EP1039910A1 - Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps - Google Patents
Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polypsInfo
- Publication number
- EP1039910A1 EP1039910A1 EP98956600A EP98956600A EP1039910A1 EP 1039910 A1 EP1039910 A1 EP 1039910A1 EP 98956600 A EP98956600 A EP 98956600A EP 98956600 A EP98956600 A EP 98956600A EP 1039910 A1 EP1039910 A1 EP 1039910A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- amino
- carbon atoms
- bromophenyl
- quinazolinyl
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- This invention relates to the use of certain quinazoline compounds in the treatment and inhibition of colonic polyps.
- FAP familial Adenomatous Polyps
- SAP sporadic adenomatous polyps
- APC The genetic basis for FAP has been linked to the presence of mutations in the APC gene. Similar APC mutations have been found in patients with sporadic polyps. Biochemically, the APC mutation occurs in conjunction with the increased expression of cyclooxygenase enzymes, particularly COX-2. These enzymes are essential for the production of prostenoids, (prostaglandin's; (PG's)) that mediate a number of functions in the bowel including motility, vascular tone, angiogenesis and mucosal protection. PG's are also purported to discourage apoptosis and this is proposed as an explanation for polyp formation.
- prostenoids prostaglandin's
- COX-2 cyclooxygenase enzymes
- COX inhibitors are predominantly NSAID's such as clinoril, sulindac, piroxicam and etodoloc, all of which appear to be equivalent in their action.
- NSAID therapy has been the development of serious side effects including peptic ulceration, and cholestatic hepatitis and renal papillary necrosis. Long term therapy with NSAIDs for the treatment of polyps is therefore considered to be impractical.
- COX-2 inhibitors have been shown to prevent this series of events.
- This invention provides a method of treating or inhibiting colonic polyps in a mammal in need thereof which comprises administering to said mammal a compound of formula 1:
- X is phenyl optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, amino, and alkanoylamino of 1- 6 carbon atoms;
- R and Rj are each, independently, hydrogen, halogen, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, or trifluoromethyl;
- R 2 is hydrogen, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, trifluoromethyl;
- Y is a radical selected from the group consisting of
- the pharmaceutically acceptable salts are those derived from such organic and inorganic acids as: acetic, lactic, citric, tartaric, succinic, maleic, malonic, gluconic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, and similarly known acceptable acids.
- alkyl portion of the alkyl, alkoxy, carboalkoxy, carboalkyl, and alkanoylamino substituents include both straight chain as well as branched carbon chains, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n- pentyl or n-hexyl.
- Carboxy is defined as a -CO2H radical.
- Carboalkoxy of 2-7 carbon atoms is defined as a -CO 2 R" radical, where R" is an alkyl radical of 1-6 carbon atoms.
- Carboalkyl is defined as a -COR" radical, where R" is an alkyl radical of 1-6 carbon atoms.
- R is an alkyl radical of 1-6 carbon atoms.
- halogen refers to chlorine, bromine, iodine or fluorine.
- X is substituted, it is preferred that it is mono- , di- , or tri- substituted, with monosubstituted being most preferred.
- this invention covers the individual R and S entantiomers as well as the racemate with respect to such compound.
- preferred members include those in which R, R 1 , and R 2 are hydrogen; and those in which R, R 1 , and R 2 are hydrogen and X is phenyl either unsubstituted or monosubstituted with halogen or alkyl of 1-6 carbon atoms.
- R, R 1 , and R 2 are hydrogen; and those in which R, R 1 , and R 2 are hydrogen and X is phenyl either unsubstituted or monosubstituted with halogen or alkyl of 1-6 carbon atoms.
- One group of compounds within the invention are those wherein X is monosubstituted in the 3-position, preferably by a halogen, more preferably by bromine.
- R3 is preferably hydrogen, methyl, ethyl, phenyl, CO2H or CO2EL
- each R5 is independently hydrogen, phenyl, or alkyl of 1-6 carbon atoms
- R, Ri, R2, R3, X, and n are as defined above and R 4 is alkyl of 1-6 carbon atoms (preferably isobutyl).
- Y' is a radical selected from the group consisting of:
- each R'3 is independently alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, or carboalkyl of 2-7 carbon atoms.
- a 5-nitro-anthranilonitrile of Formula 2 is heated at about 100°C with or without solvent containing an excess of dimethylformamide dimethyl acetal to furnish an amidine of Formula 3. Heating a solution of amidine 3 and the aniline 4 in acetic acid for 1 to 5 hours gives the 6-nitro- 4-anilinoquinazolines of Formula 5 .
- Representative compounds of this invention were evaluated in several standard pharmacological test procedures that showed that the compounds of this invention possess significant activity as inhibitors of protein tyrosine kinases, and are antiproliferative agents. Based on the activity shown in the standard pharmacological test procedures, the compounds of this invention are therefore useful as antineoplastic agents.
- the test procedures used and results obtained are shown below.
- 4-choro-6-nitroquinazoline, 13, (Morley, JS. and Simpson,/. Chem.. Soc, 360 (1948)) is reduced to 6-amino-4- chloroquinazoline, 14, using a reducing agent such as sodium hydrosulfite in a two phase system consisting of tetrahydrofuran and water in the presence of a small amount of phase transfer catalyst.
