EP1031901A1 - Regulator - Google Patents

Regulator Download PDF

Info

Publication number
EP1031901A1
EP1031901A1 EP20000301069 EP00301069A EP1031901A1 EP 1031901 A1 EP1031901 A1 EP 1031901A1 EP 20000301069 EP20000301069 EP 20000301069 EP 00301069 A EP00301069 A EP 00301069A EP 1031901 A1 EP1031901 A1 EP 1031901A1
Authority
EP
European Patent Office
Prior art keywords
valve
sheet
diaphragm
valve sheet
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20000301069
Other languages
German (de)
French (fr)
Inventor
Shinji c/o SMC Corp. Tsukuba Tech. Cntr Miyazoe
Masamichi c/o SMC Corp. Tsukuba Tech. Ctr Tajima
Hiroyuki c/o SMC Corp. Tsukuba Tech. Ctr Katsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Publication of EP1031901A1 publication Critical patent/EP1031901A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0655Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane
    • G05D16/0658Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane characterised by the form of the obturator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7822Reactor surface closes chamber
    • Y10T137/7823Valve head in inlet chamber
    • Y10T137/7825Rectilinear valve stem rigid with reactor surface

Definitions

  • the present invention relates to a regulator for adjusting the pressure of pressurized fluid such as compressed air.
  • Such a regulator receives pressurized fluid from an inlet port and regulates the pressure thereof to a set point at which it is discharged from an outlet port.
  • the regulator comprises a valve sheet disposed in a fluid flow path interconnecting the inlet port and the outlet port, a diaphragm movably disposed in the outlet side of the valve sheet, a poppet valve connected to the diaphragm for opening and shutting the valve sheet hole from the inlet side by movement of the diaphragm, and a pressure-adjusting spring for urging the diaphragm in the direction that the poppet valve opens the valve sheet.
  • the poppet valve opens and shuts the valve sheet to provide an opening corresponding to the difference between the force of the outlet side fluid pressure mutually inversely applied to the diaphragm and the pressure-adjusting spring force, so that the fluid pressure in the inlet side is reduced and regulated at a set point.
  • the valve sheet is attached to a body via a dish-shaped sheet holder having a central hole providing a fluid flow path and a recessed portion around the central hole.
  • the sheet holder with the valve sheet filled into the recessed portion is placed on the body, a cap is attached on the body and the body and the cap are clamped together by a nut-type clamping ring, so that the outer peripheral portion of the sheet holder is fixed between the body and the cap in a highly pressurized state while the valve sheet is filled between the sheet holder and the body in a compressed state.
  • Another object of the present invention is to allow fixing of both the diaphragm and the sheet holder in a clamped state simultaneously and securely between the body and the cap without reducing hermeticity of the diaphragm.
  • a regulator according to the present invention comprises a sheet holder fitted within the pressure chamber by clamping a fitting portion in the outer periphery thereof between the body and the cap and a valve sheet fitted between the sheet holder and the body in a compressed state, wherein a recessed groove is formed in the outer periphery of the valve sheet for absorbing excessive compressive force applied by the sheet holder.
  • the sheet holder may be clamped between the body and the cap via an elastic washer.
  • both the sheet holder and the diaphragm can be securely and simultaneously fixed in a clamped state without reducing hermeticity of the diaphragm.
  • a bead may be formed on the surface of the body abutting the valve sheet for improving hermeticity with the valve sheet.
  • the poppet valve has a conical sealing surface with a flow-restricting portion close to the center of the conical surface in a portion fitting into the valve sheet hole, the flow-restricting portion of the conical surface having a steeply inclined generating line.
  • a flow-restricting portion may be formed in part of the valve stem located on the outlet side of the valve sheet for restricting the flow of pressurized fluid by narrowing the flow path when the poppet valve fully opens.
  • a piston may be attached to the rear surface of the diaphragm while a sleeve for guiding is attached inside the cap, the piston being slidably inserted into the sleeve.
  • the diaphragm is guided by the sleeve and the piston, the displacement thereof is securely and steadily performed in the axial direction without inclination or lateral runouts, so that the poppet valve also not incline or waggle laterally, thereby resulting in improved accuracy in pressure regulation by the stable and precise opening and shutting operations. Furthermore, localized wear due to deviated contact is prevented.
  • the return spring may include at least one of a first return spring in the form of a coil spring and a second return spring in the form of a leaf spring.
  • Figs. 1 and 2 show a first embodiment of a regulator 1A which comprises a short-columnar body 2, a cylindrical cover 3 connected to the top surface of the body 2, and a nut-type clamping ring 4 for detachably connecting the cap 3 to the body 2.
  • a regulator 1A which comprises a short-columnar body 2, a cylindrical cover 3 connected to the top surface of the body 2, and a nut-type clamping ring 4 for detachably connecting the cap 3 to the body 2.
  • an inlet port “P” for introducing pressurized fluid and an outlet port “A” for discharging pressure-regulated pressurized fluid are formed on side surfaces of the body 2.
