EP1009859A1 - Lyme disease vaccines - Google Patents

Lyme disease vaccines

Info

Publication number
EP1009859A1
EP1009859A1 EP98931370A EP98931370A EP1009859A1 EP 1009859 A1 EP1009859 A1 EP 1009859A1 EP 98931370 A EP98931370 A EP 98931370A EP 98931370 A EP98931370 A EP 98931370A EP 1009859 A1 EP1009859 A1 EP 1009859A1
Authority
EP
European Patent Office
Prior art keywords
polypeptide
burgdorferi
amino acid
polypeptides
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98931370A
Other languages
German (de)
French (fr)
Inventor
Gil H. Choi
Alice L. Erwin
Mark S. Hanson
Raju Lathigra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Genome Sciences Inc
MedImmune LLC
Original Assignee
Human Genome Sciences Inc
MedImmune LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences Inc, MedImmune LLC filed Critical Human Genome Sciences Inc
Publication of EP1009859A1 publication Critical patent/EP1009859A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/20Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Spirochaetales (O), e.g. Treponema, Leptospira
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to novel vaccines for the prevention or attenuation of Lyme disease.
  • the invention further relates to isolated nucleic acid molecules encoding antigenic polypeptides of Borrelia burgdorferi.
  • Antigenic polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same.
  • the invention additionally relates to diagnostic methods for detecting Borrelia gene expression.
  • Lyme disease (Steere, A.C., Proc. Natl. Acad. Sci. USA 97:2378-2383 (1991)), or Lyme borreliosis, is presently the most common human disease in the United States transmitted by an arthropod vector (Center for Disease Control, Morbid. Mortal. Weekly Rep. 46(23):531-535 (1997)). Further, infection of house-hold pets, such as dogs, is a considerable problem. While initial symptoms often include a rash at the infection point, Lyme disease is a multisystemic disorder that may include arthritic, carditic, and neurological manifestations. While antibiotics are currently used to treat active cases of Lyme disease, R. burgdorferi persists even after prolonged antibiotic treatment. Further, B.
  • burgdorferi can persist for years in a mammalian host in the presence of an active immune response (Straubinger, R. et al., J. Clin. Microbiol. 35:111-116 (1997); Steere, A., N. Engl. J. Med. 327:586-596 (1989)).
  • Lyme disease is caused by the related tick-borne spirochetes classified as Borrelia burgdorferi sensu lato (including B. burgdorferi sensu stricto, B. afzelii, B. garini ⁇ ). Although substantial progress has been made in the biochemical, ultrastructural, and genetic characterization of the organism, the spirochetal factors responsible for infectivity, immune evasion and disease pathogenesis remain largely obscure.
  • OspA and OspB are encoded by tightly linked tandem genes which are transcribed as a single transcriptional unit (Brusca, J. et al, J. Bacteriol. 773:8004-8008 (1991)). The most-studied B.
  • burgdorferi membrane protein is OspA, a lipoprotein antigen expressed by borreliae in resting ticks and the most abundant protein expressed in vitro by most borrelial isolates (Barbour, A.G., et al, Infection & Immunity 47:795-804 (1983); Howe, T.R., et al, Science 227:645 (1985)).
  • Lyme disease vaccines A number of different types have been shown to induce immunological responses.
  • Whole-cell B. burgdorferi vaccines for example, have been shown to induce both immunological responses and protective immunity in several animal models (Reviewed in Wormser, G., Clin. Infect. Dis. 27:1267-1274 (1995)).
  • B. burgdorferi specific antisera While whole-cell Lyme disease vaccines confer protective immunity in animal models, use of such vaccines presents the risk that responsive antibodies will produce an autoimmune response (Reviewed in Wormser, G., supra). This problem is at least partly the result of the production of B. burgdorferi specific antibodies which cross-react with hepatocytes and both muscle and nerve cells. B. burgdorferi heat shock proteins and the 41-kd flagellin subunit are believed to contain antigens which elicit production of these cross-reactive antibodies.
  • OspA-specific antibodies are ineffective if administered after a borrelial challenge delivered by syringe (Schiable, U.E., et al, Proc. Natl Acad. Sci. USA 87:3768-3772 (1990)) or tick bite (deSilva, A.M., et al, J. Exp. Med. 183:211-215 (1996)).
  • OspA vaccines must elicit protective levels of antibody which are maintained throughout periods of tick exposure in order to block borrelia transmission from the arthropod vector.
  • Vaccines in current use against other pathogens include in vz ' v ⁇ -expressed antigens which could boost anamnestic responses upon infection, potentiate the action of immune effector cells and complement, and inhibit key virulence mechanisms. OspC is both expressed during infection
  • mice immunized with this protein were only protected against challenge with the homologous borrelial isolate (Probert, W.S., et al, J. Infect. Dis. 775:400-405 (1997)).
  • the present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the B. burgdorferi peptides having the amino acid sequences shown in Table 1.
  • one aspect of the invention provides isolated nucleic acid molecules comprising polynucleotides having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 ; (b) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) a nucleotide sequence encoding any of the amino acid sequences of the truncated polypeptides shown in Table 1; and (d) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), or (c) above.
  • nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), or (d) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), or (d) above.
  • This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.
  • Additional nucleic acid embodiments of the invention relate to isolated nucleic acid molecules comprising polynucleotides which encode the amino acid sequences of epitope-bearing portions of a B. burgdorferi polypeptide having an amino acid sequence in (a), (b), or (c) above.
  • the present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using these vectors for the production of B. burgdorferi polypeptides or peptides by recombinant techniques.
  • the invention further provides isolated B. burgdorferi polypeptides having an amino acid sequence selected from the group consisting of: (a) an amino acid sequence of any of the full- length polypeptides shown in Table 1 ; (b) an amino acid sequence of any of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) an amino acid sequence of any of the truncated polypeptides shown in Table 1 ; and (d) an amino acid sequence of an epitope-bearing portion of any one of the polypeptides of (a), (b), or (c).
  • polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 70% similarity, and more preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% similarity to those described in (a), (b), (c), or (d) above, as well as polypeptides having an amino acid sequence at least 70% identical, more preferably at least 75% identical, and still more preferably 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to those above; as well as isolated nucleic acid molecules encoding such polypeptides.
  • the present invention further provides a vaccine, preferably a multi-component vaccine comprising one or more of the B. burgdorferi polypeptides shown in Table 1 , or fragments thereof, together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the B. burgdorferi polypeptide(s) are present in an amount effective to elicit an immune response to members of the Borrelia genus in an animal.
  • a vaccine preferably a multi-component vaccine comprising one or more of the B. burgdorferi polypeptides shown in Table 1 , or fragments thereof, together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the B. burgdorferi polypeptide(s) are present in an amount effective to elicit an immune response to members of the Borrelia genus in an animal.
  • a vaccine preferably a multi-component vaccine comprising one or more of the B. burgdorferi polypeptides shown in Table 1 ,
  • burgdorferi polypeptides of the present invention may further be combined with one or more immunogens of one or more other borrelial or non-borrelial organisms to produce a multi-component vaccine intended to elicit an immunological response against members of the Borrelia genus and, optionally, one or more non- borrelial organisms.
  • the vaccines of the present invention can be administered in a DNA form, e.g., "naked" DNA, wherein the DNA encodes one or more borrelial polypeptides and, optionally, one or more polypeptides of a non-borrelial organism.
  • the DNA encoding one or more polypeptides may be constructed such that these polypeptides are expressed fusion proteins.
  • the vaccines of the present invention may also be administered as a component of a genetically engineered organism.
  • a genetically engineered organism which expresses one or more B. burgdorferi polypeptides may be administered to an animal.
  • such a genetically engineered organism may contain one or more B. burgdorferi polypeptides of the present invention intracellularly, on its cell surface, or in its periplasmic space. Further, such a genetically engineered organism may secrete one or more B. burgdorferi polypeptides.
  • the vaccines of the present invention may be co-administered to an animal with an immune system modulator (e.g., CD86 and GM-CSF).
  • an immune system modulator e.g., CD86 and GM-CSF.
  • the invention also provides a method of inducing an immunological response in an animal to one or more members of the Borrelia genus, e.g., B. burgdorferi sensu stricto, R. afzelii, and B. garinii, comprising administering to the animal a vaccine as described above.
  • the invention further provides a method of inducing a protective immune response in an animal, sufficient to prevent or attenuate an infection by members of the Borrelia genus, comprising administering to the animal a composition comprising one or more of the polypeptides shown in Table 1, or fragments thereof. Further, these polypeptides, or fragments thereof, may be conjugated to another immunogen and/or administered in admixture with an adjuvant.
  • the invention further relates to antibodies elicited in an animal by the administration of one or more B. burgdorferi polypeptides of the present invention.
  • the invention also provides diagnostic methods for detecting the expression of genes of members of the Borrelia genus in an animal.
  • One such method involves assaying for the expression of a gene encoding Borrelia peptides in a sample from an animal. This expression may be assayed either directly (e.g., by assaying polypeptide levels using antibodies elicited in response to amino acid sequences shown in Table 1) or indirectly (e.g., by assaying for antibodies having specificity for amino acid sequences shown in Table 1).
  • An example of such a method involves the use of the polymerase chain reaction (PCR) to amplify and detect Borrelia nucleic acid sequences.
  • PCR polymerase chain reaction
  • the present invention also relates to nucleic acid probes having all or part of a nucleotide sequence shown in Table 1 which are capable of hybridizing under stringent conditions to Borrelia nucleic acids.
  • the invention further relates to a method of detecting one or more Borrelia nucleic acids in a biological sample obtained from an animal, said one or more nucleic acids encoding Borrelia polypeptides, comprising: a) contacting the sample with one or more of the above-described nucleic acid probes, under conditions such that hybridization occurs, and b) detecting hybridization of said one or more probes to the Borrelia nucleic acid present in the biological sample.
  • the present invention relates to recombinant antigenic B. burgdorferi polypeptides and fragments thereof.
  • the invention also relates to methods for using these polypeptides to produce immunological responses and to confer immunological protection to disease caused by members of the genus Borrelia.
  • the invention further relates to nucleic acid sequences which encode antigenic B. burgdorferi polypeptides and to methods for detecting Borrelia nucleic acids and polypeptides in biological samples.
  • the invention also relates to Borrelia specific antibodies and methods for detecting such antibodies produced in a host animal.
  • pathogenic agent means an agent which causes a disease state or affliction in an animal. Included within this definition, for examples, are bacteria, protozoans, fungi, viruses and metazoan parasites which either produce a disease state or render an animal infected with such an organism susceptible to a disease state (e.g., a secondary infection). Further included are species and strains of the genus Borrelia which produce disease states in animals. As used herein, the term “organism” means any living biological system, including viruses, regardless of whether it is a pathogenic agent.
  • Borrelia means any species or strain of bacteria which is members of the genus Borrelia. Included within this definition are Borrelia burgdorferi sensu lato (including R. burgdorferi sensu stricto, R. afzelii, B. garinii), B. andersonii, B. anse ⁇ na, B. japonica, B. coriaceae, and other members of the genus Borrelia regardless of whether they are known pathogenic agents.
  • the phrase "one or more B. burgdorferi polypeptides of the present invention” means the amino acid sequence of one or more of the B. burgdorferi polypeptides disclosed in Table 1. These polypeptides may be expressed as fusion proteins wherein the B. burgdorferi polypeptides of the present invention are linked to additional amino acid sequences which may be of borrelial or non-borrelial origin. This phrase further includes fragments of the R. burgdorferi polypeptides of the present invention.
  • full-length amino acid sequence and “full-length polypeptide” refer to an amino acid sequence or polypeptide encoded by a full-length open reading frame (ORF).
  • An ORF may be defined as a nucleotide sequence bounded by stop codons which encodes a putative polypeptide.
  • An ORF may also be defined as a nucleotide sequence within a stop codon bounded sequence which contains an initiation codon (e.g., a methionine or valine codon) on the 5' end and a stop codon on the 3' end.
  • truncated amino acid sequence and "truncated polypeptide” refer to a sub-sequence of a full-length amino acid sequence or polypeptide.
  • Several criteria may also be used to define the truncated amino acid sequence or polypeptide.
  • a truncated polypeptide may be defined as a mature polypeptide (e.g., a polypeptide which lacks a leader sequence).
  • a truncated polypeptide may also be defined as an amino acid sequence which is a portion of a longer sequence that has been selected for ease of expression in a heterologous system but retains regions which render the polypeptide useful for use in vaccines (e.g., antigenic regions which are expected to elicit a protective immune response).
  • Table 1 lists B. burgdorferi nucleotide and amino acid sequences of the present invention.
  • nt refers to nucleotide sequences
  • amino acid sequences refers to amino acid sequences
  • f ' refers to full-length nucleotide or amino acid sequences
  • t refers to truncated nucleotide or amino acid sequences
  • flOl.aa refers to the full-length amino acid sequence of B. burgdorferi polypeptide number 101.
  • flOl.nt refers to the full-length nucleotide sequence encoding the full-length amino acid sequence of B. burgdorferi polypeptide number 101.
  • Table 2 lists accession numbers for the closest matching sequences between the polypeptides of the present invention and those available through GenBank and GeneSeq databases. These reference numbers are the database entry numbers commonly used by those of skill in the art, who will be familar with their denominations. The descriptions of the numenclature for GenBank are available from the National Center for Biotechnology Information. Column 1 lists the gene or ORF of the present invention. Column 2 lists the accession number of a "match" gene sequence in GenBank or GeneSeq databases. Column 3 lists the description of the "match” gene sequence. Columns 4 and 5 are the high score and smallest sum probability, respectively, calculated by BLAST.
  • Polypeptides of the present invention that do not share significant identity/similarity with any polypeptide sequences of GenBank and GeneSeq are not represented in Table 2. Polypeptides of the present invention that share significant identity/similarity with more than one of the polypeptides of GenBank and GeneSeq are represented more than once.
  • the B. burgdorferi polypeptides of the present invention may include one or more conservative amino acid substitutions from natural mutations or human manipulation as indicated in Table 3. Changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Residues from the following groups, as indicated in Table 3, may be substituted for one another: Aromatic, Hydrophobic, Polar, Basic, Acidic, and Small,
  • Table 4 lists residues comprising antigenic epitopes of antigenic epitope-bearing fragments present in each of the full length B. burgdorferi polypeptides described in Table 1 as predicted by the inventors using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4: 181-186.
  • the Jameson- Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power Macintosh, DNASTAR, Inc., 1228 South Park Street Madison, WI).
  • B. burgdorferi polypeptide shown in Table 1 may one or more antigenic epitopes comprising residues described in Table 4. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
  • the present invention provides a select number of ORFs from those presented in the fragments of the Borrelia burgdorferi genome which may prove useful for the generation of a protective immune response.
  • the sequenced B. burgdorferi genomic DNA was obtained from a sub-cultured isolate of ATCC Deposit No. 35210. The sub-cultured isolate was deposited on August 8, 1997 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession number 202012.
  • ORFs contained in the subset of fragments of the B. burgdorferi genome disclosed herein were derived through the use of a number of screening criteria detailed below.
  • the ORFs are generally bounded at the amino terminus by a methionine residue and at the carboxy terminus by a stop codon.
  • polypeptide representing a complete ORF may be the closest approximation of a protein native to an organism, it is not always preferred to express a complete ORF in a heterologous system. It may be challenging to express and purify a highly hydrophobic protein by common laboratory methods.
  • Some of the polypeptide vaccine candidates described herein have been modified slightly to simplify the production of recombinant protein. For example, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, have been excluded from some constructs used for in vitro expression of the polypeptides.
  • polypeptide which represents a truncated or modified ORF may be used as an antigen.
  • Type I signal sequence An amino terminal type I signal sequence generally directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Experimental evidence obtained from studies with Escherichia coli suggests that the typical type I signal sequence consists of the following biochemical and physical attributes (Izard, J. W. and Kendall, D. A. Mol Microbiol. 73:765-773 (1994)). The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus. In addition, the central region of the signal sequence adopts an alpha-helical conformation in a hydrophobic environment. Finally, the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.