- a reducing agent such as sodium hydrosulfite in a two phase system consisting of tetrahydrofuran and water in the presence of a small amount of phase transfer catalyst.
- the nitro group of 20 (prepared as in Flowsheet A) is reduced to the corresponding amino compound 21 using a palladium catalyst and a source of hydrogen which can be hydrogen itself or cyclohexene.
- a source of hydrogen which can be hydrogen itself or cyclohexene.
- Acylation of 21 with either an acid chloride of Formula 22 or a mixed anhydride of Formula 23 (which is prepared from the corresponding carboxylic acid) in an inert solvent such as tetrahydrofuran (THF) in the presence of an organic base such as pyridine or N-methyl morpholine gives the compounds of Formula 24.
- the ability of the compounds of this invention to treat or inhibit colonic polyps was demonstrated in an in vivo standard pharmacological test procedure as described below.
- the compound of Example 9 was evaluated in this procedure, which emulates familial adenomatous polyps (FAP) in humans, as a representative compound of this invention.
- the Min mouse used in this test procedure currently the best available model for FAP, is a strain which has lost both copies of the APC gene. These animals develop multiple intestinal polyps (Adenomas) that ultimately progress to form adenocarcinomas.
- the polyps that develop in Min mice express EGFR and have activated COX-2.
- NSAID's such as sulindac and etodoloc can reduce (but not eradicate) intestinal polyp formulation in these animals indicating that COX-2 and the ultimate production of PG's is likely responsible for these effects.
- Example 9 The compound of Example 9 was blended with a standard murine chow and animals were given ad libitum access to the food. Based on estimated food consumption, the compound of Example 9 was added at a concentration commensurate with animals ingesting 20 mg/kg/day. At day 30, 4 treated + 4 control (chow alone) animals were sacrificed and assessed for polyp number. All control animals had greater than 30 polyps in their bowel, while the treated animals had none. Identical results were observed at 60 days - when 15 animals/group were assessed. The control animals had greater than 30 (larger) polyps while the treated animals had none.
- the compounds of this invention may formulated neat or may be combined with one or more pharmaceutically acceptable carriers for administration.
- pharmaceutically acceptable carriers for example, solvents, diluents and the like, and may be administered orally in such forms as tablets, capsules, dispersible powders, granules, or suspensions containing, for example, from about 0.05 to 5% of suspending agent, syrups containing, for example, from about 10 to 50% of sugar, and elixirs containing, for example, from about 20 to 50% ethanol, and the like, or parenterally in the form of sterile injectable solution or suspension containing from about 0.05 to 5% suspending agent in an isotonic medium.
- Such pharmaceutical preparations may contain, for example, from about 0.05 up to about 90% of the active ingredient in combination with the carrier, more usually between about 5% and 60% by weight.
- the effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and the severity of the condition being treated. However, in general, satisfactory results are obtained when the compounds of the invention are administered at a daily dosage of from about 0.5 to about 1000 mg/kg of animal body weight, optionally given in divided doses two to four times a day, or in sustained release form. For most large mammals the total daily dosage is from about 1 to 1000 mg, preferably from about 2 to 500 mg.
- Dosage forms suitable for internal use comprise from about 0.5 to 1000 mg of the active compound in intimate admixture with a solid or liquid pharmaceutically acceptable carrier. This dosage regimen may be adjusted to provide the optimal therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
- active compounds may be administered orally as well as by intravenous, intramuscular, or subcutaneous routes.
- Solid carriers include starch, lactose, dicalcium phosphate, microcrystalline cellulose, sucrose and kaolin, while liquid carriers include sterile water, polyethylene glycols, non-ionic surfactants and edible oils such as corn, peanut and sesame oils, as are appropriate to the nature of the active ingredient and the particular form of administration desired.
- Adjuvants customarily employed in the preparation of pharmaceutical compositions may be advantageously included, such as flavoring agents, coloring agents, preserving agents, and antioxidants, for example, vitamin E, ascorbic acid, BHT and BHA.
- the preferred pharmaceutical compositions from the standpoint of ease of preparation and administration are solid compositions, particularly tablets and hard- filled or liquid-filled capsules. Oral administration of the compounds is preferred.
- active compounds may also be administered parenterally or intraperitoneally.
- Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxy-propylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparation contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringabiUty exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
- N'-(4-Amino-2-cyanophenyl)-N.N-dimethylformamidine A solution of 6.0 g (27.5 mmol) of N'-(2-cyano-4-nitrophenyl)-N,N- dimethylformamidine, 33.9 g (41.8 ml, 412.4 mmol) of cyclohexene, and 0.6 g of 10% Pd/C in 360 ml of methanol was refluxed for 4 hrs. The hot mixture was filtered through Celite.
