EP1039577B1 - Radar absorbing laminated glazing - Google Patents

Radar absorbing laminated glazing Download PDF

Info

Publication number
EP1039577B1
EP1039577B1 EP00105636A EP00105636A EP1039577B1 EP 1039577 B1 EP1039577 B1 EP 1039577B1 EP 00105636 A EP00105636 A EP 00105636A EP 00105636 A EP00105636 A EP 00105636A EP 1039577 B1 EP1039577 B1 EP 1039577B1
Authority
EP
European Patent Office
Prior art keywords
layer
layers
laminated glass
distance
electromagnetic radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00105636A
Other languages
German (de)
French (fr)
Other versions
EP1039577A2 (en
EP1039577A3 (en
Inventor
Andreas Dr. Frye
Robert Kebel
Heimfried Dr. Gerke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19929081A external-priority patent/DE19929081C2/en
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1039577A2 publication Critical patent/EP1039577A2/en
Publication of EP1039577A3 publication Critical patent/EP1039577A3/en
Application granted granted Critical
Publication of EP1039577B1 publication Critical patent/EP1039577B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/18Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes against harmful radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the invention relates to a radar-absorbing laminated glass pane, consisting of at least three interconnected glass layers, wherein in the area the outer pane is a layer of parallel wire-shaped electrical conductors is provided, which at a certain angle to the polarization direction of the incident electromagnetic radiation are arranged.
  • a similar construction of a window glazing with radar absorbing properties has already become known from DE 42 27 032 C1.
  • This consists from an outer pane, designed as a joined double pane may be, in which a layer arranged with parallel wire-shaped conductors is.
  • the glazing is built on the principle of Jaumannabsorbers, i.e. the portion of the incident reflected in the area of the outer pane electromagnetic radiation is that portion of the radiation that is emitted by the im Distance of about 1 ⁇ 4 of the operating wavelength arranged reflective layer superimposed on the inner disk, due to the antiphase of both parts an extinction takes place.
  • the glazing described has in the application proven.
  • the conductive layers are formed as gold or indium tin oxide films.
  • the spacing of the metal layers is chosen so that the laminated glass pane can work according to the Jaumann principle.
  • a disadvantage of this known design a radar-absorbing laminated glass pane is the impairment the transparency in the visible range due to the surface-applied metallic Layers.
  • the object of the invention is therefore a radar-absorbing laminated glass pane to create a more compact design and a higher Transparency over known embodiments, which can be easily produced and is controllable as a finished product, and in a single laminated glass allows adaptation to the conditions given at the installation site.
  • the sole figure of the drawing shows a section through a laminated glass pane with three discs (1, 2, 3), by means of unspecified adhesive layers connected to each other.
  • adhesive layers are a first Layer A and a second layer B of parallel filamentary electrical Ladders L are provided.
  • the thickness of the outer Disc 1 is about 3 - 6 mm, the middle disc 2 about 10 - 18 mm and the inner disk 3 about 3 - 6 mm.
  • the distance d between two adjacent electrical conductor L of the first layer A is selected in the range 10 - 22 mm.
  • the distance d of two adjacent electrical Head L of layer B is 16-22 mm.
  • the diameter of the thread-like electrical conductor L should be less than 0.1 mm, so that the optical transparency is not is significantly restricted.
  • the dimensioning of the distance d of the parallel thread-like electrical Conductor and its angle to the polarization direction of the incident electromagnetic Radiation S significantly affects the intensity of the reflection suppression.
  • the window glazing according to the invention is the functional principle used the known Jau manabsorbers, the required tuning takes place the amplitudes and phases of the respective portions of the electromagnetic radiation by means of the distance of the thread-shaped conductor L with each other and by means of the distance the first layer A to the second layer B, which through the thickness of the middle Disc is determined.
  • the dimensioning of the distances mentioned also gives the reflection factor of the laminated glass pane.
  • a surface wave resistance in the range of 40 to 800 ⁇ / is achieved.
  • a proportion R A of less than or equal to 40% of the incident electromagnetic radiation S is reflected again.