  • a valve sheet 8 is attached in a position opened to the inlet port "P".
  • the inlet port "P” communicates with the pressure chamber 7 via a valve sheet hole 9 in the center of the valve sheet 8.
  • the valve sheet 8 is circular viewing the plane having a recessed groove 8a in its outer peripheral surface for facilitating compressing deformation and is attached via a sheet holder 11.
  • the sheet holder 11 is circular-plate-shaped having a central hole 11a in the center leading to the valve sheet hole 9, a circular recess portion 11b surrounding the central hole 11a, and an annular fitting portion 11c in the outer peripheral portion.
  • the sheet holder 11 is attached between the body 2 and the cap 3 by clamping it between a step portion 2a of the body 2 for clamping and an annular clamping portion 12a of a spacer 12 forming a part of the cap 3 by the clamping ring 4 via an elastic metallic washer 13 having a U-shaped cross-section.
  • valve sheet 8 is attached in a compressed state between the recess portion 11b of the sheet holder 11 and the body 2. It is desirable that an annular bead 14 be formed on the body 2 to improve hermeticity between the body 2 and the valve sheet 8.
  • both the sheet holder 11 and a diaphragm 15, which is described later, can be securely and simultaneously fixed in a clamped state between the body 2 and the cap 3 without reducing hermeticity of the diaphragm 15.
  • the recessed groove 8a and the washer 13 are not necessarily both provided as the desired hermeticity can be achieved just by providing the recessed groove 8a.
  • numeral 11d indicates through-holes formed in the sheet holder 11 for communicating the outlet side of the valve sheet 8, which is the pressure chamber 7, with the outlet port "A".
  • the diaphragm 15 for defining the top surface of the pressure chamber 7 is attached so as to be movable toward and away from the valve sheet 8.
  • the diaphragm 15 is attached by hermetically clamping its peripheral portion between an annular clamping portion 2b of the outer periphery of the body 2 and the annular clamping portion 12a of the outer periphery of the spacer 12.
  • any one surface of those of the clamping portions 2b and 12a respectively formed on the body 2 and the spacer 12 be planar while a bead 16 be formed on the other.
  • the bead 16 is formed on the clamping portion 2b of the body 2.
  • a piston 18 In the central portion of the back of the diaphragm 15 is fitted with a piston 18 while between a step portion 3a of the cap 3 and the spacer 12 is fitted with a sleeve 19. Within the sleeve 19, the piston 18 is slidably accommodated. In the piston 18 and the sleeve 19, front-end portions 18a and 19a having smaller diameters and rear-end portions 18b and 19b having a larger diameter are respectively formed. The piston 18 and the sleeve 19 are slidably made contact with each other in the two portions 18a/19a and 18b/19b, so that the piston 18 is guided to be precisely movable only in the axial direction without inclining and lateral runouts. On the inner surface of the sleeve 19 is formed a step portion 19c as a stopper for abutting the rear-end portion 18b when the piston 18 advances fully.
  • a valve stem 21 is attached so as to protrude from the front surface of the diaphragm 15.
  • the valve stem 21 extends so as to penetrate the valve sheet hole 9 of the valve sheet 8 with a poppet valve 22 disposed at one end thereof.
  • the poppet valve 22 having a conical sealing surface 22a opens and shuts the valve sheet hole 9 from the inlet side with the sealing surface 22a by the displacement of the diaphragm 15.
  • a pressure-adjusting spring 27 for urging the piston 18 in the opening direction of the poppet valve 22 while within the sleeve 19
  • a first return valve 28 for urging the piston 18 in the closing direction of the poppet valve 22.
  • One end of the return valve 28 is retained by the smaller diameter front-end portion 19a of the sleeve 19 while the other end thereof is retained by the larger diameter rear-end portion 18b of the piston 18.
  • Any of the pressure-adjusting spring 27 and the return valve 28 is formed of a coil spring.
  • the adjusting means 25 comprises an adjusting screw 29 rotatably disposed in the central end portion of the cap 3, the above-mentioned spring seat 26 screwed to the adjusting screw 29 and movable by the rotation of the adjusting screw 29, and a dial 30 for rotationally operating the adjusting screw 29 from the outside of the cap 3.
  • the adjusting means 25 establishes the outlet fluid pressure by adjusting the urging force of the pressure-adjusting spring 27 and constitutes a pressure setting mechanism along with the pressure-adjusting spring 27 and the return valve 28.
  • the above-mentioned clamping ring 4 interconnecting the body 2 and the cap 3 comprises an annular retaining portion 4a rotatably retained to an exterior flange 32 of the cap 3 in the peripheral end portion thereof and a female thread portion 4b screwed with a male thread portion 33 of the body 2 in its outer periphery. Between the retaining portion 4a and the flange 32 of the cap 3, sliding-guiding means 34 formed of a bearing, etc., are interposed.
  • the fluid pressure in the outlet side is exerted on the diaphragm 15 to produce an operating force in the direction opposite to that by the pressure-adjusting spring 27 which in turn causes the poppet valve 22 to open the valve sheet 8 to an amount of corresponding opening to the acting force difference therebetween.
  • the poppet valve 22 opens to introduce the pressurized fluid from the inlet toward the outlet.
