EP1016319B1 - Procede et dispositif pour coder un signal stereo temporellement discret - Google Patents

Procede et dispositif pour coder un signal stereo temporellement discret Download PDF

Info

Publication number
EP1016319B1
EP1016319B1 EP98932156A EP98932156A EP1016319B1 EP 1016319 B1 EP1016319 B1 EP 1016319B1 EP 98932156 A EP98932156 A EP 98932156A EP 98932156 A EP98932156 A EP 98932156A EP 1016319 B1 EP1016319 B1 EP 1016319B1
Authority
EP
European Patent Office
Prior art keywords
signal
coded
transformed
stereo
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98932156A
Other languages
German (de)
English (en)
Other versions
EP1016319A1 (fr
Inventor
Bernhard Grill
Bodo Teichmann
Karlheinz Brandenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1016319A1 publication Critical patent/EP1016319A1/fr
Application granted granted Critical
Publication of EP1016319B1 publication Critical patent/EP1016319B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation

Definitions

  • the present invention relates to scalable audio encoders and particularly on methods and devices for coding a discrete-time stereo signal.
  • Scalable audio encoders are encoders that have a modular structure are. So there is an endeavor to already exist Speech encoder to use the signals, e.g. B. with 8 kHz are sampled, process and data rates of, for example Output 4.8 to 8 kilobits per second.
  • This known encoders such as. B. those known to experts Encoders G. 729, G.723, FS1016, CELP or parametric Models of the MPEG-4 audio VM are mainly used for Encode speech signals and are generally for Coding of higher quality music signals not suitable, as they are usually used for 8 kHz sampled signals are designed, which is why they are only one audio bandwidth of a maximum of 4 kHz. However, they show in generally fast operation and low Computing effort.
  • a speech encoder with a Audio encoder which signals with a higher sampling rate, such as B. 48 kHz, can encode.
  • a speech encoder mentioned above it is also possible to use the speech encoder mentioned above to replace another encoder, for example by a music / audio encoder according to the standards MPEG1, MPEG2 or MPEG4.
  • Such a chain connection of a speech encoder a higher quality audio encoder is commonly used the method of differential coding in the time domain.
  • On Input signal for example, a sampling rate of 48 kHz, is based on a downsampling filter downsampled the sampling frequency suitable for the speech encoder. Now the down sampled signal coded.
  • the encoded signal can be sent directly to a bit stream formatter be fed to be transmitted. However, it only contains signals with a bandwidth of e.g. B. maximum 4 kHz.
  • the encoded signal is also restored decoded and up-sampled using an upsampling filter. However, the signal now received has due to of the downsampling filter only with useful information a bandwidth of 4 kHz, for example.
  • the spectral content of the sampled up coded / decoded signal in the lower band up to 4 kHz not exactly the first 4 kHz band of the one sampled at 48 kHz Corresponds to input signal since encoder in general Introduce coding errors.
  • a scalable encoder has a well known speech coder as well an audio encoder that receives signals with higher sampling rates can process.
  • This difference can then be determined using a known Audio encoders can be quantized and encoded as it is for Is known to experts.
  • the difference signal that is in the audio encoder the signals can code with higher sampling rates, is fed in lower frequency range apart from coding errors of the Speech encoder is much smaller than the original.
  • the difference signal corresponds to essentially the true input signal, which with z. B. 48 kHz was scanned.
  • the level of the speech coder is usually an encoder with a low sampling frequency used because generally a very low bit rate of coded signal is sought.
  • the maximum possible audio bandwidth is 4 kHz and is limited in practice to about 3.5 kHz. Should now in the further stage, d. H. in the stage with the audio encoder, bandwidth improvement must be achieved another stage with a higher sampling frequency.
  • For Adjustment of the sampling frequencies are decimation and Interpolation filter used for downsampling or upsampling.
  • the object of the present invention is a Method and device for coding a time-discrete To create stereo signal which use of joint stereo techniques.
  • This task is accomplished by a method of encoding a discrete-time stereo signal according to claim 1 and by a device for coding a discrete-time stereo signal solved according to claim 14.
  • the present invention is based on the finding that that a combination of joint stereo techniques with the Principle of scalability can be achieved when out the left and right channels of a stereo signal first a mono signal is formed, which is preferably by summation can happen.
  • the mono signal is generated by means of a first Encoder coded, whereupon the resulting Signal is fed to a bitstream multiplexer.
  • the encoded Mono signal is also decoded again to an encoded / decoded Obtain mono signal that differs from the original Mono signal differs in that it has coding errors having introduced by the first encoder have been.
  • the coded / decoded can also Mono signal itself or the difference of the original Mono signal from the coded / decoded mono signal as Stereo information used to be used along with the Difference from left and right channel, which also as S signal is called, directly a middle / side coding to surrender.
  • the stereo information can now by means of a second encoder, which is identical to the first encoder or can also be constructed differently from the first encoder, coded and also fed to a bitstream multiplexer, which is a bit stream of the encoded mono signal and the encoded stereo information as well as from later Decoding necessary page information generated.