  • an equally large proportion R B is reflected at the second layer B, which is opposite to the reflected in the region of the first layer A portion R A of the electromagnetic radiation S out of phase.
  • the portions of the electromagnetic radiation S transmitted by the two layers A and B are also subject to the condition of antiphase and consequently extinguish.
  • the reflection factor generated by the parallel filamentary electrical conductors L is strongly dependent on the polarization direction of the incident electromagnetic radiation.
  • the conductor L in the embodiment in the range of 45 ° to Polarization direction arranged.
  • the location of the ladder L within the laminated glass pane is easily adaptable to the requirements during the manufacturing process.
  • the adaptation to the conditions at the installation site is achieved by the optimum angle of rotation being the predominant one Polarization direction is set.
  • the parallel thread-like Ladder L act similar to a homogeneous resistance layer and point above it In addition, a defined and adjustable surface resistance.
  • the distance d between the filamentary conductors L influences the equivalent one Sheet resistance of the window glazing. Is at an operating wavelength of 1 GHz the distance d chosen smaller than 10 mm, results in too low sheet resistance. With large wire spacing (d> 30 mm), the arrangement no longer acts homogeneous, since the Ladder L begin to act as discrete radiating elements. This worsens increasingly the reflection suppression.
  • the diameter of the thread-shaped electrical conductor L is chosen as small as possible. With a diameter in the range of 0.1 to 0.01 mm results in an excellent optical transparency of the laminated glass pane. The processing of these thin thread-like Ladder is still possible with reasonable effort.
  • the thread-like electrical conductor L is not like an array discretely distributed Radiation elements that are narrowband effective due to their frequency selectivity.
  • the entirety of the filamentary electrical conductor L acts rather than homogeneous Layer with well-defined surface conductivity and also has the Advantage of high optical transparency.
  • the first layer A has a negative phase response, whereby the electric effective reflection level shifts to the outside.
  • the second layer B has a positive phase response, which leads to the (virtual) location of the electric effective reflection plane with respect to the laminated glass pane moves inwards.
  • This particular advantage of the solution according to the invention is due to the interaction of the Wires of the layer B achieved with the wires of the layer A.
  • the phase of the of Layer B radiated portions of electromagnetic radiation is characterized by the characteristic Features of layer A, d. h., that the property of phase shift occurs at the two layers only if both layers of filamentary consist of electrical conductors.
  • the distance ⁇ / 4 of the two layers A and B is understood in this context as the electrically effective distance between the (virtual) places where the layers due to the described phase shifts be effective. Because of this property is an actual distance between the layers A and B possible, which is significantly smaller than the measure ⁇ / 4 of the operating wavelength is, although there is a ⁇ / 4 distance in terms of electrical efficiency. Thus, in the exemplary embodiment, the distance of the layer A to the layer B is 12 to real 20 mm compared to a value of ⁇ / 4 of 72 mm. The proviso after Jaumann thus becomes is applied as an active principle and is not used to define the geometric locations of Layers A and B.
  • the dielectric constant of the glass material must also be taken into account.
  • float glass was assumed to have an ⁇ R of 5.5 to 7.5.
  • the radar-absorbing laminated glass according to the invention can be easily attached adapt the local conditions of buildings. However, it is not excluded This construction also in mobile devices such as motor vehicles or aircraft Application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The panel has at least three connected glass layers (1-3) with a layer of parallel electrical conductors (A) near the outer panel and at a defined angle to the direction of polarisation of the incident electromagnetic radiation. Layers (A,B) of fibre-shaped conductors are arranged between the central panel (2) and the outer (1) and inner (3) panels and at a distance apart so that the components radiated inwards and outwards differ in phase by an integral multiple of a quarter wavelength of the incident radiation. The conductor separation in the outer conductor layer is less than or equal to that in the inner layer.