  • the diaphragm 15 moves away from the valve sheet 8, so that the amount of opening of the poppet valve 22 decreases.
  • the poppet valve 22 closes to set the fluid pressure in the outlet side.
  • the diaphragm 15 is guided by the sleeve 19 via the piston 18, the displacement thereof corresponding to the outlet side pressure is securely and steadily performed only in the axial direction without inclination of the axial line or lateral runouts.
  • the piston 18 and the sleeve 19 are slidably made contact with each other in plural portions such as front-end portions 18a and 19a and rear-end portions 18b and 19b, the sliding is stable and inclination of the axial line can be securely prevented.
  • the poppet valve 22 connected to the diaphragm 15 does not also incline or waggle laterally and is securely displaced only in the axial direction to open and shut the valve sheet 8, thereby resulting in improved accuracy in pressure regulation by the stable and precise opening and shutting operations. Furthermore, since localized wear due to deviated contact cannot be produced, the durability can be also increased.
  • the full advancing position of the piston 18 is defined by the step portion 19c formed on the inner surface of the sleeve 19, even when the fluid pressure of the outlet side is suddenly dropped or when the outlet side becomes under zero pressure or vacuum, troubles in that the diaphragm 15 or the piston 18 crashes on the valve sheet 8 or other members to be damaged or to produce dust can be avoided with reliability.
  • Fig. 3 shows a second embodiment of a regulator 1B.
  • a point of difference between the regulator 1B according to the second embodiment and the above described regulator 1A according to the first embodiment is that a second return spring 36 formed of a leaf spring is disposed therein besides the first return spring 28 formed of a coil spring.
  • the leaf spring is formed in an annular ring and the front-end portion of the piston 18 is fitted into and retained to the central hole 36a of the spring while the outer peripheral portion thereof is retained to the inner peripheral surface of the spacer 12. Thereby, the leaf spring is closely attached to a position of the rear of the diaphragm 15 not obstructing normal deflection of the diaphragm 15.
  • the second return spring 36 also has a function that when the diaphragm 15 is strongly urged by fluid pressure, excess deflection thereof is prevented by supporting it from the rear besides the function of urging the piston 18 in the returning direction in cooperation with the first return spring 28.
  • the first return spring 28 formed of a coil spring may be eliminated.
  • Fig. 4 shows the salient part of a regulator according to a third embodiment.
  • a flow-restricting portion is formed in the poppet valve 22 according to above-mentioned each embodiment. That is, in a portion close to the center (inside), i.e., a portion fitting into the valve sheet hole 9, on the conical sealing surface 22a of the poppet valve 22, a flow-restricting portion 22b, in which a generating line is steeply inclined, is formed.
  • valve sheet hole 9 is gradually opened owing to the flow-restricting portion 22b so that pressurized fluid is prevented from flowing into the pressure chamber 7 suddenly.
  • valve sheet hole 9 is also gradually closed owing to the flow-restricting portion 22b so that pressurized fluid is prevented from being suddenly intercepted. Consequently, not only sudden variations in pressure accompanied with opening and shutting of the poppet valve 22 are prevented but also enfolding dust due to sudden variations in flow, losing flow uniformity due to generation of turbulence, and so forth can be securely avoided.
  • the flow-restricting portion described as above may also be formed in the outlet side of the valve sheet 8. That is, as shown in Fig. 4, the flow-restricting portion 38 having a conical surface may be formed in a portion of the base end side of the valve stem 21 located in the pressure chamber 7, so that the opening area of the central hole 11a of the sheet holder 11 is throttled by the flow-restricting portion 38 when the poppet valve 22 is fully opened.
  • the flow-restricting portion 38 in the outlet side of the valve sheet 8, the flow when the poppet valve 22 is fully opened is restricted so that sudden variations in pressure can be more effectively prevented. That is, when fluid pressure in the outlet side is largely reduced and thereby the poppet valve 22 is fully opened to supply the maximum flow, enfolding dust due to sudden variations in flow, losing flow uniformity due to generation of turbulence are prone to be generated. However, the pressure rises smoothly because the opening area of the central hole 11a is throttled by the flow-restricting portion 38 to restrict the flow.
  • the flow-restricting portion 38 may be jointly formed with the flow-restricting portion 22b in the poppet valve 22 or may be formed instead of the flow-restricting portion 22b.
  • both the sheet holder and the diaphragm can be securely and simultaneously fixed in a clamped state between the body and the cap without reducing hermeticity of the diaphragm.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Safety Valves (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A regulator 1A, 1B, 1C, has a valve sheet 8 fitted via a sheet holder 11 in a compressed state. To eliminate excessive deformation of the valve sheet 8 due to a compressive reaction force of the sheet holder 11, a recessed groove 8a is formed in the outer periphery of the valve sheet 8. Compressive force applied via the sheet holder 11 is absorbed by deformation of the valve sheet 8 at the recessed groove.