  • Type TV signal sequence The type IV signal sequence is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 774:7345-7351
  • type IV signal sequences typically contain a phenylalanine residue at the +1 site relative to the cleavage site.
  • Lipoprotein Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)- (G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C, J. Bioenerg. Biomembr. 22:451-411 (1990)).
  • LPXTG motif It has been experimentally determined that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as S. pyogenes, S. mutans, B. burgdorferi, S. pneumoniae, and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A., ASM News 62:405-410 (1996)).
  • the conserved region consists of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins examined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid.
  • the present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the B. burgdorferi polypeptides having the amino acid sequences shown in Table 1 , which were determined by sequencing the genome of B. burgdorferi deposited as ATCC deposit no. 202012 and selected as putative immunogens.
  • nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of DNA sequences determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art.
  • a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.
  • nucleotide sequence set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G , C and T).
  • nucleic acid molecule or polynucleotide a sequence of deoxyribonucleotides
  • RNA molecule or polynucleotide the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U).
  • RNA molecule having a sequence of Table 1 set forth using deoxyribonucleotide abbreviations is intended to indicate an RNA molecule having a sequence in which each deoxyribonucleotide A, G or C of Table 1 has been replaced by the corresponding ribonucleotide A, G or C, and each deoxyribonucleotide T has been replaced by a ribonucleotide U.
  • Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically.
  • the DNA may be double-stranded or single-stranded.
  • Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
  • isolated nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment.
  • recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention.
  • Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution.
  • Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
  • isolated nucleic acid molecules of the invention include DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode a B. burgdorferi polypeptides and peptides of the present invention (e.g. polypeptides of Table 1). That is, all possible DNA sequences that encode the B. burgdorferi polypeptides of the present invention. This includes the genetic code and species-specific codon preferences known in the art.
  • the invention further provides isolated nucleic acid molecules having the nucleotide sequence shown in Table 1 or a nucleic acid molecule having a sequence complementary to one of the above sequences.
  • isolated molecules particularly DNA molecules, are useful as probes for gene mapping and for identifying B. burgdorferi in a biological sample, for instance, by PCR, Southern blot, Northern blot, or other form of hybridization analysis.
  • the present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Fragments include portions of the nucleotide sequences of Table 1 at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in Table 1 is position 1. That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention.
  • At least means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence of Table 1 minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of Table 1 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.
  • the invention includes polynucleotides comprising fragments specified by size, in nucleotides, rather than by nucleotide positions.
  • the invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire nucleotide sequence minus 1.
  • Preferred sizes of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides.
  • Other preferred sizes of contiguous nucleotide fragments, which may be useful as diagnostic probes and primers include fragments 50-300 nucleotides in length which include, as discussed above, fragment sizes representing each integer between 50-300.
  • the preferred sizes are, of course, meant to exemplify not limit the present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1 , are included in the invention.
  • Additional preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of B. burgdorferi polypeptides identified in Table 4.
  • the present invention also provides for the exclusion of any fragment, specified by 5' and 3' base positions or by size in nucleotide bases as described above for any nucleotide sequence of Table 1 or the plasimd clones listed in Table 1. Any number of fragments of nucleotide sequences in Table 1 or the plasimd clones listed in Table 1, specified by 5' and 3' base positions or by size in nucleotides, as described above, may be excluded from the present invention.
  • nucleic acid fragments of the present invention also include nucleic acid molecules encoding epitope-bearing portions of the R. burgdorferi polypeptides shown in Table 1.
  • Such nucleic acid fragments of the present invention include, for example, nucleic acid molecules encoding polypeptide fragments comprising from about the amino terminal residue to about the carboxy terminal residue of each fragment shown in Table 4.
  • the above referred to polypeptide fragments are antigenic regions of particular R. burgdorferi polypeptides shown in Table 1. Methods for determining other such epitope-bearing portions for the remaining polypeptides described in Table 1 are well known in the art and are described in detail below.
  • the invention provides isolated nucleic acid molecules comprising polynucleotides which hybridize under stringent hybridization conditions to a portion of a polynucleotide in a nucleic acid molecule of the invention described above, for instance, a nucleic acid sequence shown in Table 1.
  • stringent hybridization conditions is intended overnight incubation at 42 C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65 C.
  • polynucleotides which hybridize to a "portion" of a polynucleotide is intended polynucleotides (either DNA or RNA) which hybridize to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.
  • polynucleotides hybridizing to a larger portion of the reference polynucleotide are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of a nucleotide sequence as shown in Table 1.
  • a portion of a polynucleotide of "at least 20 nt in length,” for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., a nucleotide sequences as shown in Table 1).
  • portions are useful diagnostically either as probes according to conventional DNA hybridization techniques or as primers for amplification of a target sequence by PCR, as described, for instance, in Molecular Cloning, A Laboratory Manual, 2nd. edition, Sambrook, J., Fritsch, E. F. and Maniatis, T., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), the entire disclosure of which is hereby incorporated herein by reference.
  • nucleic acid sequences encoding the B. burgdorferi polypeptides of the present invention are provided in Table 1, generating polynucleotides which hybridize to portions of these sequences would be routine to the skilled artisan.
  • the hybridizing polynucleotides of the present invention could be generated synthetically according to known techniques.
  • nucleic acid molecules of the present invention which encode B. burgdorferi polypeptides of the present invention may include, but are not limited to those encoding the amino acid sequences of the polypeptides by themselves; and additional coding sequences which code for additional amino acids, such as those which provide additional functionalities.
  • the sequences encoding these polypeptides may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused polypeptide.
  • the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (Qiagen, Inc.), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the resulting fusion protein.
  • the present invention also includes genetic fusions wherein the B. burgdorferi nucleic acid sequences coding sequences provided in Table 1 are linked to additional nucleic acid sequences to produce fusion proteins.
  • These fusion proteins may include epitopes of borrelial or non-borrelial origin designed to produce proteins having enhanced immunogenicity.
  • the fusion proteins of the present invention may contain antigenic determinants known to provide helper T-cell stimulation, peptides encoding sites for post-translational modifications which enhance immunogenicity (e.g., acylation), peptides which facilitate purification (e.g., histidine "tag”), or amino acid sequences which target the fusion protein to a desired location (e.g., a heterologous leader sequence).
  • hexa-histidine provides for convenient purification of the fusion protein. See Gentz et al. (1989) Proc. Natl. Acad. Sci. 86:821-24.
  • the "HA" tag is another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein. See Wilson et al. (1984) Cell 37:767.
  • other such fusion proteins include the B. burgdorferi polypeptides of the present invention fused to Fc at the N- or C-terminus.
  • R. burgdorferi OspA when expressed in E. coli, for example, is post-translationally modified in at least two ways. First, a signal peptide is cleaved; second, lipid moieties are attached. The presence of these lipid moieties is believed to confer enhanced immunogenicity and results in the elicitation of a strong protective immunological response.
  • the present invention thus includes nucleic acid molecules and sequences which encode fusion proteins comprising one or more B. burgdorferi polypeptides of the present invention fused to an amino acid sequence which allows for post-translational modification to enhance immunogenicity.
  • This post-translational modification may occur either in vitro or when the fusion protein is expressed in vivo in a host cell.
  • An example of such a modification is the introduction of an amino acid sequence which results in the attachment of a lipid moiety.
  • Such a lipid moiety attachment site of OspA which is lipidated upon expression in E. coli, has been identified. Bouchon, B. et al, Anal. Biochem. 246:52-61 (1997).
  • the present invention includes genetic fusions wherein a B. burgdorferi nucleic acid sequence provided in Table 1 is linked to a nucleotide sequence encoding another amino acid sequence.
  • These other amino acid sequences may be of borrelial origin (e.g., another sequence selected from Table 1) or non-borrelial origin.
  • An example of such a fusion protein is reported in Fikrig, ⁇ . et al, Science 250:553-556 (1990) where an OspA- glutathione-S-transferase fusion protein was produced and shown to elicit protective immunity against Lyme disease in immune competent mice.
  • the present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of the R. burgdorferi polypeptides shown in Table 1.
  • Variants may occur naturally, such as a natural allelic variant.
  • allelic variant is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).
  • Non-naturally occurring variants may be produced using art-known mutagenesis techniques.
  • Such variants include those produced by nucleotide substitutions, deletions or additions.
  • the substitutions, deletions or additions may involve one or more nucleotides.
  • These variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the R. burgdorferi polypeptides disclosed herein or portions thereof. Also especially preferred in this regard are conservative substitutions.
  • the present application is further directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in Table 1.
  • the above nucleic acid sequences are included irrespective of whether they encode a polypeptide having R. burgdorferi activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having R. burgdorferi activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe.
  • Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having B. burgdorferi activity include, inter alia, isolating an R. burgdorferi gene or allelic variants thereof from a DNA library, and detecting R. burgdorferi mRNA expression samples, environmental samples, suspected of containing B. burgdorferi by Northern Blot analysis.
  • Embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to (a) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1; (b) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) a nucleotide sequence encoding any of the amino acid sequences of the truncated polypeptides shown in Table 1 ; and (d) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), or (c) above.
  • nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Table 1, which do, in fact, encode a polypeptide having B. burgdorferi protein activity
  • a polypeptide having B. burgdorferi activity is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the B. burgdorferi protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein.
  • nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in Table 1 will encode a polypeptide having R. burgdorferi protein activity.
  • degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having B. burgdorferi protein activity.
  • polypeptides of the present invention are expected to be similar or identical to polypeptides from other bacteria that share a high degree of structural identity/similarity.
  • Tables 2 lists accession numbers and descriptions for the closest matching sequences of polypeptides available through Genbank and Derwent databases. It is therefore expected that the biological activity or function of the polypeptides of the present invention will be similar or identical to those polypeptides from other bacterial genuses, species, or strains listed in Table 2.
  • nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the B. burgdorferi polypeptide.
  • a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence up to 5% (5 of 100) of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide.
  • the query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragment specified as described herein.
  • nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. See Brutlag et al.
  • RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a
  • nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
  • a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity.
  • the deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end.
  • the 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%.
  • a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
  • the present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of B. burgdorferi polypeptides or fragments thereof by recombinant techniques.
  • Recombinant constructs may be introduced into host cells using well known techniques such as infection, transduction, transfection, transvection, electroporation and transformation.
  • the vector may be, for example, a phage, plasmid, viral or retroviral vector.
  • Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
  • the polynucleotides may be joined to a vector containing a selectable marker for propagation in a host.
  • a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
  • vectors comprising -y-acting control regions to the polynucleotide of interest.
  • Appropriate trans-acting factors may be supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.
  • the vectors provide for specific expression, which may be inducible and/or cell type-specific. Particularly preferred among such vectors are those inducible by environmental factors that are easy to manipulate, such as temperature and nutrient additives.
  • Expression vectors useful in the present invention include chromosomal-, episomal- and virus-derived vectors, e.g., vectors derived from bacterial plasmids, bacteriophage, yeast episomes, yeast chromosomal elements, viruses such as baculoviruses, papova viruses, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids.
  • the DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E.
  • the expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation.
  • the coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating site at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
  • the expression vectors will preferably include at least one selectable marker.
  • markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline or ampicillin resistance genes for culturing in E. coli and other bacteria.
  • bacterial cells such as E. coli, Streptomyces and Salmonella typhimurium cells
  • fungal cells such as yeast cells
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS and Bowes melanoma cells
  • plant cells Appropriate culture mediums and conditions for the above-described host cells are known in the art.
  • vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNHl ⁇ a, pNH18A, pNH46A available from Stratagene; pET series of vectors available from Novagen; and ptrc99a, pKK223-3, pKK233-3, ⁇ DR540, pRIT5 available from Pharmacia.
  • eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia.
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • bacterial promoters suitable for use in the present invention include the E. coli lacl and lacL promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR and PL promoters and the trp promoter.
  • Suitable eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (RSV), and metallothionein promoters, such as the mouse metallothionein-I promoter.
  • Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al, Basic Methods In Molecular Biology (1986). Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are ds-acting elements of DNA, usually about from 10 to 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type.
  • enhancers examples include the S V40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • secretion signals may be incorporated into the expressed polypeptide.
  • the signals may be endogenous to the polypeptide or they may be heterologous signals.
  • the polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification.
  • a preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins.
  • EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another human protein or part thereof. In many cases, the
  • Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262).
  • Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations.
  • human proteins, such as, hIL5-receptor has been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See Bennett, D. et al, J. Molec. Recogn. 8:52-58 (1995) and Johanson, K. et al, J. Biol Chem. 270 (76):9459-9471 (1995).
  • the B. burgdorferi polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography and high performance liquid chromatography ("HPLC”) is employed for purification.
  • Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.
  • the invention further provides isolated polypeptides having the amino acid sequences in Table 1, and peptides or polypeptides comprising portions of the above polypeptides.
  • peptide and “oligopeptide” are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least to amino acids coupled by peptidyl linkages.
  • polypeptide is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus. As discussed in detail below, immunization using B.
  • polypeptides of the present invention protein engineering may be employed.
  • Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or muteins including single or multiple amino acid substitutions, deletions, additions, or fusion proteins.
  • modified polypeptides can show, e.g., enhanced activity or increased stability.
  • they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions.
  • the present invention provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the B. burgdorferi polypeptides shown in Table 1 , and polynucleotides encoding such polypeptides.
  • the present invention provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of the B. burgdorferi polypeptides shown in Table 1.
  • the invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini as described below.
  • the present invention is further directed to polynucleotide encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences of Table 1, are at least 5 contiguous amino acid in length, are selected from any two integers, one of which representing a N-terminal position.
  • a fragment may be 5 contiguous amino acid residues in length or any integer between 5 and the number of residues in a full length amino acid sequence minus 1. Therefore, included in the invention are contiguous fragments specified by any N-terminal and C-terminal positions of amino acid sequence set forth in Table 1 wherein the contiguous fragment is any integer between 5 and the number of residues in a full length sequence minus 1.
  • the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions.
  • the invention includes any fragment size, in contiguous amino acid residues, selected from integers between 5 and the number of residues in a full length sequence minus 1.
  • Preferred sizes of contiguous polypeptide fragments include about 5 amino acid residues, about 10 amino acid residues, about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues.
  • the preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 5 and the number of residues in a full length sequence minus 1 are included in the invention.
  • the present invention also provides for the exclusion of any fragments specified by N-terminal and C- terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.
  • the above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the protein, as vaccines, and as molecular weight markers.
  • the invention further includes variations of the R. burgdorferi polypeptides which show substantial B. burgdorferi polypeptide activity or which include regions of B. burgdorferi protein such as the protein portions discussed below.
  • Such mutants include deletions, insertions, inversions, repeats, and type substitutions selected according to general rules known in the art so as to have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided. There are two main approaches for studying the tolerance of an amino acid sequence to change. See, Bowie, J. U. et al. (1990), Science
  • the first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection.
  • the second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. These studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The studies indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described by Bowie et al. (supra) and the references cited therein.
  • conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and He; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues
  • the fragment, derivative, analog, or homolog of the polypeptide of Table 1, or that encoded by the plaimds listed in Table 1, may be: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code: or (ii) one in which one or more of the amino acid residues includes a substituent group: or (iii) one in which the B.
  • burgdorferi polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol): or (iv) one in which the additional amino acids are fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a proprotein sequence.
  • a compound to increase the half-life of the polypeptide for example, polyethylene glycol
  • additional amino acids fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a proprotein sequence.
  • the B. burgdorferi polypeptides of the present invention may include one or more amino acid substitutions, deletions, or additions, either from natural mutations or human manipulation. As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 3).
  • Amino acids in the B. burgdorferi proteins of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis. See, e.g., Cunningham et al. (1989) Science 244: 1081-1085. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity using assays appropriate for measuring the function of the particular protein.
  • polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified.
  • a recombinantly produced version of the B. burgdorferi polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40.
  • Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification.
  • the invention further provides for isolated B. burgdorferi polypeptides comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of a full- length B.
  • polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), and (d) above.
  • polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.