- N-f4-r(3-Bromopheny amino1-6-quinazolinyll-2-butvnamide A solution of 3.0 g (11.8 mmol) of N-[3-cyano-4-[[(dimethylamino)- methylenejamino] phenyl]-2-butynamide and 2.23 g (12.98 mmol) of 3-bromo aniline in 18 ml of acetic acid was refluxed gently with stirring under nitrogen for 1 hr 15 min.. The mixture was cooled in an ice bath and a solid mass formed.
Landscapes
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96508497A | 1997-11-06 | 1997-11-06 | |
US965084 | 1997-11-06 | ||
PCT/US1998/023549 WO1999024037A1 (en) | 1997-11-06 | 1998-11-04 | Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1039910A1 true EP1039910A1 (en) | 2000-10-04 |
Family
ID=25509419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98956600A Withdrawn EP1039910A1 (en) | 1997-11-06 | 1998-11-04 | Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps |
Country Status (15)
Country | Link |
---|---|
EP (1) | EP1039910A1 (en) |
JP (1) | JP2001522802A (en) |
KR (1) | KR20010031813A (en) |
CN (1) | CN1278176A (en) |
AR (1) | AR016415A1 (en) |
AU (1) | AU1308799A (en) |
BR (1) | BR9814116A (en) |
CA (1) | CA2306155A1 (en) |
HU (1) | HUP0004286A3 (en) |
IL (1) | IL135622A0 (en) |
NO (1) | NO20002166L (en) |
NZ (1) | NZ503991A (en) |
PL (1) | PL340800A1 (en) |
WO (1) | WO1999024037A1 (en) |
ZA (1) | ZA9810134B (en) |
Families Citing this family (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432979B1 (en) | 1999-08-12 | 2002-08-13 | American Cyanamid Company | Method of treating or inhibiting colonic polyps and colorectal cancer |
EP1202746B1 (en) * | 1999-08-12 | 2006-10-04 | Wyeth Holdings Corporation | Nsaid and egfr kinase inhibitor containing composition for the treatment or inhibition of colonic polyps and colorectal cancer |
US6924285B2 (en) | 2002-03-30 | 2005-08-02 | Boehringer Ingelheim Pharma Gmbh & Co. | Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them |
GB0309850D0 (en) | 2003-04-30 | 2003-06-04 | Astrazeneca Ab | Quinazoline derivatives |
BRPI0410634A (en) | 2003-05-30 | 2006-06-13 | Astrazeneca Uk Ltd | process |
GB0326459D0 (en) | 2003-11-13 | 2003-12-17 | Astrazeneca Ab | Quinazoline derivatives |
SI1746999T1 (en) | 2004-05-06 | 2012-01-31 | Warner Lambert Co | 4-phenylamino-quinazolin-6-yl-amides |
DE602005026865D1 (en) | 2004-12-14 | 2011-04-21 | Astrazeneca Ab | PYRAZOLOPYRIMIDINE COMPOUNDS AS ANTITUM-MEANS |
WO2006071079A1 (en) * | 2004-12-29 | 2006-07-06 | Hanmi Pharm. Co., Ltd. | Quinazoline derivatives for inhibiting cancer cell growth and method for the preparation thereof |
ATE488513T1 (en) | 2005-09-20 | 2010-12-15 | Astrazeneca Ab | 4-(1H-INDAZOLE-5-YLAMINO)QUINAZOLINE COMPOUNDS AS ERBB RECEPTOR TYROSINE KINASE INHIBITORS FOR THE TREATMENT OF CANCER |
EP2061906B1 (en) | 2006-09-12 | 2011-08-31 | Genentech, Inc. | Methods and compositions for the diagnosis and treatment of lung cancer using pdgfra, kit or kdr gene as genetic marker |
EP1921070A1 (en) | 2006-11-10 | 2008-05-14 | Boehringer Ingelheim Pharma GmbH & Co. KG | Bicyclic heterocycles, medicaments comprising them, their use and process for their preparation |
EA200901041A1 (en) | 2007-02-06 | 2010-02-26 | Бёрингер Ингельхайм Интернациональ Гмбх | BICYCLIC HETEROCYCLES CONTAINING THESE COMPOUNDS MEDICINES, THEIR APPLICATION AND METHOD OF OBTAINING THEM |
US20110104166A1 (en) * | 2008-01-18 | 2011-05-05 | Stankovic Konstantina M | Methods and Compositions for Treating Polyps |
TWI472339B (en) | 2008-01-30 | 2015-02-11 | Genentech Inc | Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof |
BRPI0907916A2 (en) | 2008-02-07 | 2015-07-28 | Boehringer Ingelheim Int | Spirocycle heterocycles, medicaments containing such compounds, and processes for preparing them |
NZ589883A (en) | 2008-05-13 | 2012-06-29 | Astrazeneca Ab | Fumarate salt of 4- (3-chloro-2-fluoroanilino) -7-methoxy-6- { [1- (n-methylcarbamoylmethyl) piperidin- 4-yl] oxy} quinazoline |
US8426430B2 (en) * | 2008-06-30 | 2013-04-23 | Hutchison Medipharma Enterprises Limited | Quinazoline derivatives |
EP2313397B1 (en) | 2008-08-08 | 2016-04-20 | Boehringer Ingelheim International GmbH | Cyclohexyloxy substituted heterocycles, medicine containing these connections, their application and production method |