Description

  • The present invention relates to a regulator for adjusting the pressure of pressurized fluid such as compressed air.
  • Such a regulator receives pressurized fluid from an inlet port and regulates the pressure thereof to a set point at which it is discharged from an outlet port. One example thereof is disclosed in United States Patent No. 5458001. The regulator comprises a valve sheet disposed in a fluid flow path interconnecting the inlet port and the outlet port, a diaphragm movably disposed in the outlet side of the valve sheet, a poppet valve connected to the diaphragm for opening and shutting the valve sheet hole from the inlet side by movement of the diaphragm, and a pressure-adjusting spring for urging the diaphragm in the direction that the poppet valve opens the valve sheet. The poppet valve opens and shuts the valve sheet to provide an opening corresponding to the difference between the force of the outlet side fluid pressure mutually inversely applied to the diaphragm and the pressure-adjusting spring force, so that the fluid pressure in the inlet side is reduced and regulated at a set point.
  • In the above-mentioned regulator, the valve sheet is attached to a body via a dish-shaped sheet holder having a central hole providing a fluid flow path and a recessed portion around the central hole. The sheet holder with the valve sheet filled into the recessed portion is placed on the body, a cap is attached on the body and the body and the cap are clamped together by a nut-type clamping ring, so that the outer peripheral portion of the sheet holder is fixed between the body and the cap in a highly pressurized state while the valve sheet is filled between the sheet holder and the body in a compressed state.
  • However, with this method of fitting the valve sheet via the sheet holder in a compressed state, the sheet holder is prone to be deformed by a compressive reaction force of the valve sheet. This is because heavy clamping of the clamping ring causes the valve sheet to be highly compressed by the sheet holder. When the deformation is excessive, hermeticity between the valve sheet and the sheet holder or the body is reduced.
  • As not only the outer peripheral portion of the sheet holder but also the outer peripheral portion of the diaphragm are simultaneously clamped between the body and the cap in a hermetic state, it is necessary that thickness of the sheet holder is controlled with high accuracy so that the clamping force to the diaphragm is not reduced by the interposition of the sheet holder, requiring troublesome processing.
  • It is an object of the present invention to provide a regulator of the type in which the valve sheet is attached via the sheet holder, which allows fitting of the valve sheet in a state of high hermeticity by eliminating excessive deformation due to a compressive reaction force.
  • Another object of the present invention is to allow fixing of both the diaphragm and the sheet holder in a clamped state simultaneously and securely between the body and the cap without reducing hermeticity of the diaphragm.
  • A regulator according to the present invention comprises a sheet holder fitted within the pressure chamber by clamping a fitting portion in the outer periphery thereof between the body and the cap and a valve sheet fitted between the sheet holder and the body in a compressed state, wherein a recessed groove is formed in the outer periphery of the valve sheet for absorbing excessive compressive force applied by the sheet holder.
  • In such a regulator, when the clamping ring is fastened, the compressive force applied on the valve sheet via the sheet holder is absorbed by elastic deformation of the valve sheet in the recessed groove, so that the sheet holder cannot be excessively deformed by the compressive reaction force of the valve sheet. Therefore, deterioration due to the excessive reduction of hermeticity between the valve sheet and the sheet holder or the body is prevented.
  • In a preferred embodiment, the sheet holder may be clamped between the body and the cap via an elastic washer.
  • By providing such a washer, when the clamping ring is fastened, the clamping force acting on the sheet holder is also absorbed and relieved by elasticity of the washer, resulting in easier and secure mounting of the valve sheet and, moreover, in high accuracy. Furthermore, both the sheet holder and the diaphragm can be securely and simultaneously fixed in a clamped state without reducing hermeticity of the diaphragm.
  • In another preferred embodiment, a bead may be formed on the surface of the body abutting the valve sheet for improving hermeticity with the valve sheet.
  • In still another preferred embodiment, the poppet valve has a conical sealing surface with a flow-restricting portion close to the center of the conical surface in a portion fitting into the valve sheet hole, the flow-restricting portion of the conical surface having a steeply inclined generating line.
  • Thereby, when the poppet valve opens, the flow-restricting portion gradually exits the valve sheet hole, so that the valve sheet hole is prevented from being suddenly opened. When the poppet valve shuts, the valve sheet hole is also prevent from being closed suddenly owing to gradual fitting of the flow-restricting portion into the valve sheet hole. The result is a reduction in pressure variations on the outlet side.
  • In addition or as an alternative to the flow-restricting portion of the poppet valve, a flow-restricting portion may be formed in part of the valve stem located on the outlet side of the valve sheet for restricting the flow of pressurized fluid by narrowing the flow path when the poppet valve fully opens.
  • In a preferred specific embodiment, a piston may be attached to the rear surface of the diaphragm while a sleeve for guiding is attached inside the cap, the piston being slidably inserted into the sleeve.
  • In this configuration, the diaphragm is guided by the sleeve and the piston, the displacement thereof is securely and steadily performed in the axial direction without inclination or lateral runouts, so that the poppet valve also not incline or waggle laterally, thereby resulting in improved accuracy in pressure regulation by the stable and precise opening and shutting operations. Furthermore, localized wear due to deviated contact is prevented.
  • In another embodiment, the return spring may include at least one of a first return spring in the form of a coil spring and a second return spring in the form of a leaf spring.
  • The invention will now be described by way of example and with reference to the accompanying drawings in which:
  • Fig. 1 is a sectional view showing a regulator according to a first embodiment of the present invention.
  • Fig. 2 is an exploded view of a part of the regulator of Fig. 1.
  • Fig. 3 is a sectional view showing a regulator according to a second embodiment of the present invention.
  • Fig. 4 is a sectional view of part of a regulator according to a third embodiment of the present invention.