  • Forming and encoding the mono signal can take place in the time domain if as the first encoder or Core encoder z.
  • a frequency domain encoder can be used which can be done using the psychoacoustic model can encode as distortion-free as possible.
  • an encoder is used, which is a lower one Sampling rate has as the time-discrete stereo signal to be encoded, so it has to be from the summation of left and right Channel formed mono signal first to the lower sampling frequency be implemented, which is also known as downsampling becomes.
  • the converted to the lower sampling frequency Mono signal is now encoded and decoded again, whereby the encoded / decoded mono signal is also the lower Sampling frequency.
  • the coded / decoded mono signal back to the sampling frequency of the time-discrete stereo signal which is also implemented as Upsampling is called.
  • Fig. 1 shows a basic block diagram of a scalable Stereo encoder 100 according to a first embodiment of the present invention.
  • the scalable stereo encoder receives a discrete-time stereo signal that a first or left channel L and a second or right channel R includes.
  • the stereo signal is preferred by summation by sample by means of a summator 102 a sum signal is formed, which is then by means of multiplier 104 multiplied by a factor of 0.5 is to a mono signal in this embodiment generate that to the middle signal known from the M / S coding is identical.
  • the mono signal at the output of the multiplier 104 is fed into a downsampling filter 106, around the sampling rate to a preferably implement lower sampling rate, which encodes the Mono signal by means of a time domain encoder, which Part of the core codec 108 is to enable.
  • the encoded Mono signal is sent together with corresponding page information written in a bitstream multiplexer 110 which generates a bit stream at its output 112, which encodes a Representation of the discrete-time stereo signal is.
  • the encoded mono signal is within the core codec 108 decoded again by means of an upsampling filter 114 to be converted back to the first sampling rate so the encoded / decoded mono signal with the left and the right channel for later formation of stereo information can be related.
  • the discrete-time stereo signal could, for example, by means of a first sampling rate, e.g. B. 48 kHz has been sampled his.
  • the downsampling filter 106 could use this signal the first sampling rate to a second sampling rate of e.g. B. 8 implement kHz. Preferably form the first and the second Sampling rate an integer ratio.
  • the downsampling filter 106 can be implemented as a decimation filter, for example his.
  • the core codec 108 could, for example a speech coder such as e.g. B. G.729, G.723, FS1016, MPEG-4 CELP, MPEG-4 PAR, or a similar encoder.
  • Such encoders operate at data rates of 4.8 kilobits per Second (FS1016) up to data rates of 8 kilobits per second (G.729).
  • FS1016 4.8 kilobits per Second
  • G.729 8 kilobits per second
  • the coded mono signal has a maximum of one Bandwidth of 4 kHz, since the downsampling filter 106 does Mono signal z. B. by decimation to a sampling frequency of 8 kHz. Within the range of 0 - 4 kHz are now the encoded / decoded mono signal and the original one Mono signal at the input of the downsampling filter 106 apart from those introduced by the core codec 108 Coding errors equal.
  • the coding error introduced by the core codec 108 is not are always small mistakes, but that they are easily can come in orders of magnitude of the useful signal, if for example a strongly transient signal in the first encoder is encoded. For this reason, as will be discussed later is checked whether differential coding at all makes sense.
  • the output signal of the upsampling filter 114 now becomes the same like the left and right channels using MDCT filter banks 116 implemented in the frequency domain.
  • the output signals of MDCT filter banks 116 as shown in FIG. 1 is shown, a first frequency-selective switching device (FSS) 118a or a second frequency selective Switching device 118b directly or via a first one Totalizer 120a or a second totalizer 120b indirectly fed.
  • FSS frequency-selective switching device
  • the output signal of the MDCT filter bank for the left channel of the first frequency-selective switching device (FSS) 118a which is also the sum of the transformed left channel and the one with negative Signed transformed coded / decoded Mono signal received.
  • the second frequency-selective switching device 118b receives the next to the transformed R channel Sum of the transformed R channel and the one with negative Signed coded / decoded mono signal.
  • the output signal of the first frequency-selective switching device 118a is both a third summer 122a and also a fourth summer 122b with a positive sign fed while the output signal of the second frequency selective Switching device 118b the third summer 122a with a positive sign and the fourth summer 122b with negative sign is supplied.
  • the third Summer 122a is now either the sum of the transformed left and right channels or the difference from the Sum of the uncoded left and right channels and the encoded / decoded sum of the left and right channels in front.
  • This signal which is now in contrast to the encoded Mono signal of the core codec has 108 stereo information, is, for example, by means of an M encoder 124 Consideration of the psychoacoustic model coded and fed to the bitstream multiplexer 110.
  • this signal also in technology as a side signal is referred to, which is fed into an S-encoder 126 with the S encoder 126 as well as the M encoder 124 code taking into account the psychoacoustic model can.