Description

Die Erfindung betrifft eine radarabsorbierende Verbundglasscheibe, bestehend aus wenigstens drei miteinander verbundenen Glasschichten, wobei im Bereich der Außenscheibe eine Schicht von parallelen drahtförmigen elektrischen Leitern vorgesehen ist, die in einem bestimmten Winkel zur Polarisationsrichtung der einfallenden elektromagnetischen Strahlung angeordnet sind.The invention relates to a radar-absorbing laminated glass pane, consisting of at least three interconnected glass layers, wherein in the area the outer pane is a layer of parallel wire-shaped electrical conductors is provided, which at a certain angle to the polarization direction of the incident electromagnetic radiation are arranged.

Eine ähnliche Bauweise einer Fensterverglasung mit radarabsorbierenden Eigenschaften ist bereits aus der DE 42 27 032 C1 bekannt geworden. Diese besteht aus einer Außenscheibe, die als zusammengefügte Doppelscheibe ausgeführt sein kann, in der eine Schicht mit parallel verlaufenden drahtförmigen Leitern angeordnet ist. Die Verglasung ist nach dem Prinzip des Jaumannabsorbers aufgebaut, d.h. der im Bereich der Außenscheibe reflektierte Anteil der einfallenden elektromagnetischen Strahlung wird derjenige Anteil der Strahlung, der von der im Abstand von etwa ¼ der Betriebswellenlänge angeordneten Reflexionsschicht auf der Innenscheibe überlagert, wobei aufgrund der Gegenphasigkeit beider Anteile eine Auslöschung stattfindet. Die beschriebene Verglasung hat sich in der Anwendung bewährt. Bei der Herstellung derartiger Verglasungen ergibt sich jedoch das Problem, dass die beiden Schichten, die jeweils einen definierten Anteil der einfallenden elektromagnetischen Strahlung reflektieren, in einem größeren Abstand angeordnet werden müssen, der in der Regel eine zweischichtige Verglasung mit eingeschlossener Luftschicht erfordert. Außerdem ist es nicht in jedem Anwendungsfall erwünscht, dass eine metallische Reflexionsschicht auf einer der Scheiben aufgebracht ist, da hierdurch der Grad der Transparenz der Verglasung beeinflusst wird.A similar construction of a window glazing with radar absorbing properties has already become known from DE 42 27 032 C1. This consists from an outer pane, designed as a joined double pane may be, in which a layer arranged with parallel wire-shaped conductors is. The glazing is built on the principle of Jaumannabsorbers, i.e. the portion of the incident reflected in the area of the outer pane electromagnetic radiation is that portion of the radiation that is emitted by the im Distance of about ¼ of the operating wavelength arranged reflective layer superimposed on the inner disk, due to the antiphase of both parts an extinction takes place. The glazing described has in the application proven. In the manufacture of such glazings arises, however the problem is that the two layers, each having a defined share of reflect incident electromagnetic radiation at a greater distance must be arranged, which is usually a two-layer glazing with trapped air layer required. Besides, it's not in everyone Use case that a metallic reflection layer on one of Washers is applied, as a result of the degree of transparency of the glazing being affected.

Ein weiteres Beispiel für eine solche Verbundglasscheibe ist in EP 0 681 340 offenbart. Another example of such a laminated glass pane is disclosed in EP 0 681 340.

Aus der US-A 5 358 787 (D1) ist eine radarabsorbierende Verbundglasscheibe offenbart, die zwei leitfähigen Schichten zwischen insgesamt drei Glasschichten aufweist und wobei dort der Abstand der leitfähigen Schichten entsprechend dem Prinzip des Jaumann-Absorbers gewählt wurde.From US-A 5 358 787 (D1) is a radar absorbing laminated glass pane discloses the two conductive layers between a total of three layers of glass and wherein there the distance of the conductive layers was chosen according to the principle of the Jaumann absorber.

Die leitfähigen Schichten sind als Gold oder Indium-Zinn-Oxid-Filme ausgebildet. Der Abstand der Metallschichten ist so gewählt, dass die Verbundglasscheibe nach dem Jaumann-Prinzip arbeiten kann. Nachteilig an dieser bekannten Ausführung einer radarabsorbierenden Verbundglasscheibe ist die Beeinträchtigung der Transparenz im sichtbaren Bereich durch die flächig aufgebrachten metallischen Schichten.The conductive layers are formed as gold or indium tin oxide films. The spacing of the metal layers is chosen so that the laminated glass pane can work according to the Jaumann principle. A disadvantage of this known design a radar-absorbing laminated glass pane is the impairment the transparency in the visible range due to the surface-applied metallic Layers.

Aufgabe der Erfindung ist es deshalb, eine radarabsorbierende Verbundglasscheibe zu schaffen, die eine kompaktere Bauweise erlaubt und eine höhere Transparenz gegenüber bekannten Ausführungsformen aufweist, die leicht herstellbar und als Fertigprodukt kontrollierbar ist, und die in einem einzigen Verbundglas eine Anpassung an die am Einbauort gegebenen Verhältnisse ermöglicht.The object of the invention is therefore a radar-absorbing laminated glass pane to create a more compact design and a higher Transparency over known embodiments, which can be easily produced and is controllable as a finished product, and in a single laminated glass allows adaptation to the conditions given at the installation site.

