EP1019633B1 - Screw-type compressor - Google Patents

Screw-type compressor Download PDF

Info

Publication number
EP1019633B1
EP1019633B1 EP98955416A EP98955416A EP1019633B1 EP 1019633 B1 EP1019633 B1 EP 1019633B1 EP 98955416 A EP98955416 A EP 98955416A EP 98955416 A EP98955416 A EP 98955416A EP 1019633 B1 EP1019633 B1 EP 1019633B1
Authority
EP
European Patent Office
Prior art keywords
screw
rotor
rotor assembly
axial
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98955416A
Other languages
German (de)
French (fr)
Other versions
EP1019633A1 (en
Inventor
Günter Kirsten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KT Kirsten Technologie-Entwicklung GmbH
Original Assignee
KT Kirsten Technologie-Entwicklung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KT Kirsten Technologie-Entwicklung GmbH filed Critical KT Kirsten Technologie-Entwicklung GmbH
Publication of EP1019633A1 publication Critical patent/EP1019633A1/en
Application granted granted Critical
Publication of EP1019633B1 publication Critical patent/EP1019633B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the invention relates to a screw compressor a housing in which a main rotor and a secondary rotor are arranged, each a shaft and have a screw rotor.
  • Screw compressors are used to make a gaseous Compress substance, such as air, and to be made available as compressed gas.
  • a screw compressor is known in which a main rotor driven by a motor, a secondary rotor drives.
  • the waves of the main and secondary rotor are at both ends by roller bearings stored radially. Furthermore, the waves are both Runner at one end by several ball bearings axially supported.
  • These thrust bearings carry the through the Gas compression occurring between the screw rotors Forces in the axial direction of the main and secondary rotor.
  • the roller bearings develop heat during operation an inhomogeneous heat distribution and thus tension lead in the wave.
  • the object of the invention is the storage of the main and Simplify the secondary rotor in a screw compressor and improve.
  • Secondary rotor axially supported on the main rotor.
  • the main rotor has a thrust bearing part that an axial bearing part of the housing is supported.
  • the secondary runner is only direct through radial bearings supported on the housing.
  • the runner is however no longer with its own axial bearing directly on the Supported housing.
  • the axial forces of the secondary rotor through its screw rotor onto the screw rotor of the main runner.
  • the thrust bearing of the Main rotor formed by the thrust bearing parts of the Main rotor and housing, so it takes all axial Forces of the main rotor and the secondary rotor.
  • the main rotor expediently has the only thrust bearing on, since larger axial on the main rotor Forces act as on the secondary runner. With this configuration only have the relatively low axial forces of the secondary rotor over the screw rotor teeth on the Main runners are transferred. Basically, however also the secondary rotor with an axial bearing be supported on the housing while the main rotor axially supported on the secondary rotor via the screw rotors and is not a separate thrust bearing with the housing having.
  • this is of the Thrust bearing parts formed thrust bearings a plain bearing.
  • the radial bearings can also be designed as plain bearings his.
  • the axial plain bearing is structurally simpler as a roller bearing and thereby facilitates a cheaper one Manufacture of the screw compressor.
  • Have plain bearings also the advantage of not generating any significant heat, so that the rotor shafts even at high speeds stay tension-free.
  • the plain bearing can with the be lubricated with the same medium as Lubricant and sealant in the compressor room of the Screw compressor is used.
  • Lubricating and sealing fluids can serve oil or water. However, air can also be used as the sliding bearing fluid become.
  • the Drive side preferably a roller bearing as a radial bearing used because the slide bearing is extremely flexible high radial loads are not suitable.
  • the secondary runner exclusively via the meshing teeth of the screw rotors axially supported on the main rotor.
  • the teeth the screw rotors can be designed such that there is very little or none at all on the secondary runner axial forces occur so that these small axial Forces of the secondary rotor can be easily applied via the screw rotor teeth can be transferred to the main runner.
  • the secondary rotor preferably has an axial clamping device that axially preloads the secondary runner.
  • the axial clamping device has no stop, to which the secondary runner could be supported, but acts on the secondary runner, preferably the Secondary rotor shaft, with a constant preload force, the approximate expected axial load of the secondary runner due to the gas compression.
  • the tensioning device compensates approximately the axial forces occurring on the secondary rotor, so that only very little or no axial forces from that Secondary runner must be transferred to the main runner.
  • the axial Clamping device a hydraulic clamping device, on the shaft or the screw rotor of the secondary rotor acts.
  • the clamping device can also be used Be fed by air.
  • the axial bearing part of the main rotor is preferably on the screw rotor of the main rotor. Not the shaft of the main rotor, but the screw rotor the main rotor is supported on the housing.
  • the thrust bearing part of the main rotor an axial end wall of the screw rotor.
  • the thrust bearing part of the housing is one washer-like tread, both axial bearing parts together form the plain bearing.
  • the front wall of the The main rotor screw rotor therefore forms a bearing surface, the on the ring-like tread of the housing outsourced.
  • the main runner on an axial end face of the screw rotor as Axial bearing part on a plain bearing disc, which with a Thrust bearing tread of the housing the plain bearing forms.
  • an annular slide bearing washer is provided, which forms a closed radial tread.
  • the screw rotor end wall or the plain bearing disc is essentially radial Grooves for a sliding fluid.
  • This Grooves can be the sliding fluid that is close to the shaft or on the base of the screw rotor is introduced by the centripetal forces continue to reach the outside. On this way, over the entire radius and perimeter of the screw rotor creates a sliding film.
  • the grooves an arcuate course, the radially outer End of each groove opposite to the direction of rotation of the rotor is bent. This results in very even results Sliding fluid distributions over the entire radius and Scope of the screw rotor.
  • the grooves preferably have a T-shaped course, the vertical part being radial and the horizontal part Part arranged tangentially in the circumferential direction are.
  • the T-shaped grooves allow a good one Plain bearing lubrication in both directions of the Main rotor.
  • the screw rotor, the shaft and the plain bearing washer of the main rotor integrally formed with each other.
  • the main runner can be cast from a composite material, Syringes etc. be made in a negative form.
  • the plain bearing disc can be formed separately and with the shaft and / or the screw rotor of the Main rotor cast, screwed or on others Be attached way.
  • the plain bearing disc and the main rotor can be different Materials for shaft, rotor and plain bearing disc can be chosen that correspond to the respective physical Requirements of the respective component better adapted can be.
  • the screw rotor can for example in a conventional manner, for example Composite, be milled and the metal plain bearing washer then screwed to the screw rotor become.
  • the shaft a special radial bearing running layer of the main and the secondary rotor applied.
  • the main runner can for example, be made in one piece, and on the Shaft then a super sliding material for the Radial bearings are applied.
  • the screw compressor 10 from a housing 12 in which axially parallel to each other a main rotor 14 and a secondary rotor 16 are arranged are.
  • the main rotor 14 consists essentially of a shaft 18, a screw rotor 20 and one Plain bearing washer 22, which acts as a thrust bearing part of the main rotor 14 serves.
  • the secondary runner 16 is in turn essentially from a shaft 24 and the Screw rotor 26. Both the shaft 24 and the Screw rotor 26 of the secondary rotor are in diameter each smaller than the shaft 18 and the screw rotor 20 of the main runner 14.
  • Both the main runner 14 and the secondary rotor 16 are also made in one piece from a composite material manufactured.
  • the main rotor 14 is a shaft extension 28, the is led out of the housing 12, driven. This drive is preferably carried out directly via a axially aligned with the main rotor longitudinal axis Electric motor.
  • the main rotor shaft 18 with two Radial bearings 30,32 stored in the housing 12. Also the Secondary rotor 16 is in the with two radial bearings 34,36 Housing 12 stored. All radial bearings are 30,32,34,36 designed as a plain bearing.
  • the one enclosed by the housing 12 Space in which the main rotor screw rotor 20 and the secondary rotor screw rotor 26 are arranged are, the compression space 27 of the screw compressor 10, in which the gas is compressed.
  • the housing 12 does not have one on the side of the shaft extension 28 shown gas opening into which to be compressed Gas can flow into the compression chamber 27.
  • the radial bearings 30, 32 and 36 are in principle all built up the same. Via a sliding fluid inlet 38, 39, 41 a sliding fluid, namely water, runs into an annular groove 44. Sits on the shaft 18, 24, each from the annular groove 44 surround a bearing bush 46, each three radial Has holes 48 through which the sliding fluid reach the outer circumference of the respective shaft 18, 24 can.
  • Secondary rotor 16 runs the sliding fluid through an axial Shaft bore 62 and three arranged at 120 ° to each other radial bores 64 of the shaft 24 to the shaft circumference or to the bearing bush 47. From there it runs Sliding fluid on the shaft circumference in the direction of the compression space 27th
  • the main rotor 14 has a thrust bearing 15, which as Plain bearing is formed.
  • the one axial bearing part of the Axial bearing 15 is formed by the plain bearing disc 22, which are arranged on the end face of the screw rotor 20 and axially closes it.
  • the other Axial bearing part is from an annular disk-like tread 66 of the housing 12 is formed.
  • the washer-like Running surfaces 66,68 of the plain bearing disc 22 and the housing 12 together form a plain bearing, which Screw rotor 20 of the main rotor 18 directly on the housing 12 supports.
  • the sliding fluid for the thrust bearing 15 is a Inlet 70 fed to an annular groove 72 of the main rotor shaft 18, which extends axially up to the slide bearing washer 22 extends.
  • the sliding fluid is at a pressure of approximately 10 bar supplied, which is approximately the gas pressure of the compressed gas corresponds.
  • the plain bearing disc 22 a plurality of radially and arched outwards, tapered grooves 23, due to the the centripetal forces occurring when the main rotor 14 rotates the sliding fluid comes out.
  • the sliding fluid emerges from the grooves 23 of the plain bearing disc 22 out and forms between the treads 66,68 of the thrust bearing 15, a fluid film for the sliding storage ensures.
  • the lubricating fluid continues to flow to the outside and finally gets into the compression space 27th
  • the secondary rotor 16 is with the teeth 25 of its screw rotor 26 with the teeth 21 of the screw rotor 20 of the main rotor 14 meshing. Over the tooth flanks the teeth 21 and 25 are axial forces of the Secondary rotor 16 on the teeth 21 of the main rotor 14 transfer.
  • a fluid space 76 is covered by a cover 78 of the Enclosed housing 12 in which the sliding fluid for Radial bearing 34 is introduced through the inlet 40.
  • the Lubricant works with its fluid pressure of approximately 10 bar on the end face 74 of the shaft 24 and generated therefore a force on the secondary rotor in the axial direction 16, which on the secondary runner 16 through the Counteracts gas pressure acting axial force.
  • This arrangement thus acts as a pneumatic clamping device, which axially cushions the secondary rotor 16, however no stop for fixing the secondary rotor 16 in a certain axial position.
  • Fig. 3 is a second embodiment of a plain bearing disc 22 'shown in the sliding fluid grooves 84 are arranged in a T-shape. It is the vertical groove 85 radial and the horizontal groove arranged tangentially. With this configuration the Grooves 84 can be the main rotor 14 'in both directions of rotation are operated, in both directions adequate lubrication is guaranteed.
  • a main rotor 90 is shown, the consists essentially of two parts: the shaft 92, which are made in one piece with the screw rotor 94 is, for example made of a composite material or Metal, and the slide bearing disc 22 ', which consists of a Material with good sliding properties is made.
  • the plain bearing disc 22 has four axial driver pins 95 on the corresponding holes in the Screw rotor 94 fit.
  • the plain bearing disc can be separated first manufactured and then when casting the main rotor 90 can be cast in.
  • FIG. 7 shows the main rotor 14 of FIG. 1.
  • a main rotor is shown in the the shaft 18 on both sides of the screw rotor 26 one radial bearing running layer 102 is applied in each case is, the better sliding properties than the shaft material has, and consist of so-called super sliding materials can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)
  • Rotary Pumps (AREA)