  • the output signal of the S encoder 126 also becomes fed and included in the bitstream multiplexer also stereo information regarding the time discrete Stereo signal at the input of the scalable stereo encoder 100 according to the first embodiment of the present Invention. It is obvious to experts that a complete bitstream page information needed.
  • Side information is especially information of the frequency-selective switching devices 118a and 118b regarding the fact in which frequency band difference signals or transformed L or R signals to the third summer 122a or to the fourth summer 122b have been issued.
  • the output signal of the core codec 108 points, as it already does was mentioned, e.g. B. a sampling frequency of 8 kHz.
  • This signal i.e. H. the mono signal, with a lower sampling rate than the original discrete-time stereo signal but now related to the left or right channel brought to form stereo information.
  • the signal must therefore be included lower sampling rate in a signal with the same sampling rate how the sampling rate of the discrete-time stereo signal is implemented become.
  • the number of zero values is calculated from the ratio of the first and the second Sampling frequency.
  • the ratio of the first (high) to the second (low) sampling frequency is called the upsampling factor designated.
  • the Inserting zeros with very little computation is possible to generate an aliasing disorder that is such affects that the low frequency or zero spectrum of the encoded / decoded mono signal at the output of the core codec 108 is repeated, in total as many times as many Zeros have been inserted.
  • the aliasing signal is now in the frequency range using the MDCT filter bank 116 transformed.
  • the coded / decoded converted up to the first sampling frequency Mono signal is only in the lower frequency band a correct representation of the original mono signal on Output of the multiplier 104, which is why at the output of the MDCT filter bank 116 only a maximum of one / upsampling factor of the entire spectral lines is used.
  • the insert the zeros in the encoded / decoded mono signal on Output of core codec 108 causes the spectral representation of the encoded / decoded mono signal now the same time and frequency resolution as the transformed one has left and right channels.
  • any encoder can be used may happen that the encoder by certain the M-encoder 124 or by the S-encoder 126 difficult coding signal components produced.
  • the core codec 108 should preferably phase information of the coded by him Preserve signals, which in the professional world as “waveform coding” or “waveform encoding”.
  • the decision which is the frequency selective switching module 118a or 118b is carried out, preferably frequency-dependent.
  • “Differential coding” means that only the difference the transformed left or right channel and the transformed encoded / decoded mono signal becomes. If this differential coding is not cheap is because the energy content of the difference signal is greater than the energy content of the transformed left or right Signal is apart from a difference coding and switched to simulcast mode.
  • Forming stereo information based on the encoded / decoded Mono signal and the first and second Channel therefore includes a determination of where it's cheaper the transformed left or right channel or one Difference between the same and the encoded / decoded mono signal to process.
  • a frequency-selective comparison of respective energies carried out If the energy in a certain frequency band the difference signal is the energy of the other Signal multiplied by a predetermined factor k exceeds, it is determined that the output of the frequency-selective switching device 118a the original transformed left signal is. Otherwise it is determined that the difference spectral values are output.
  • the Factor k can range, for example, from about 0.1 to 10.
  • simulcast coding is already used used when the difference signal is lower Has energy than the other signal.
  • differential coding is still used, even if the energy content of the difference signal already larger than that of the original left or right channel is.
  • stereo information can also form stereo information be carried out such that, for. B. a ratio or another link of the encoded / decoded mono signal and the transformed left and right channels is implemented.
  • FIG 2A shows a scalable stereo encoder 200 according to FIG a second embodiment of the present invention.
  • the same elements have the same reference numerals and if they behave the same way, not again described.
  • the scalable stereo encoder 200 differs different from the scalable stereo encoder 100 according to the first embodiment of the present invention in essential in the fact that either a middle / side coding or L / R coding can be performed.
  • the scalable stereo encoder 200 includes further summing devices 202a, 202b in order to derive from the transformed left and right channel a center signal M or to generate a side signal S. That transformed encoded / decoded mono signal is referred to here as M '.
  • the signal M and the signal M ' is also additional frequency-selective switching device 204 fed in, which generates a signal M ′′, the frequency-selective Switching device 204 also a summer 206 is connected upstream, as is the case with all other frequency-selective Switching devices is the case.
  • the scalable Stereo encoder 200 also includes a block joint stereo decision 208, which 4 input signals L ', M ", S and R 'receives.
  • the block joint stereo decision 208 decides in a known way, whether from a stereo encoder 210 an L / R, an M / S or an intensity coding is to be carried out.
  • the index T is intended to indicate that this is a middle signal in the time domain.
  • the core encoder 108 now operates as was shown in connection with FIG. 1.