SG10201402742YA (en) | 2009-03-20 | 2014-08-28 | Genentech Inc | Bispecific anti-her antibodies |
KR20120103587A (en) | 2009-11-12 | 2012-09-19 | 제넨테크, 인크. | A method of promoting dendritic spine density |
WO2011086053A1 (en) | 2010-01-12 | 2011-07-21 | F. Hoffmann-La Roche Ag | Tricyclic heterocyclic compounds, compositions and methods of use thereof |
MY160556A (en) | 2010-02-18 | 2017-03-15 | Genentech Inc | Neuregulin antagonists and use thereof in treating cancer |
RU2012141536A (en) | 2010-03-17 | 2014-04-27 | Ф. Хоффманн-Ля Рош Аг | IMIDAZOPYRIDINES, COMPOSITIONS AND METHODS OF APPLICATION |
CN103038643A (en) | 2010-04-16 | 2013-04-10 | 基因泰克公司 | Fox03A as predictive biomarker for Pi3K/Akt kinase pathway inhibitor efficacy |
JP2013537966A (en) | 2010-08-31 | 2013-10-07 | ジェネンテック, インコーポレイテッド | Biomarkers and methods of treatment |
WO2012035039A1 (en) | 2010-09-15 | 2012-03-22 | F. Hoffmann-La Roche Ag | Azabenzothiazole compounds, compositions and methods of use |
RU2013126041A (en) | 2010-11-19 | 2014-12-27 | Ф.Хоффманн-Ля Рош Аг | Pyrazolopyridines and Pyrazolopyridines and Their Use as Tyk2 Inhibitors |
WO2012085176A1 (en) | 2010-12-23 | 2012-06-28 | F. Hoffmann-La Roche Ag | Tricyclic pyrazinone compounds, compositions and methods of use thereof as janus kinase inhibitors |
WO2013007765A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Fused tricyclic compounds for use as inhibitors of janus kinases |
WO2013007768A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors |
ES2573336T3 (en) | 2011-08-12 | 2016-06-07 | F. Hoffmann-La Roche Ag | Indazole compounds, compositions and methods of use |
BR112014003431A2 (en) | 2011-08-17 | 2017-06-13 | Genentech Inc | antibody, nucleic acid, host cell, method of producing an antibody, immunoconjugate, pharmaceutical formulation, pharmaceutical agent, use of the antibody, method of treating an individual who has cancer, and time-lapse method for tumor recurrence |
CN103827115A (en) | 2011-09-20 | 2014-05-28 | 弗·哈夫曼-拉罗切有限公司 | Imidazopyridine compounds, compositions and methods of use |
KR20140098834A (en) | 2011-11-30 | 2014-08-08 | 제넨테크, 인크. | Erbb3 mutations in cancer |
WO2013148315A1 (en) | 2012-03-27 | 2013-10-03 | Genentech, Inc. | Diagnosis and treatments relating to her3 inhibitors |
WO2014128235A1 (en) | 2013-02-22 | 2014-08-28 | F. Hoffmann-La Roche Ag | Methods of treating cancer and preventing drug resistance |
BR112015021423A2 (en) | 2013-03-06 | 2017-07-18 | Genentech Inc | cancer treatment methods, egfr antagonist-resistant cancer cells, cancer cells, methods of increasing the sensitivity and effectiveness of cancer treatment, and methods of delaying, treating cancer patients and extending |
KR20150130491A (en) | 2013-03-13 | 2015-11-23 | 제넨테크, 인크. | Pyrazolo compounds and uses thereof |
CA2905070A1 (en) | 2013-03-14 | 2014-09-25 | Genentech, Inc. | Methods of treating cancer and preventing cancer drug resistance |
AU2014239903A1 (en) | 2013-03-14 | 2015-09-17 | Genentech, Inc. | Combinations of a MEK inhibitor compound with an HER3/EGFR inhibitor compound and methods of use |
CN105339001A (en) | 2013-03-15 | 2016-02-17 | 基因泰克公司 | Methods of treating cancer and preventing cancer drug resistance |
JP6336598B2 (en) | 2013-09-05 | 2018-06-06 | ジェネンテック, インコーポレイテッド | Antiproliferative compound |
AR097894A1 (en) | 2013-10-03 | 2016-04-20 | Hoffmann La Roche | CDK8 THERAPEUTIC INHIBITORS OR USE OF THE SAME |
TW201940514A (en) | 2013-10-18 | 2019-10-16 | 美商建南德克公司 | Anti-RSPO antibodies and methods of use |
MX2016007965A (en) | 2013-12-17 | 2016-10-28 | Genentech Inc | Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists. |
LT3083686T (en) | 2013-12-17 | 2020-01-10 | F. Hoffmann-La Roche Ag | Methods of treating cancers using pd-1 axis binding antagonists and taxanes |
CN107002119A (en) | 2014-03-24 | 2017-08-01 | 豪夫迈·罗氏有限公司 | Treatment of cancer and the former and associating that HGF is expressed using C MET antagonists |
EP3632934A1 (en) | 2014-03-31 | 2020-04-08 | F. Hoffmann-La Roche AG | Anti-ox40 antibodies and methods of use |