Diese Aufgabe wird dadurch gelöst, dass zwei Schichten fadenförmiger elektrischer Leiter zwischen den Scheiben eines dreischichtigen Verbundglases angeordnet sind, deren Abstand so bemessen ist, dass sowohl die nach außen wie nach innen abgestrahlten Anteile der einfallenden elektromagnetischen Strahlung sich in der Phase um n x λ/4 (λ = Wellenlänge) unterscheiden, wobei der Abstand der einzelnen fadenförmigen Leiter in der ersten Schicht kleiner oder gleich dem Abstand der einzelnen fadenförmigen Leiter in der zweiten Schicht ist. Weitere Ausgestaltungsformen der Erfindung sind in den Unteransprüchen beschrieben. This object is achieved in that two layers of filamentary electrical Ladder between the panes of a three-layer laminated glass are arranged, whose distance is such that both the outward like inward radiated portions of the incident electromagnetic Radiation differ in phase by n x λ / 4 (λ = wavelength), wherein the distance of the individual thread-shaped conductors in the first layer is smaller or is equal to the distance of the individual thread-shaped conductors in the second layer. Further embodiments of the invention are described in the subclaims.

Die besonderen Vorteile der erfindungsgemäßen Bauweise liegen einmal darin, dass gegenüber der bekannten Bauform eine wesentlich dünnere Ausführung der radarabsorbierenden Verbundglasscheibe erzielt wird, die sich auch durch vereinfachte Herstellbarkeit auszeichnet, und zum anderen darin, dass aufgrund der phasenschiebenden Eigenschaft jeder der beiden Leiterschichten sowohl die in Einfallsrichtung der elektromagnetischen Strahlung reflektierten Anteile ausgelöscht werden und zum anderen sich auch die transmittierten Anteile der Strahlung aufgrund des gewählten Abstandes zwischen der äußeren und der inneren Schicht der fadenförmigen elektrischen Leiter gegenseitig aufheben. Deshalb wird neben einer hohen Reflexionsdämpfung auch eine hohe Transmissionsdämpfung erzielt, da der Durchmesser der fadenförmigen elektrischen Leiter dünn ausgebildet sein kann und somit nur einen minimalen Bruchteil der Gesamtfläche der Verbundglasscheibe einnimmt (eine hohe Transparenz der Verbundglasscheibe für sichtbares Licht wird erzielt).The particular advantages of the construction according to the invention are that compared to the known design a much thinner version of radar-absorbing laminated glass pane is achieved, which is also simplified by Manufacturability, and, secondly, that due to the phase-shifting property of each of the two conductor layers both in Incident direction of the electromagnetic radiation reflected components extinguished and on the other hand also the transmitted parts of the radiation due to the selected distance between the outer and the inner Layer of filamentary electrical conductors cancel each other. That's why In addition to a high reflection loss and a high transmission loss achieved, since the diameter of the filamentary electrical conductors formed thin and thus only a minimal fraction of the total area of the laminated glass pane occupies (a high transparency of the laminated glass for visible light is achieved).

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch vereinfacht dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention is schematically simplified in the drawing and will be described in more detail below.

Die einzige Figur der Zeichnung zeigt einen Schnitt durch eine Verbundglasscheibe mit drei Scheiben (1, 2, 3), die mittels nicht näher bezeichneten Klebeschichten miteinander verbunden sind. In den Klebeschichten sind eine erste Schicht A und eine zweite Schicht B aus parallelen fadenförmigen elektrischen Leitern L vorgesehen.The sole figure of the drawing shows a section through a laminated glass pane with three discs (1, 2, 3), by means of unspecified adhesive layers connected to each other. In the adhesive layers are a first Layer A and a second layer B of parallel filamentary electrical Ladders L are provided.

Bei einer Dimensionierung der Verbundglasscheibe für eine Betriebsfrequenz von 1 GHz ergeben sich folgende vorteilhafte Bemaßungen. Die Dicke der äußeren Scheibe 1 beträgt etwa 3 - 6 mm, die der mittleren Scheibe 2 etwa 10 - 18 mm und die der inneren Scheibe 3 etwa 3 - 6 mm. Der Abstand d zweier benachbarter elektrischer Leiter L der ersten Schicht A wird im Bereich 10 - 22 mm gewählt. Der Abstand d zweier benachbarter elektrischer Leiter L der Schicht B beträgt 16 - 22 mm. Der Durchmesser der fadenförmigen elektrischen Leiter L soll kleiner als 0,1 mm sein, damit die optische Transparenz nicht wesentlich eingeschränkt wird.When dimensioning the laminated glass for an operating frequency of 1 GHz results in the following advantageous dimensions. The thickness of the outer Disc 1 is about 3 - 6 mm, the middle disc 2 about 10 - 18 mm and the inner disk 3 about 3 - 6 mm. The distance d between two adjacent electrical conductor L of the first layer A is selected in the range 10 - 22 mm. The distance d of two adjacent electrical Head L of layer B is 16-22 mm. The diameter of the thread-like electrical conductor L should be less than 0.1 mm, so that the optical transparency is not is significantly restricted.