  • a further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a R. burgdorferi polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the amino acid sequence of a R. burgdorferi polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.
  • a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • the amino acid sequence of the subject polypeptide may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.
  • These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by the plaimds listed in Table 1 can be determined conventionally using known computer programs.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245.
  • the query and subject sequences are both amino acid sequences.
  • the result of said global sequence alignment is in percent identity.
  • the results, in percent identity must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity.
  • the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment.
  • This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
  • This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.
  • a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity.
  • the deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus.
  • the 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%.
  • a 90 residue subject sequence is compared with a 100 residue query sequence.
  • polypeptide sequences are included irrespective of whether they have their normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies.
  • Other uses of the polypeptides of the present invention that do not have B. burgdorferi activity include, inter alia, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.
  • polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting B. burgdorferi protein expression or as agonists and antagonists capable of enhancing or inhibiting B. burgdorferi protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" R. burgdorferi protein binding proteins which are also candidate agonists and antagonists according to the present invention. See, e.g., Fields et al. (1989) Nature 340:245-246.
  • the invention provides peptides and polypeptides comprising epitope-bearing portions of the R. burgdorferi polypeptides of the present invention.
  • These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention.
  • An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule.
  • an antigenic determinant or "antigenic epitope.”
  • the number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, e.g., Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998- 4002.
  • Predicted antigenic epitopes are shown in Table 4, below. It is pointed out that Table 4 only lists amino acid residues comprising epitopes predicted to have the highest degree of antigenicity. The polypeptides not listed in Table 4 and portions of polypeptides not listed in Table 4 are not considered non-antigenic.
  • Table 4 lists the amino acid residues comprising preferred antigenic epitopes but not a complete list. Amino acid residues comprising other anigenic epitopes may be determined by algorithms similar to the Jameson-Wolf analysis or by in vivo testing for an antigenic response using the methods described herein or those known in the art.
  • peptides or polypeptides bearing an antigenic epitope i.e., that contain a region of a protein molecule to which an antibody can bind
  • relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, e.g., Sutcliffe, et al., (1983) Science 219:660-666.
  • Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. See, Sutcliffe, et al., supra, p. 661.
  • 18 of 20 peptides designed according to these guidelines containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.
  • Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention.
  • a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. See Sutcliffe, et al., supra, p. 663.
  • the antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing.
  • the peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778.
  • the anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.
  • Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention.
  • peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein.
  • the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.
  • Non-limiting examples of antigenic polypeptides or peptides that can be used to generate an Borrelia-specific immune response or antibodies include portions of the amino acid sequences identified in Table 1. More specifically, Table 4 discloses a list of non-limiting residues that are involved in the antigenicity of the epitope-bearing fragments of the present invention. Therefore, the present inventions provides for isolatd and purified antigenic epitope-bearing fragements of the polypeptides of the present invention comprising a peptide sequences of Table 4.
  • the antigenic epitope-bearing fragments comprising a peptide sequence of Table 4 preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e.
  • any integer between 7 and 50) of a polypeptide of the present invention included in the present invention are antigenic polypeptides between the integers of 7 and 50 amino acid in length comprising one or more of the sequences of Table 4. Therefore, in most cases, the polypeptides of Table 4 make up only a portion of the antigenic polypeptide. All combinations of sequences between the integers of 7 and 50 amino acid in length comprising one or more of the sequences of Table 4 are included.
  • the antigenic epitope-bearing fragements may be specified by either the number of contiguous amino acid residues or by specific N-terminal and C-terminal positions as described above for the polypeptide fragements of the present invention, wherein the initiation codon is residue 1. Any number of the described antigenic epitope-bearing fragements of the present invention may also be excluded from the present invention in the same manner.
  • the epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention.
  • an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies.
  • Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis.
  • Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)).
  • This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986).
  • animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid.
  • KLH keyhole limpet hemacyanin
  • peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde.
  • Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 ⁇ g peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface.
  • the titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adso ⁇ tion to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
  • Immunogenic epitope-bearing peptides of the invention i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al. , supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art.
  • the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined.
  • peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method.
  • U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.
  • U.S. Patent No. 5,194,392, to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e. , a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R.
  • A. et al. discloses linear C,-C 7 -alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest.
  • non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.
  • the entire disclosure of each document cited in this section on "Polypeptides and Fragments" is hereby inco ⁇ orated herein by reference.
  • polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides.
  • IgG immunoglobulins
  • These fusion proteins facilitate purification and show an increased half-life in vivo. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins.
  • Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric B. burgdorferi polypeptide or fragment thereof alone. See Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of B. burgdorferi polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.
  • B. burgdorferi protein-specific antibodies for use in the present invention can be raised against the intact B. burgdorferi protein or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier.
  • a carrier protein such as an albumin
  • the term "antibody” (Ab) or “monoclonal antibody” (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments.
  • Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single- chain Fvs (scFv) and disulfide-linked Fvs (sdFv).
  • chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention are also included in the present invention.
  • the antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies.
  • a preparation of R. burgdorferi polypeptide or fragment thereof is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.
  • the antibodies of the present invention are monoclonal antibodies or binding fragments thereof.
  • Such monoclonal antibodies can be prepared using hybridoma technology. See, e.g., Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981).
  • Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments).
  • enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments).
  • B. burgdorferi polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.
  • additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies.
  • Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody.
  • B. burgdorferi polypeptide-specific antibodies are used to immunize an animal, preferably a mouse.
  • the splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the B. burgdorferi polypeptide-specific antibody can be blocked by the R.
  • Such antibodies comprise anti-idiotypic antibodies to the B. burgdorferi polypeptide-specific antibody and can be used to immunize an animal to induce formation of further B. burgdorferi polypeptide-specific antibodies.
  • Antibodies and fragements thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody.
  • Antibody binding fragements of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragements discussed above., i.e, by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C- terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies the specifically bind a particuarlly discribed fragement of a polypeptide of the present invention and allows for the exclusion of the same.
  • Antibodies and fragements thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragements that do not bind polypeptides of any other species of Borrelia other than B. burgdorferi are included in the present invention. Likewise, antibodies and fragements that bind only species of Borrelia, i.e. antibodies and fragements that do not bind bacteria from any genus other than Borrelia, are included in the present invention.
  • the present invention further relates to methods for assaying staphylococcal infection in an animal by detecting the expression of genes encoding staphylococcal polypeptides of the present invention.
  • the methods comprise analyzing tissue or body fluid from the animal for Rorre/ ⁇ -specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to Borrelia is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. See, e.g., Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol.
  • the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced Borrelia gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.
  • biological sample any biological sample obtained from an animal, cell line, tissue culture, or other source which contains Borrelia polypeptide, mRNA, or DNA.
  • Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing Borrelia polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.
  • the present invention is useful for detecting diseases related to Borrelia infections in animals.
  • Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.
  • Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159.
  • mRNA encoding Borrelia polypeptides having sufficient homology to the nucleic acid sequences identified in Table 1 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, SI nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).
  • Northern blot analysis can be performed as described in Harada et al. (1990) Cell
  • RNA is prepared from a biological sample as described above.
  • the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter.
  • an appropriate buffer such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer
  • the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer.
  • SI mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367.
  • probe DNA for use in S 1 mapping, the sense strand of an above-described B. burgdorferi DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA.
  • the antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length.
  • Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (i.e., mRNA encoding Borrelia polypeptides).
  • RNA encoding Borrelia polypeptides are assayed, for e.g., using the RT-PCR method described in Makino et al. (1990) Technique 2:295-301.
  • the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs,
  • RNA thermal cycler DTT, RNase inhibitor and reverse transcriptase.
  • the RT products are then subject to PCR using labeled primers.
  • a labeled dNTP can be included in the PCR reaction mixture.
  • PCR amplification can be performed in a DNA thermal cycler according to conventional techniques.
  • the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate bands (corresponding to the mRNA encoding the Borrelia polypeptides of the present invention) are quantified using an imaging analyzer.
  • RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan.
  • Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).
  • the polynucleotides of the present invention may be used to detect polynucleotides of the present invention or Borrelia species including B. burgdorferi using bio chip technology.
  • the present invention includes both high density chip arrays (>1000 oligonucleotides per cm 2 ) and low density chip arrays ( ⁇ 1000 oligonucleotides per cm 2 ).
  • Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Borrelia species, including B. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection.
  • the bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis.
  • the bio chips can also be used to monitor an R. burgdorferi or other Borrelia infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory.
  • the bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention.
  • the polynucleotides used to comprise a selected array may be specified in the same manner as for the fragements, i.e, by their 5' and 3' positions or length in contigious base pairs and include from.
  • Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including R. burgdorferi, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each inco ⁇ orated herein in their entireties.
  • Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor B. burgdorferi or other Borrelia species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including R. burgdorferi, using biosenors include those known in the art and those of: U.S.
  • the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.
  • Assaying Borrelia polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques.
  • Borrelia polypeptide expression in tissues can be studied with classical immunohistological methods.
  • the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies.
  • an immunohistological staining of tissue section for pathological examination is obtained.
  • Tissues can also be extracted, e.g., with urea and neutral detergent, for the liberation of Borrelia polypeptides for Western-blot or dot/slot assay. See, e.g., Jalkanen, M. et al. (1985) J.
  • a Borrelia polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a Borrelia polypeptide.
  • the amount of a Borrelia polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm.
  • ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11: 19-30.
  • two distinct specific monoclonal antibodies can be used to detect Borrelia polypeptides in a body fluid.
  • one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.
  • the above techniques may be conducted essentially as a "one-step” or “two-step” assay.
  • the "one-step” assay involves contacting the Borrelia polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody.
  • the "two-step” assay involves washing before contacting the mixture with the labeled antibody.
  • Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press,
  • Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate.
  • Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available.
  • Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction.
  • radioisotopes such as iodine ( 125 1, 121 I), carbon ( l4 C), sulphur ( 35 S), tritium ( 3 H), indium ( 112 In), and technetium ( 99m Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • suitable labels for the Borrelia polypeptide-specific antibodies of the present invention are provided below.
  • suitable enzyme labels include malate dehydrogenase, Borrelia nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.
  • radioisotopic labels examples include 3 H, m In, 125 1, 131 1, 2 P, 35 S, ,4 C, 51 Cr, 57 To, 58 Co, 59 Fe, 75 Se, 152 Eu, 90 Y, 67 Cu, 2,7 Ci, 211 At, 212 Pb, 47 Sc, 109 Pd, etc. '"in is a preferred isotope where in vivo imaging is used since its avoids the problem of dehalogenation of the 125 l or 131 I-labeled monoclonal antibody by the liver.
  • this radionucleotide has a more favorable gamma emission energy for imaging. See, e.g., Perkins et al. (1985) Eur. J. Nucl.
  • non-radioactive isotopic labels examples include 157 Gd, 55 Mn, 162 Dy, 52 Tr, and 56 Fe.
  • fluorescent labels examples include an 152 Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.
  • Suitable toxin labels include, Pseudomonas toxin, diphtheria toxin, ricin, and cholera toxin.
  • chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.
  • nuclear magnetic resonance contrasting agents examples include heavy metal nuclei such as Gd, Mn, and iron.
  • the invention includes a diagnostic kit for use in screening serum containing antibodies specific against B. burgdorferi infection.
  • a kit may include an isolated R. burgdorferi antigen comprising an epitope which is specifically immunoreactive with at least one anti-R. burgdorferi antibody.
  • a kit also includes means for detecting the binding of said antibody to the antigen.
  • the kit may include a recombinantiy produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.
  • the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached.
  • a kit may also include a non-attached reporter-labeled anti-human antibody.
  • binding of the antibody to the B. burgdorferi antigen can be detected by binding of the reporter labeled antibody to the anti-R. burgdorferi polypeptide antibody.
  • the invention includes a method of detecting R. burgdorferi infection in a subject.
  • This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated B. burgdorferi antigen, and examining the antigen for the presence of bound antibody.
  • the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.
  • the solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adso ⁇ tion of the protein to the support or covalent attachment of the protein , typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).
  • the polypeptides and antibodies of the present invention may be used to detect Borrelia species including R. burgdorferi using bio chip and biosensor technology.
  • Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Borrelia species, including B. burgdorferi.
  • Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Borrelia species, including R. burgdorferi or specific polypeptides of the present invention.
  • Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Borrelia species, including R. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection.
  • the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.
  • the bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis.
  • the bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis.
  • the bio chips and biosensors of the present invention may also be used to monitor an R.
  • the bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention.
  • the polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Borrelia species, including R.
  • the invention also provides a method of screening compounds to identify those which enhance or block the biological activity of the B. burgdorferi polypeptides of the present invention.
  • the present invention further provides where the compounds kill or slow the growth of B. burgdorferi.
  • B. burgdorferi antagonists, including B. burgdorferi ligands, to prophylactically or therapeutically block antibiotic resistance may be easily tested by the skilled artisan. See, e.g., Straden et al. (1997) J Bacteriol. 179(1):9-16.
  • An agonist is a compound which increases the natural biological function or which functions in a manner similar to the polypeptides of the present invention, while antagonists decrease or eliminate such functions.
  • Potential antagonists include small organic molecules, peptides, polypeptides, and antibodies that bind to a polypeptide of the invention and thereby inhibit or extinguish its activity.
  • the antagonists may be employed for instance to inhibit peptidoglycan cross bridge formation.
  • Antibodies against B. burgdorferi may be employed to bind to and inhibit R. burgdorferi activity to treat antibiotic resistance. Any of the above antagonists may be employed in a composition with a pharmaceutically acceptable carrier.
  • the present invention also provides vaccines comprising one or more polypeptides of the present invention.
  • Heterogeneity in the composition of a vaccine may be provided by combining B. burgdorferi polypeptides of the present invention.
  • Multi-component vaccines of this type are desirable because they are likely to be more effective in eliciting protective immune responses against multiple species and strains of the Borrelia genus than single polypeptide vaccines.
  • a multi-component vaccine of the present invention may contain one or more, preferably 2 to about 20, more preferably 2 to about 15, and most preferably 3 to about 8, of the R. burgdorferi polypeptides shown in Table 1, or fragments thereof.
  • Multi-component vaccines are known in the art to elicit antibody production to numerous immunogenic components. Decker, M. and Edwards, K., J. Infect. Dis. 174:8210-215 (1996).
  • a hepatitis B, diphtheria, tetanus, pertussis tetravalent vaccine has recently been demonstrated to elicit protective levels of antibodies in human infants against all four pathogenic agents. Aristegui, J. et al, Vaccine 75:7-9 (1997).
  • the present invention thus also includes multi-component vaccines. These vaccines comprise more than one polypeptide, immunogen or antigen.
  • An example of such a multi- component vaccine would be a vaccine comprising more than one of the B. burgdorferi polypeptides shown in Table 1.
  • a second example is a vaccine comprising one or more, for example 2 to 10, of the B. burgdorferi polypeptides shown in Table 1 and one or more, for example 2 to 10, additional polypeptides of either borrelial or non-borrelial origin.
  • a multi- component vaccine which confers protective immunity to both a borrelial infection and infection by another pathogenic agent is also within the scope of the invention.
  • the vaccines of the present invention are expected to elicit a protective immune response against infections caused by species and strains of Borrelia other than R. burgdorferi sensu stricto isolate B31 (ATCC Accession No. 35210). Immunizations using decorin-binding protein and OspA derived from one strain of B. burgdorferi has been shown to elicit the production of antiserum which confers passive immunity against other strains of R. burgdorferi. Cassatt, D. et al, Protection of Borrelia burgdorferi Infection by Antibodies to Decorin-binding Protein, in VACCINES97, Cold Spring Harbor Press (1997), pages 191-195.
  • B. burgdorferi polypeptides shown in Table 1 may be either secreted or localized intracellular, on the cell surface, or in the periplasmic space.
  • the R. burgdorferi polypeptides of the present invention may, for example, be localized in the viral envelope, on the surface of the capsid, or internally within the capsid.