RU2016142476A (en) | 2014-03-31 | 2018-05-07 | Дженентек, Инк. | COMBINED THERAPY, INCLUDING ANTI-ANGIOGENESIS AGENTS AND AGONISTS BINDING OX40 |
WO2016036873A1 (en) | 2014-09-05 | 2016-03-10 | Genentech, Inc. | Therapeutic compounds and uses thereof |
CN107073125A (en) | 2014-09-19 | 2017-08-18 | 基因泰克公司 | CBP/EP300 and BET inhibitor is used for the purposes for the treatment of cancer |
EP3204379B1 (en) | 2014-10-10 | 2019-03-06 | Genentech, Inc. | Pyrrolidine amide compounds as histone demethylase inhibitors |
EP3215637B1 (en) | 2014-11-03 | 2019-07-03 | F. Hoffmann-La Roche AG | Methods and biomarkers for predicting efficacy and valuation of an ox40 agonist treatment |
US20160161485A1 (en) | 2014-11-03 | 2016-06-09 | Genentech, Inc. | Assays for detecting t cell immune subsets and methods of use thereof |
AU2015343494A1 (en) | 2014-11-06 | 2017-04-27 | Genentech, Inc. | Combination therapy comprising OX40 binding agonists and TIGIT inhibitors |
MA40943A (en) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS |
MA40940A (en) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS |
WO2016077375A1 (en) | 2014-11-10 | 2016-05-19 | Genentech, Inc. | Bromodomain inhibitors and uses thereof |
RU2017121096A (en) | 2014-11-17 | 2018-12-19 | Дженентек, Инк. | COMBINED THERAPY, INCLUDING APPLICATION OF THE OX40-BINDING AGONISTS AND ANALOGUALISTS OF THE AXIS PD-1 |
JP6771464B2 (en) | 2014-11-27 | 2020-10-21 | ジェネンテック, インコーポレイテッド | 4,5,6,7-Tetrahydro-1H-pyrazolo [4,3-C] Pyridine-3-amine compound as CBP and / or EP300 inhibitor |
RU2710735C2 (en) | 2014-12-23 | 2020-01-10 | Дженентек, Инк. | Compositions and methods of treating and diagnosing cancer-resistant cancer |
CN107208138A (en) | 2014-12-30 | 2017-09-26 | 豪夫迈·罗氏有限公司 | For cancer prognosis and the method and composition for the treatment of |
JP6889661B2 (en) | 2015-01-09 | 2021-06-18 | ジェネンテック, インコーポレイテッド | 4,5-Dihydroimidazole derivative and its use as a histone dimethylase (KDM2B) inhibitor |
WO2016112284A1 (en) | 2015-01-09 | 2016-07-14 | Genentech, Inc. | (piperidin-3-yl)(naphthalen-2-yl)methanone derivatives and related compounds as inhibitors of the histone demethylase kdm2b for the treatment of cancer |
CN107406429B (en) | 2015-01-09 | 2021-07-06 | 基因泰克公司 | Pyridazinone derivatives and their use in the treatment of cancer |
CN107531692B (en) | 2015-01-29 | 2020-12-25 | 基因泰克公司 | Therapeutic compounds and uses thereof |
EP3250552B1 (en) | 2015-01-30 | 2019-03-27 | Genentech, Inc. | Therapeutic compounds and uses thereof |
MA41598A (en) | 2015-02-25 | 2018-01-02 | Constellation Pharmaceuticals Inc | PYRIDAZINE THERAPEUTIC COMPOUNDS AND THEIR USES |
CA2981183A1 (en) | 2015-04-07 | 2016-10-13 | Greg Lazar | Antigen binding complex having agonistic activity and methods of use |
CN107667119A (en) | 2015-05-12 | 2018-02-06 | 豪夫迈·罗氏有限公司 | Treatment and diagnostic method for cancer |
EP4335931A3 (en) | 2015-05-29 | 2024-06-19 | F. Hoffmann-La Roche AG | Therapeutic and diagnostic methods for cancer |
WO2016200835A1 (en) | 2015-06-08 | 2016-12-15 | Genentech, Inc. | Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists |
EP3303399A1 (en) | 2015-06-08 | 2018-04-11 | H. Hoffnabb-La Roche Ag | Methods of treating cancer using anti-ox40 antibodies |
WO2016205320A1 (en) | 2015-06-17 | 2016-12-22 | Genentech, Inc. | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
DK3341376T3 (en) | 2015-08-26 | 2021-03-29 | Fundacion Del Sector Publico Estatal Centro Nac De Investigaciones Oncologicas Carlos Iii F S P Cnio | CONDENSED TRICYCLIC COMPOUNDS AS PROTEINKINASE INHIBITORS |
CN113956358A (en) | 2015-09-25 | 2022-01-21 | 豪夫迈·罗氏有限公司 | anti-TIGIT antibodies and methods of use |
EP3978500B1 (en) | 2015-12-16 | 2023-11-22 | Genentech, Inc. | Process for the preparation of tricyclic pi3k inhibitor compounds |
KR20180097615A (en) | 2016-01-08 | 2018-08-31 | 에프. 호프만-라 로슈 아게 | Methods for the treatment of CEA-positive cancers using PD-1 axis-binding antagonists and anti-CEA / anti-CD3 bispecific antibodies |
KR102500659B1 (en) | 2016-02-29 | 2023-02-16 | 제넨테크, 인크. | Therapeutic and diagnostic methods for cancer |