Die Dimensionierung des Abstandes d der parallel verlaufenden fadenförmigen elektrischen Leiter und deren Winkel zur Polarisationsrichtung der einfallenden elektromagnetischen Strahlung S beeinflussen wesentlich die Intensität der Reflexionsunterdrückung. Unter der Voraussetzung, dass die erfindungsgemäße Fensterverglasung das Funktionsprinzip des bekannten Jau-mannabsorbers benutzt, erfolgt die dazu erforderliche Abstimmung der Amplituden und Phasen der jeweiligen Anteile der elektromagnetischen Strahlung mittels des Abstandes der fadenförmigen Leiter L untereinander und mittels des Abstandes der ersten Schicht A zu der zweiten Schicht B, welcher durch die Dicke der mittleren Scheibe bestimmt ist.The dimensioning of the distance d of the parallel thread-like electrical Conductor and its angle to the polarization direction of the incident electromagnetic Radiation S significantly affects the intensity of the reflection suppression. Provided that the window glazing according to the invention is the functional principle used the known Jau manabsorbers, the required tuning takes place the amplitudes and phases of the respective portions of the electromagnetic radiation by means of the distance of the thread-shaped conductor L with each other and by means of the distance the first layer A to the second layer B, which through the thickness of the middle Disc is determined.

Aus der Dimensionierung der genannten Abstände ergibt sich auch der Reflexionsfaktor der Verbundglasscheibe. Im Rahmen der vorgeschlagenen Dimensionierung wird ein Oberflächenwellenwiderstand im Bereich von 40 bis 800 Ω/ erreicht. Dabei wird ein Anteil RA von kleiner oder gleich 40 % der einfallenden elektromagnetischen Strahlung S wieder reflektiert. Von dem durch die erste Schicht A hindurchtretenden Anteil TA der Strahlung S wird an der zweiten Schicht B ebenso ein gleichgroßer Anteil RB reflektiert, der zu dem im Bereich der ersten Schicht A reflektierten Anteil RA der elektromagnetischen Strahlung S gegenphasig ist. Damit sind die Bedingungen für eine Absorption nach dem Jaumannprinzip erfüllt. Auch die von den beiden Schichten A und B transmittierten Anteile der elektromagnetischen Strahlung S unterliegen der Bedingung der Gegenphasigkeit und löschen sich demzufolge aus.The dimensioning of the distances mentioned also gives the reflection factor of the laminated glass pane. Within the proposed dimensioning, a surface wave resistance in the range of 40 to 800 Ω / is achieved. In this case, a proportion R A of less than or equal to 40% of the incident electromagnetic radiation S is reflected again. From the passing through the first layer A portion T A of the radiation S, an equally large proportion R B is reflected at the second layer B, which is opposite to the reflected in the region of the first layer A portion R A of the electromagnetic radiation S out of phase. Thus, the conditions for absorption according to the Jaumann principle are met. The portions of the electromagnetic radiation S transmitted by the two layers A and B are also subject to the condition of antiphase and consequently extinguish.

Der durch die parallelen fadenförmigen elektrischen Leiter L erzeugte Reflexionsfaktor ist stark abhängig von der Polarisationsrichtung der einfallenden elektromagnetischen Strahlung. Aus diesem Grund sind die Leiter L im Ausführungsbeispiel im Bereich um 45° zur Polarisationsrichtung angeordnet. Die Lage der Leiter L innerhalb der Verbundglasscheibe ist beim Herstellungsprozess leicht an die Anforderungen anpassbar. Die Anpassung an die Verhältnisse am Einbauort erfolgt dadurch, dass der optimale Drehwinkel zur vorherrschenden Polarisationsrichtung eingestellt wird. Die parallel verlaufenden fadenförmigen Leiter L wirken dabei ähnlich wie eine homogene Widerstandsschicht und weisen darüber hinaus einen definierten und einstellbaren Oberflächenwiderstand auf.The reflection factor generated by the parallel filamentary electrical conductors L is strongly dependent on the polarization direction of the incident electromagnetic radiation. For this reason, the conductor L in the embodiment in the range of 45 ° to Polarization direction arranged. The location of the ladder L within the laminated glass pane is easily adaptable to the requirements during the manufacturing process. The adaptation to the conditions at the installation site is achieved by the optimum angle of rotation being the predominant one Polarization direction is set. The parallel thread-like Ladder L act similar to a homogeneous resistance layer and point above it In addition, a defined and adjustable surface resistance.