  • Whole cells vaccines which employ cells expressing heterologous proteins are known in the art. See, e.g., Robinson, K. et al, Nature Biotech.
  • a multi-component vaccine can also be prepared using techniques known in the art by combining one or more B. burgdorferi polypeptides of the present invention, or fragments thereof, with additional non-borrelial components (e.g., diphtheria toxin or tetanus toxin, and/or other compounds known to elicit an immune response). Such vaccines are useful for eliciting protective immune responses to both members of the Borrelia genus and non-borrelial pathogenic agents.
  • the vaccines of the present invention also include DNA vaccines. DNA vaccines are currently being developed for a number of infectious diseases. Boyer, J et al, Nat. Med.
  • DNA vaccines contain a nucleotide sequence encoding one or more B. burgdorferi polypeptides of the present invention oriented in a manner that allows for expression of the subject polypeptide.
  • the direct administration of plasmid DNA encoding OspA has been shown to elicit protective immunity in mice against borrelial challenge. Luke, C. et al, J. Infect. Dis. 775:91-97 (1997).
  • the present invention also relates to the administration of a vaccine which is co-administered with a molecule capable of modulating immune responses. -Kim, J. et al, Nature Biotech.
  • the vaccines of the present invention may be co-administered with either nucleic acids encoding immune modulators or the immune modulators themselves.
  • immune modulators include granulocyte macrophage colony stimulating factor (GM-CSF) and CD86.
  • GM-CSF granulocyte macrophage colony stimulating factor
  • the vaccines of the present invention may be used to confer resistance to borrelial infection by either passive or active immunization.
  • a vaccine of the present invention is administered to an animal to elicit a protective immune response which either prevents or attenuates a borrelial infection.
  • the vaccines of the present invention are used to confer resistance to borrelial infection through passive immunization, the vaccine is provided to a host animal (e.g., human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the host animal (e.g., human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the host animal (e.g., human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the host animal (e.g., human, dog, or mouse), and the antisera elicited by this antis
  • B. burgdorferi polypeptides disclosed herein, or fragments thereof, as well as other Borrelia proteins are labeled with toxin molecules prior to their administration to the patient.
  • toxin derivatized antibodies bind to Borrelia cells, toxin moieties will be localized to these cells and will cause their death.
  • the present invention thus concerns and provides a means for preventing or attenuating a borrelial infection resulting from organisms which have antigens that are recognized and bound by antisera produced in response to the polypeptides of the present invention.
  • a vaccine is said to prevent or attenuate a disease if its administration to an animal results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the disease, or in the total or partial immunity of the animal to the disease.
  • the administration of the vaccine may be for either a "prophylactic" or "therapeutic" pu ⁇ ose.
  • the compound(s) are provided in advance of any symptoms of borrelial infection.
  • the prophylactic administration of the compound(s) serves to prevent or attenuate any subsequent infection.
  • the compound(s) is provided upon or after the detection of symptoms which indicate that an animal may be infected with a member of the Borrelia genus.
  • the therapeutic administration of the compound(s) serves to attenuate any actual infection.
  • the B. burgdorferi polypeptides, and fragments thereof, of the present invention may be provided either prior to the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection.
  • polypeptides of the invention may be administered in pure form or may be coupled to a macromolecular carrier.
  • macromolecular carrier examples include proteins and carbohydrates.
  • Suitable proteins which may act as macromolecular carrier for enhancing the immunogenicity of the polypeptides of the present invention include keyhole limpet hemacyanin (KLH) tetanus toxoid, pertussis toxin, bovine serum albumin, and ovalbumin.
  • KLH keyhole limpet hemacyanin
  • a composition is said to be "pharmacologically acceptable” if its administration can be tolerated by a recipient animal and is otherwise suitable for administration to that animal.
  • Such an agent is said to be administered in a "therapeutically effective amount” if the amount administered is physiologically significant.
  • An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.
  • the vaccine of the present invention is administered as a pharmacologically acceptable compound
  • a vaccine intended for human use will generally not be co- administered with Freund's adjuvant.
  • the level of purity of the R. burgdorferi polypeptides of the present invention will normally be higher when administered to a human than when administered to a non-human animal.
  • Adjuvants are substances that can be used to specifically augment a specific immune response. These substances generally perform two functions: (1) they protect the antigen(s) from being rapidly catabolized after administration and (2) they nonspecifically stimulate immune responses.
  • adjuvants can be loosely divided into several groups based upon their composition. These groups include oil adjuvants (for example, Freund's complete and incomplete), mineral salts (for example,
  • Other substances useful as adjuvants are the saponins such as, for example, Quil A. (Superfos A/S, Denmark).
  • Preferred adjuvants for use in the present invention include aluminum salts, such as AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , and AlNH 4 (SO 4 ).
  • aluminum salts such as AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , and AlNH 4 (SO 4 ).
  • Examples of materials suitable for use in vaccine compositions are provided in Remington's Pharmaceutical Sciences (Osol, A, Ed, Mack Publishing Co, Easton, PA, pp. 1324- 1341 (1980), which reference is inco ⁇ orated herein by reference).
  • the therapeutic compositions of the present invention can be administered parenterally by injection, rapid infusion, nasopharyngeal abso ⁇ tion (intranasopharangeally), dermoabso ⁇ tion, or orally.
  • the compositions may alternatively be administered intramuscularly, or intravenously.
  • compositions for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
  • non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
  • Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen abso ⁇ tion.
  • Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form.
  • Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water.
  • such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring, or perfuming agents.
  • compositions of the present invention can also be administered in encapsulated form.
  • intranasal immunization of mice against Bordetella pertussis infection using vaccines encapsulated in biodegradable microsphere composed of poly(DL-lactide- co-glycolide) has been shown to stimulate protective immune responses.
  • orally administered encapsulated Salmonella typhimurium antigens have also been shown to elicit protective immunity in mice. Allaoui- Attarki, K. et al, Infect. Immun. 65:853-857 (1997).
  • Encapsulated vaccines of the present invention can be administered by a variety of routes including those involving contacting the vaccine with mucous membranes (e.g., intranasally, intracolonicly, intraduodenally).
  • compositions of the invention are used more than once to increase the levels and diversities of expression of the immunoglobulin repertoire expressed by the immunized animal. Typically, if multiple immunizations are given, they will be given one to two months apart.
  • an "effective amount" of a therapeutic composition is one which is sufficient to achieve a desired biological effect.
  • the dosage needed to provide an effective amount of the composition will vary depending upon such factors as the animal's or human's age, condition, sex, and extent of disease, if any, and other variables which can be adjusted by one of ordinary skill in the art.
  • the antigenic preparations of the invention can be administered by either single or multiple dosages of an effective amount.
  • Effective amounts of the compositions of the invention can vary from 0.01-1,000 ⁇ g/ml per dose, more preferably 0.1-500 ⁇ g/ml per dose, and most preferably 10-300 ⁇ g/ml per dose.
  • PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length.
  • the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same.
  • the R. burgdorferi strain B31PU has been deposited as a convienent source for obtaining a B. burgdorferi strain although a wide varity of strains B. burgdorferi strains can be used which are known in the art.
  • B. burgdorferi genomic DNA is prepared using the following method.
  • a 20ml overnight bacterial culture grown in a rich medium e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth
  • TES Tris-pH 8.0, 25mM EDTA, 50mM NaCl
  • TES high salt TES
  • Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells.
  • the solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C.
  • a plasmid is directly isolated by screening a plasmid B. burgdorferi genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention.
  • a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.
  • the oligonucleotide is labeled, for instance, with 2 P- ⁇ -ATP using T4 polynucleotide kinase and purified according to routine methods.
  • the library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989).
  • the transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.
  • two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of Table 1 are synthesized and used to amplify the desired DNA by PCR using a B. burgdorferi genomic DNA prep as a template.
  • PCR is carried out under routine conditions, for instance, in 25 ⁇ l of reaction mixture with 0.5 ug of the above DNA template.
  • a convenient reaction mixture is 1.5-5 mM MgCl 2 , 0.01% (w/v) gelatin, 20 ⁇ M each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR
  • overlapping oligos of the DNA sequences of Table 1 can be chemically synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.
  • the bacterial expression vector pQE60 is used for bacterial expression of some of the polypeptide fragements of the present invention. (QIAGEN, Inc., 9259 Eton Avenue,
  • pQE60 encodes ampicillin antibiotic resistance (“Ampr”) and contains a bacterial origin of replication (“ori”), an IPTG inducible promoter, a ribosome binding site (“RBS”), six codons encoding histidine residues that allow affinity purification using nickel- nitrilo-tri-acetic acid (“Ni-NTA”) affinity resin (QIAGEN, Inc., supra) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag”) covalently linked to the carboxyl terminus of that polypeptide.
  • the DNA sequence encoding the desired portion of a B. burgdorferi protein of the present invention is amplified from B. burgdorferi genomic DNA using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portions of the B. burgdorferi polynucleotide shown in Table 1. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.
  • the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired B. burgdorferi polynucleotide sequence in Table 1.
  • the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form.
  • the 3' primer has a sequence containing an appropriate restriction site followed by nucleotides complementary to the 3' end of the polypeptide coding sequence of Table
  • the amplified B. burgdorferi DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together.
  • the B. burgdorferi DNA is inserted into the restricted pQE60 vector in a manner which places the B. burgdorferi protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.
  • E. coli strain M15/rep4 containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein.
  • This strain which is only one of many that are suitable for expressing a B. burgdorferi polypeptide, is available commercially (QIAGEN, Inc., supra).
  • Transformants are identified by their ability to grow on LB agar plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.
  • Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 ⁇ g/ml) and kanamycin (25 ⁇ g/ml).
  • the O/N culture is used to inoculate a large culture, at a dilution of approximately 1 :25 to 1 :250.
  • the cells are grown to an optical density at 600 nm ("OD600”) of between 0.4 and 0.6.
  • Isopropyl- ⁇ -D- thiogalactopyranoside (“IPTG”) is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lad repressor. Cells subsequently are incubated further for 3 to 4 hours.
  • Ni-NTA nickel-nitrilo-tri-acetic acid
  • the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the B. burgdorferi polypeptide is eluted with 6 M guanidine-HCl, pH 5.
  • the purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl.
  • PBS phosphate-buffered saline
  • the protein could be successfully refolded while immobilized on the Ni-NTA column.
  • the recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors.
  • the renaturation should be performed over a period of 1.5 hours or more.
  • the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl.
  • the purified protein is stored at 4° C or frozen at -80° C
  • the polypeptide of the present invention are also prepared using a non-denaturing protein purification method.
  • Absorbance at 550 nm is approximately 10-20 O.D./ml.
  • the suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature.
  • the cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice.
  • the sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C.
  • the supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.
  • Ni-NTA nickel-nitrilo-tri-acetic acid
  • Buffer B 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5.
  • the protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of 150 mM Imidazole, 5 volumes of 500 mM Imidazole.
  • the fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE depending on the protein size.
  • the purified protein is then dialyzed 2X against phosphate-buffered saline (PBS) in order to place it into an easily workable buffer.
  • PBS phosphate-buffered saline
  • the purified protein is stored at 4° C or frozen at -80°.
  • the following alternative method may be used to purify B. burgdorferi expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.
  • the cell culture Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer. The cells are then lysed by passing the solution through a microfluidizer (Microfuidics,
  • B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further
  • GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring.
  • the refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.
  • Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4 volumes of water.
  • the diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins.
  • the columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl.
  • CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A 280 monitoring of the effluent. Fractions containing the R. burgdorferi polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
  • the resultant B. burgdorferi polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 ⁇ g of purified protein is loaded.
  • the purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
  • Tthe vector pQElO is alternatively used to clone and express some of the polypeptides of the present invention for use in the soft tissue and systemic infection models discussed below. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide.
  • the bacterial expression vector pQElO (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) was used in this example .
  • the components of the pQElO plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag”)) covalently linked to the amino terminus.
  • the DNA sequences encoding the desired portions of a polypeptide of Table 1 were amplified using PCR oligonucleotide primers from genomic B. burgdorferi DNA.
  • the PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention.
  • Additional nucleotides containing restriction sites to facilitate cloning in the pQElO vector were added to the 5' and 3' primer sequences, respectively.
  • the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences.
  • the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention.
  • the 5' primer was designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of B. burgdorferi polypeptide.
  • the 3' was designed to include an stop codon. The amplified DNA fragment was then cloned, and the protein expressed, as described above for the pQE60 plasmid.
  • the DNA sequences of Table 1 encoding amino acid sequences may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE 10.
  • the above methods are not limited to the polypeptide fragements actually produced.
  • the above method like the methods below, can be used to produce either full length polypeptides or desired fragements therof.
  • the bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented and, therefore, the polypeptide is produced with no 6 X His tag.
  • the DNA sequence encoding the desired portion of the B. burgdorferi amino acid sequence is amplified from an B. burgdorferi genomic DNA prep the deposited DNA clones using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the B. burgdorferi polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences.
  • 5' and 3' primers are selected to amplify their respective nucleotide coding sequences.
  • the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention.
  • the 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively.
  • the 3' primer is additionally designed to include an in-frame stop codon.
  • the amplified B. burgdorferi DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the B. burgdorferi DNA into the restricted pQE60 vector places the B. burgdorferi protein coding region including its associated stop codon downstream from the IPTG- inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.
  • the ligation mixture is transformed into competent E. coli cells using standard procedures such as those described by Sambrook et al. E. coli strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance
  • Kanr is used in carrying out the illustrative example described herein.
  • This strain which is only one of many that are suitable for expressing B. burgdorferi polypeptide, is available commercially (QIAGEN, Inc., supra).
  • Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.
  • Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 ⁇ g/ml) and kanamycin (25 ⁇ g/ml).
  • the O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250.
  • the cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D- thiogalactopyranoside (“IPTG”) is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lad repressor.
  • IPTG isopropyl-b-D- thiogalactopyranoside
  • the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8.
  • the cell debris is removed by centrifugation, and the supernatant containing the B. burgdorferi polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl.
  • the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography.
  • an affinity chromatography step such as an antibody column can be used to obtain pure B. burgdorferi polypeptide.
  • the purified protein is stored at 4° C or frozen at -80° C.
  • the following alternative method may be used to purify R. burgdorferi polypeptides expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.
  • the cell culture Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 ⁇ m (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM ⁇ DTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.
  • the cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Co ⁇ . or APV Gaulin, Inc.) twice at 4000-6000 psi.
  • the homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min.
  • the resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM ⁇ DTA, pH 7.4.
  • the resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the
  • B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further
  • the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM ⁇ DTA by vigorous stirring.
  • the refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.
  • a previously prepared tangential filtration unit equipped with 0.16 ⁇ m membrane filter with appropriate surface area e.g., Filtron
  • 40 mM sodium acetate, pH 6.0 is employed.
  • the filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems).
  • the column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner.
  • the absorbance at 280 mm of the effluent is continuously monitored.
  • Fractions are collected and further analyzed by SDS-PAG ⁇ . Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl.
  • CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M
  • Fractions are collected under constant A ⁇ monitoring of the effluent. Fractions containing the B. burgdorferi polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
  • the resultant B. burgdorferi polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 ⁇ g of purified protein is loaded.
  • the purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
  • B. burgdorferi polypeptides can also be produced in: R. burgdorferi using the methods of S. Skinner et al, (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.
  • a B. burgdorferi expression plasmid is made by cloning a portion of the DNA encoding a B. burgdorferi polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.).
  • the expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E.
  • coli and other prokaryotic cells (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the S V40 intron and the polyadenylation signal by means of restriction sites in the polylinker.
  • HA hemagglutinin fragment
  • the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767.
  • the fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope.
  • pDNAIII contains, in addition, the selectable neomycin marker.
  • a DNA fragment encoding a B. burgdorferi polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter.
  • the plasmid construction strategy is as follows. The DNA from a B. burgdorferi genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of B. burgdorferi in E. coli.
  • the 5' primer contains a
  • the 3' primer contains nucleotides complementary to the 3' coding sequence of the R. burgdorferi DNA, a stop codon, and a convenient restriction site.