Abstract

A screw-type compressor comprises a housing (12) in which a primary rotor (14) and a secondary rotor (16) are arranged each of which is provided with a shaft (18,24) and a screw rotor (20,26). The secondary rotor (16) is axially supported by the primary rotor (14). Only the primary rotor (14) comprises an axial bearing part (22) which is supported in an axial bearing part (66) of the housing (12). The omission of an axial bearing between the secondary rotor and the housing simplifies the support of the secondary rotor.

Description

Die Erfindung betrifft einen Schraubenverdichter mit einem Gehäuse, in dem ein Hauptläufer und ein Nebenläufer angeordnet sind, die jeweils eine Welle und einen Schraubenrotor aufweisen.The invention relates to a screw compressor a housing in which a main rotor and a secondary rotor are arranged, each a shaft and have a screw rotor.

Schraubenverdichter werden verwendet, um einen gasförmigen Stoff, beispielsweise Luft, zu verdichten und als Druckgas zur Verfügung zu stellen. Aus DE-A-42 27 332 ist ein Schraubenverdichter bekannt, bei dem ein durch einen Motor angetriebener Hauptläufer einen Nebenläufer antreibt. Die Wellen des Haupt- und Nebenläufers sind an beiden Enden jeweils durch Rollenlager radial gelagert. Darüberhinaus sind die Wellen beider Läufer an jeweils einem Ende durch mehrere Kugellager axial gelagert. Diese Axiallager tragen die durch die Gasverdichtung zwischen den Schraubenrotoren auftretenden Kräfte in axialer Richtung des Haupt- und Nebenläufers. Die Wälzlager entwickeln im Betrieb Wärme, die zu einer inhomogenen Wärmeverteilung und damit zu Spannungen in der Welle führen. Aus DD-PS 84 891 und US-A-38 11 805 sind Verdichter bekannt, bei denen Haupt- und Nebenläufer jeweils Axiallager aufweisen, die als Gleitlager ausgebildet sind und daher weniger Wärme erzeugen. In US 32 75 226 ist ein Schraubenverdichter dargestellt, bei dem Haupt- und Nebenrotor axial durch Wälzlager abgestützt sind, wobei der Hauptrotor zusätzlich durch eine Scheibe axial gelagert ist. Durch die vielen Lager für den Haupt- und Nebenläufer sind die Konstruktionen der bekannten Schraubenverdichter aufwendig und ihre Herstellung dadurch kostspielig.Screw compressors are used to make a gaseous Compress substance, such as air, and to be made available as compressed gas. From DE-A-42 27 332 a screw compressor is known in which a main rotor driven by a motor, a secondary rotor drives. The waves of the main and secondary rotor are at both ends by roller bearings stored radially. Furthermore, the waves are both Runner at one end by several ball bearings axially supported. These thrust bearings carry the through the Gas compression occurring between the screw rotors Forces in the axial direction of the main and secondary rotor. The roller bearings develop heat during operation an inhomogeneous heat distribution and thus tension lead in the wave. From DD-PS 84 891 and US-A-38 11 805 compressors are known in which the main and Each have a thrust bearing, which as Plain bearings are formed and therefore less heat produce. In US 32 75 226 is a screw compressor shown in the main and secondary rotor axially Rolling bearings are supported, with the main rotor additionally is axially supported by a disc. Through the many bearings for the main and secondary runner are Constructions of the known screw compressors are complex and therefore expensive to manufacture.

Aufgabe der Erfindung ist es, die Lagerung des Hauptund Nebenläufers in einem Schraubenverdichter zu vereinfachen und zu verbessern.The object of the invention is the storage of the main and Simplify the secondary rotor in a screw compressor and improve.

Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with the features of claim 1 solved.

Bei dem erfindungsgemäßen Schraubenverdichter ist der Nebenläufer axial an dem Hauptläufer abgestützt. Nur der Hauptläufer weist ein Axiallagerteil auf, das an einem Axiallagerteil des Gehäuses abgestützt ist. Der Nebenläufer ist also nur noch durch Radiallager direkt an dem Gehäuse abgestützt. Der Nebenläufer ist jedoch nicht mehr durch ein eigenes Axiallager direkt an dem Gehäuse abgestützt. Die axialen Kräfte des Nebenläufers werden durch seinen Schraubenrotor auf den Schraubenrotor des Hauptläufers übertragen. Das Axiallager des Hauptläufers, gebildet von den Axiallagerteilen des Hauptläufers und des Gehäuses, nimmt also alle axialen Kräfte des Hauptläufers und des Nebenläufers auf. In the screw compressor according to the invention Secondary rotor axially supported on the main rotor. Just the main rotor has a thrust bearing part that an axial bearing part of the housing is supported. The The secondary runner is only direct through radial bearings supported on the housing. The runner is however no longer with its own axial bearing directly on the Supported housing. The axial forces of the secondary rotor through its screw rotor onto the screw rotor of the main runner. The thrust bearing of the Main rotor, formed by the thrust bearing parts of the Main rotor and housing, so it takes all axial Forces of the main rotor and the secondary rotor.

Durch den Wegfall des Axiallagers zwischen Nebenläufer und Gehäuse ist der Gesamtaufwand für die Lagerung des Haupt- und Nebenläufers um mindestens ein (Axial-)Lager verringert.By eliminating the thrust bearing between the secondary runner and housing is the total effort for storing the Main and secondary rotor around at least one (axial) bearing reduced.

Ein an dem Gehäuse abgestütztes Axiallager ist nur noch für den Hauptläufer vorgesehen, auf das ohnehin der größte Teil der bei der Gaskompression auftretenden Axialkräfte wirkt. Der Nebenläufer, auf den erheblich geringere axiale Kräfte durch die Gaskompression einwirken, ist über die Zahnflanken seines Schraubenrotors an dem Schraubenrotor des Hauptläufers abgestützt.There is only one thrust bearing supported on the housing intended for the main runner, on the anyway most of the gas compression Axial forces act. The secondary runner on the considerably lower axial forces due to gas compression, is over the tooth flanks of his screw rotor supported on the screw rotor of the main rotor.

Sinnvollerweise weist der Hauptläufer das einzige Axiallager auf, da auf den Hauptläufer größere axiale Kräfte wirken als auf den Nebenläufer. Bei dieser Konfiguration müssen nur die relativ geringen Axialkräfte des Nebenläufers über die Schraubenrotorzähne auf den Hauptläufer übertragen werden. Grundsätzlich kann jedoch auch der Nebenläufer mit einem Axiallager axial an dem Gehäuse abgestützt sein, während der Hauptläufer über die Schraubenrotoren an dem Nebenläufer axial abgestützt ist und kein eigenes Axiallager mit dem Gehäuse aufweist.The main rotor expediently has the only thrust bearing on, since larger axial on the main rotor Forces act as on the secondary runner. With this configuration only have the relatively low axial forces of the secondary rotor over the screw rotor teeth on the Main runners are transferred. Basically, however also the secondary rotor with an axial bearing be supported on the housing while the main rotor axially supported on the secondary rotor via the screw rotors and is not a separate thrust bearing with the housing having.

In einer bevorzugten Ausgestaltung ist das von den Axiallagerteilen gebildete Axiallager ein Gleitlager. Auch die Radiallager können als Gleitlager ausgebildet sein. Das Axial-Gleitlager ist konstruktiv einfacher als Wälzlager und erleichtert dadurch eine preiswertere Herstellung des Schraubenverdichters. Gleitlager haben ferner den Vorteil, keine nennenswerte Wärme zu erzeugen, so daß die Läuferwellen auch bei hohen Drehzahlen spannungsfrei bleiben. Das Gleitlager kann mit dem gleichen Medium geschmiert werden, das auch als Schmier- und Dichtmittel in dem Verdichterraum des Schraubenverdichters verwendet wird. Als Gleit-, Schmier- und Dichtfluid können Öl oder Wasser dienen. Als Gleitlagerfluid kann jedoch auch Luft eingesetzt werden.In a preferred embodiment, this is of the Thrust bearing parts formed thrust bearings a plain bearing. The radial bearings can also be designed as plain bearings his. The axial plain bearing is structurally simpler as a roller bearing and thereby facilitates a cheaper one Manufacture of the screw compressor. Have plain bearings also the advantage of not generating any significant heat, so that the rotor shafts even at high speeds stay tension-free. The plain bearing can with the be lubricated with the same medium as Lubricant and sealant in the compressor room of the Screw compressor is used. As a sliding, Lubricating and sealing fluids can serve oil or water. However, air can also be used as the sliding bearing fluid become.

Bei einem Riemenantrieb des Hauptläufers wird an der Antriebsseite vorzugsweise ein Wälzlager als Radiallager eingesetzt, da Gleitlager zur Aufnahme extrem hoher radialer Belastungen nicht geeignet sind.With a belt drive of the main rotor, the Drive side preferably a roller bearing as a radial bearing used because the slide bearing is extremely flexible high radial loads are not suitable.

In einer bevorzugten Ausgestaltung ist der Nebenläufer ausschließlich über die kämmenden Zähne der Schraubenrotoren axial an dem Hauptläufer abgestützt. Die Zähne der Schraubenrotoren können derart ausgebildet sein, daß an dem Nebenläufer nur sehr geringe oder gar keine axiale Kräfte auftreten, so daß diese geringen axialen Kräfte des Nebenläufers problemlos über die Schraubenrotor-Zähne auf den Hauptläufer übertragen werden können. Eine weitere Vorrichtung zur Übertragung der Axialkräfte von dem Nebenläufer auf den Hauptläufer entfällt.In a preferred embodiment, the secondary runner exclusively via the meshing teeth of the screw rotors axially supported on the main rotor. The teeth the screw rotors can be designed such that there is very little or none at all on the secondary runner axial forces occur so that these small axial Forces of the secondary rotor can be easily applied via the screw rotor teeth can be transferred to the main runner. Another device for transmitting the axial forces from the secondary runner to the main runner.

Vorzugsweise weist der Nebenläufer eine axiale Spannvorrichtung auf, die den Nebenläufer axial vorspannt. Die axiale Spannvorrichtung weist keinen Anschlag auf, an den der Nebenläufer abgestützt werden könnte, sondern beaufschlagt den Nebenläufer, vorzugsweise die Nebenläuferwelle, mit einer konstanten Vorspannungskraft, die ungefähr der zu erwartenden axialen Belastung des Nebenläufers durch die Gaskompression entspricht. Die Spannvorrichtung kompensiert also ungefähr die an dem Nebenläufer auftretenden axialen Kräfte, so daß nur sehr geringe oder gar keine Axialkräfte von dem Nebenläufer auf den Hauptläufer übertragen werden müssen. In einer bevorzugten Ausgestaltung ist die axiale Spannvorrichtung eine hydraulische Spannvorrichtung, die auf die Welle oder den Schraubenrotor des Nebenläufers wirkt. Die Spannvorrichtung kann aber auch mit Luft gespeist sein.The secondary rotor preferably has an axial clamping device that axially preloads the secondary runner. The axial clamping device has no stop, to which the secondary runner could be supported, but acts on the secondary runner, preferably the Secondary rotor shaft, with a constant preload force, the approximate expected axial load of the secondary runner due to the gas compression. The tensioning device compensates approximately the axial forces occurring on the secondary rotor, so that only very little or no axial forces from that Secondary runner must be transferred to the main runner. In a preferred embodiment, the axial Clamping device a hydraulic clamping device, on the shaft or the screw rotor of the secondary rotor acts. The clamping device can also be used Be fed by air.

