE19532440C2 (de) * 1995-08-08 2000-06-21 Fraunhofer Ges Forschung Festkörperlaseranordnung zur Frequenzkonversion
EP0867991B1 (fr) * 1997-03-27 2001-05-30 Mitsui Chemicals, Inc. Source de lumière à laser à semi-conducteur et laser à l'état solide
US5888014A (en) * 1997-04-14 1999-03-30 Lung; Jimmy R. Extensible lockable apparatus

Also Published As

Publication number Publication date
US20030159642A1 (en) 2003-08-28
US6558465B1 (en) 2003-05-06
DE60043761D1 (de) 2010-03-18
EP1041179A1 (fr) 2000-10-04
US6797250B2 (en) 2004-09-28

Similar Documents

Publication Publication Date Title
Lu et al. Optical properties and highly efficient laser oscillation of Nd: YAG ceramics
US5852622A (en) Solid state lasers with composite crystal or glass components
US6270604B1 (en) Method for fabricating an optical waveguide
EP1928064B1 (fr) Appareil laser à trajets multiples utilisant un barreau laser YAG en plaques à l'état solide
EP1063739B1 (fr) Microlaser déclenché à pompage latéral et sa méthode de fabrication
US6813285B2 (en) Q-switched microlaser
EP1041179B1 (fr) Elément optique monocristallin avec une surface transparente inclinée par rapport à un plan de clivage
CN102074888B (zh) 具有单一束激光输出或线阵激光输出的自倍频激光器
EP0211175A1 (fr) Cristaux de beryllate de lanthane et de fluorure de lithium et d'yttrium pour lasers à effet "thermatl-lensing" compensé
Bhutta et al. Low phonon energy, Nd: LaF/sub 3/channel waveguide lasers fabricated by molecular beam epitaxy
Saruwatari et al. Fluorescence and oscillation characteristics of LiNdP 4 O 12 lasers at 1.317 µm
EP3399228B1 (fr) Élément luminophore et dispositif d'éclairage
US5640408A (en) Quasi four-level Tm:LuAG laser
JP2000349379A (ja) 光学素子およびその作成方法並びに固体レーザ
US6895152B2 (en) Guided-mode laser apparatus with improved cladding structure and a method of fabricating thereof
EP3654088A1 (fr) Isolateur optique et rotateur de faraday
JP6675085B2 (ja) Iii族窒化物半導体基板及びその製造方法
JP3953937B2 (ja) レーザー装置
US7087447B2 (en) Method for fabricating zig-zag slabs for solid state lasers
JP2007507084A (ja) 固体レーザー媒質
Sundeen Advances in bonded YAG composite laser gain media
KR100518303B1 (ko) 결정 결함 평가 방법
JPH08283096A (ja) レーザ材料
CN117005028A (zh) 一类铒离子激活的硅酸盐激光晶体和制备方法及1.55um波段固体激光器
TW405285B (en) High power diode end-pumped solid state laser and its manufacture method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001128

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20040220

17Q First examination report despatched

Effective date: 20040220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUJIFILM CORPORATION

17Q First examination report despatched

Effective date: 20040220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60043761

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120328

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120411

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60043761

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130330

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001