Der Abstand d der fadenförmigen Leiter L untereinander beeinflusst den äquivalenten Flächenwiderstand der Fensterverglasung. Wird bei einer Betriebswellenlänge von 1 GHz der Abstand d kleiner als 10 mm gewählt, ergibt sich ein zu niedriger Flächenwiderstand. Bei großem Drahtabstand (d > 30 mm) wirkt die Anordnung nicht mehr homogen, da die Leiter L als diskrete Strahlungselemente zu wirken beginnen. Dadurch verschlechtert sich zunehmend die Reflexionsunterdrückung.The distance d between the filamentary conductors L influences the equivalent one Sheet resistance of the window glazing. Is at an operating wavelength of 1 GHz the distance d chosen smaller than 10 mm, results in too low sheet resistance. With large wire spacing (d> 30 mm), the arrangement no longer acts homogeneous, since the Ladder L begin to act as discrete radiating elements. This worsens increasingly the reflection suppression.

Der Durchmesser der fadenförmigen elektrischen Leiter L wird möglichst klein gewählt. Bei einem Durchmesser im Bereich von 0,1 bis 0,01 mm ergibt sich eine hervorragende optische Transparenz der Verbundglasscheibe. Die Verarbeitung dieser dünnen fadenförmigen Leiter ist noch mit vertretbarem Aufwand möglich.The diameter of the thread-shaped electrical conductor L is chosen as small as possible. With a diameter in the range of 0.1 to 0.01 mm results in an excellent optical transparency of the laminated glass pane. The processing of these thin thread-like Ladder is still possible with reasonable effort.

In der angegebenen Dimensionierung und der vorgeschlagenen Anordnung wirken die fadenförmigen elektrischen Leiter L nicht wie eine Anordnung flächig verteilter diskreter Strahlungselemente, die aufgrund ihrer Frequenzselektivität schmalbandig wirksam sind. Die Gesamtheit der fadenförmigen elektrischen Leiter L wirkt vielmehr als homogene Schicht mit genau definierter Oberflächenleitfähigkeit und besitzt darüber hinaus noch den Vorteil der hohen optischen Transparenz. Im Detail ist natürlich davon auszugehen, dass der einzelne fadenförmige elektrische Leiter L ähnlich einer mittels der einfallenden elektromagnetischen Strahlung angeregten, rundstrahlenden Antenne arbeitet.In the specified dimensions and the proposed arrangement, the thread-like electrical conductor L is not like an array discretely distributed Radiation elements that are narrowband effective due to their frequency selectivity. The entirety of the filamentary electrical conductor L acts rather than homogeneous Layer with well-defined surface conductivity and also has the Advantage of high optical transparency. In detail, of course, it can be assumed that the single filamentary electrical conductor L similar to one by means of the incident electromagnetic Radiation excited, omnidirectional antenna works.