EP3865511A1 (en) | 2016-04-14 | 2021-08-18 | F. Hoffmann-La Roche AG | Anti-rspo3 antibodies and methods of use |
MX2018012471A (en) | 2016-04-15 | 2019-02-21 | Genentech Inc | Diagnostic and therapeutic methods for cancer. |
AU2017248766A1 (en) | 2016-04-15 | 2018-11-01 | Genentech, Inc. | Methods for monitoring and treating cancer |
KR20190003958A (en) | 2016-04-15 | 2019-01-10 | 제넨테크, 인크. | Treatment and monitoring of cancer |
JP7014736B2 (en) | 2016-05-24 | 2022-02-01 | ジェネンテック, インコーポレイテッド | Pyrazolopyridine derivatives for the treatment of cancer |
WO2017205536A2 (en) | 2016-05-24 | 2017-11-30 | Genentech, Inc. | Therapeutic compounds and uses thereof |
CN109312407A (en) | 2016-06-08 | 2019-02-05 | 豪夫迈·罗氏有限公司 | Diagnostic and therapeutic method for cancer |
JP2019530434A (en) | 2016-08-05 | 2019-10-24 | ジェネンテック, インコーポレイテッド | Multivalent and multi-epitope antibodies with agonist activity and methods of use |
WO2018029124A1 (en) | 2016-08-08 | 2018-02-15 | F. Hoffmann-La Roche Ag | Therapeutic and diagnostic methods for cancer |
CN110418851A (en) | 2016-10-06 | 2019-11-05 | 基因泰克公司 | The treatment of cancer and diagnostic method |
EP3532091A2 (en) | 2016-10-29 | 2019-09-04 | H. Hoffnabb-La Roche Ag | Anti-mic antibidies and methods of use |
ES2953595T3 (en) | 2017-03-01 | 2023-11-14 | Hoffmann La Roche | Diagnostic and therapeutic procedures for cancer |
CN110505883A (en) | 2017-04-13 | 2019-11-26 | 豪夫迈·罗氏有限公司 | Proleulzin immunoconjugates used in method for treating cancer, CD40 agonist, and optionally PD-1 axis binding antagonists |
MX2020000604A (en) | 2017-07-21 | 2020-09-10 | Genentech Inc | Therapeutic and diagnostic methods for cancer. |
EP3679159A1 (en) | 2017-09-08 | 2020-07-15 | H. Hoffnabb-La Roche Ag | Diagnostic and therapeutic methods for cancer |
US11369608B2 (en) | 2017-10-27 | 2022-06-28 | University Of Virginia Patent Foundation | Compounds and methods for regulating, limiting, or inhibiting AVIL expression |
CN111213059B (en) | 2017-11-06 | 2024-01-09 | 豪夫迈·罗氏有限公司 | Diagnostic and therapeutic methods for cancer |
EP3797173A2 (en) | 2018-05-21 | 2021-03-31 | Nanostring Technologies, Inc. | Molecular gene signatures and methods of using same |
AU2019288728A1 (en) | 2018-06-23 | 2021-01-14 | Genentech, Inc. | Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor |
CN112839644A (en) | 2018-07-18 | 2021-05-25 | 豪夫迈·罗氏有限公司 | Methods of treating lung cancer with PD-1 axis binding antagonists, antimetabolites, and platinum agents |
TW202024023A (en) | 2018-09-03 | 2020-07-01 | 瑞士商赫孚孟拉羅股份公司 | Therapeutic compounds and methods of use |
JP2022501332A (en) | 2018-09-19 | 2022-01-06 | ジェネンテック, インコーポレイテッド | How to treat and diagnose bladder cancer |
EP3857230B1 (en) | 2018-09-21 | 2023-06-07 | F. Hoffmann-La Roche AG | Diagnostic methods for triple-negative breast cancer |
CN113196061A (en) | 2018-10-18 | 2021-07-30 | 豪夫迈·罗氏有限公司 | Methods of diagnosis and treatment of sarcoma-like renal cancer |
JP2022519649A (en) | 2019-02-08 | 2022-03-24 | ジェネンテック, インコーポレイテッド | How to diagnose and treat cancer |
WO2020172712A1 (en) | 2019-02-27 | 2020-09-03 | Epiaxis Therapeutics Pty Ltd | Methods and agents for assessing t-cell function and predicting response to therapy |
CA3130695A1 (en) | 2019-02-27 | 2020-09-03 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies |
WO2020223233A1 (en) | 2019-04-30 | 2020-11-05 | Genentech, Inc. | Prognostic and therapeutic methods for colorectal cancer |
TW202108616A (en) | 2019-05-03 | 2021-03-01 | 美商建南德克公司 | Methods of treating cancer with an anti-pd-l1 antibody |
CN112300279A (en) | 2019-07-26 | 2021-02-02 | 上海复宏汉霖生物技术股份有限公司 | Methods and compositions directed to anti-CD 73 antibodies and variants |
TW202124439A (en) | 2019-09-04 | 2021-07-01 | 美商建南德克公司 | Cd8 binding agents and uses thereof |
EP4048693A1 (en) | 2019-09-27 | 2022-08-31 | F. Hoffmann-La Roche AG | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
CN114728936A (en) | 2019-10-29 | 2022-07-08 | 豪夫迈·罗氏有限公司 | Bifunctional compounds for the treatment of cancer |
MX2022005400A (en) | 2019-11-06 | 2022-05-24 | Genentech Inc | Diagnostic and therapeutic methods for treatment of hematologic cancers. |