  • an MDCT is also carried out on the L and R signals.
  • the frequency-selective switching device now serves as it has already been mentioned for calculating M ''. Damn either equal to M - M 'or M itself, as already shown has been.
  • the frequency selective switching device 118 computes the signal L ', which is either equal to 0.5 (L - M') or equal to 0.5 ⁇ L.
  • the switching devices 118a, 118b and 204 operate frequency selective.
  • a decision is now made in the usual way whether a coding of the signals L 'and R' or M "or S has to take place. This function is known in the art and is therefore not explained in more detail.
  • FIG. 2B shows a scalable stereo encoder which differs in some points from the scalable stereo encoder 200 according to the second exemplary embodiment of the invention.
  • the same comprises the two multipliers 214a and 214b, which are arranged after the frequency-selective switching device 204 and after the frequency-selective switching device 118b.
  • 2B also includes a somewhat more detailed illustration of the frequency selective switching devices.
  • the switch state of the frequency selective switch 118a which is referred to as S 1LR
  • S ' 1LR will always be complementary to the switch state of the frequency selective switch 118b, which is referred to as S ' 1LR .
  • S 2 assumes a different state, ie state b, as shown in the drawing, it is sufficient to transmit the state S 1M of the frequency-selective switching device 204, which indicates whether differential or simulcast coding of the signal M is carried out. If the switch S 2 is in a position c, side information is transmitted that there is an intensity stereo coding, in which case the position of the switch S 1M is also transmitted, while here the positions of S 1LR and S ' 1LR are irrelevant.
  • FIG. 3 includes another embodiment 300 of a scalable stereo encoder according to the present invention.
  • the embodiment shown in Fig. 3 differs differs from the embodiment shown in FIG. 2 essentially in that the mono signal in two Levels is encoded.
  • the first stage is through the core codec 108 formed during the second stage by one Encoder / decoder 302 is formed, which in the preferred embodiment works in the frequency domain and implemented as a psychoacoustic frequency domain encoder can be. It receives the input signal M " Output signal of the frequency-selective switching device 204, it is also checked here whether differential coding or simulcast coding makes sense or not.
  • the output signal of encoder / decoder 302 becomes a summer 304 supplied, the output signal M '' 'the difference of the Signal M and the output signal of the encoder / decoder 302 corresponds.
  • This signal M '' ' is just like that Signals L ', S and R' of a joint stereo decision (not shown) and then a stereo encoder (also not shown) supplied.
  • the core codec 108 also includes that encoder / decoder 302 an output to the bit stream multiplexer, to transmit encoded data to the same.
  • the Outputs of the frequency-selective switching devices to the Bitstream multiplexers are intended to illustrate that page information of frequency-selective switching devices regarding the use of differential and simulcast coding in a frequency band also the bit stream multiplexer need to be fed to a trouble-free To enable decoding.
  • the bit stream includes in 3 additionally shows scalable stereo encoder 300 to the first layer or the first layer that is created by the encoded mono signal of the core codec 108 is formed, a second layer by the coded signal M '' at the bitstream multiplexer output of encoder / decoder 302 is formed, the encoder 300 shown in FIG. 3 an encoding of the mono signal at full sampling rate can enable.
  • a scalable audio encoder 400 represents a mono signal formation only in the frequency domain performs.
  • the signals L and R by means of MDCT filter banks 116 transformed into the frequency domain, after which an M / S matrix by means of summers 202a and 202b and the subsequent multiplier by a factor of 0.5 is carried out.
  • the multiplier is thus at the output on the one hand a center signal M and on the other hand a side signal S on.
  • the middle signal used as a mono signal can be is by means of a first encoder / decoder 402 encoded and decoded again, the encoded mono signal M is written in the bitstream, as it already is has been mentioned several times.
  • a summing device 404 Downstream of encoder / decoder 402 is a summing device 404 which the Difference between the encoded / decoded mono signal and forms the original mono signal M, this difference is designated as M '.
  • the signals L ', M', S and R ' can again use a joint stereo decision facility are supplied, which, however, not shown in Fig. 4 is.
  • the encoder 400 presented in FIG. 4 thus operates completely in the frequency domain, the encoder / decoder 402 preferably as a frequency domain encoder full sampling rate is executed.
  • the stereo encoder (not shown) after the IS decision level (also in FIG. 4 (not shown) is preferably also used as a frequency domain encoder executed at full sampling rate.
  • the in Fig. 4 scalable stereo encoder thus represents a Generalization of the term "scalability" because the Bitstream here no layers or "layers" with different Audio bandwidths but (like the other exemplary embodiments) comprises a monolayer and a stereo layer, which encodes separately from one another by an encoder can be.
  • An older monodecoder that doesn't is equipped for stereo operation for example the bit stream of the encoders according to the invention decode to generate at least one mono audio signal.
  • the scalable stereo encoders according to the invention are thus backwards compatible with existing monodecoders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Claims (14)