Vorzugsweise ist das Axiallagerteil des Hauptläufers an dem Schraubenrotor des Hauptläufers angeordnet. Nicht die Welle des Hauptläufers, sondern der Schraubenrotor des Hauptläufers wird an dem Gehäuse abgestützt. Der Schraubenrotor, an dem die axialen Kräfte durch die Druckerzeugung sowie die von dem Nebenläufer übertragenen axialen Kräfte auftreten, wird also direkt an dem Gehäuse gelagert, so daß die axialen Kräfte ohne eine Übertragung durch ein weiteres Bauteil abgestützt werden. Dadurch entfällt die axiale Belastung der Welle durch die axialen Belastungskräfte des Hauptläufers, so daß die Welle weniger durch entsprechende Drehmomente und Schubkräfte beansprucht wird.The axial bearing part of the main rotor is preferably on the screw rotor of the main rotor. Not the shaft of the main rotor, but the screw rotor the main rotor is supported on the housing. The Screw rotor on which the axial forces by the Pressure generation as well as those transmitted by the secondary runner axial forces occur, so is directly on the Housing mounted so that the axial forces without one Transmission can be supported by another component. This eliminates the axial load on the shaft by the axial load forces of the main rotor, so that the shaft less by corresponding torques and thrust is used.

In einer bevorzugten Ausgestaltung ist das Axiallagerteil des Hauptläufers eine axiale Stirnwand des Schraubenrotors. Das Axiallagerteil des Gehäuses ist eine ringscheibenartige Lauffläche, wobei beide Axiallagerteile zusammen das Gleitlager bilden. Die Stirnwand des Hauptläufer-Schraubenrotors bildet also eine Lagerfläche, die auf der ringartigen Lauffläche des Gehäuses lagert. Bei dieser Konstruktion müssen keine lagerspezifischen Teile an dem Hauptläufer vorgesehen werden. Die Herstellung des Hauptläufers ist bei dieser Konfiguration also wenig aufwendig. In a preferred embodiment, the thrust bearing part of the main rotor an axial end wall of the screw rotor. The thrust bearing part of the housing is one washer-like tread, both axial bearing parts together form the plain bearing. The front wall of the The main rotor screw rotor therefore forms a bearing surface, the on the ring-like tread of the housing outsourced. With this construction, no warehouse-specific Parts are provided on the main runner. The manufacture of the main rotor is in this configuration so little effort.

In einer alternativen Ausgestaltung weist der Hauptläufer an einer axialen Stirnseite des Schraubenrotors als Axiallagerteil eine Gleitlagerscheibe auf, die mit einer Axiallagerteil-Lauffläche des Gehäuses das Gleitlager bildet. An einer Stirnseite des Hauptläuferrotors ist also eine ringartige Gleitlagerscheibe vorgesehen, die eine geschlossene radiale Lauffläche bildet.In an alternative embodiment, the main runner on an axial end face of the screw rotor as Axial bearing part on a plain bearing disc, which with a Thrust bearing tread of the housing the plain bearing forms. On one end of the main rotor an annular slide bearing washer is provided, which forms a closed radial tread.

Vorzugsweise weist die Schraubenrotor-Stirnwand bzw. die Gleitlagerscheibe im wesentlichen radial verlaufende Nuten für ein Gleitfluid auf. Durch diese Nuten kann das Gleitfluid, das in Wellennähe bzw. an der Basis des Schraubenrotors eingeleitet wird, durch die Zentripedalkräfte weiter nach außen gelangen. Auf diese Weise wird über den gesamten Radius und Umfang des Schraubenrotors ein Gleitfilm erzeugt.The screw rotor end wall or the plain bearing disc is essentially radial Grooves for a sliding fluid. Through this Grooves can be the sliding fluid that is close to the shaft or on the base of the screw rotor is introduced by the centripetal forces continue to reach the outside. On this way, over the entire radius and perimeter of the screw rotor creates a sliding film.

In einer bevorzugten Ausgestaltung haben die Nuten einen bogenartigen Verlauf, wobei das radial äußere Ende jeder Nut der Rotordrehrichtung entgegengesetzt gebogen ist. Dadurch ergeben sich sehr gleichmäßige Gleitfluidverteilungen über den gesamten Radius und Umfang des Schraubenrotors.In a preferred embodiment, the grooves an arcuate course, the radially outer End of each groove opposite to the direction of rotation of the rotor is bent. This results in very even results Sliding fluid distributions over the entire radius and Scope of the screw rotor.

Vorzugsweise haben die Nuten einen T-förmigen Verlauf, wobei der senkrechte Teil radial und der waagerechte Teil tangential in Umfangsrichtung verlaufend angeordnet sind. Die T-förmigen Nuten ermöglichen eine gute Gleitlagerschmierung in beiden Laufrichtungen des Hauptläufers.The grooves preferably have a T-shaped course, the vertical part being radial and the horizontal part Part arranged tangentially in the circumferential direction are. The T-shaped grooves allow a good one Plain bearing lubrication in both directions of the Main rotor.

In einer bevorzugten Ausgestaltung liegt eine Stirnfläche des Nebenläufer-Schraubenrotors axial abstützend an der Gleitlagerscheibe des Hauptläufers an. Die Stirnfläche der Rotorzähne des Nebenläufers schlagen also an der rotorseitigen Seite der Gleitlagerscheibe an. Dadurch ist mit einfachen Mitteln eine axiale Lagerung des Nebenläufers realisiert, durch die auch größere Axialkräfte übertragen werden können.In a preferred embodiment there is an end face axially supporting the secondary rotor screw rotor on the plain bearing disc of the main rotor. The Beat the face of the rotor teeth of the secondary rotor So on the rotor side of the plain bearing disc on. This is an axial bearing with simple means of the secondary runner, through which also larger ones Axial forces can be transmitted.

In einer bevorzugten Ausgestaltung sind der Schraubenrotor, die Welle und die Gleitlagerscheibe des Hauptläufers einstückig miteinander ausgebildet. Der Hauptläufer kann aus einem Verbundwerkstoff durch Gießen, Spritzen u.ä. in einer Negativform hergestellt sein.In a preferred embodiment, the screw rotor, the shaft and the plain bearing washer of the main rotor integrally formed with each other. The main runner can be cast from a composite material, Syringes etc. be made in a negative form.

Alternativ kann die Gleitlagerscheibe separat ausgebildet und mit der Welle und/oder dem Schraubenrotor des Hauptläufers vergossen, verschraubt oder auf andere Weise befestigt sein. Bei dieser getrennten Herstellung der Gleitlagerscheibe und des Hauptläufers können verschiedene Materialien für Welle, Rotor und Gleitlagerscheibe gewählt werden, die den jeweiligen physikalischen Anforderungen des jeweiligen Bauteils besser angepaßt werden können. Der Schraubenrotor kann beispielsweise auf herkömmliche Weise, beispielsweise aus Verbundwerkstoff, gefräst werden und die Metall-Gleitlagerscheibe anschließend mit dem Schraubenrotor verschraubt werden.Alternatively, the plain bearing disc can be formed separately and with the shaft and / or the screw rotor of the Main rotor cast, screwed or on others Be attached way. In this separate production the plain bearing disc and the main rotor can be different Materials for shaft, rotor and plain bearing disc can be chosen that correspond to the respective physical Requirements of the respective component better adapted can be. The screw rotor can for example in a conventional manner, for example Composite, be milled and the metal plain bearing washer then screwed to the screw rotor become.