EP4058435A1 (en) | 2019-11-13 | 2022-09-21 | Genentech, Inc. | Therapeutic compounds and methods of use |
TW202128767A (en) | 2019-12-13 | 2021-08-01 | 美商建南德克公司 | Anti-ly6g6d antibodies and methods of use |
EP4076667A1 (en) | 2019-12-20 | 2022-10-26 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
EP4096646A1 (en) | 2020-01-27 | 2022-12-07 | Genentech, Inc. | Methods for treatment of cancer with an anti-tigit antagonist antibody |
WO2021194481A1 (en) | 2020-03-24 | 2021-09-30 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
WO2021177980A1 (en) | 2020-03-06 | 2021-09-10 | Genentech, Inc. | Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist |
WO2021202959A1 (en) | 2020-04-03 | 2021-10-07 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
JP2023523450A (en) | 2020-04-28 | 2023-06-05 | ジェネンテック, インコーポレイテッド | Methods and compositions for non-small cell lung cancer immunotherapy |
MX2022015877A (en) | 2020-06-16 | 2023-01-24 | Genentech Inc | Methods and compositions for treating triple-negative breast cancer. |
EP4168118A1 (en) | 2020-06-18 | 2023-04-26 | Genentech, Inc. | Treatment with anti-tigit antibodies and pd-1 axis binding antagonists |
US11787775B2 (en) | 2020-07-24 | 2023-10-17 | Genentech, Inc. | Therapeutic compounds and methods of use |
WO2022031749A1 (en) | 2020-08-03 | 2022-02-10 | Genentech, Inc. | Diagnostic and therapeutic methods for lymphoma |
WO2022036146A1 (en) | 2020-08-12 | 2022-02-17 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
KR20230094198A (en) | 2020-09-23 | 2023-06-27 | 에라스카, 아이엔씨. | Tricyclic pyridones and pyrimidones |
AU2021358031A1 (en) | 2020-10-05 | 2023-05-04 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
US20230107642A1 (en) | 2020-12-18 | 2023-04-06 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
PE20231505A1 (en) | 2021-02-12 | 2023-09-26 | Hoffmann La Roche | BICYCLIC TETRAHYDROAZEPINE DERIVATIVES FOR THE TREATMENT OF CANCER |
KR20240026948A (en) | 2021-05-25 | 2024-02-29 | 에라스카, 아이엔씨. | Sulfur-containing heteroaromatic tricyclic KRAS inhibitor |
US20240293558A1 (en) | 2021-06-16 | 2024-09-05 | Erasca, Inc. | Kras inhibitor conjugates |
TW202321261A (en) | 2021-08-10 | 2023-06-01 | 美商伊瑞斯卡公司 | Selective kras inhibitors |
TW202340212A (en) | 2021-11-24 | 2023-10-16 | 美商建南德克公司 | Therapeutic compounds and methods of use |
EP4436957A1 (en) | 2021-11-24 | 2024-10-02 | Genentech, Inc. | Therapeutic indazole compounds and methods of use in the treatment of cancer |
AU2022450448A1 (en) | 2022-04-01 | 2024-10-10 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2023219613A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2023240058A2 (en) | 2022-06-07 | 2023-12-14 | Genentech, Inc. | Prognostic and therapeutic methods for cancer |
WO2024015897A1 (en) | 2022-07-13 | 2024-01-18 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202413433A (en) | 2022-07-19 | 2024-04-01 | 美商建南德克公司 | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2024033388A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydrothiazepine derivatives |
WO2024033458A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydroazepine derivatives |
WO2024033389A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydrothiazepine derivatives |
TW202417439A (en) | 2022-08-11 | 2024-05-01 | 瑞士商赫孚孟拉羅股份公司 | Bicyclic tetrahydrothiazepine derivatives |
WO2024085242A2 (en) | 2022-10-21 | 2024-04-25 | Kawasaki Institute Of Industrial Promotion | Non-fouling or super stealth vesicle |
WO2024091991A1 (en) | 2022-10-25 | 2024-05-02 | Genentech, Inc. | Therapeutic and diagnostic methods for multiple myeloma |
WO2024173842A1 (en) | 2023-02-17 | 2024-08-22 | Erasca, Inc. | Kras inhibitors |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760041A (en) * | 1996-02-05 | 1998-06-02 | American Cyanamid Company | 4-aminoquinazoline EGFR Inhibitors |
-
1998
- 1998-11-04 KR KR1020007004883A patent/KR20010031813A/en not_active Application Discontinuation
- 1998-11-04 PL PL98340800A patent/PL340800A1/en unknown
- 1998-11-04 AU AU13087/99A patent/AU1308799A/en not_active Abandoned