  • the PCR amplified DNA fragment and the vector, pDNAI/Amp are digested with appropriate restriction enzymes and then ligated.
  • the ligation mixture is transformed into an appropriate E. coli strain such as SURETM (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the B. burgdorferi polypeptide
  • COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (supra). Cells are incubated under conditions for expression of B. burgdorferi by the vector.
  • Expression of the B. burgdorferi-KA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., supra.. To this end, two days after transfection, the cells are labeled by incubation in media containing 35 S- cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1 % NP-40, 0.1 % SDS, 1 % NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (supra ).
  • Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.
  • Plasmid pC4 is used for the expression of B. burgdorferi polypeptide in this example.
  • Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146).
  • the plasmid contains the mouse DHFR gene under control of the SV40 early promoter.
  • Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate.
  • amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented.
  • cell lines which contain the amplified gene integrated into one or more chromosome(s) of the host cell.
  • Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol.
  • LTR long terminal repeat
  • the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene.
  • Other high efficiency promoters can also be used for the expression, e.g., the human ⁇ -actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI.
  • Clontech's Tet-Off and Tet- On gene expression systems and similar systems can be used to express the B. burgdorferi polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci.
  • telomere sequence e.g., gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.
  • the plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel. The DNA sequence encoding the B.
  • burgdorferi polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene.
  • a 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the B. burgdorferi polypeptide is synthesized and used.
  • a 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the B. burgdorferi polypeptides is synthesized and used.
  • the amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel.
  • the isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase.
  • E. c ⁇ /j ' HBlOl or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.
  • Chinese hamster ovary cells lacking an active DHFR gene are used for transfection.
  • Five ⁇ g of the expression plasmid pC4 is cotransfected with 0.5 ⁇ g of the plasmid pSVneo using a lipid-mediated transfection agent such as LipofectinTM or LipofectAMIN ⁇ .TM (LifeTechnologies Gaithersburg, MD).
  • the plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418.
  • the cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418.
  • the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about
  • Clones growing at the highest concentrations of methotrexate are then transferred to new 6- well plates containing even higher concentrations of methotrexate (1 ⁇ M, 2 ⁇ M, 5 ⁇ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of
  • Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.
  • B. burgdorferi sensu stricto isolate B31 is propagated in tightly-closed containers at 34°C in modified Barbour-Stoenner-Kelly (BSKII) medium (Barbour, A.G., Yale J. Biol. Med. 57:521-525 (1984)) overlaid with a 5%O 2 /5%CO 2 /90%N 2 gas mixture. Cell densities of these cultures are determined by darkfield microscopy at 400X.
  • BSKII modified Barbour-Stoenner-Kelly
  • mice BALB/cByJ mice (BALB, Jackson Laboratories) are injected intraperitoneally (i.p.) at week 0 with 20 g of recombinant borrelial protein, or phosphate-buffered saline (PBS), emulsified with complete Freund's adjuvant (CFA), given a similar booster immunization in incomplete Freund's adjuvant (IF A) at week 4, and challenged at week 6.
  • PBS phosphate-buffered saline
  • CFA complete Freund's adjuvant
  • IF A incomplete Freund's adjuvant
  • burgdorferi are diluted in BSKII from exponentially-growing cultures and mice are injected subcutaneously (s.c.) at the base of the tail with 0.1 ml of these dilutions (typically 10 3 -10 4 borreliae; approximately 10-100 times the median infectious dose). Borreliae used for challenge are passaged fewer than six times in vitro.
  • mice are sacrificed at 14-17 days post-challenge, and specimens derived from ear, bladder, and tibiotarsal joints are placed in BSKH plus 1.4% gelatin, 13 g/ml amphotericin B, 1.5 g/ml phosphomycin, and 15 g/ml rifampicin, and borrelia outgrowth at two or three weeks is quantified by darkfield microscopy.
  • Batches of BSKH are qualified for infection testing by confirming that they supported the growth of 1-5 cells of isolate B31. In some instances seroconversion for protein P39 reactivity is also used to confirm infections (see below).
  • mice elicited antibodies to P39 when inoculated with live borreliae by syringe or tick bite, but not with killed borreliae (Simpson, W.J., et al, J. Clin. Microbiol. 29:236-243 (1991)).
  • the ELISA and immunoblot assays are also used to detect and quantify antibodies elicited in response to borrelial infection that react with specific borrelial antigens. Where antibodies to certain borrelial antigens are elicited by infection this is taken as evidence that the borrelial proteins in question are expressed in vivo. Absence of infection-derived antibodies (seroconversion) following borrelial challenge is evidence that infection is prevented or suppressed.
  • the immunoblot assay is also used to ascertain whether antibodies raised against recombinant borrelial antigens recognize a protein of similar size in extracts of whole borreliae. Where the natural protein is of similar, or identical, size in the immunoblot assay to the recombinant version of the same protein, this is taken as evidence that the recombinant protein is the product of a full-length clone of the respective gene.
  • Enzyme-Linked Immunosorbant Assay The ELISA is used to quantify levels of antibodies reactive with borrelial antigens elicited in response to immunization with these borrelial antigens.
  • Wells of 96 well microtiter plates (Immunlon 4, Dynatech, Chantilly, Virginia, or equivalent) are coated with antigen by incubating 50 1 of 1 g/ml protein antigen solution in a suitable buffer, typically 0.1 M sodium carbonate buffer at pH 9.6. After decanting unbound antigen, additional binding sites are blocked by incubating 100 1 of 3% nonfat milk in wash buffer (PBS, 0.2% Tween 20, pH 7.4).
  • borreliae can be killed by the binding of specific antibodies to their surface antigens.
  • the mechanism for this in vitro killing or growth-inhibitory effect is not known, but can occur in the absence of serum complement, or other immune effector functions.
  • Antibodies elicited in animals receiving immunizations with specific borrelial antigens that result in protection from borrelial challenge usually will directly kill borreliae in vitro.
  • the in vitro growth inhibition assay also has a high predictive value for the protective potency of the borrelial antibodies, although exceptions, such as antibodies against OspC which are weak at in vitro growth inhibition, have been observed. Also, this assay can be used to evaluate the serologic conservation of epitope binding protective antibodies.
  • a microwell antibody titration assay (Sadziene, A., et al, J. Infect. Dis. 167: 165-172 (1993)) is used to evaluate the growth inhibition (GI) properties of antisera against recombinant borrelial antigens against the homologous B31 isolate, and against various strains of borrelia. Briefly, 10 5 borrelia in 100 1 BSKII are added to serial two-fold dilutions of sera in 100 1 BSKII in 96- well plates, and the plates are covered and incubated at 34°C in a 5%O 2 /5%CO 2 /90%N 2 gas mixture for 72 h prior to quantification of borrelia growth by darkfield microscopy. 6(d). Sodiumdodecylsulfate-Polyacrylamide Gel Electrophoresis
  • total borrelial protein extracts, recombinant borrelial antigen, or recombinant P39 samples (2 g of purified protein, or more for total borrelial extracts) are boiled in SDS/2-ME sample buffer before electrophoresis through 3% acrylamide stacking gels, and resolving gels of higher acrylamide concentration, typically 10-15% acrylamide monomer. Gels are electro-blotted to nitrocellulose membranes and lanes are probed with dilutions of antibody to be tested for reactivity with specific borrelial antigens, followed by the appropriate secondary antibody-enzyme (horseradish peroxidase) conjugate.
  • secondary antibody-enzyme horseradish peroxidase
  • membranes are stained with Ponceau S. Immunoblot signals from bound antibodies are detected on x-ray film as chemiluminescence using ECLTM reagents (Amersham Co ⁇ ., Arlington Heights, Illinois).
  • a cDNA probe containing an entire nucleotide sequence shown in Table 1 is labeled with 32 P using the ra/iprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using a CHROMA SPIN- 100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PTl 200-1. The purified labeled probe is then used to detect the expression of Borrelia mRNA in an animal tissue sample.
  • Animal tissues such as blood or spinal fluid, are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PTl 190-1. Following hybridization and washing, the blots are mounted and exposed to film at - 70 C overnight, and films developed according to standard procedures.
  • ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PTl 190-1. Following hybridization and washing, the blots are mounted and exposed to film at - 70 C overnight, and films developed according to standard procedures.
  • MRKYIFIILIAVL IGVNIKKIAAAANIDRHTNST GIDLSVGIPIFYNDLSKAYPTNLYPGGIGAIKYQYHILNN
  • AIGLE RYMFNFDINHSFNI NPDSSVGKIFYSVPITFSINYIFDIGELFQIPVFTNIGFSLNTYGDRN1S-NITNL
  • RTFDALPTISFGSGILVr ⁇ F-STYKWAFGATAS MMFEFGNSAKJ AHFALVS SVTVNVNK

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to novel vaccines for the prevention or attenuation of Lyme disease. The invention further relates to isolated nucleic acid molecules encoding antigenic polypeptides of Borrelia burgdorferi. Antigenic polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. The invention additionally relates to diagnostic methods for detecting Borrelia gene expression.

Description

Lyme Disease Vaccines
Field of the Invention
The present invention relates to novel vaccines for the prevention or attenuation of Lyme disease. The invention further relates to isolated nucleic acid molecules encoding antigenic polypeptides of Borrelia burgdorferi. Antigenic polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. The invention additionally relates to diagnostic methods for detecting Borrelia gene expression.
Background of the Invention
Lyme disease (Steere, A.C., Proc. Natl. Acad. Sci. USA 97:2378-2383 (1991)), or Lyme borreliosis, is presently the most common human disease in the United States transmitted by an arthropod vector (Center for Disease Control, Morbid. Mortal. Weekly Rep. 46(23):531-535 (1997)). Further, infection of house-hold pets, such as dogs, is a considerable problem. While initial symptoms often include a rash at the infection point, Lyme disease is a multisystemic disorder that may include arthritic, carditic, and neurological manifestations. While antibiotics are currently used to treat active cases of Lyme disease, R. burgdorferi persists even after prolonged antibiotic treatment. Further, B. burgdorferi can persist for years in a mammalian host in the presence of an active immune response (Straubinger, R. et al., J. Clin. Microbiol. 35:111-116 (1997); Steere, A., N. Engl. J. Med. 327:586-596 (1989)).
Lyme disease is caused by the related tick-borne spirochetes classified as Borrelia burgdorferi sensu lato (including B. burgdorferi sensu stricto, B. afzelii, B. gariniϊ). Although substantial progress has been made in the biochemical, ultrastructural, and genetic characterization of the organism, the spirochetal factors responsible for infectivity, immune evasion and disease pathogenesis remain largely obscure.
A number of antigenic B. burgdorferi cell surface proteins have been identified. These include the outer membrane surface proteins (Osp) OspA, OspB, OspC and OspD. OspA and OspB are encoded by tightly linked tandem genes which are transcribed as a single transcriptional unit (Brusca, J. et al, J. Bacteriol. 773:8004-8008 (1991)). The most-studied B. burgdorferi membrane protein is OspA, a lipoprotein antigen expressed by borreliae in resting ticks and the most abundant protein expressed in vitro by most borrelial isolates (Barbour, A.G., et al, Infection & Immunity 47:795-804 (1983); Howe, T.R., et al, Science 227:645 (1985)). A number of different types of Lyme disease vaccines have been shown to induce immunological responses. Whole-cell B. burgdorferi vaccines, for example, have been shown to induce both immunological responses and protective immunity in several animal models (Reviewed in Wormser, G., Clin. Infect. Dis. 27:1267-1274 (1995)). Further, passive immunity has been demonstrated in both humans and other animals using B. burgdorferi specific antisera. While whole-cell Lyme disease vaccines confer protective immunity in animal models, use of such vaccines presents the risk that responsive antibodies will produce an autoimmune response (Reviewed in Wormser, G., supra). This problem is at least partly the result of the production of B. burgdorferi specific antibodies which cross-react with hepatocytes and both muscle and nerve cells. B. burgdorferi heat shock proteins and the 41-kd flagellin subunit are believed to contain antigens which elicit production of these cross-reactive antibodies.
Single protein subunit vaccines for Lyme disease have also been tested. The cell surface proteins of B. burgdorferi are potential candidates for use in such vaccines and several have been shown to elicit protective immune responses in mammals (Probert, W. et al, Vaccine 75:15-19 (1997); Fikrig, E. et al, Infect. Immun. 63: 1658-1662 (1995); Langerman S. et al, Nature
372:552-556 (1994); Fikrig, E. et al, J. Immunol 148:2256-2260 (1992)). Experimental OspA vaccines, for example, have demonstrated efficacy in several animal models (Fikrig, E., et al, Proc. Natl Acad. Sci. USA 89:5418-5421 (1992); Johnson, B.J., et al, Vaccine 73: 1086-1094 (1996); Fikrig, E., et al, Infect. Immun. 60:651-661 (1992); Chang, Y.F., et al, Infection & Immunity (53:3543-3549 (1995)), and OspA vaccines for human use are under clinical evaluation (Keller, D., et al, J. Am. Med. Assoc. 277: 1764-1768 (1994); Van Hoecke, C, et al, Vaccine 74:1620-1626 (1996)). Passive immunity is also conferred by antisera containing antibodies specific for the full-length OspA protein. Further, vaccination with plasmid DNA encoding OspA has been demonstrated to elicit protective immune responses in mice (Luke, C. et al, J. Infect. Dis. 775:91-97 (1997); Zhong, W. et al, Eur. J. Immunol 26:2749-2757 (1996)).
Recent immunofluorescence assay observations indicate that during tick engorgement the expression of OspA by borreliae diminishes (deSilva, A.M., et al, J. Exp. Med. 183:211-215 (1996)) while expression of other proteins, exemplified by OspC, increases (Schwan, T.G., et al, Proc. Natl. Acad. Sci. USA 92:2909-2913 (1985)). By the time of transmission to hosts, spirochetes in the tick salivary glands express little or no OspA. This down-modulation of OspA appears to explain the difficulties in demonstrating immune responses to this antigen early in infection following tick bites (Kalish, R.A., et al, Infect. Immun. 63:2228-2235 (1995); Gern, L., et al, J. Infect. Dis. 767:971-975 (1993); Schiable, U.E., et al, Immunol. Lett. 36:219-226 (1993)) or following challenge with limiting doses of cultured borreliae (Schiable, U.E., et al, Immunol. Lett. 36:219-226 (1993); Barthold, S.W. and Bockenstedt, L.K., 7n/ect. Immun. 67:4696-4702 (1993)).
Furthermore, OspA-specific antibodies are ineffective if administered after a borrelial challenge delivered by syringe (Schiable, U.E., et al, Proc. Natl Acad. Sci. USA 87:3768-3772 (1990)) or tick bite (deSilva, A.M., et al, J. Exp. Med. 183:211-215 (1996)). To be efficacious, OspA vaccines must elicit protective levels of antibody which are maintained throughout periods of tick exposure in order to block borrelia transmission from the arthropod vector.
Vaccines in current use against other pathogens include in vz'vø-expressed antigens which could boost anamnestic responses upon infection, potentiate the action of immune effector cells and complement, and inhibit key virulence mechanisms. OspC is both expressed during infection
(Montgomery, R.R., et al, J. Exp. Med. 183:261-269 (1996)) and a target for protective immunity (Gilmore, R.D., et al, Infect. Immun. 64:2234-2239 (1996); Probert, W.S. and
LeFebvre, R.B., 7n/ect. Immun. 62:1920-1926 (1994); Preac-Mursic, V., et al, Infection
20:342-349 (1992)), but mice immunized with this protein were only protected against challenge with the homologous borrelial isolate (Probert, W.S., et al, J. Infect. Dis. 775:400-405 (1997)).
Identification of in vz'vo-expressed, and broadly protective, antigens of B. burgdorferi has remained elusive.