Gemäß einer bevorzugten Ausgestaltung wird auf die Welle des Haupt- bzw. des Nebenläufers eine spezielle Radiallager-Laufschicht aufgebracht. Der Hauptläufer kann beispielsweise einstückig hergestellt sein, und auf die Welle anschließend ein Supergleitwerkstoff für das Radiallager aufgetragen werden. According to a preferred embodiment, the shaft a special radial bearing running layer of the main and the secondary rotor applied. The main runner can for example, be made in one piece, and on the Shaft then a super sliding material for the Radial bearings are applied.

Im folgenden werden unter Bezugnahme auf die Abbildungen Ausführungsbeispiele der Erfindung näher erläutert.The following are with reference to the figures Embodiments of the invention explained in more detail.

Es zeigen:

Fig. 1
einen Schraubenverdichter mit einem Hauptläufer mit einem axialen Gleitlager und einem Nebenläufer, der an dem Hauptläufer axial abgestützt ist,
Fig. 2
eine erste Ausführungsform des Axiallagerteils des Hauptläufers,
Fig. 3
eine zweite Ausführungsform eines Axiallagerteils des Hauptläufers,
Fig. 4
eine dritte Ausführungsform eines Axiallagerteils des Hauptläufers,
Fig. 5
eine erste Ausführungsform eines Hauptläufers mit einer separaten Gleitlagerscheibe,
Fig. 6
der Hauptläufer und die montierte Gleitlagerscheibe der Fig. 5,
Fig. 7
eine zweite Ausführungsform des Hauptläufers, der einstückig ausgebildet ist, und
Fig. 8
eine dritte Ausführungsform eines Hauptläufers, auf dessen Welle eine Radiallager-Laufschicht aufgebracht ist.
Show it:
Fig. 1
a screw compressor with a main rotor with an axial slide bearing and a secondary rotor which is axially supported on the main rotor,
Fig. 2
a first embodiment of the axial bearing part of the main rotor,
Fig. 3
a second embodiment of an axial bearing part of the main rotor,
Fig. 4
A third embodiment of an axial bearing part of the main rotor,
Fig. 5
a first embodiment of a main rotor with a separate plain bearing disc,
Fig. 6
the main rotor and the mounted plain bearing disc of Fig. 5,
Fig. 7
a second embodiment of the main rotor, which is integrally formed, and
Fig. 8
a third embodiment of a main rotor, on the shaft of a radial bearing running layer is applied.

In Fig. 1 ist ein Schraubenverdichter 10 dargestellt, der der Erzeugung eines ölfreien Druckgases, beispielsweise Luft dient. Der Schraubenverdichter 10. besteht aus einem Gehäuse 12, in dem achsparallel zueinander ein Hauptläufer 14 und ein Nebenläufer 16 angeordnet sind. Der Hauptläufer 14 besteht im wesentlichen aus einer Welle 18, einem Schraubenrotor 20 und einer Gleitlagerscheibe 22, die als Axiallagerteil des Hauptläufers 14 dient. Der Nebenläufer 16 besteht seinerseits im wesentlichen aus einer Welle 24 und dem Schraubenrotor 26. Sowohl die Welle 24 als auch der Schraubenrotor 26 des Nebenläufers sind im Durchmesser jeweils kleiner als die Welle 18 und der Schraubenrotor 20 des Hauptläufers 14. Sowohl der Hauptläufer 14 als auch der Nebenläufer 16 sind einstückig aus einem Verbundwerkstoff hergestellt.1 shows a screw compressor 10, the generation of an oil-free compressed gas, for example Air serves. The screw compressor 10 from a housing 12 in which axially parallel to each other a main rotor 14 and a secondary rotor 16 are arranged are. The main rotor 14 consists essentially of a shaft 18, a screw rotor 20 and one Plain bearing washer 22, which acts as a thrust bearing part of the main rotor 14 serves. The secondary runner 16 is in turn essentially from a shaft 24 and the Screw rotor 26. Both the shaft 24 and the Screw rotor 26 of the secondary rotor are in diameter each smaller than the shaft 18 and the screw rotor 20 of the main runner 14. Both the main runner 14 and the secondary rotor 16 are also made in one piece from a composite material manufactured.

Der Hauptläufer 14 ist über einen Wellenansatz 28, der aus dem Gehäuse 12 herausgeführt ist, antreibbar. Dieser Antrieb erfolgt vorzugsweise direkt über einen axial mit der Hauptläufer-Längsachse ausgerichteten Elektromotor.The main rotor 14 is a shaft extension 28, the is led out of the housing 12, driven. This drive is preferably carried out directly via a axially aligned with the main rotor longitudinal axis Electric motor.

Zur Aufnahme der radialen Kräfte, die auf den Hauptläufer 14 wirken, ist die Hauptläufer-Welle 18 mit zwei Radiallagern 30,32 in dem Gehäuse 12 gelagert. Auch der Nebenläufer 16 ist mit zwei Radiallagern 34,36 in dem Gehäuse 12 gelagert. Alle Radiallager 30,32,34,36 sind als Gleitlager ausgebildet. Der von dem Gehäuse 12 umschlossene Raum, in dem der Hauptläufer-Schraubenrotor 20 und der Nebenläufer-Schraubenrotor 26 angeordnet sind, ist der Verdichtungsraum 27 des Schraubenverdichters 10, in dem das Gas verdichtet wird. Das Gehäuse 12 weist an der Seite des Wellenansatzes 28 eine nicht dargestellte Gasöffnung auf, in die das zu komprimierende Gas in den Verdichtungsraum 27 einströmen kann. In den durch die Zähne 21,25 der Schraubenrotoren 20,26 gebildeten Räume wird das Gas in dem Verdichtungsraum 27 komprimiert und am gegenüberliegenden axialen Ende des Verdichtungsraums 27 durch eine nicht dargestellte Gehäuseöffnung komprimiert ausgelassen. Diese Auslaßseite des Schraubenverdichters bzw. des Haupt- und Nebenläufers 14,16 wird als Druckseite bezeichnet.To absorb the radial forces acting on the main rotor 14 act, the main rotor shaft 18 with two Radial bearings 30,32 stored in the housing 12. Also the Secondary rotor 16 is in the with two radial bearings 34,36 Housing 12 stored. All radial bearings are 30,32,34,36 designed as a plain bearing. The one enclosed by the housing 12 Space in which the main rotor screw rotor 20 and the secondary rotor screw rotor 26 are arranged are, the compression space 27 of the screw compressor 10, in which the gas is compressed. The housing 12 does not have one on the side of the shaft extension 28 shown gas opening into which to be compressed Gas can flow into the compression chamber 27. In through the teeth 21, 25 of the screw rotors 20, 26 formed spaces, the gas in the compression space 27 compressed and at the opposite axial end of the compression space 27 by a not shown Casing opening compressed omitted. This outlet side the screw compressor or the main and secondary rotor 14, 16 is referred to as the print page.

Die Radiallager 30, 32 und 36 sind prinzipiell alle gleich aufgebaut. Über ein Gleitfluid-Zulauf 38,39,41 läuft ein Gleitfluid, nämlich Wasser, in eine Ringnut 44. Auf der Welle 18,24 sitzt, jeweils von der Ringnut 44 umgeben, eine Lagerbüchse 46, die jeweils drei radiale Bohrungen 48 aufweist, durch die das Gleitfluid auf den Außenumfang der jeweiligen Welle 18,24 gelangen kann.The radial bearings 30, 32 and 36 are in principle all built up the same. Via a sliding fluid inlet 38, 39, 41 a sliding fluid, namely water, runs into an annular groove 44. Sits on the shaft 18, 24, each from the annular groove 44 surround a bearing bush 46, each three radial Has holes 48 through which the sliding fluid reach the outer circumference of the respective shaft 18, 24 can.