  1. Procédé pour le codage d'un signal stéréo discret dans le temps, le signal stéréo présentant un premier et un second canal (L, R), aux étapes suivantes consistant à :
    (a) former un signal mono (M) à partir du signal stéréo ;
    (b) coder le signal mono et transmettre le signal mono codé dans un courant de bits ;
    (c) décoder le signal mono codé ;
    (d) former des informations stéréo sur base du signal mono codé/décodé (M') et du premier et du second canal (L, R) ; et
    (e) coder les informations stéréo et transmettre celles-ci dans le courant de bits.
  2. Procédé suivant la revendication 1, dans lequel le signal stéréo discret dans le temps présente une première fréquence de balayage, l'étape (a) présentant les étapes partielles suivantes consistant à :
    (a21) additionner selon la valeur de balayage les canaux gauche et droit (L, R), pour obtenir un signal de somme ; et
    (a22) transformer le signal de somme à une seconde fréquence de balayage inférieure à la première fréquence de balayage, pour obtenir le signal mono ; et
       dans lequel l'étape (c) présente les étapes partielles suivantes consistant à :
    (c21) décoder le signal mono codé présentant la seconde fréquence de balayage ; et
    (2cc) transformer le signal mono codé/décodé à la première fréquence de balayage.
  3. Procédé suivant l'une des revendications précédentes, présentant, par ailleurs, l'étape suivante consistant à :
       transformer le canal gauche et le canal droit et le signal mono codé/décodé à la plage de fréquence, les signaux transformés présentant tous une résolution de temps et de fréquence sensiblement identique.
  4. Procédé suivant la revendication 3, dans lequel l'étape (d) présente les étapes partielles suivantes consistant à :
    (d41) comparer de manière sélective en fonction de la fréquence le canal gauche transformé avec la différence du canal gauche transformé et le signal mono codé/décodé transformé et à sélectionner le signal ayant l'entropie inférieure en fonction de l'ouïe ou l'énergie inférieure ou pouvant être codé avec un nombre de bits inférieur ;
    (d42) comparer de manière sélective en fonction de la fréquence le canal droit transformé avec la différence du canal droit transformé et le signal mono codé/décodé transformé et à sélectionner le signal ayant l'entropie inférieure en fonction de l'ouïe ou l'énergie inférieure ou pouvant être codé avec un nombre de bits inférieur ;
    (d43) additionner les signaux sélectionnés aux étapes (d41) et (d42), pour obtenir, comme premières informations stéréo, un signal de centre (M) ; et
    (d44) soustraire le signal sélectionné à l'étape (d42) du signal sélectionné à l'étape (d41), pour obtenir, comme secondes informations stéréo, un signal de côté (S).
  5. Procédé suivant l'une des revendications 1 à 3, dans lequel l'étape (d) présente les étapes partielles suivantes consistant à:
    (d51) additionner le canal gauche transformé (L) et le canal droit transformé (R), pour obtenir un signal de centre (M) ; et
    (d52) soustraire le canal droit transformé (R) du canal gauche transformé (L), pour obtenir un signal de côté (S).
  6. Procédé suivant la revendication 5, dans lequel l'étape (d) présente, par ailleurs, les étapes partielles suivantes consistant à:
    (d61) comparer de manière sélective en fonction de la fréquence le signal mono codé/décodé transformé (M') avec la différence entre le signal de centre (M) et le signal mono codé/décodé (M') et à sélectionner le signal ayant l'énergie inférieure ;
    (d62) comparer de manière sélective en fonction de la fréquence le canal gauche avec la différence entre le canal gauche (L) et le signal mono codé/décodé transformé (M') ; et
    (d63) comparer de manière sélective en fonction de la fréquence le canal droit avec la différence entre le canal droit (R) et le signal mono codé/décodé transformé (M').
  7. Procédé suivant la revendication 6, dans lequel l'étape (d) présente, par ailleurs, l'étape partielle suivante consistant à :
       (d71) décider s'il est utilisé, comme premières et secondes informations stéréo, les résultats des étapes (d61) et (d52) ou les résultats des étapes (d62) et (d63).
  8. Procédé suivant la revendication 7, dans lequel l'étape (d) présente, avant l'étape (d71), par ailleurs, l'étape partielle suivante consistant à:
       (d81) diviser par deux les résultats des étapes (d61) et (d52).
  9. Procédé suivant la revendication 7 ou 8, dans lequel l'étape (d) présente, par ailleurs, l'étape partielle suivante consistant à :