- 1998-11-04 HU HU0004286A patent/HUP0004286A3/en unknown
- 1998-11-04 CA CA002306155A patent/CA2306155A1/en not_active Abandoned
- 1998-11-04 CN CN98810806A patent/CN1278176A/en active Pending
- 1998-11-04 EP EP98956600A patent/EP1039910A1/en not_active Withdrawn
- 1998-11-04 NZ NZ503991A patent/NZ503991A/en unknown
- 1998-11-04 WO PCT/US1998/023549 patent/WO1999024037A1/en not_active Application Discontinuation
- 1998-11-04 JP JP2000520129A patent/JP2001522802A/en active Pending
- 1998-11-04 IL IL13562298A patent/IL135622A0/en unknown
- 1998-11-04 BR BR9814116-3A patent/BR9814116A/en not_active IP Right Cessation
- 1998-11-05 ZA ZA9810134A patent/ZA9810134B/en unknown
- 1998-11-05 AR ARP980105592A patent/AR016415A1/en unknown
-
2000
- 2000-04-27 NO NO20002166A patent/NO20002166L/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9924037A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1999024037A1 (en) | 1999-05-20 |
CN1278176A (en) | 2000-12-27 |
NO20002166L (en) | 2000-06-28 |
CA2306155A1 (en) | 1999-05-20 |
AU1308799A (en) | 1999-05-31 |
AR016415A1 (en) | 2001-07-04 |
HUP0004286A3 (en) | 2002-01-28 |
NZ503991A (en) | 2001-11-30 |
HUP0004286A2 (en) | 2001-11-28 |
JP2001522802A (en) | 2001-11-20 |
PL340800A1 (en) | 2001-02-26 |
IL135622A0 (en) | 2001-05-20 |
NO20002166D0 (en) | 2000-04-27 |
BR9814116A (en) | 2000-10-03 |
KR20010031813A (en) | 2001-04-16 |
ZA9810134B (en) | 2000-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999024037A1 (en) | Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps | |
CA2288705C (en) | Use of quinazoline compounds for the treatment of polycystic kidney disease | |
JP3950337B2 (en) | Malignant tumor treatment | |
US5760041A (en) | 4-aminoquinazoline EGFR Inhibitors | |
US5929080A (en) | Method of treating polycystic kidney disease | |
WO2016155545A1 (en) | Sulfamyl-containing 1,2,5-oxadiazole derivative, preparation method therefor and use thereof in pharmaceuticals | |
JP2003507342A (en) | Compositions containing NSAIDs and EGFR kinase inhibitors for treatment or suppression of colon polyps and colorectal cancer | |
JP4828142B2 (en) | Novel fused pyrazolyl compounds | |
CN109574936B (en) | Hydroxamic acid compound with HDAC6 inhibitory activity and application thereof | |
WO2000047206A1 (en) | Use of pyrrolidine derivatives for the manufacture of a pharmaceutical composition for the treatment or prophylaxis of obesity or appetite regulation | |
JP2010070514A (en) | Pyrazole derivative and its pharmaceutical application | |
CN108503604B (en) | (4-alkyl-5-acyl-2-thiazole) hydrazone derivatives and medical application thereof | |
CN107987033B (en) | Application of vanillin and isomer thereof in preparation of NA inhibitor | |
CN103435561B (en) | A kind of Novel D-amino acid oxidase inhibitor and preparation thereof and application | |
US6323209B1 (en) | Method of treating or inhibiting colonic polyps | |
CN108047160B (en) | 2- (2-benzylhydrazono) -5-acylthiazole and medical application thereof | |
US8513267B2 (en) | 4-anilinoquinazoline derivatives with adenosine-kinase inhibitor properties | |
MXPA00004304A (en) | Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps | |
WO2010083649A1 (en) | Bisarylurea derivatives and their use | |
CN111909099B (en) | Pyrimidine hydrazone derivatives, and preparation method and application thereof | |
CZ20001660A3 (en) | Pharmaceutical preparation | |
JPH10212235A (en) | Antitumor medicine | |
WO2008046242A1 (en) | The novel quinazoline derivatives,preparation methods and uses thereof | |
CN109836356B (en) | Aryl methyl ether derivative and application thereof | |
EP3630730B1 (en) | Polysubstituted pyrimidines inhibiting the formation of prostaglandin e2, a method of production thereof and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000417 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20000417;LT PAYMENT 20000417;LV PAYMENT 20000417;RO PAYMENT 20000417;SI PAYMENT 20000417 |
|
17Q | First examination report despatched |
Effective date: 20010808 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040311 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1029055 Country of ref document: HK |