  • Figs. 1 and 2 show a first embodiment of a regulator 1A which comprises a short-columnar body 2, a cylindrical cover 3 connected to the top surface of the body 2, and a nut-type clamping ring 4 for detachably connecting the cap 3 to the body 2.
  • On side surfaces of the body 2, an inlet port "P" for introducing pressurized fluid and an outlet port "A" for discharging pressure-regulated pressurized fluid are formed. On the top surface of the body 2 is formed a pressure chamber 7 opened to these ports "P" and "A". Within the pressure chamber 7, a valve sheet 8 is attached in a position opened to the inlet port "P". The inlet port "P" communicates with the pressure chamber 7 via a valve sheet hole 9 in the center of the valve sheet 8.
  • The valve sheet 8 is circular viewing the plane having a recessed groove 8a in its outer peripheral surface for facilitating compressing deformation and is attached via a sheet holder 11. The sheet holder 11 is circular-plate-shaped having a central hole 11a in the center leading to the valve sheet hole 9, a circular recess portion 11b surrounding the central hole 11a, and an annular fitting portion 11c in the outer peripheral portion. The sheet holder 11 is attached between the body 2 and the cap 3 by clamping it between a step portion 2a of the body 2 for clamping and an annular clamping portion 12a of a spacer 12 forming a part of the cap 3 by the clamping ring 4 via an elastic metallic washer 13 having a U-shaped cross-section. Simultaneously, the valve sheet 8 is attached in a compressed state between the recess portion 11b of the sheet holder 11 and the body 2. It is desirable that an annular bead 14 be formed on the body 2 to improve hermeticity between the body 2 and the valve sheet 8.
  • When the clamping ring 4 is fastened to attach the valve sheet 8, a compressing force acted on the valve sheet 8 via the sheet holder 11 is absorbed by elastic deformation of the valve sheet 8 in the recessed groove 8a, so that the sheet holder 11 cannot be excessively deformed by a compressed reaction force of the valve sheet 8.
  • Since the sheet holder 11 is clamped between the body 2 and the cap 3 via the washer 13, when the clamping ring 4 is fastened, a clamping force acted on the sheet holder 11 is also absorbed and relieved by elasticity of the washer, resulting in easier and secure mounting of the valve sheet 8 and moreover with high accuracy. Furthermore, both the sheet holder 11 and a diaphragm 15, which is described later, can be securely and simultaneously fixed in a clamped state between the body 2 and the cap 3 without reducing hermeticity of the diaphragm 15.
  • The recessed groove 8a and the washer 13 are not necessarily both provided as the desired hermeticity can be achieved just by providing the recessed groove 8a.
  • In the drawings, numeral 11d indicates through-holes formed in the sheet holder 11 for communicating the outlet side of the valve sheet 8, which is the pressure chamber 7, with the outlet port "A".
  • In the outlet side of the valve sheet 8, the diaphragm 15 for defining the top surface of the pressure chamber 7 is attached so as to be movable toward and away from the valve sheet 8. The diaphragm 15 is attached by hermetically clamping its peripheral portion between an annular clamping portion 2b of the outer periphery of the body 2 and the annular clamping portion 12a of the outer periphery of the spacer 12. In order to improve hermeticity during the clamping, it is desirable that any one surface of those of the clamping portions 2b and 12a respectively formed on the body 2 and the spacer 12 be planar while a bead 16 be formed on the other. In the example shown in the drawing, the bead 16 is formed on the clamping portion 2b of the body 2.
  • In the central portion of the back of the diaphragm 15 is fitted with a piston 18 while between a step portion 3a of the cap 3 and the spacer 12 is fitted with a sleeve 19. Within the sleeve 19, the piston 18 is slidably accommodated. In the piston 18 and the sleeve 19, front-end portions 18a and 19a having smaller diameters and rear- end portions 18b and 19b having a larger diameter are respectively formed. The piston 18 and the sleeve 19 are slidably made contact with each other in the two portions 18a/19a and 18b/19b, so that the piston 18 is guided to be precisely movable only in the axial direction without inclining and lateral runouts. On the inner surface of the sleeve 19 is formed a step portion 19c as a stopper for abutting the rear-end portion 18b when the piston 18 advances fully.
  • In the central front-end portion of the piston 18, a valve stem 21 is attached so as to protrude from the front surface of the diaphragm 15. The valve stem 21 extends so as to penetrate the valve sheet hole 9 of the valve sheet 8 with a poppet valve 22 disposed at one end thereof. The poppet valve 22 having a conical sealing surface 22a opens and shuts the valve sheet hole 9 from the inlet side with the sealing surface 22a by the displacement of the diaphragm 15.
  • Between the back surface of the piston 18 and a spring seat 26, which is one of members forming adjusting means 25, is disposed a pressure-adjusting spring 27 for urging the piston 18 in the opening direction of the poppet valve 22 while within the sleeve 19, between the inner peripheral surface of the sleeve 19 and the outer peripheral surface of the piston 18 is disposed a first return valve 28 for urging the piston 18 in the closing direction of the poppet valve 22. One end of the return valve 28 is retained by the smaller diameter front-end portion 19a of the sleeve 19 while the other end thereof is retained by the larger diameter rear-end portion 18b of the piston 18. Any of the pressure-adjusting spring 27 and the return valve 28 is formed of a coil spring.
  • The adjusting means 25 comprises an adjusting screw 29 rotatably disposed in the central end portion of the cap 3, the above-mentioned spring seat 26 screwed to the adjusting screw 29 and movable by the rotation of the adjusting screw 29, and a dial 30 for rotationally operating the adjusting screw 29 from the outside of the cap 3. The adjusting means 25 establishes the outlet fluid pressure by adjusting the urging force of the pressure-adjusting spring 27 and constitutes a pressure setting mechanism along with the pressure-adjusting spring 27 and the return valve 28.
  • The above-mentioned clamping ring 4 interconnecting the body 2 and the cap 3 comprises an annular retaining portion 4a rotatably retained to an exterior flange 32 of the cap 3 in the peripheral end portion thereof and a female thread portion 4b screwed with a male thread portion 33 of the body 2 in its outer periphery. Between the retaining portion 4a and the flange 32 of the cap 3, sliding-guiding means 34 formed of a bearing, etc., are interposed.
  • In the regulator 1A configured as above, when the piston 8 is pushed down by the pressure-adjusting spring 27 to displace the diaphragm 15 toward the valve sheet 8, the poppet valve 22 separates from the valve sheet 8 to open the valve sheet hole 9, so that the pressurized fluid in the inlet side (inlet port "P") flows into the outlet side (outlet port "A") via the valve sheet hole 9.