       (d91) si, aux étapes (d71), sont utilisés, comme premières et secondes informations stéréo, les résultats des étapes (d62) et (d63), transmettre des informations latérales renvoyant soit au résultat de l'étape (d62), soit de l'étape (d63), sinon, transmettre des informations latérales renvoyant au résultat de l'étape (d61).
  10. Procédé suivant l'une des revendications 1 à 5, dans lequel l'étape (d) présente, par ailleurs, les étapes partielles suivantes:
       (d101) comparer de manière sélective en fonction de la fréquence le signal de centre (M) avec la différence entre le signal de centre (M) et le signal mono codé/décodé transformé (M') et à sélectionner le signal ayant l'énergie inférieure comme autre signal mono ;
       dans lequel l'étape (b) présente, par ailleurs, l'étape suivante consistant à:
    (b101) coder l'autre signal mono (M") et à transmettre l'autre signal mono codé au courant de bits ; et
    (b102) décoder l'autre signal mono codé.
  11. Procédé suivant la revendication 10, dans lequel l'étape (d) présente les étapes partielles suivantes consistant à:
    (d111) soustraire l'autre signal mono codé/décodé (M") du signal de centre (M);
    (d112) comparer de manière sélective en fonction de la fréquence le canal gauche (L) avec la différence entre le canal gauche et le résultat de l'étape (d111) et à sélectionner le signal ayant l'énergie inférieure ;
    (d113) comparer de manière sélective en fonction de la fréquence le canal gauché (L) avec la différence entre le canal droit et le résultat de l'étape (d111) et à sélectionner le signal ayant l'énergie inférieure ; et
    (d113) décider s'il est utilisé, comme premières et secondes informations stéréo, les résultats des étapes (d111) (M"') et (d52) (S) ou les résultats des étapes (d112) (L') et (d113) (R').
  12. Procédé suivant la revendication 1, dans lequel, avant l'étape (a), le canal gauche et le canal droit sont transformés à la plage de fréquence, l'étape (a) présentant l'étape partielle suivante consistant à :
       (a121) additionner selon la valeur de balayage les canaux gauche et droit transformés, pour obtenir le signal mono (M).
  13. Procédé suivant la revendication 12, dans lequel l'étape (d) présente les étapes partielles suivantes consistant à:
    (d131) soustraire le signal mono codé/décodé du signal mono (M) ;
    (d132) soustraire le canal droit transformé (R) du canal gauche transformé (L), pour obtenir un signal de côté (S) transformé ;
    (d133) comparer de manière sélective en fonction de la fréquence le signal gauche transformé (L) avec la différence entre le signal gauche transformé (L) et le résultat de l'étape (d131) et à sélectionner le signal à l'énergie inférieure ;
    (d134) comparer de manière sélective en fonction de la fréquence le signal droit transformé (R) avec la différence entre le signal droit transformé et le résultat de l'étape (d131) et à sélectionner le signal à l'énergie inférieure ; et
    (d135) décider s'il est utilisé, comme premières et secondes informations stéréo, les résultats des étapes (d133) (L') et (d134) (R') ou les résultats des étapes (d131) (M') et (d133) (S).
  14. Dispositif (100 ; 200 ; 300 ; 400) de codage d'un signal stéréo discret dans le temps, le signal stéréo présentant un second canal (R, L), aux caractéristiques suivantes:
    (a) un dispositif (102, 104; 202a) destiné à former un signal mono à partir du signal stéréo ;
    (b) un dispositif (108; 402) destiné à coder le signal mono et à transmettre le signal mono codé dans un courant de bits ;
    (c) un dispositif(108 ; 402) destiné à décoder le signal mono codé ;
    (d) un dispositif (116, 118a, 118b, 120a, 120b, 122a, 122b; 202a, 202b, 204, 208 ; 214a, 214b ; 302, 304 ; 402, 404) destiné à former des informations stéréo sur base du signal mono codé/décodé et du premier et du second canal ; et
    (e) un dispositif (124, 126 ; 210) destiné à coder les informations stéréo et à transmettre celles-ci dans le courant de bits.
EP98932156A 1997-09-26 1998-06-15 Procede et dispositif pour coder un signal stereo temporellement discret Expired - Lifetime EP1016319B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19742655A DE19742655C2 (de) 1997-09-26 1997-09-26 Verfahren und Vorrichtung zum Codieren eines zeitdiskreten Stereosignals
DE19742655 1997-09-26
PCT/EP1998/003605 WO1999017587A1 (fr) 1997-09-26 1998-06-15 Procede et dispositif pour coder un signal stereo temporellement discret