Bei den beiden druckseitigen Radiallagern 32,36 wird das Gleitfluid entlang der Welle 18,24 axial verteilt, wobei das in Richtung Verdichtungsraum 27 fließende Gleitfluid über eine Ringnut 50 und Sammelkanäle 52,54 in einen Gleitfluidsammelraum 57 gelangt. Über zwei Bohrungen 56,58 wird das Gleitfluid in den Verdichtungsraum 27 eingespritzt.With the two pressure-side radial bearings 32,36 the sliding fluid is axially distributed along the shaft 18, 24, the flowing in the direction of compression space 27 Lubricating fluid via an annular groove 50 and collecting channels 52, 54 enters a sliding fluid collecting space 57. About two Bores 56, 58 will slide the lubricating fluid into the compression chamber 27 injected.

Bei dem antriebsseitigen Radiallager 30 des Hauptläufers 14 fließt das Gleitfluid entlang der Lagerbüchse 46 in beide axiale Richtungen, nämlich in Richtung eines Gleitfluidablaufes 60 und in Richtung der Gleitlagerscheibe 22. In the drive-side radial bearing 30 of the main rotor 14 the sliding fluid flows along the bearing bush 46 in both axial directions, namely in the direction a sliding fluid drain 60 and in the direction of the plain bearing disc 22nd

Bei dem der Druckseite abgewandten Radiallager 34 des Nebenläufers 16 läuft das Gleitfluid durch eine axiale Wellenbohrung 62 und drei in 120° zueinander angeordnete radiale Bohrungen 64 der Welle 24 zum Wellenumfang bzw. zu der Lagerbüchse 47. Von dort läuft das Gleitfluid auf dem Wellenumfang in Richtung Verdichtungsraum 27.In the radial bearing 34 facing away from the pressure side Secondary rotor 16 runs the sliding fluid through an axial Shaft bore 62 and three arranged at 120 ° to each other radial bores 64 of the shaft 24 to the shaft circumference or to the bearing bush 47. From there it runs Sliding fluid on the shaft circumference in the direction of the compression space 27th

Der Hauptläufer 14 weist ein Axiallager 15 auf, das als Gleitlager ausgebildet ist. Das eine Axiallagerteil des Axiallagers 15 wird von der Gleitlagerscheibe 22 gebildet, die an der Stirnseite des Schraubenrotors 20 angeordnet ist und diesen axial abschließt. Das andere Axiallagerteil wird von einer ringscheibenartigen Lauffläche 66 des Gehäuses 12 gebildet. Die ringscheibenartigen Laufflächen 66,68 der Gleitlagerscheibe 22 und des Gehäuses 12 bilden zusammen ein Gleitlager, das den Schraubenrotor 20 des Hauptläufers 18 direkt an dem Gehäuse 12 abstützt.The main rotor 14 has a thrust bearing 15, which as Plain bearing is formed. The one axial bearing part of the Axial bearing 15 is formed by the plain bearing disc 22, which are arranged on the end face of the screw rotor 20 and axially closes it. The other Axial bearing part is from an annular disk-like tread 66 of the housing 12 is formed. The washer-like Running surfaces 66,68 of the plain bearing disc 22 and the housing 12 together form a plain bearing, which Screw rotor 20 of the main rotor 18 directly on the housing 12 supports.

Das Gleitfluid für das Axiallager 15 wird über einen Zulauf 70 einer Ringnut 72 der Hauptläuferwelle 18 zugeführt, die sich bis zur Gleitlagerscheibe 22 axial erstreckt. Das Gleitfluid wird mit einem Druck von ungefähr 10 bar zugeführt, der ungefähr dem Gasdruck des komprimierten Gases entspricht.The sliding fluid for the thrust bearing 15 is a Inlet 70 fed to an annular groove 72 of the main rotor shaft 18, which extends axially up to the slide bearing washer 22 extends. The sliding fluid is at a pressure of approximately 10 bar supplied, which is approximately the gas pressure of the compressed gas corresponds.

Wie in Fig. 2 dargestellt, weist die Gleitlagerscheibe 22 mehrere radial und bogenartig nach außen verlaufende, spitz zulaufende Nuten 23 auf, durch die aufgrund der bei Rotation des Hauptläufers 14 auftretenden Zentripedalkräfte das Gleitfluid nach außen gelangt. As shown in Fig. 2, the plain bearing disc 22 a plurality of radially and arched outwards, tapered grooves 23, due to the the centripetal forces occurring when the main rotor 14 rotates the sliding fluid comes out.

Das Gleitfluid tritt aus den Nuten 23 der Gleitlagerscheibe 22 heraus und bildet zwischen den Laufflächen 66,68 des Axiallagers 15 einen Fluidfilm, der für die gleitende Lagerung sorgt. Das Gleitfluid fließt weiter nach außen und gelangt schließlich in den Verdichtungsraum 27.The sliding fluid emerges from the grooves 23 of the plain bearing disc 22 out and forms between the treads 66,68 of the thrust bearing 15, a fluid film for the sliding storage ensures. The lubricating fluid continues to flow to the outside and finally gets into the compression space 27th

Der Nebenläufer 16 ist mit den Zähnen 25 seines Schraubenrotors 26 mit den Zähnen 21 des Schraubenrotors 20 des Hauptläufers 14 kämmend in Eingriff. Über die Zahnflanken der Zähne 21 und 25 werden axiale Kräfte des Nebenläufers 16 auf die Zähne 21 des Hauptläufers 14 übertragen.The secondary rotor 16 is with the teeth 25 of its screw rotor 26 with the teeth 21 of the screw rotor 20 of the main rotor 14 meshing. Over the tooth flanks the teeth 21 and 25 are axial forces of the Secondary rotor 16 on the teeth 21 of the main rotor 14 transfer.

Im Bereich der Stirnseite 74 der Welle 24 des Nebenläufers 16 wird ein Fluidraum 76 von einem Deckel 78 des Gehäuses 12 umschlossen, in den das Gleitfluid für das Radiallager 34 durch den Zulauf 40 eingeführt wird. Das Gleitfluid wirkt mit seinem Fluiddruck von ungefähr 10 bar auf die Stirnfläche 74 der Welle 24 und erzeugt dadurch in axialer Richtung eine Kraft auf den Nebenläufer 16, die der auf den Nebenläufer 16 durch die Gasdruckerzeugung wirkenden Axialkraft entgegenwirkt. Diese Anordnung wirkt also als pneumatische Spannvorrichtung, die den Nebenläufer 16 axial abfedert, jedoch keinen Anschlag zum Fixieren des Nebenläufers 16 in einer bestimmten axialen Position aufweist.In the area of the end face 74 of the shaft 24 of the secondary rotor 16, a fluid space 76 is covered by a cover 78 of the Enclosed housing 12 in which the sliding fluid for Radial bearing 34 is introduced through the inlet 40. The Lubricant works with its fluid pressure of approximately 10 bar on the end face 74 of the shaft 24 and generated therefore a force on the secondary rotor in the axial direction 16, which on the secondary runner 16 through the Counteracts gas pressure acting axial force. This arrangement thus acts as a pneumatic clamping device, which axially cushions the secondary rotor 16, however no stop for fixing the secondary rotor 16 in a certain axial position.

Neben der axialen Spannvorrichtung 80 und der axialen Abstützung des Nebenläufers über die Schraubenrotoren 20,26 wird der Nebenläufer außerdem von der Rückseite 82 der Gleitlagerscheibe 22 abgestützt, an die sich Stirnseiten 83 der Zähne 25 des Nebenläufer-Schraubenrotors 26 abstützen. In addition to the axial clamping device 80 and the axial Support of the secondary rotor via the screw rotors 20.26 will also be the runner from the back 82 of the plain bearing washer 22 supported End faces 83 of the teeth 25 of the secondary rotor screw rotor 26 support.