Summary of the Invention The present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the B. burgdorferi peptides having the amino acid sequences shown in Table 1. Thus, one aspect of the invention provides isolated nucleic acid molecules comprising polynucleotides having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 ; (b) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) a nucleotide sequence encoding any of the amino acid sequences of the truncated polypeptides shown in Table 1; and (d) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), or (c) above. Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), or (d) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), or (d) above. This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues. Additional nucleic acid embodiments of the invention relate to isolated nucleic acid molecules comprising polynucleotides which encode the amino acid sequences of epitope-bearing portions of a B. burgdorferi polypeptide having an amino acid sequence in (a), (b), or (c) above. The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using these vectors for the production of B. burgdorferi polypeptides or peptides by recombinant techniques.
The invention further provides isolated B. burgdorferi polypeptides having an amino acid sequence selected from the group consisting of: (a) an amino acid sequence of any of the full- length polypeptides shown in Table 1 ; (b) an amino acid sequence of any of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) an amino acid sequence of any of the truncated polypeptides shown in Table 1 ; and (d) an amino acid sequence of an epitope-bearing portion of any one of the polypeptides of (a), (b), or (c).
The polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 70% similarity, and more preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% similarity to those described in (a), (b), (c), or (d) above, as well as polypeptides having an amino acid sequence at least 70% identical, more preferably at least 75% identical, and still more preferably 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to those above; as well as isolated nucleic acid molecules encoding such polypeptides.
The present invention further provides a vaccine, preferably a multi-component vaccine comprising one or more of the B. burgdorferi polypeptides shown in Table 1 , or fragments thereof, together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the B. burgdorferi polypeptide(s) are present in an amount effective to elicit an immune response to members of the Borrelia genus in an animal. The R. burgdorferi polypeptides of the present invention may further be combined with one or more immunogens of one or more other borrelial or non-borrelial organisms to produce a multi-component vaccine intended to elicit an immunological response against members of the Borrelia genus and, optionally, one or more non- borrelial organisms.
The vaccines of the present invention can be administered in a DNA form, e.g., "naked" DNA, wherein the DNA encodes one or more borrelial polypeptides and, optionally, one or more polypeptides of a non-borrelial organism. The DNA encoding one or more polypeptides may be constructed such that these polypeptides are expressed fusion proteins. The vaccines of the present invention may also be administered as a component of a genetically engineered organism. Thus, a genetically engineered organism which expresses one or more B. burgdorferi polypeptides may be administered to an animal. For example, such a genetically engineered organism may contain one or more B. burgdorferi polypeptides of the present invention intracellularly, on its cell surface, or in its periplasmic space. Further, such a genetically engineered organism may secrete one or more B. burgdorferi polypeptides.
The vaccines of the present invention may be co-administered to an animal with an immune system modulator (e.g., CD86 and GM-CSF).
The invention also provides a method of inducing an immunological response in an animal to one or more members of the Borrelia genus, e.g., B. burgdorferi sensu stricto, R. afzelii, and B. garinii, comprising administering to the animal a vaccine as described above.
The invention further provides a method of inducing a protective immune response in an animal, sufficient to prevent or attenuate an infection by members of the Borrelia genus, comprising administering to the animal a composition comprising one or more of the polypeptides shown in Table 1, or fragments thereof. Further, these polypeptides, or fragments thereof, may be conjugated to another immunogen and/or administered in admixture with an adjuvant.
The invention further relates to antibodies elicited in an animal by the administration of one or more B. burgdorferi polypeptides of the present invention.
The invention also provides diagnostic methods for detecting the expression of genes of members of the Borrelia genus in an animal. One such method involves assaying for the expression of a gene encoding Borrelia peptides in a sample from an animal. This expression may be assayed either directly (e.g., by assaying polypeptide levels using antibodies elicited in response to amino acid sequences shown in Table 1) or indirectly (e.g., by assaying for antibodies having specificity for amino acid sequences shown in Table 1). An example of such a method involves the use of the polymerase chain reaction (PCR) to amplify and detect Borrelia nucleic acid sequences.
The present invention also relates to nucleic acid probes having all or part of a nucleotide sequence shown in Table 1 which are capable of hybridizing under stringent conditions to Borrelia nucleic acids. The invention further relates to a method of detecting one or more Borrelia nucleic acids in a biological sample obtained from an animal, said one or more nucleic acids encoding Borrelia polypeptides, comprising: a) contacting the sample with one or more of the above-described nucleic acid probes, under conditions such that hybridization occurs, and b) detecting hybridization of said one or more probes to the Borrelia nucleic acid present in the biological sample.
Detailed Description
The present invention relates to recombinant antigenic B. burgdorferi polypeptides and fragments thereof. The invention also relates to methods for using these polypeptides to produce immunological responses and to confer immunological protection to disease caused by members of the genus Borrelia. The invention further relates to nucleic acid sequences which encode antigenic B. burgdorferi polypeptides and to methods for detecting Borrelia nucleic acids and polypeptides in biological samples. The invention also relates to Borrelia specific antibodies and methods for detecting such antibodies produced in a host animal.
Definitions
The following definitions are provided to clarify the subject matter which the inventors consider to be the present invention.
As used herein, the phrase "pathogenic agent" means an agent which causes a disease state or affliction in an animal. Included within this definition, for examples, are bacteria, protozoans, fungi, viruses and metazoan parasites which either produce a disease state or render an animal infected with such an organism susceptible to a disease state (e.g., a secondary infection). Further included are species and strains of the genus Borrelia which produce disease states in animals. As used herein, the term "organism" means any living biological system, including viruses, regardless of whether it is a pathogenic agent.
As used herein, the term "Borrelia" means any species or strain of bacteria which is members of the genus Borrelia. Included within this definition are Borrelia burgdorferi sensu lato (including R. burgdorferi sensu stricto, R. afzelii, B. garinii), B. andersonii, B. anseήna, B. japonica, B. coriaceae, and other members of the genus Borrelia regardless of whether they are known pathogenic agents.
As used herein, the phrase "one or more B. burgdorferi polypeptides of the present invention" means the amino acid sequence of one or more of the B. burgdorferi polypeptides disclosed in Table 1. These polypeptides may be expressed as fusion proteins wherein the B. burgdorferi polypeptides of the present invention are linked to additional amino acid sequences which may be of borrelial or non-borrelial origin. This phrase further includes fragments of the R. burgdorferi polypeptides of the present invention.
As used herein, the phrase "full-length amino acid sequence" and "full-length polypeptide" refer to an amino acid sequence or polypeptide encoded by a full-length open reading frame (ORF). An ORF may be defined as a nucleotide sequence bounded by stop codons which encodes a putative polypeptide. An ORF may also be defined as a nucleotide sequence within a stop codon bounded sequence which contains an initiation codon (e.g., a methionine or valine codon) on the 5' end and a stop codon on the 3' end. As used herein, the phrase "truncated amino acid sequence" and "truncated polypeptide" refer to a sub-sequence of a full-length amino acid sequence or polypeptide. Several criteria may also be used to define the truncated amino acid sequence or polypeptide. For example, a truncated polypeptide may be defined as a mature polypeptide (e.g., a polypeptide which lacks a leader sequence). A truncated polypeptide may also be defined as an amino acid sequence which is a portion of a longer sequence that has been selected for ease of expression in a heterologous system but retains regions which render the polypeptide useful for use in vaccines (e.g., antigenic regions which are expected to elicit a protective immune response).
Additional definitions are provided throughout the specification. Explanation of Table 1 Table 1 lists B. burgdorferi nucleotide and amino acid sequences of the present invention.
The nomenclature used therein is as follows:
"nt" refers to nucleotide sequences;
"aa" refers to amino acid sequences;
"f ' refers to full-length nucleotide or amino acid sequences; and "t" refers to truncated nucleotide or amino acid sequences.
Thus, for example, the designation "flOl.aa" refers to the full-length amino acid sequence of B. burgdorferi polypeptide number 101. Further, "flOl.nt" refers to the full-length nucleotide sequence encoding the full-length amino acid sequence of B. burgdorferi polypeptide number 101. Explanation of Table 2
Table 2 lists accession numbers for the closest matching sequences between the polypeptides of the present invention and those available through GenBank and GeneSeq databases. These reference numbers are the database entry numbers commonly used by those of skill in the art, who will be familar with their denominations. The descriptions of the numenclature for GenBank are available from the National Center for Biotechnology Information. Column 1 lists the gene or ORF of the present invention. Column 2 lists the accession number of a "match" gene sequence in GenBank or GeneSeq databases. Column 3 lists the description of the "match" gene sequence. Columns 4 and 5 are the high score and smallest sum probability, respectively, calculated by BLAST. Polypeptides of the present invention that do not share significant identity/similarity with any polypeptide sequences of GenBank and GeneSeq are not represented in Table 2. Polypeptides of the present invention that share significant identity/similarity with more than one of the polypeptides of GenBank and GeneSeq are represented more than once.
Explanation of Table 3.
The B. burgdorferi polypeptides of the present invention may include one or more conservative amino acid substitutions from natural mutations or human manipulation as indicated in Table 3. Changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Residues from the following groups, as indicated in Table 3, may be substituted for one another: Aromatic, Hydrophobic, Polar, Basic, Acidic, and Small,
Explanation of Table 4
Table 4 lists residues comprising antigenic epitopes of antigenic epitope-bearing fragments present in each of the full length B. burgdorferi polypeptides described in Table 1 as predicted by the inventors using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4: 181-186. The Jameson- Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power Macintosh, DNASTAR, Inc., 1228 South Park Street Madison, WI). B. burgdorferi polypeptide shown in Table 1 may one or more antigenic epitopes comprising residues described in Table 4. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly. The residues and locations shown described in Table 4 correspond to the amino acid sequences for each full length gene sequence shown in Table 1 and in the Sequence Listing. Polypeptides of the present invention that do not have antigenic epitopes recognized by the Jameson- Wolf algorithm are not represented in Table 2. Selection of Nucleic Acid Sequences Encoding Antigenic B. burgdorferi
Polypeptides
The present invention provides a select number of ORFs from those presented in the fragments of the Borrelia burgdorferi genome which may prove useful for the generation of a protective immune response. The sequenced B. burgdorferi genomic DNA was obtained from a sub-cultured isolate of ATCC Deposit No. 35210. The sub-cultured isolate was deposited on August 8, 1997 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession number 202012.
Some ORFs contained in the subset of fragments of the B. burgdorferi genome disclosed herein were derived through the use of a number of screening criteria detailed below. The ORFs are generally bounded at the amino terminus by a methionine residue and at the carboxy terminus by a stop codon.
Many of the selected sequences do not consist of complete ORFs. Although a polypeptide representing a complete ORF may be the closest approximation of a protein native to an organism, it is not always preferred to express a complete ORF in a heterologous system. It may be challenging to express and purify a highly hydrophobic protein by common laboratory methods. Some of the polypeptide vaccine candidates described herein have been modified slightly to simplify the production of recombinant protein. For example, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, have been excluded from some constructs used for in vitro expression of the polypeptides.
Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus have also been excluded from the recombinant expression constructs. Thus, in one embodiment, a polypeptide which represents a truncated or modified ORF may be used as an antigen.
While numerous methods are known in the art for selecting potentially immunogenic polypeptides, many of the ORFs disclosed herein were selected on the basis of screening all theoretical Borrelia burgdorferi ORFs for several aspects of potential immunogenicity. One set of selection criteria are as follows:
1. Type I signal sequence: An amino terminal type I signal sequence generally directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Experimental evidence obtained from studies with Escherichia coli suggests that the typical type I signal sequence consists of the following biochemical and physical attributes (Izard, J. W. and Kendall, D. A. Mol Microbiol. 73:765-773 (1994)). The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus. In addition, the central region of the signal sequence adopts an alpha-helical conformation in a hydrophobic environment. Finally, the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.
2. Type TV signal sequence: The type IV signal sequence is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 774:7345-7351
(1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, type IV signal sequences generally contain a phenylalanine residue at the +1 site relative to the cleavage site.
3. Lipoprotein: Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)- (G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C, J. Bioenerg. Biomembr. 22:451-411 (1990)).
4. LPXTG motif: It has been experimentally determined that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as S. pyogenes, S. mutans, B. burgdorferi, S. pneumoniae, and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A., ASM News 62:405-410 (1996)). The conserved region consists of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins examined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid.
An algorithm for selecting antigenic and immunogenic Borrelia burgdorferi polypeptides including the foregoing criteria was developed. The algorithm is similar to that described in U.S. patent application 08/781,986, filed January 3, 1997, which is fully incorporated by reference herein. Use of the algorithm by the inventors to select immunologically useful Borrelia burgdorferi polypeptides resulted in the selection of a number of the disclosed ORFs. Polypeptides comprising the polypeptides identified in this group may be produced by techniques standard in the art and as further described herein.
Nucleic Acid Molecules
The present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the B. burgdorferi polypeptides having the amino acid sequences shown in Table 1 , which were determined by sequencing the genome of B. burgdorferi deposited as ATCC deposit no. 202012 and selected as putative immunogens.
Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of DNA sequences determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.
Unless otherwise indicated, each "nucleotide sequence" set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G , C and T). However, by "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U). For instance, reference to an RNA molecule having a sequence of Table 1 set forth using deoxyribonucleotide abbreviations is intended to indicate an RNA molecule having a sequence in which each deoxyribonucleotide A, G or C of Table 1 has been replaced by the corresponding ribonucleotide A, G or C, and each deoxyribonucleotide T has been replaced by a ribonucleotide U.
Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded.
Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
In addition, isolated nucleic acid molecules of the invention include DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode a B. burgdorferi polypeptides and peptides of the present invention (e.g. polypeptides of Table 1). That is, all possible DNA sequences that encode the B. burgdorferi polypeptides of the present invention. This includes the genetic code and species-specific codon preferences known in the art. Thus, it would be routine for one skilled in the art to generate the degenerate variants described above, for instance, to optimize codon expression for a particular host (e.g., change codons in the bacteria mRNA to those preferred by a mammalian or other bacterial host such as E. coli).
The invention further provides isolated nucleic acid molecules having the nucleotide sequence shown in Table 1 or a nucleic acid molecule having a sequence complementary to one of the above sequences. Such isolated molecules, particularly DNA molecules, are useful as probes for gene mapping and for identifying B. burgdorferi in a biological sample, for instance, by PCR, Southern blot, Northern blot, or other form of hybridization analysis.
The present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Fragments include portions of the nucleotide sequences of Table 1 at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in Table 1 is position 1. That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention. "At least" means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence of Table 1 minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of Table 1 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.
Further, the invention includes polynucleotides comprising fragments specified by size, in nucleotides, rather than by nucleotide positions. The invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire nucleotide sequence minus 1. Preferred sizes of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides. Other preferred sizes of contiguous nucleotide fragments, which may be useful as diagnostic probes and primers, include fragments 50-300 nucleotides in length which include, as discussed above, fragment sizes representing each integer between 50-300. Larger fragments are also useful according to the present invention corresponding to most, if not all, of the nucleotide sequences shown in Table lor of the B. burgdorferi nucleotide sequences of the plasimd clones listed in Table 1. The preferred sizes are, of course, meant to exemplify not limit the present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1 , are included in the invention. Additional preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of B. burgdorferi polypeptides identified in Table 4.
The present invention also provides for the exclusion of any fragment, specified by 5' and 3' base positions or by size in nucleotide bases as described above for any nucleotide sequence of Table 1 or the plasimd clones listed in Table 1. Any number of fragments of nucleotide sequences in Table 1 or the plasimd clones listed in Table 1, specified by 5' and 3' base positions or by size in nucleotides, as described above, may be excluded from the present invention.
Preferred nucleic acid fragments of the present invention also include nucleic acid molecules encoding epitope-bearing portions of the R. burgdorferi polypeptides shown in Table 1. Such nucleic acid fragments of the present invention include, for example, nucleic acid molecules encoding polypeptide fragments comprising from about the amino terminal residue to about the carboxy terminal residue of each fragment shown in Table 4. The above referred to polypeptide fragments are antigenic regions of particular R. burgdorferi polypeptides shown in Table 1. Methods for determining other such epitope-bearing portions for the remaining polypeptides described in Table 1 are well known in the art and are described in detail below.