  • The fluid pressure in the outlet side is exerted on the diaphragm 15 to produce an operating force in the direction opposite to that by the pressure-adjusting spring 27 which in turn causes the poppet valve 22 to open the valve sheet 8 to an amount of corresponding opening to the acting force difference therebetween. While the fluid pressure in the outlet side is smaller than the set pressure, the poppet valve 22 opens to introduce the pressurized fluid from the inlet toward the outlet. When the fluid pressure in the outlet side increases to reduce the pressure difference with the set pressure, the diaphragm 15 moves away from the valve sheet 8, so that the amount of opening of the poppet valve 22 decreases. When the pressure difference is reduced to zero to keep the operating forces in equilibrium, the poppet valve 22 closes to set the fluid pressure in the outlet side.
  • Since the diaphragm 15 is guided by the sleeve 19 via the piston 18, the displacement thereof corresponding to the outlet side pressure is securely and steadily performed only in the axial direction without inclination of the axial line or lateral runouts. In particular, since the piston 18 and the sleeve 19 are slidably made contact with each other in plural portions such as front-end portions 18a and 19a and rear- end portions 18b and 19b, the sliding is stable and inclination of the axial line can be securely prevented. Accordingly, the poppet valve 22 connected to the diaphragm 15 does not also incline or waggle laterally and is securely displaced only in the axial direction to open and shut the valve sheet 8, thereby resulting in improved accuracy in pressure regulation by the stable and precise opening and shutting operations. Furthermore, since localized wear due to deviated contact cannot be produced, the durability can be also increased.
  • Since the full advancing position of the piston 18 is defined by the step portion 19c formed on the inner surface of the sleeve 19, even when the fluid pressure of the outlet side is suddenly dropped or when the outlet side becomes under zero pressure or vacuum, troubles in that the diaphragm 15 or the piston 18 crashes on the valve sheet 8 or other members to be damaged or to produce dust can be avoided with reliability.
  • Fig. 3 shows a second embodiment of a regulator 1B. A point of difference between the regulator 1B according to the second embodiment and the above described regulator 1A according to the first embodiment is that a second return spring 36 formed of a leaf spring is disposed therein besides the first return spring 28 formed of a coil spring.
  • The leaf spring is formed in an annular ring and the front-end portion of the piston 18 is fitted into and retained to the central hole 36a of the spring while the outer peripheral portion thereof is retained to the inner peripheral surface of the spacer 12. Thereby, the leaf spring is closely attached to a position of the rear of the diaphragm 15 not obstructing normal deflection of the diaphragm 15.
  • The second return spring 36 also has a function that when the diaphragm 15 is strongly urged by fluid pressure, excess deflection thereof is prevented by supporting it from the rear besides the function of urging the piston 18 in the returning direction in cooperation with the first return spring 28.
  • In addition, when such the leaf spring-type second return spring 36 is provided, the first return spring 28 formed of a coil spring may be eliminated.
  • Since the configuration except the above point is substantially the same as that of the regulator 1A according to the first embodiment, like reference characters designate like principal portions common to those of the first and second embodiments, and description thereof is abbreviated.
  • Fig. 4 shows the salient part of a regulator according to a third embodiment. In the regulator according to the third embodiment, a flow-restricting portion is formed in the poppet valve 22 according to above-mentioned each embodiment. That is, in a portion close to the center (inside), i.e., a portion fitting into the valve sheet hole 9, on the conical sealing surface 22a of the poppet valve 22, a flow-restricting portion 22b, in which a generating line is steeply inclined, is formed.
  • When the poppet valve 22 opens, the valve sheet hole 9 is gradually opened owing to the flow-restricting portion 22b so that pressurized fluid is prevented from flowing into the pressure chamber 7 suddenly. When the poppet valve shuts, the valve sheet hole 9 is also gradually closed owing to the flow-restricting portion 22b so that pressurized fluid is prevented from being suddenly intercepted. Consequently, not only sudden variations in pressure accompanied with opening and shutting of the poppet valve 22 are prevented but also enfolding dust due to sudden variations in flow, losing flow uniformity due to generation of turbulence, and so forth can be securely avoided.
  • The flow-restricting portion described as above may also be formed in the outlet side of the valve sheet 8. That is, as shown in Fig. 4, the flow-restricting portion 38 having a conical surface may be formed in a portion of the base end side of the valve stem 21 located in the pressure chamber 7, so that the opening area of the central hole 11a of the sheet holder 11 is throttled by the flow-restricting portion 38 when the poppet valve 22 is fully opened.
  • In this manner, by forming the flow-restricting portion 38 in the outlet side of the valve sheet 8, the flow when the poppet valve 22 is fully opened is restricted so that sudden variations in pressure can be more effectively prevented. That is, when fluid pressure in the outlet side is largely reduced and thereby the poppet valve 22 is fully opened to supply the maximum flow, enfolding dust due to sudden variations in flow, losing flow uniformity due to generation of turbulence are prone to be generated. However, the pressure rises smoothly because the opening area of the central hole 11a is throttled by the flow-restricting portion 38 to restrict the flow.
  • In addition, the flow-restricting portion 38 may be jointly formed with the flow-restricting portion 22b in the poppet valve 22 or may be formed instead of the flow-restricting portion 22b.
  • In the regulators described above, since a compressing force on the valve sheet via the sheet holder when attaching the valve sheet is absorbed with the recessed groove formed in the valve sheet, the sheet holder cannot be excessively deformed by the compressed reaction force of the valve sheet.
  • Since the sheet holder is clamped between the body and the cap via the washer, a clamping force acted by the clamping ring on the sheet holder can also be absorbed and relieved by elasticity of the washer, resulting in easier and secure mounting of the valve sheet and moreover with high accuracy. Furthermore, both the sheet holder and the diaphragm can be securely and simultaneously fixed in a clamped state between the body and the cap without reducing hermeticity of the diaphragm.