In Fig. 3 ist eine zweite Ausführungsform einer Gleitlagerscheibe 22' dargestellt, in der die Gleitfluid-Nuten 84 T-förmig verlaufend angeordnet sind. Dabei ist die senkrechte Nut 85 radial und die waagerechte Nut tangential angeordnet. Bei dieser Ausgestaltung der Nuten 84 kann der Hauptläufer 14' in beiden Drehrrichtungen betrieben werden, wobei in beiden Drehrichtungen eine ausreichende Gleitschmierung gewährleistet ist.In Fig. 3 is a second embodiment of a plain bearing disc 22 'shown in the sliding fluid grooves 84 are arranged in a T-shape. It is the vertical groove 85 radial and the horizontal groove arranged tangentially. With this configuration the Grooves 84 can be the main rotor 14 'in both directions of rotation are operated, in both directions adequate lubrication is guaranteed.

In Fig. 4 ist eine weitere Ausführungsform des Hauptläufers 14" dargestellt, bei dem jedoch keine Gleitlagerscheibe vorgesehen ist, sondern die Stirnseite 88 der Zähne 25 als Gleitlagerfläche dient. Zur besseren Verteilung des Gleitfluids sind auch in der Stirnfläche 88 bogenartig angeordnete Nuten 89 vorgesehen.4 is another embodiment of the main rotor 14 "shown, but with no plain bearing washer is provided, but the end face 88 the teeth 25 serves as a sliding bearing surface. For better Distribution of the sliding fluid are also in the face 88 arcuate grooves 89 are provided.

In der Fig. 5 ist ein Hauptläufer 90 dargestellt, der im wesentlichen aus zwei Teilen besteht: Der Welle 92, die einstückig mit dem Schraubenrotor 94 hergestellt ist, beispielsweise aus einem Verbundwerkstoff oder Metall, und der Gleitlagerscheibe 22', die aus einem Material mit guten Gleiteigenschaften hergestellt ist. Die Gleitlagerscheibe 22 weist vier axiale Mitnehmerzapfen 95 auf, die in entsprechende Bohrungen des Schraubenrotors 94 passen.5, a main rotor 90 is shown, the consists essentially of two parts: the shaft 92, which are made in one piece with the screw rotor 94 is, for example made of a composite material or Metal, and the slide bearing disc 22 ', which consists of a Material with good sliding properties is made. The plain bearing disc 22 has four axial driver pins 95 on the corresponding holes in the Screw rotor 94 fit.

Wie in Fig. 6 dargestellt, wird die Gleitlagerscheibe 22' auf die Welle 92 aufgeschoben und die Mitnahmezapfen 95 in die entsprechenden Öffnungen des Schraubenrotors 94 eingesteckt. Die Gleitlagerscheibe 22' wird dann mit dem Schraubenrotor 94 verschraubt. As shown in Fig. 6, the plain bearing washer 22 'pushed onto the shaft 92 and the driving pins 95 in the corresponding openings of the screw rotor 94 inserted. The plain bearing disc 22 ' is then screwed to the screw rotor 94.

Alternativ kann die Gleitlagerscheibe zunächst getrennt hergestellt und anschließend beim Gießen des Hauptläufers 90 miteingegossen werden.Alternatively, the plain bearing disc can be separated first manufactured and then when casting the main rotor 90 can be cast in.

Fig. 7 zeigt den Hauptläufer 14 der Fig. 1.FIG. 7 shows the main rotor 14 of FIG. 1.

In Fig. 8 ist ein Hauptläufer dargestellt, bei dem auf die Welle 18 zu beiden Seiten des Schraubenrotors 26 jeweils eine Radiallagerlaufschicht 102 aufgebracht ist, die bessere Gleiteigenschaften als das Wellenmaterial hat, und aus sog. Supergleitwerkstoffen bestehen kann.In Fig. 8, a main rotor is shown in the the shaft 18 on both sides of the screw rotor 26 one radial bearing running layer 102 is applied in each case is, the better sliding properties than the shaft material has, and consist of so-called super sliding materials can.

Claims (15)

  1. A screw-type compressor with a housing (12) in which a primary rotor assembly (14) and a secondary rotor assembly (16) are arranged, each having a shaft (18, 24) and a screw-type rotor (20, 26),
    characterized in that the secondary rotor assembly (16) is supported axially at the primary rotor assembly (14), and
    that only the primary rotor assembly (14) has an axial bearing member (22) supported at a stationary axial bearing member (66) of the housing (12).
  2. The screw-type compressor of claim 1, characterized in that the axial bearing (15) formed by the axial bearing members (22, 66) is a plain bearing.
  3. The screw-type compressor of claim 1 or 2, characterized in that the secondary rotor assembly (16) is axially supported at the primary rotor assembly (14) exclusively by the meshing teeth (21, 25) of the screw-type rotors (20, 26).
  4. The screw-type compressor of claims 1-3, characterized in that an axial tensioning device (80) is provided that prestresses the secondary rotor assembly (16) axially toward the outlet side.
  5. The screw-type compressor of claim 4, characterized in that the axial tensioning device (80) is a hydraulic tensioning device acting on the shaft (24) or the screw-type rotor (26) of the secondary rotor assembly (16).
  6. The screw-type compressor of claims 1-5, characterized in that the axial bearing member (22) of the primary rotor assembly (14) is provided at the screw-type rotor (20).
  7. The screw-type compressor of claim 6, characterized in that the axial bearing member of the primary rotor assembly (14") is an axial front end wall (88) of the screw-type rotor (20') and that the axial bearing member of the housing (12) is an annular running surface (66), wherein both axial bearing members together form the plain bearing (88, 66).
  8. The screw-type compressor of claim 6, characterized in that the primary rotor assembly (14) has a plain bearing disc (22) as the axial bearing member provided on an axial front face of the screw-type rotor (20), the disc forming the plain bearing together with a running surface (66) of the axial bearing member in the housing (12).
  9. The screw-type compressor of claims 7 or 8, characterized in that the front end wall (88) of the screw-type rotor orthe plain bearing disc (22) has substantially radially extending grooves (23, 89) for an antiseize fluid.
  10. The screw-type compressor of claim 9, characterized in that the grooves (23, 89) extend arcuately.
  11. The screw-type compressor of claim 9, characterized in that the grooves (84) are T-shaped.
  12. The screw-type compressor one of claims 1-11, characterized in that a front face of the screw-type rotor (26) of the secondary rotor assembly is supported axially in abutment on the plain bearing disc (22) of the primary rotor assembly (14).
  13. The screw-type compressor of one of claims 1-12, characterized in that the screw-type rotor (20), the shaft (18) and the plain bearing disc (22) of the primary rotor assembly (14) are formed integrally.
  14. The screw-type compressor of one of claims 1-12, characterized in that the plain bearing disc (22') is cast, screwed or fastened in any other manner to the shaft (92) or the screw-type rotor (94) of the primary rotor assembly (90).
  15. The screw-type compressor of one of claims 1-14, characterized in that a special radial bearing running layer (102) is applied onto the shaft (18) of the primary rotor assembly and/or the secondary rotor assembly (14, 16).
EP98955416A 1997-10-08 1998-10-08 Screw-type compressor Expired - Lifetime EP1019633B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19744466A DE19744466C2 (en) 1997-10-08 1997-10-08 Screw compressor
DE19744466 1997-10-08
PCT/EP1998/006389 WO1999018355A1 (en) 1997-10-08 1998-10-08 Screw-type compressor

Publications (2)

Publication Number Publication Date
EP1019633A1 EP1019633A1 (en) 2000-07-19
EP1019633B1 true EP1019633B1 (en) 2003-01-15

Family

ID=7844952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98955416A Expired - Lifetime EP1019633B1 (en) 1997-10-08 1998-10-08 Screw-type compressor