In another aspect, the invention provides isolated nucleic acid molecules comprising polynucleotides which hybridize under stringent hybridization conditions to a portion of a polynucleotide in a nucleic acid molecule of the invention described above, for instance, a nucleic acid sequence shown in Table 1. By "stringent hybridization conditions" is intended overnight incubation at 42 C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65 C. By polynucleotides which hybridize to a "portion" of a polynucleotide is intended polynucleotides (either DNA or RNA) which hybridize to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below. Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide, for instance, a portion 50-100 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of a nucleotide sequence as shown in Table 1. By a portion of a polynucleotide of "at least 20 nt in length," for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., a nucleotide sequences as shown in Table 1). As noted above, such portions are useful diagnostically either as probes according to conventional DNA hybridization techniques or as primers for amplification of a target sequence by PCR, as described, for instance, in Molecular Cloning, A Laboratory Manual, 2nd. edition, Sambrook, J., Fritsch, E. F. and Maniatis, T., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), the entire disclosure of which is hereby incorporated herein by reference.
Since nucleic acid sequences encoding the B. burgdorferi polypeptides of the present invention are provided in Table 1, generating polynucleotides which hybridize to portions of these sequences would be routine to the skilled artisan. For example, the hybridizing polynucleotides of the present invention could be generated synthetically according to known techniques.
As indicated, nucleic acid molecules of the present invention which encode B. burgdorferi polypeptides of the present invention may include, but are not limited to those encoding the amino acid sequences of the polypeptides by themselves; and additional coding sequences which code for additional amino acids, such as those which provide additional functionalities. Thus, the sequences encoding these polypeptides may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused polypeptide. In certain preferred embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (Qiagen, Inc.), among others, many of which are commercially available. As described in Gentz et al, Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the resulting fusion protein.
Thus, the present invention also includes genetic fusions wherein the B. burgdorferi nucleic acid sequences coding sequences provided in Table 1 are linked to additional nucleic acid sequences to produce fusion proteins. These fusion proteins may include epitopes of borrelial or non-borrelial origin designed to produce proteins having enhanced immunogenicity. Further, the fusion proteins of the present invention may contain antigenic determinants known to provide helper T-cell stimulation, peptides encoding sites for post-translational modifications which enhance immunogenicity (e.g., acylation), peptides which facilitate purification (e.g., histidine "tag"), or amino acid sequences which target the fusion protein to a desired location (e.g., a heterologous leader sequence). For instance, hexa-histidine provides for convenient purification of the fusion protein. See Gentz et al. (1989) Proc. Natl. Acad. Sci. 86:821-24. The "HA" tag is another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein. See Wilson et al. (1984) Cell 37:767. As discussed below, other such fusion proteins include the B. burgdorferi polypeptides of the present invention fused to Fc at the N- or C-terminus.
Post-translational modification of the full-length R. burgdorferi OspA protein expressed in E. coli is believed to increase the immunogenicity of this protein. Erdile, L. et al, Infect. Immun. 67:81-90 (1993). R. burgdorferi OspA when expressed in E. coli, for example, is post-translationally modified in at least two ways. First, a signal peptide is cleaved; second, lipid moieties are attached. The presence of these lipid moieties is believed to confer enhanced immunogenicity and results in the elicitation of a strong protective immunological response.
Variant and Mutant Polynucleotides The present invention thus includes nucleic acid molecules and sequences which encode fusion proteins comprising one or more B. burgdorferi polypeptides of the present invention fused to an amino acid sequence which allows for post-translational modification to enhance immunogenicity. This post-translational modification may occur either in vitro or when the fusion protein is expressed in vivo in a host cell. An example of such a modification is the introduction of an amino acid sequence which results in the attachment of a lipid moiety. Such a lipid moiety attachment site of OspA, which is lipidated upon expression in E. coli, has been identified. Bouchon, B. et al, Anal. Biochem. 246:52-61 (1997).
Thus, as indicated above, the present invention includes genetic fusions wherein a B. burgdorferi nucleic acid sequence provided in Table 1 is linked to a nucleotide sequence encoding another amino acid sequence. These other amino acid sequences may be of borrelial origin (e.g., another sequence selected from Table 1) or non-borrelial origin. An example of such a fusion protein is reported in Fikrig, Ε. et al, Science 250:553-556 (1990) where an OspA- glutathione-S-transferase fusion protein was produced and shown to elicit protective immunity against Lyme disease in immune competent mice.
The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of the R. burgdorferi polypeptides shown in Table 1. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.
Such variants include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. These variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the R. burgdorferi polypeptides disclosed herein or portions thereof. Also especially preferred in this regard are conservative substitutions.
The present application is further directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in Table 1. The above nucleic acid sequences are included irrespective of whether they encode a polypeptide having R. burgdorferi activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having R. burgdorferi activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having B. burgdorferi activity include, inter alia, isolating an R. burgdorferi gene or allelic variants thereof from a DNA library, and detecting R. burgdorferi mRNA expression samples, environmental samples, suspected of containing B. burgdorferi by Northern Blot analysis.
Embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to (a) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1; (b) a nucleotide sequence encoding any of the amino acid sequences of the full-length polypeptides shown in Table 1 but minus the N-terminal methionine residue, if present; (c) a nucleotide sequence encoding any of the amino acid sequences of the truncated polypeptides shown in Table 1 ; and (d) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), or (c) above.
Preferred, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Table 1, which do, in fact, encode a polypeptide having B. burgdorferi protein activity By "a polypeptide having B. burgdorferi activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the B. burgdorferi protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein.
Due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in Table 1 will encode a polypeptide having R. burgdorferi protein activity. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having B. burgdorferi protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below. The biological activity or function of the polypeptides of the present invention are expected to be similar or identical to polypeptides from other bacteria that share a high degree of structural identity/similarity. Tables 2 lists accession numbers and descriptions for the closest matching sequences of polypeptides available through Genbank and Derwent databases. It is therefore expected that the biological activity or function of the polypeptides of the present invention will be similar or identical to those polypeptides from other bacterial genuses, species, or strains listed in Table 2.
By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the B. burgdorferi polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% (5 of 100) of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragment specified as described herein.
As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. See Brutlag et al.
(1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a
FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k- tuple=4, Mismatch Penalty=l, Joining Penalty=30, Randomization Group Length=0, Cutoff
Score=l, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the lenght of the subject nucleotide sequence, whichever is shorter. If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
For example, a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end. The 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%. In another example, a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
Vectors and Host Cells
The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of B. burgdorferi polypeptides or fragments thereof by recombinant techniques.
Recombinant constructs may be introduced into host cells using well known techniques such as infection, transduction, transfection, transvection, electroporation and transformation.
The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
Preferred are vectors comprising -y-acting control regions to the polynucleotide of interest. Appropriate trans-acting factors may be supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host. In certain preferred embodiments in this regard, the vectors provide for specific expression, which may be inducible and/or cell type-specific. Particularly preferred among such vectors are those inducible by environmental factors that are easy to manipulate, such as temperature and nutrient additives. Expression vectors useful in the present invention include chromosomal-, episomal- and virus-derived vectors, e.g., vectors derived from bacterial plasmids, bacteriophage, yeast episomes, yeast chromosomal elements, viruses such as baculoviruses, papova viruses, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids. The DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating site at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline or ampicillin resistance genes for culturing in E. coli and other bacteria.
Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.
Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNHlόa, pNH18A, pNH46A available from Stratagene; pET series of vectors available from Novagen; and ptrc99a, pKK223-3, pKK233-3, ρDR540, pRIT5 available from Pharmacia. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.
Among known bacterial promoters suitable for use in the present invention include the E. coli lacl and lacL promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR and PL promoters and the trp promoter. Suitable eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (RSV), and metallothionein promoters, such as the mouse metallothionein-I promoter. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al, Basic Methods In Molecular Biology (1986). Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are ds-acting elements of DNA, usually about from 10 to 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the S V40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
For secretion of the translated polypeptide into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. The signals may be endogenous to the polypeptide or they may be heterologous signals. The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another human protein or part thereof. In many cases, the
Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262). On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified in the advantageous manner described. This is the case when Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations. In drug discovery, for example, human proteins, such as, hIL5-receptor has been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See Bennett, D. et al, J. Molec. Recogn. 8:52-58 (1995) and Johanson, K. et al, J. Biol Chem. 270 (76):9459-9471 (1995).
The B. burgdorferi polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography and high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.
Polypeptides and Fragments
The invention further provides isolated polypeptides having the amino acid sequences in Table 1, and peptides or polypeptides comprising portions of the above polypeptides. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least to amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus. As discussed in detail below, immunization using B. burgdorferi sensu stricto isolate B31 decorin-binding protein elicits the production of antiserum which confers passive immunity against Borrelia species and strains which express divergent forms of this protein. Cassatt, D. et al, Protection of Borrelia burgdorferi Infection by Antibodies to Decorin-binding Protein, in VACCINES97, Cold Spring Harbor Press (1997), pages 191-195. Thus, some amino acid sequences of the R. burgdorferi polypeptides shown in Table 1 can be varied without significantly effecting the antigenicity of the polypeptides. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the polypeptide which determine antigenicity. In general, it is possible to replace residues which do not form part of an antigenic epitope without significantly effecting the antigenicity of a polypeptide.
Variant and Mutant Polypeptides
To improve or alter the characteristics of B. burgdorferi polypeptides of the present invention, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or muteins including single or multiple amino acid substitutions, deletions, additions, or fusion proteins. Such modified polypeptides can show, e.g., enhanced activity or increased stability. In addition, they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions.
N-Terminal and C-Terminal Deletion Mutants
It is known in the art that one or more amino acids may be deleted from the N-terminus or C-terminus without substantial loss of biological function. For instance, Ron et al. J. Biol. Chem., 268:2984-2988 (1993), reported modified KGF proteins that had heparin binding activity even if 3, 8, or 27 N-terminal amino acid residues were missing. Accordingly, the present invention provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the B. burgdorferi polypeptides shown in Table 1 , and polynucleotides encoding such polypeptides.
Similarly, many examples of biologically functional C-terminal deletion muteins are known. For instance, Interferon gamma shows up to ten times higher activities by deleting 8-10 amino acid residues from the carboxy terminus of the protein See, e.g., Dobeli, et al. (1988) J. Biotechnology 7:199-216. Accordingly, the present invention provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of the B. burgdorferi polypeptides shown in Table 1. The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini as described below.
The present invention is further directed to polynucleotide encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences of Table 1, are at least 5 contiguous amino acid in length, are selected from any two integers, one of which representing a N-terminal position. The initiation codon of the polypeptides of the present inventions position 1. Every combination of a N-terminal and C-terminal position that a fragment at least 5 contiguous amino acid residues in length could occupy, on any given amino acid sequence of Table 1 is included in the invention. At least means a fragment may be 5 contiguous amino acid residues in length or any integer between 5 and the number of residues in a full length amino acid sequence minus 1. Therefore, included in the invention are contiguous fragments specified by any N-terminal and C-terminal positions of amino acid sequence set forth in Table 1 wherein the contiguous fragment is any integer between 5 and the number of residues in a full length sequence minus 1.
Further, the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions. The invention includes any fragment size, in contiguous amino acid residues, selected from integers between 5 and the number of residues in a full length sequence minus 1. Preferred sizes of contiguous polypeptide fragments include about 5 amino acid residues, about 10 amino acid residues, about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues. The preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 5 and the number of residues in a full length sequence minus 1 are included in the invention. The present invention also provides for the exclusion of any fragments specified by N-terminal and C- terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.
The above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the protein, as vaccines, and as molecular weight markers.
Other Mutants
In addition to N- and C-terminal deletion forms of the protein discussed above, it also will be recognized by one of ordinary skill in the art that some amino acid sequences of the R. burgdorferi polypeptide can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity.
Thus, the invention further includes variations of the R. burgdorferi polypeptides which show substantial B. burgdorferi polypeptide activity or which include regions of B. burgdorferi protein such as the protein portions discussed below. Such mutants include deletions, insertions, inversions, repeats, and type substitutions selected according to general rules known in the art so as to have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided. There are two main approaches for studying the tolerance of an amino acid sequence to change. See, Bowie, J. U. et al. (1990), Science
247:1306-1310. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. These studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The studies indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described by Bowie et al. (supra) and the references cited therein. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and He; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues
Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.
Thus, the fragment, derivative, analog, or homolog of the polypeptide of Table 1, or that encoded by the plaimds listed in Table 1, may be: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code: or (ii) one in which one or more of the amino acid residues includes a substituent group: or (iii) one in which the B. burgdorferi polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol): or (iv) one in which the additional amino acids are fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.
Thus, the B. burgdorferi polypeptides of the present invention may include one or more amino acid substitutions, deletions, or additions, either from natural mutations or human manipulation. As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 3).
Amino acids in the B. burgdorferi proteins of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis. See, e.g., Cunningham et al. (1989) Science 244: 1081-1085. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity using assays appropriate for measuring the function of the particular protein.
Of special interest are substitutions of charged amino acids with other charged or neutral amino acids which may produce proteins with highly desirable improved characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic. See, e.g., Pinckard et al., (1967) Clin. Exp. Immunol. 2:331-340; Robbins, et al., (1987) Diabetes 36:838- 845; Cleland, et al., (1993) Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377.
The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the B. burgdorferi polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40. Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification. The invention further provides for isolated B. burgdorferi polypeptides comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of a full- length B. burgdorferi polypeptide having the complete amino acid sequence shown in Table 1 ; (b) the amino acid sequence of a full-length B. burgdorferi polypeptide having the complete amino acid sequence shown in Table 1 excepting the N-terminal methionine; (c) the complete amino acid sequence encoded by the plaimds listed in Table 1 ; and (d) the complete amino acid sequence excepting the N-terminal methionine encoded by the plaimds listed in Table 1. The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), and (d) above.
Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.
A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a R. burgdorferi polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the amino acid sequence of a R. burgdorferi polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.
By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by the plaimds listed in Table 1 can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=l, Joining Penalty=20, Randomization Group
Length=0, Cutoff Score=l, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.
If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, the results, in percent identity, must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.
For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected. No other manual corrections are to made for the purposes of the present invention.
The above polypeptide sequences are included irrespective of whether they have their normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies. Other uses of the polypeptides of the present invention that do not have B. burgdorferi activity include, inter alia, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.
As described below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting B. burgdorferi protein expression or as agonists and antagonists capable of enhancing or inhibiting B. burgdorferi protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" R. burgdorferi protein binding proteins which are also candidate agonists and antagonists according to the present invention. See, e.g., Fields et al. (1989) Nature 340:245-246.
Epitope-B earing Portions
In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the R. burgdorferi polypeptides of the present invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, e.g., Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998- 4002. Predicted antigenic epitopes are shown in Table 4, below. It is pointed out that Table 4 only lists amino acid residues comprising epitopes predicted to have the highest degree of antigenicity. The polypeptides not listed in Table 4 and portions of polypeptides not listed in Table 4 are not considered non-antigenic. This is because they may still be antigenic in vivo but merely not recognized as such by the particular algorithm used. Thus, Table 4 lists the amino acid residues comprising preferred antigenic epitopes but not a complete list. Amino acid residues comprising other anigenic epitopes may be determined by algorithms similar to the Jameson-Wolf analysis or by in vivo testing for an antigenic response using the methods described herein or those known in the art.
As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, e.g., Sutcliffe, et al., (1983) Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. See, Sutcliffe, et al., supra, p. 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.
Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. See Sutcliffe, et al., supra, p. 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.
Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.