Publications (2)

Publication Number Publication Date
EP1016319A1 EP1016319A1 (fr) 2000-07-05
EP1016319B1 true EP1016319B1 (fr) 2001-08-29

Family

ID=7843796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98932156A Expired - Lifetime EP1016319B1 (fr) 1997-09-26 1998-06-15 Procede et dispositif pour coder un signal stereo temporellement discret

Country Status (7)

Country Link
US (1) US6629078B1 (fr)
EP (1) EP1016319B1 (fr)
AT (1) ATE205041T1 (fr)
DE (2) DE19742655C2 (fr)
DK (1) DK1016319T3 (fr)
ES (1) ES2161059T3 (fr)
WO (1) WO1999017587A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091206B (zh) * 2004-12-28 2011-06-01 松下电器产业株式会社 语音编码装置和语音编码方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233556A1 (fr) * 2001-02-16 2002-08-21 Sony International (Europe) GmbH Récepteur pour la réception d'émissions radiophoniques comportant deux récepteurs, pour la réception d'un signal radiophonique qui est transmis sur deux fréquences différentes ou avec deux systèmes de transmission différents
AU2003274520A1 (en) * 2002-11-28 2004-06-18 Koninklijke Philips Electronics N.V. Coding an audio signal
JP2006521577A (ja) * 2003-03-24 2006-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャネル信号を表す主信号と副信号の符号化
CN101027718A (zh) * 2004-09-28 2007-08-29 松下电器产业株式会社 可扩展性编码装置以及可扩展性编码方法
EP1801783B1 (fr) * 2004-09-30 2009-08-19 Panasonic Corporation Dispositif de codage à échelon, dispositif de décodage à échelon et méthode pour ceux-ci
KR20070092240A (ko) * 2004-12-27 2007-09-12 마츠시타 덴끼 산교 가부시키가이샤 음성 부호화 장치 및 음성 부호화 방법
WO2006070760A1 (fr) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. Procede et appareil d’encodage de mise a l’echelle
CN101167126B (zh) * 2005-04-28 2011-09-21 松下电器产业株式会社 语音编码装置和语音编码方法
US8433581B2 (en) * 2005-04-28 2013-04-30 Panasonic Corporation Audio encoding device and audio encoding method
JPWO2007116809A1 (ja) * 2006-03-31 2009-08-20 パナソニック株式会社 ステレオ音声符号化装置、ステレオ音声復号装置、およびこれらの方法
EP2048658B1 (fr) * 2006-08-04 2013-10-09 Panasonic Corporation Dispositif de codage audio stereo, dispositif de decodage audio stereo et procede de ceux-ci
US9009032B2 (en) * 2006-11-09 2015-04-14 Broadcom Corporation Method and system for performing sample rate conversion
KR101450940B1 (ko) * 2007-09-19 2014-10-15 텔레폰악티에볼라겟엘엠에릭슨(펍) 멀티채널 오디오의 조인트 인핸스먼트
EP2214163A4 (fr) * 2007-11-01 2011-10-05 Panasonic Corp Dispositif de codage, dispositif de décodage et leur procédé
US9330671B2 (en) * 2008-10-10 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Energy conservative multi-channel audio coding
EP2626855B1 (fr) * 2009-03-17 2014-09-10 Dolby International AB Codage stéréo avancé basé sur une combinaison d'un codage stéréo gauche/droit ou milieu/côté sélectionnable de façon adaptative et d'un codage stéréo paramétrique
JP5333257B2 (ja) * 2010-01-20 2013-11-06 富士通株式会社 符号化装置、符号化システムおよび符号化方法
JP6100164B2 (ja) * 2010-10-06 2017-03-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオ信号を処理し、音声音響統合符号化方式(usac)のためにより高い時間粒度を供給するための装置および方法
EP2544465A1 (fr) * 2011-07-05 2013-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé et appareil pour décomposer un enregistrement stéréo utilisant le traitement de domaines de fréquence au moyen d'un générateur de pondérations spectrales
TWI557727B (zh) 2013-04-05 2016-11-11 杜比國際公司 音訊處理系統、多媒體處理系統、處理音訊位元流的方法以及電腦程式產品
JP6392353B2 (ja) 2013-09-12 2018-09-19 ドルビー・インターナショナル・アーベー マルチチャネル・オーディオ・コンテンツの符号化

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090052C (fr) * 1992-03-02 1998-11-24 Anibal Joao De Sousa Ferreira Methode et appareil de codage di signaux audio
GB9206860D0 (en) * 1992-03-27 1992-05-13 British Telecomm Two-layer video coder
JP2693893B2 (ja) * 1992-03-30 1997-12-24 松下電器産業株式会社 ステレオ音声符号化方法
DE4217276C1 (fr) * 1992-05-25 1993-04-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
DE4345171C2 (de) * 1993-09-15 1996-02-01 Fraunhofer Ges Forschung Verfahren zum Bestimmen der zu wählenden Codierungsart für die Codierung von wenigstens zwei Signalen
DE4331376C1 (de) * 1993-09-15 1994-11-10 Fraunhofer Ges Forschung Verfahren zum Bestimmen der zu wählenden Codierungsart für die Codierung von wenigstens zwei Signalen
KR960012475B1 (ko) * 1994-01-18 1996-09-20 대우전자 주식회사 디지탈 오디오 부호화장치의 채널별 비트 할당 장치
DE4409368A1 (de) * 1994-03-18 1995-09-21 Fraunhofer Ges Forschung Verfahren zum Codieren mehrerer Audiosignale
DE19537338C2 (de) * 1995-10-06 2003-05-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Codieren von Audiosignalen
US5852806A (en) * 1996-03-19 1998-12-22 Lucent Technologies Inc. Switched filterbank for use in audio signal coding
US6345246B1 (en) * 1997-02-05 2002-02-05 Nippon Telegraph And Telephone Corporation Apparatus and method for efficiently coding plural channels of an acoustic signal at low bit rates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091206B (zh) * 2004-12-28 2011-06-01 松下电器产业株式会社 语音编码装置和语音编码方法