Claims (7)

  1. A regulator comprising a body, a cap connected to the body by a nut-type clamping ring, an inlet port and an outlet port formed in the body, a pressure chamber in communication with the inlet and outlet ports, a circular sheet holder having a central hole, a recess portion around the central hole, and a fitting portion at the periphery, the sheet holder being fitted within the pressure chamber by clamping the fitting portion between the body and the cap, a valve sheet fitted into the recess portion of the sheet holder and so held between the sheet holder and the body in a position in the pressure chamber open to the inlet port and in a compressed state, a groove formed in the outer periphery of the valve sheet for absorbing excessive compressive force produced by the sheet holder, a diaphragm attached on the outlet side of the valve sheet by clamping the outer peripheral portion of the diaphragm between the body and the cap in a hermetic state, the diaphragm being movable toward and away from the valve sheet, a valve stem extending from the diaphragm and through a valve sheet hole in the valve sheet, a poppet valve disposed on an end portion of the valve stem for opening and shutting the valve sheet hole from the inlet side in response to movement of the diaphragm, and a pressure-setting mechanism including a pressure-adjusting spring for urging the diaphragm in the direction in which the poppet valve opens, a return spring for urging the diaphragm in the direction in which the poppet valve closes, and adjusting means for adjusting the force of the pressure-adjusting spring.
  2. A regulator according to Claim 1, wherein a bead is formed on the surface of the body abutting the valve sheet for improving hermeticity with the valve sheet.
  3. A regulator according to either Claim 1 or Claim 2, wherein the poppet valve has a conical sealing surface with a flow-restricting portion close to the center of the conical surface in a portion fitting into the valve sheet hole, the flow-restricting portion of the conical surface having a steeply inclined generating line.
  4. A regulator according to any preceding claim, wherein a flow-restricting portion is formed in a part of the valve stem located on the outlet side of the valve sheet for restricting the flow of pressurized fluid by narrowing the flow path when the poppet valve fully opens.
  5. A regulator according to any preceding claim wherein a piston is attached to the rear surface of the diaphragm and a guide sleeve is attached inside the cap, the piston being slidably received in the sleeve.
  6. A regulator according to any preceding claim, wherein the return spring includes at least one of a first return spring in the form of a coil spring and a second return spring in the form of a leaf spring.
  7. A regulator according to any preceding claim, wherein the sheet holder is clamped between the body and the cap via an elastic washer.
EP20000301069 1999-02-26 2000-02-10 Regulator Withdrawn EP1031901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5015399A JP2000250635A (en) 1999-02-26 1999-02-26 Regulator
JP5015399 1999-02-26

Publications (1)

Publication Number Publication Date
EP1031901A1 true EP1031901A1 (en) 2000-08-30

Family

ID=12851250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000301069 Withdrawn EP1031901A1 (en) 1999-02-26 2000-02-10 Regulator

Country Status (6)

Country Link
US (1) US6286544B1 (en)
EP (1) EP1031901A1 (en)
JP (1) JP2000250635A (en)
KR (1) KR20010006670A (en)
CN (1) CN1266183A (en)
TW (1) TW461504U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076195B (en) * 2009-11-21 2013-03-06 佛山市顺德区汉达精密电子科技有限公司 Waterproof cover assembly
US20140290758A1 (en) * 2013-03-27 2014-10-02 Keihin Corporation Pressure reducing valve
US20140290759A1 (en) * 2013-03-27 2014-10-02 Honda Motor Co., Ltd. Pressure reducing valve
US9072925B2 (en) 2010-05-11 2015-07-07 Fiwarec Valves & Regulators Gmbh & Co. Kg Valve