Die erste Schicht A weist dabei einen negativen Phasengang auf, wodurch sich die elektrisch wirksame Reflexionsebene etwas nach außen verschiebt. Die zweite Schicht B weist einen positiven Phasengang auf, der dazu führt, dass sich der (virtuelle) Ort der elektrisch wirksame Reflexionsebene bezüglich der Verbundglasscheibe nach innen verschiebt. Dieser besondere Vorteil der erfindungsgemäßen Lösung wird durch die Wechselwirkung der Drähte der Schicht B mit den Drähten der Schicht A erreicht. Die Phasenlage der von der Schicht B abgestrahlten Anteile der elektromagnetischen Strahlung wird durch die charakteristischen Merkmale der Schicht A beeinflusst, d. h., dass die Eigenschaft der Phasenverschiebung an den beiden Schichten nur dann auftritt, wenn beide Schichten aus fadenförmigen elektrischen Leitern bestehen. Der Abstand λ/4 der beiden Schichten A und B versteht sich in diesem Zusammenhang als der elektrisch wirksame Abstand zwischen den (virtuellen) Orten, an denen die Schichten aufgrund der beschriebenen Phasenverschiebungen wirksam werden. Aufgrund dieser Eigenschaft ist ein tatsächlicher Abstand zwischen den Schichten A und B möglich, der deutlich kleiner als das Maß λ/4 der Betriebswellenlänge ist, obwohl bezüglich der elektrischen Wirksamkeit ein λ/4-Abstand vorliegt. Somit beträgt im Ausführungsbeispiel der Abstand der Schicht A zur Schicht B real 12 bis 20 mm gegenüber einem Wert von λ/4 von 72 mm. Die Maßgabe nach Jaumann wird somit als Wirkprinzip angewendet und dient nicht zur Festlegung der geometrischen Orte der Schichten A und B.The first layer A has a negative phase response, whereby the electric effective reflection level shifts to the outside. The second layer B has a positive phase response, which leads to the (virtual) location of the electric effective reflection plane with respect to the laminated glass pane moves inwards. This particular advantage of the solution according to the invention is due to the interaction of the Wires of the layer B achieved with the wires of the layer A. The phase of the of Layer B radiated portions of electromagnetic radiation is characterized by the characteristic Features of layer A, d. h., that the property of phase shift occurs at the two layers only if both layers of filamentary consist of electrical conductors. The distance λ / 4 of the two layers A and B is understood in this context as the electrically effective distance between the (virtual) places where the layers due to the described phase shifts be effective. Because of this property is an actual distance between the layers A and B possible, which is significantly smaller than the measure λ / 4 of the operating wavelength is, although there is a λ / 4 distance in terms of electrical efficiency. Thus, in the exemplary embodiment, the distance of the layer A to the layer B is 12 to real 20 mm compared to a value of λ / 4 of 72 mm. The proviso after Jaumann thus becomes is applied as an active principle and is not used to define the geometric locations of Layers A and B.

Darüber hinaus muss bei der Dimensionierung auch die Dielektrizitätskonstante des Glasmaterials berücksichtigt werden. Im Ausführungsbeispiel wurde dabei von Floatglas mit einem εR von 5,5 bis 7,5 ausgegangen.In addition, when dimensioning, the dielectric constant of the glass material must also be taken into account. In the exemplary embodiment, float glass was assumed to have an ε R of 5.5 to 7.5.

Das erfindungsgemäße radarabsorbierende Verbundglas lässt sich auf einfache Weise an die örtlichen Gegebenheiten bei Gebäuden anpassen. Es ist jedoch nicht ausgeschlossen, diese Bauweise auch bei beweglichen Geräten wie Kraftfahrzeugen oder Flugzeugen zur Anwendung zu bringen.The radar-absorbing laminated glass according to the invention can be easily attached adapt the local conditions of buildings. However, it is not excluded This construction also in mobile devices such as motor vehicles or aircraft Application.

Claims (4)

  1. Radar-absorbing laminated glass pane, consisting of at least three glass layers (1, 2, 3) that are connected together, with there being provided in the region of the outer pane (1) a first layer (A) of parallel filamentary electrical conductors (L) arranged at a certain angle (α) in relation to the direction of polarization of the incident electromagnetic radiation, characterised by the following features
    a) the first layer (A) of parallel filamentary electrical conductors (L) is arranged between the outer pane (1) and the central pane (2), and a second layer (B) of filamentary electrical conductors (L) is provided between the central pane (2) and the inner pane (3);
    b) the distance between the layers (A, B) is dimensioned so that both the portions (RA, RB) of the incident electromagnetic radiation that are reflected outwards from the two layers and the portions (TA, TB) of the incident electromagnetic radiation that are radiated inwards differ in phase by in each case n x λ/4 (λ = wavelength) in such a way that they cancel each other out;
    c) the distance (d) between the individual filamentary electrical conductors (L) of the first layer (A) is smaller than or equal to the distance between the individual filamentary conductors of the second layer (B).
  2. Radar-absorbing laminated glass pane according to claim 1, characterised in that the longitudinal axes of the parallel filamentary electrical conductors (L) are arranged at a certain angle (α) in relation to the direction of polarization of the incident electromagnetic radiation, preferably in the range of 20° to 90°.
  3. Radar-absorbing laminated glass pane according to claim 1, characterised in that given a frequency of 1 GHz the distance (d) in the first layer (A) amounts to 10 - 22 mm and in the second layer (B) amounts to 16 - 22 mm.
  4. Radar-absorbing laminated glass pane according to at least one of claims 1 to 3, characterised in that the distances between the filamentary conductors (L) of the layers (A and B) are selected so that a surface resistance of the laminated glass in the range of 40 to 800 Ω/□ results.
EP00105636A 1999-03-26 2000-03-16 Radar absorbing laminated glazing Expired - Lifetime EP1039577B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19913827 1999-03-26
DE19913827 1999-03-26
DE19929081 1999-06-25
DE19929081A DE19929081C2 (en) 1999-03-26 1999-06-25 Radar-absorbing laminated glass