Country Status (11)

Country Link
US (1) US6312239B1 (en)
EP (1) EP1019633B1 (en)
JP (1) JP2001519503A (en)
KR (1) KR20010030985A (en)
CN (1) CN1274410A (en)
AT (1) ATE231220T1 (en)
AU (1) AU743902B2 (en)
DE (2) DE19744466C2 (en)
ES (1) ES2191976T3 (en)
RU (1) RU2212564C2 (en)
WO (1) WO1999018355A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086345A (en) * 1999-02-05 2000-07-11 Eaton Corporation Two-piece balance plate for gerotor motor
BE1014043A3 (en) * 2001-03-07 2003-03-04 Atlas Copco Airpower Nv Water injected screw compressor element.
US7682084B2 (en) * 2003-07-18 2010-03-23 Kobe Steel, Ltd. Bearing and screw compressor
US7726115B2 (en) * 2006-02-02 2010-06-01 General Electric Company Axial flow positive displacement worm compressor
JP4387402B2 (en) * 2006-12-22 2009-12-16 株式会社神戸製鋼所 Bearing and liquid-cooled screw compressor
BE1018158A5 (en) * 2008-05-26 2010-06-01 Atlas Copco Airpower Nv LIQUID INJECTED SCREW COMPRESSOR ELEMENT.
DE102010045881A1 (en) * 2010-09-17 2012-03-22 Pfeiffer Vacuum Gmbh vacuum pump
DE102013020535A1 (en) * 2013-12-12 2015-06-18 Gea Refrigeration Germany Gmbh compressor
WO2015143141A1 (en) * 2014-03-21 2015-09-24 Imo Industries, Inc. Gear pump with end plates or bearings having spiral grooves
CN104165139B (en) * 2014-08-03 2016-04-20 浙江大学 Engaging gear Sliding bearing for pump self-loopa cooling oil lubrication system
US20160208801A1 (en) * 2015-01-20 2016-07-21 Ingersoll-Rand Company High Pressure, Single Stage Rotor
CN107503840A (en) * 2017-08-14 2017-12-22 于临涛 Rotary engine and gas compressor improve
CN108757450B (en) * 2018-05-14 2020-04-28 西安交通大学 Screw compressor adopting sliding bearing
JP7037448B2 (en) * 2018-07-20 2022-03-16 株式会社日立産機システム Screw compressor body
JP7049473B2 (en) 2018-09-11 2022-04-06 株式会社日立産機システム Screw compressor
CN109931261A (en) * 2019-02-01 2019-06-25 宁波鲍斯能源装备股份有限公司 Water lubrication helical-lobe compressor
CN112610607A (en) * 2020-12-21 2021-04-06 英诺伟特(昆山)能源机械有限公司 Oil-free water lubrication bearing
CN113898582B (en) * 2021-11-17 2023-12-22 宝风压缩机科技(宁波)有限公司 Improved screw air compressor
CN114985681B (en) * 2022-06-21 2023-11-14 冰轮环境技术股份有限公司 Spiral rotor casting method and processing device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227197C (en) *
DE84891C (en)
FR789211A (en) * 1935-04-24 1935-10-25 Cfcmug Rotary positive displacement motor or compressor
US2111883A (en) * 1936-04-17 1938-03-22 Burghauser Franz Pump
US2871794A (en) * 1953-06-01 1959-02-03 Roper Ind Inc Gear pump or fluid motor
SE317154B (en) * 1959-01-15 1969-11-10 Svenska Rotor Maskiner Ab
US3275226A (en) * 1965-02-23 1966-09-27 Joseph E Whitfield Thrust balancing and entrapment control means for screw type compressors and similardevices
US3811805A (en) * 1972-05-16 1974-05-21 Dunham Bush Inc Hydrodynamic thrust bearing arrangement for rotary screw compressor
SE422348B (en) * 1977-10-24 1982-03-01 Stal Refrigeration Ab DEVICE FOR A COMPRESSOR OF ROTATION TYPE TO FIX A ROTOR SHAFT IN AXIAL LED
DE3015551C2 (en) * 1980-04-23 1986-10-23 Mannesmann Rexroth GmbH, 8770 Lohr Rotary piston machine
US4730995A (en) * 1986-09-25 1988-03-15 American Standard Inc. Screw compressor bearing arrangement with positive stop to accommodate thrust reversal
SE465527B (en) * 1990-02-09 1991-09-23 Svenska Rotor Maskiner Ab SCREW ROUTE MACHINE WITH ORGAN FOR AXIAL BALANCE
US5211026A (en) * 1991-08-19 1993-05-18 American Standard Inc. Combination lift piston/axial port unloader arrangement for a screw compresser
US5466137A (en) * 1994-09-15 1995-11-14 Eaton Corporation Roller gerotor device and pressure balancing arrangement therefor

Also Published As

Publication number Publication date
RU2212564C2 (en) 2003-09-20
WO1999018355A1 (en) 1999-04-15
ES2191976T3 (en) 2003-09-16
US6312239B1 (en) 2001-11-06
AU743902B2 (en) 2002-02-07
AU1226599A (en) 1999-04-27
EP1019633A1 (en) 2000-07-19
JP2001519503A (en) 2001-10-23
DE19744466A1 (en) 1999-04-22
DE59806955D1 (en) 2003-02-20
DE19744466C2 (en) 1999-08-19
KR20010030985A (en) 2001-04-16
ATE231220T1 (en) 2003-02-15
CN1274410A (en) 2000-11-22

Similar Documents

Publication Publication Date Title
EP1019633B1 (en) Screw-type compressor
DE3143206C2 (en)
AT401090B (en) MACHINE, LIKE COMPRESSOR, OF THE SPIRAL DISPLACEMENT TYPE
DE1958225C3 (en) External mesh gear pump
DE2908189A1 (en) HERMETICALLY CLOSED VERTICAL SCREW COMPRESSOR
DE7013840U (en) PRESSURE-ACTUATED MOTOR.
EP1544504A2 (en) Planetary transmission, in particular for wind power plant
DE2939945A1 (en) SCREW MACHINE WITH AXIAL FLEXIBLE SEAL
CH651899A5 (en) DRIVE WITH A MOTOR AND A TENSION SHAFT TRANSMISSION.
DE2304898A1 (en) GAS LUBRICATED BEARING
DE2612983A1 (en) ROTARY LISTON MACHINE
EP0753678A2 (en) Sliding-contact bearing for a shaft
DE2849994A1 (en) ROTARY PISTON MACHINE
DE3331807A1 (en) Alternating-current generator with vacuum pump
DE2248647A1 (en) PROCEDURE FOR ASSEMBLING A COMPRESSOR
DE10054798B4 (en) Electrically driven device for adjusting the angle of rotation of a shaft relative to its drive
DE60031459T2 (en) Gerotor motor with lubrication grooves
WO2004033187A1 (en) Extruder/gear pump assembly
EP1819942B1 (en) Gear mechanism
DE2413732A1 (en) HYDRAULIC BRAKE
DE2114874A1 (en) Hydraulic displacement pump
DE3709106A1 (en) COLD COMPRESSOR INTERNAL COMBUSTION ENGINE OF ROTARY PISTON DESIGN
DE2902301C2 (en) Vane pump
EP0761968A1 (en) Valve for a gerotor motor with hydrostatic bearing
DE102019120585A1 (en) DAMPING DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

17Q First examination report despatched

Effective date: 20010912

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59806955

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030519

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1019633E

Country of ref document: IE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191976

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041201

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041228

Year of fee payment: 7

Ref country code: ES

Payment date: 20041228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041229

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050112

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051008

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051010

BERE Be: lapsed

Owner name: KIRSTEN TECHNOLOGIE-ENTWICKLUNG G.M.B.H. *KT

Effective date: 20051031