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164016B2 (en) * 2003-10-22 2008-10-08 シーケーディ株式会社 Gas regulator
DE102004010997B3 (en) * 2004-03-03 2005-06-23 Otto Egelhof Gmbh & Co. Kg Control method for expansion valve for refrigeration medium circuit in automobile air-conditioning installation using pressure difference between input and output of expansion valve
US20050257836A1 (en) * 2004-05-18 2005-11-24 Robert Boyer Gas pressure regulator
US20070080309A1 (en) * 2005-10-07 2007-04-12 Daake Sheryl L Vibration damper apparatus for use with fluid control devices
US8925579B2 (en) 2006-03-02 2015-01-06 Pacific Bag, Inc. Pressure relief valve
DE602007006646D1 (en) * 2006-03-10 2010-07-01 Fisher Controls Int PRESSURE REDUCTION REGULATOR WITH ADJUSTABLE FUNCTION
DE102009060294A1 (en) * 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Solenoid valve and driver assistance device
US20110162730A1 (en) * 2010-01-04 2011-07-07 Itt Manufacturing Enterprises, Inc. Valve for a pressure regulator
CN102537440B (en) * 2010-12-31 2015-11-25 深圳迈瑞生物医疗电子股份有限公司 Vacuum overflow valve and sample analyser
JP5912523B2 (en) * 2011-12-28 2016-04-27 日本サーモスタット株式会社 Fluid control valve
WO2014022469A2 (en) * 2012-07-31 2014-02-06 Fairchild Industrial Products Company Improved valve seat for a pressure regulator
JP6282439B2 (en) * 2013-10-30 2018-02-21 愛三工業株式会社 Pressure reducing valve
CN105805011A (en) * 2014-12-31 2016-07-27 华域三电汽车空调有限公司 Compressor back pressure float valve
HUP1900114A1 (en) * 2019-04-05 2020-10-28 Kerox Ipari Es Kereskedelmi Kft Controlled piston valve
KR102354480B1 (en) * 2021-05-18 2022-01-24 주식회사 대한계전 Water meter for backflow prevention
CN115727172A (en) * 2021-09-02 2023-03-03 亚普汽车部件(开封)有限公司 Secondary valve seat assembling structure of gas pressure reducing device
KR102586841B1 (en) * 2022-02-23 2023-10-11 동아대학교 산학협력단 Cryogenic Needle Valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385016A2 (en) * 1977-02-22 1978-10-20 Bouvier Ateliers Valve with flexible seat - having undercut groove to form deformable lip to match profile of valve member on closure
US4275764A (en) * 1979-06-13 1981-06-30 Berthoud, S.A. Combination pressure regulator and manual on-off valve
GB2090380A (en) * 1980-12-31 1982-07-07 Masoneilan Int Inc Fluid-pressure-load seal for butterfly valves
US4770393A (en) * 1987-01-02 1988-09-13 Aktiebolaget Somas Ventiler Butterfly valve
US5449142A (en) * 1994-12-12 1995-09-12 Automatic Switch Company Two-way cartridge valve for aggresive media
US5458001A (en) * 1993-08-31 1995-10-17 Veriflo Corporation Gas pressure regulator, diaphragm assembly therefor and method of making same
US5492146A (en) * 1992-09-02 1996-02-20 Richards Industries, Inc. Pressure regulators
US5732736A (en) * 1994-07-15 1998-03-31 Veriflo Corporation Pressure regulator with lower outlet pressure drop
US5762086A (en) * 1995-12-19 1998-06-09 Veriflo Corporation Apparatus for delivering process gas for making semiconductors and method of using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US221950A (en) * 1879-11-25 Improvement in gas-governors
US3369562A (en) * 1962-11-29 1968-02-20 Robertshaw Controls Co Pressure regulator
US3972346A (en) * 1974-08-23 1976-08-03 Wingaersheek, Inc. Pressure regulator
US4807849A (en) 1987-10-14 1989-02-28 Veriflo Corp. Fluid flow control device and compression member therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385016A2 (en) * 1977-02-22 1978-10-20 Bouvier Ateliers Valve with flexible seat - having undercut groove to form deformable lip to match profile of valve member on closure
US4275764A (en) * 1979-06-13 1981-06-30 Berthoud, S.A. Combination pressure regulator and manual on-off valve
GB2090380A (en) * 1980-12-31 1982-07-07 Masoneilan Int Inc Fluid-pressure-load seal for butterfly valves
US4770393A (en) * 1987-01-02 1988-09-13 Aktiebolaget Somas Ventiler Butterfly valve
US5492146A (en) * 1992-09-02 1996-02-20 Richards Industries, Inc. Pressure regulators
US5458001A (en) * 1993-08-31 1995-10-17 Veriflo Corporation Gas pressure regulator, diaphragm assembly therefor and method of making same
US5732736A (en) * 1994-07-15 1998-03-31 Veriflo Corporation Pressure regulator with lower outlet pressure drop
US5449142A (en) * 1994-12-12 1995-09-12 Automatic Switch Company Two-way cartridge valve for aggresive media
US5762086A (en) * 1995-12-19 1998-06-09 Veriflo Corporation Apparatus for delivering process gas for making semiconductors and method of using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076195B (en) * 2009-11-21 2013-03-06 佛山市顺德区汉达精密电子科技有限公司 Waterproof cover assembly
US9072925B2 (en) 2010-05-11 2015-07-07 Fiwarec Valves & Regulators Gmbh & Co. Kg Valve
US20140290758A1 (en) * 2013-03-27 2014-10-02 Keihin Corporation Pressure reducing valve
US20140290759A1 (en) * 2013-03-27 2014-10-02 Honda Motor Co., Ltd. Pressure reducing valve
US9377787B2 (en) * 2013-03-27 2016-06-28 Keihin Corporation Pressure reducing valve
US9377117B2 (en) * 2013-03-27 2016-06-28 Keihin Corporation Pressure reducing valve

Also Published As

Publication number Publication date
CN1266183A (en) 2000-09-13
TW461504U (en) 2001-10-21
KR20010006670A (en) 2001-01-26
US6286544B1 (en) 2001-09-11
JP2000250635A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
EP1031901A1 (en) Regulator
JP3704223B2 (en) Pressure reducing valve
US6289925B1 (en) Regulator
US20060228227A1 (en) Control valve for variable capacity compressors
US6708712B2 (en) Pressure regulator utilizing a disc spring
US6244563B1 (en) Automatic two-stage switching valve
WO1996001445A1 (en) A fluid pressure regulator
CA2298377A1 (en) Fluid flow valve with variable flow rate
JP6996830B2 (en) Pressure reducing valve
GB2202612A (en) Safety relief valve
US5899221A (en) Fluid pressure regulator
US20040065368A1 (en) Internally piloted dome loaded regulator
US6866061B2 (en) Back pressure valve with dynamic pressure control
US6874531B2 (en) Relief valve
US8640732B1 (en) High pressure inlet regulator
JP3452474B2 (en) Balance type relief valve
JP3583851B2 (en) Pressure reducing valve for clean gas
JPH0450448B2 (en)
JP4114996B2 (en) Two-stage pressure reducing pressure regulator
JP3429436B2 (en) On / off valve status display
JP3547822B2 (en) Air control valve
JP3770813B2 (en) On-off valve
JP4275807B2 (en) Negative pressure regulator
JP2009265893A (en) Decompression valve
JP2000207031A (en) Safety valve mechanism and pressure regulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20010522

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030326