Publications (3)

Publication Number Publication Date
EP1039577A2 EP1039577A2 (en) 2000-09-27
EP1039577A3 EP1039577A3 (en) 2003-01-02
EP1039577B1 true EP1039577B1 (en) 2005-07-20

Family

ID=26052608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105636A Expired - Lifetime EP1039577B1 (en) 1999-03-26 2000-03-16 Radar absorbing laminated glazing

Country Status (2)

Country Link
EP (1) EP1039577B1 (en)
AT (1) ATE300103T1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409944A (en) * 2011-11-15 2012-04-11 深圳市广安消防装饰工程有限公司 Fireproof door with obvious guide effect
CN103046849B (en) * 2012-12-31 2015-04-22 深圳市广安消防装饰工程有限公司 Fireproof door with emergency illumination function
CN111900548B (en) * 2020-08-28 2021-06-25 西安电子科技大学 Ultra-wideband low-scattering metamaterial based on combination of wave-absorbing material and super surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918383A1 (en) * 1989-06-06 1990-12-20 Messerschmitt Boelkow Blohm FACADE CONSTRUCTION OF BUILDINGS
DE4101074C2 (en) * 1991-01-16 1994-08-25 Flachglas Ag Glazing element with low reflectance for radar radiation
US5358787A (en) * 1992-12-30 1994-10-25 Westinghouse Electric Corporation RF absorptive window
JP3319147B2 (en) * 1994-04-15 2002-08-26 ティーディーケイ株式会社 Radio wave absorber
DE4416165C2 (en) * 1994-05-06 1998-10-15 Daimler Benz Aerospace Ag Radar-absorbing arrangement for window glazing or facade cladding

Also Published As

Publication number Publication date
EP1039577A2 (en) 2000-09-27
ATE300103T1 (en) 2005-08-15
EP1039577A3 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
DE69215173T2 (en) Laminated plate with low reflectivity for radio waves
DE69525402T2 (en) Glass pane permeable to electromagnetic radiation
DE69507528T2 (en) Absorber for electromagnetic waves
DE3721934C3 (en) Motor vehicle glass window antenna
DE19817712C1 (en) Transparent plate, in particular glass pane with a coating and a radiation window
DE69112174T2 (en) Vehicle window antenna.
DE69020818T2 (en) Electromagnetic shielding plate.
DE2151349C3 (en) Radar tarpaulin
DE69601819T2 (en) Vehicle glazing with an electroconductive layer
DE19508042A1 (en) Transparent, heat-reflecting coating for electrical radiation
EP0764350A1 (en) Window-mounted antenna array with a high heat-transmission attenuation factor
EP2790915B1 (en) Radar reflection damping glazing
EP1299886A2 (en) Optical component
DE4008660C2 (en)
DE19929081C2 (en) Radar-absorbing laminated glass
EP1039577B1 (en) Radar absorbing laminated glazing
EP0583557B1 (en) Window glazing
EP1778944B1 (en) Radar-screening vitrification
DE4101074C2 (en) Glazing element with low reflectance for radar radiation
DE4401675C2 (en) Insulating glass pane with high reflection attenuation for radar radiation
EP0681340B1 (en) Radar-absorbing window glazing or façade covering
DE4340907C1 (en) Window glazing
EP0446408B1 (en) Wall element minimizing radar reflections
DE19756718B4 (en) Facade panel and facade for a building wall
DE4331235C1 (en) Window glazing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20030203

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050720

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010728

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050720

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50010728

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150319

Year of fee payment: 16

Ref country code: DE

Payment date: 20150320

Year of fee payment: 16

Ref country code: LU

Payment date: 20150324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150319

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50010728

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401