Also Published As

Publication number Publication date
DE19742655C2 (de) 1999-08-05
WO1999017587A1 (fr) 1999-04-08
DE59801343D1 (de) 2001-10-04
ES2161059T3 (es) 2001-11-16
DK1016319T3 (da) 2001-10-08
ATE205041T1 (de) 2001-09-15
EP1016319A1 (fr) 2000-07-05
US6629078B1 (en) 2003-09-30
DE19742655A1 (de) 1999-04-22

Similar Documents

Publication Publication Date Title
EP1016319B1 (fr) Procede et dispositif pour coder un signal stereo temporellement discret
DE602004004818T2 (de) Audiosignalcodierung oder -decodierung
EP0910928B1 (fr) Codage et decodage de signaux audio au moyen d'un procede stereo en intensite et de prediction
EP1025646B1 (fr) Procede et dispositif de codage de signaux audio ainsi que procede et dispositif de decodage d'un train de bits
EP0750811B1 (fr) Procede de codage de plusieurs signaux audio
DE60317722T2 (de) Verfahren zur Reduzierung von Aliasing-Störungen, die durch die Anpassung der spektralen Hüllkurve in Realwertfilterbanken verursacht werden
EP0910927B1 (fr) Procede de codage et de decodage de valeurs spectrales stereophoniques
DE602005002833T2 (de) Kompensation von multikanal-audio energieverlusten
DE602004005197T2 (de) Vorrichtung und verfahren zum kodieren eines audiosignals und vorrichtung und verfahren zum dekodieren eines kodierten audiosignals
EP1979901B1 (fr) Procede et dispositifs pour le codage de signaux audio
DE69910240T2 (de) Vorrichtung und verfahren zur wiederherstellung des hochfrequenzanteils eines überabgetasteten synthetisierten breitbandsignals
EP1502255B1 (fr) Dispositif et procede de codage echelonnable et dispositif et procede de decodage echelonnable
DE4320990B4 (de) Verfahren zur Redundanzreduktion
DE10200653B4 (de) Skalierbarer Codierer, Verfahren zum Codieren, Decodierer und Verfahren zum Decodieren für einen skalierten Datenstrom
DE69634645T2 (de) Verfahren und Vorrichtung zur Sprachkodierung
DE602004005846T2 (de) Audiosignalgenerierung
DE19549621B4 (de) Vorrichtung zum Codieren von Audiosignalen
EP2062254B1 (fr) Stéganographie dans des codeurs de signaux numériques
DE19811039A1 (de) Verfahren und Vorrichtungen zum Codieren und Decodieren von Audiosignalen
DE19706516C1 (de) Verfahren und Vorricntungen zum Codieren von diskreten Signalen bzw. zum Decodieren von codierten diskreten Signalen
WO2003088212A1 (fr) Dispositif et procede pour coder un signal audio a temps discret et dispositif et procede pour decoder des donnees audio codees
DE60310449T2 (de) Audiosignalkodierung
DE102006051673A1 (de) Vorrichtung und Verfahren zum Nachbearbeiten von Spektralwerten und Encodierer und Decodierer für Audiosignale
EP1023777B1 (fr) Procede et dispositif pour limiter un courant de donnees audio dont le debit binaire peut etre mis a l'echelle
DE19829284C2 (de) Verfahren und Vorrichtung zum Verarbeiten eines zeitlichen Stereosignals und Verfahren und Vorrichtung zum Decodieren eines unter Verwendung einer Prädiktion über der Frequenz codierten Audiobitstroms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010202

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 205041

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010829

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59801343

Country of ref document: DE

Date of ref document: 20011004

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161059

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011130

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170621

Year of fee payment: 20

Ref country code: IE

Payment date: 20170622

Year of fee payment: 20

Ref country code: DK

Payment date: 20170626

Year of fee payment: 20

Ref country code: DE

Payment date: 20170621

Year of fee payment: 20

Ref country code: CH

Payment date: 20170626

Year of fee payment: 20

Ref country code: GB

Payment date: 20170626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170622

Year of fee payment: 20

Ref country code: SE

Payment date: 20170626

Year of fee payment: 20

Ref country code: NL

Payment date: 20170621

Year of fee payment: 20

Ref country code: FI

Payment date: 20170620

Year of fee payment: 20

Ref country code: LU

Payment date: 20170622

Year of fee payment: 20

Ref country code: BE

Payment date: 20170621

Year of fee payment: 20

Ref country code: AT

Payment date: 20170620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170703

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59801343

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20180615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180614

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180614

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 205041

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180616