Non-limiting examples of antigenic polypeptides or peptides that can be used to generate an Borrelia-specific immune response or antibodies include portions of the amino acid sequences identified in Table 1. More specifically, Table 4 discloses a list of non-limiting residues that are involved in the antigenicity of the epitope-bearing fragments of the present invention. Therefore, the present inventions provides for isolatd and purified antigenic epitope-bearing fragements of the polypeptides of the present invention comprising a peptide sequences of Table 4. The antigenic epitope-bearing fragments comprising a peptide sequence of Table 4 preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) of a polypeptide of the present invention. That is, included in the present invention are antigenic polypeptides between the integers of 7 and 50 amino acid in length comprising one or more of the sequences of Table 4. Therefore, in most cases, the polypeptides of Table 4 make up only a portion of the antigenic polypeptide. All combinations of sequences between the integers of 7 and 50 amino acid in length comprising one or more of the sequences of Table 4 are included. The antigenic epitope-bearing fragements may be specified by either the number of contiguous amino acid residues or by specific N-terminal and C-terminal positions as described above for the polypeptide fragements of the present invention, wherein the initiation codon is residue 1. Any number of the described antigenic epitope-bearing fragements of the present invention may also be excluded from the present invention in the same manner.
The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten et al. (1985) Proc. Natl. Acad. Sci. 82:5131-5135 at 5134. Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, e.g., Sutcliffe, et al., supra;; Wilson, et al., supra;; and Bittle, et al. (1985) J. Gen. Virol. 66:2347-2354. Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 μg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsoφtion to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al. , supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.
Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e. , a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) discloses linear C,-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods. The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is hereby incoφorated herein by reference.
As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins.
(EPA 0,394,827; Traunecker et al. (1988) Nature 331:84-86. Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric B. burgdorferi polypeptide or fragment thereof alone. See Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of B. burgdorferi polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.
Antibodies
B. burgdorferi protein-specific antibodies for use in the present invention can be raised against the intact B. burgdorferi protein or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments. Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single- chain Fvs (scFv) and disulfide-linked Fvs (sdFv). Also included in the present invention are chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention. The antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. For example, a preparation of R. burgdorferi polypeptide or fragment thereof is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.
In a preferred method, the antibodies of the present invention are monoclonal antibodies or binding fragments thereof. Such monoclonal antibodies can be prepared using hybridoma technology. See, e.g., Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981). Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, B. burgdorferi polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.
Alternatively, additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, B. burgdorferi polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the B. burgdorferi polypeptide-specific antibody can be blocked by the R. burgdorferi polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the B. burgdorferi polypeptide-specific antibody and can be used to immunize an animal to induce formation of further B. burgdorferi polypeptide-specific antibodies.
Antibodies and fragements thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody. Antibody binding fragements of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragements discussed above., i.e, by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C- terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies the specifically bind a particuarlly discribed fragement of a polypeptide of the present invention and allows for the exclusion of the same.
Antibodies and fragements thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragements that do not bind polypeptides of any other species of Borrelia other than B. burgdorferi are included in the present invention. Likewise, antibodies and fragements that bind only species of Borrelia, i.e. antibodies and fragements that do not bind bacteria from any genus other than Borrelia, are included in the present invention.
Diagnostic Assays
The present invention further relates to methods for assaying staphylococcal infection in an animal by detecting the expression of genes encoding staphylococcal polypeptides of the present invention. The methods comprise analyzing tissue or body fluid from the animal for Rorre/ώ-specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to Borrelia is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. See, e.g., Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol. 32:803-810 (describing differentiation among spotted fever group Rickettsiae species by analysis of restriction fragment length polymoφhism of PCR-amplified DNA) and Chen et al. 1994 J. Clin. Microbiol. 32:589-595 (detecting B. burgdorferi nucleic acids via PCR).
Where diagnosis of a disease state related to infection with Borrelia has already been made, the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced Borrelia gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.
By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains Borrelia polypeptide, mRNA, or DNA. Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing Borrelia polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.
The present invention is useful for detecting diseases related to Borrelia infections in animals. Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.
Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159. mRNA encoding Borrelia polypeptides having sufficient homology to the nucleic acid sequences identified in Table 1 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, SI nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR). Northern blot analysis can be performed as described in Harada et al. (1990) Cell
63:303-312. Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A B. burgdorferi polynucleotide sequence shown in Table 1 labeled according to any appropriate method (such as the 32P-multiprimed DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 nucleotides in length.
SI mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367. To prepare probe DNA for use in S 1 mapping, the sense strand of an above-described B. burgdorferi DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (i.e., mRNA encoding Borrelia polypeptides). Levels of mRNA encoding Borrelia polypeptides are assayed, for e.g., using the RT-PCR method described in Makino et al. (1990) Technique 2:295-301. By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs,
DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques.
After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate bands (corresponding to the mRNA encoding the Borrelia polypeptides of the present invention) are quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan. Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).
The polynucleotides of the present invention, including both DNA and RNA, may be used to detect polynucleotides of the present invention or Borrelia species including B. burgdorferi using bio chip technology. The present invention includes both high density chip arrays (>1000 oligonucleotides per cm2) and low density chip arrays (<1000 oligonucleotides per cm2). Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Borrelia species, including B. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection. The bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips can also be used to monitor an R. burgdorferi or other Borrelia infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention. The polynucleotides used to comprise a selected array may be specified in the same manner as for the fragements, i.e, by their 5' and 3' positions or length in contigious base pairs and include from. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including R. burgdorferi, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each incoφorated herein in their entireties.
Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor B. burgdorferi or other Borrelia species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including R. burgdorferi, using biosenors include those known in the art and those of: U.S.
Patent Nos 5721102, 5658732, 5631170, and World Patent Nos. WO97/35011, WO/9720203, each incoφorated herein in their entireties.
Thus, the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.
Assaying Borrelia polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques. For example, Borrelia polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, e.g., with urea and neutral detergent, for the liberation of Borrelia polypeptides for Western-blot or dot/slot assay. See, e.g., Jalkanen, M. et al. (1985) J. Cell. Biol. 101:976-985; Jalkanen, M. et al. (1987) J. Cell . Biol. 105:3087-3096. In this technique, which is based on the use of cationic solid phases, quantitation of a Borrelia polypeptide can be accomplished using an isolated Borrelia polypeptide as a standard. This technique can also be applied to body fluids.
Other antibody-based methods useful for detecting Borrelia polypeptide gene expression include immunoassays, such as the ELISA and the radioimmunoassay (RIA). For example, a Borrelia polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a Borrelia polypeptide. The amount of a Borrelia polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11: 19-30. In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect Borrelia polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.
The above techniques may be conducted essentially as a "one-step" or "two-step" assay. The "one-step" assay involves contacting the Borrelia polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press,
2nd ed. 1988).
Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable labels include radioisotopes, such as iodine (1251, 121I), carbon (l4C), sulphur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
Further suitable labels for the Borrelia polypeptide-specific antibodies of the present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, Borrelia nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.
Examples of suitable radioisotopic labels include 3H, mIn, 1251, 1311, 2P, 35S, ,4C, 51Cr, 57To, 58Co, 59Fe, 75Se, 152Eu, 90Y, 67Cu, 2,7Ci, 211At, 212Pb, 47Sc, 109Pd, etc. '"in is a preferred isotope where in vivo imaging is used since its avoids the problem of dehalogenation of the 125l or 131I-labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging. See, e.g., Perkins et al. (1985) Eur. J. Nucl. Med. 10:296-301; Carasquillo et al. (1987) J. Nucl. Med. 28:281-287. For example, l uIn coupled to monoclonal antibodies with l-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumors tissues, particularly the liver, and therefore enhances specificity of tumor localization. See, Esteban et al. (1987) J. Nucl. Med. 28:861-870.
Examples of suitable non-radioactive isotopic labels include 157Gd, 55Mn, 162Dy, 52Tr, and 56Fe.
Examples of suitable fluorescent labels include an 152Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.
Examples of suitable toxin labels include, Pseudomonas toxin, diphtheria toxin, ricin, and cholera toxin.
Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.
Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.
Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al. (1976) Clin. Chim. Acta 70: 1-31, and Schurs et al. (1977) Clin. Chim. Acta
81:1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incoφorated by reference herein. In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against B. burgdorferi infection. Such a kit may include an isolated R. burgdorferi antigen comprising an epitope which is specifically immunoreactive with at least one anti-R. burgdorferi antibody. Such a kit also includes means for detecting the binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantiy produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.
In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the B. burgdorferi antigen can be detected by binding of the reporter labeled antibody to the anti-R. burgdorferi polypeptide antibody.
In a related aspect, the invention includes a method of detecting R. burgdorferi infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated B. burgdorferi antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.
The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsoφtion of the protein to the support or covalent attachment of the protein , typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).
The polypeptides and antibodies of the present invention, including fragments thereof, may be used to detect Borrelia species including R. burgdorferi using bio chip and biosensor technology. Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Borrelia species, including B. burgdorferi. Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Borrelia species, including R. burgdorferi or specific polypeptides of the present invention. Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Borrelia species, including R. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection. Thus, the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.
The bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips and biosensors of the present invention may also be used to monitor an R. burgdorferi or other Borrelia infection and to monitor the genetic changes (amio acid deletions, insertions, substitutions, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention. The polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Borrelia species, including R. burgdorferi, or specific polypeptides using bio chip and biosensor technology include those known in the art, those of the U.S. Patent Nos. and World Patent Nos. listed above for bio chips and biosensors using polynucleotides of the present invention, and those of: U.S. Patent Nos. 5658732, 5135852, 5567301, 5677196, 5690894 and World Patent Nos. WO9729366, WO9612957, each incoφorated herein in their entireties.
Treatment:
Agonists and Antagonists - Assays and Molecules
The invention also provides a method of screening compounds to identify those which enhance or block the biological activity of the B. burgdorferi polypeptides of the present invention. The present invention further provides where the compounds kill or slow the growth of B. burgdorferi. The ability of B. burgdorferi antagonists, including B. burgdorferi ligands, to prophylactically or therapeutically block antibiotic resistance may be easily tested by the skilled artisan. See, e.g., Straden et al. (1997) J Bacteriol. 179(1):9-16.
An agonist is a compound which increases the natural biological function or which functions in a manner similar to the polypeptides of the present invention, while antagonists decrease or eliminate such functions. Potential antagonists include small organic molecules, peptides, polypeptides, and antibodies that bind to a polypeptide of the invention and thereby inhibit or extinguish its activity.
The antagonists may be employed for instance to inhibit peptidoglycan cross bridge formation. Antibodies against B. burgdorferi may be employed to bind to and inhibit R. burgdorferi activity to treat antibiotic resistance. Any of the above antagonists may be employed in a composition with a pharmaceutically acceptable carrier.
Vaccines
The present invention also provides vaccines comprising one or more polypeptides of the present invention. Heterogeneity in the composition of a vaccine may be provided by combining B. burgdorferi polypeptides of the present invention. Multi-component vaccines of this type are desirable because they are likely to be more effective in eliciting protective immune responses against multiple species and strains of the Borrelia genus than single polypeptide vaccines. Thus, as discussed in detail below, a multi-component vaccine of the present invention may contain one or more, preferably 2 to about 20, more preferably 2 to about 15, and most preferably 3 to about 8, of the R. burgdorferi polypeptides shown in Table 1, or fragments thereof.
Multi-component vaccines are known in the art to elicit antibody production to numerous immunogenic components. Decker, M. and Edwards, K., J. Infect. Dis. 174:8210-215 (1996). In addition, a hepatitis B, diphtheria, tetanus, pertussis tetravalent vaccine has recently been demonstrated to elicit protective levels of antibodies in human infants against all four pathogenic agents. Aristegui, J. et al, Vaccine 75:7-9 (1997).
The present invention thus also includes multi-component vaccines. These vaccines comprise more than one polypeptide, immunogen or antigen. An example of such a multi- component vaccine would be a vaccine comprising more than one of the B. burgdorferi polypeptides shown in Table 1. A second example is a vaccine comprising one or more, for example 2 to 10, of the B. burgdorferi polypeptides shown in Table 1 and one or more, for example 2 to 10, additional polypeptides of either borrelial or non-borrelial origin. Thus, a multi- component vaccine which confers protective immunity to both a borrelial infection and infection by another pathogenic agent is also within the scope of the invention.
As indicated above, the vaccines of the present invention are expected to elicit a protective immune response against infections caused by species and strains of Borrelia other than R. burgdorferi sensu stricto isolate B31 (ATCC Accession No. 35210). Immunizations using decorin-binding protein and OspA derived from one strain of B. burgdorferi has been shown to elicit the production of antiserum which confers passive immunity against other strains of R. burgdorferi. Cassatt, D. et al, Protection of Borrelia burgdorferi Infection by Antibodies to Decorin-binding Protein, in VACCINES97, Cold Spring Harbor Press (1997), pages 191-195. Further, the inventors have found using an in vitro assay that antiserum produced in response to B. burgdorferi decorin-binding protein will kill several species of Borrelia. The amino acid sequences of decorin-binding protein expressed by different strains of R. burgdorferi are believed to diverge by as much as 25%. Thus, antisera elicited against decorin-binding proteins confers passive immunity against Borrelia expressing proteins having only 75% or less amino acid sequence similarity. Further within the scope of the invention are whole cell and whole viral vaccines. Such vaccines may be produced recombinantiy and involve the expression of one or more of the
B. burgdorferi polypeptides shown in Table 1. For example, the B. burgdorferi polypeptides of the present invention may be either secreted or localized intracellular, on the cell surface, or in the periplasmic space. Further, when a recombinant virus is used, the R. burgdorferi polypeptides of the present invention may, for example, be localized in the viral envelope, on the surface of the capsid, or internally within the capsid. Whole cells vaccines which employ cells expressing heterologous proteins are known in the art. See, e.g., Robinson, K. et al, Nature Biotech.
75:653-657 (1997); Sirard, J. et al, Infect. Immun. 65:2029-2033 (1997); Chabalgoity, J. et al, Infect. Immun. 65:2402-2412 (1997). These cells may be administered live or may be killed prior to administration. Chabalgoity, J. et al, supra, for example, report the successful use in mice of a live attenuated Salmonella vaccine strain which expresses a portion of a platyhelminth fatty acid-binding protein as a fusion protein on its cells surface.
A multi-component vaccine can also be prepared using techniques known in the art by combining one or more B. burgdorferi polypeptides of the present invention, or fragments thereof, with additional non-borrelial components (e.g., diphtheria toxin or tetanus toxin, and/or other compounds known to elicit an immune response). Such vaccines are useful for eliciting protective immune responses to both members of the Borrelia genus and non-borrelial pathogenic agents. The vaccines of the present invention also include DNA vaccines. DNA vaccines are currently being developed for a number of infectious diseases. Boyer, J et al, Nat. Med. 3:526- 532 (1997); reviewed in Spier, R., Vaccine 14: 1285-1288 (1996). Such DNA vaccines contain a nucleotide sequence encoding one or more B. burgdorferi polypeptides of the present invention oriented in a manner that allows for expression of the subject polypeptide. The direct administration of plasmid DNA encoding OspA has been shown to elicit protective immunity in mice against borrelial challenge. Luke, C. et al, J. Infect. Dis. 775:91-97 (1997). The present invention also relates to the administration of a vaccine which is co-administered with a molecule capable of modulating immune responses. -Kim, J. et al, Nature Biotech. 75:641-646 (1997), for example, report the enhancement of immune responses produced by DNA immunizations when DNA sequences encoding molecules which stimulate the immune response are co- administered. In a similar fashion, the vaccines of the present invention may be co-administered with either nucleic acids encoding immune modulators or the immune modulators themselves. These immune modulators include granulocyte macrophage colony stimulating factor (GM-CSF) and CD86. The vaccines of the present invention may be used to confer resistance to borrelial infection by either passive or active immunization. When the vaccines of the present invention are used to confer resistance to borrelial infection through active immunization, a vaccine of the present invention is administered to an animal to elicit a protective immune response which either prevents or attenuates a borrelial infection. When the vaccines of the present invention are used to confer resistance to borrelial infection through passive immunization, the vaccine is provided to a host animal (e.g., human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the
Borrelia genus. The ability to label antibodies, or fragments of antibodies, with toxin molecules provides an additional method for treating borrelial infections when passive immunization is conducted. In this embodiment, antibodies, or fragments of antibodies, capable of recognizing the
B. burgdorferi polypeptides disclosed herein, or fragments thereof, as well as other Borrelia proteins, are labeled with toxin molecules prior to their administration to the patient. When such toxin derivatized antibodies bind to Borrelia cells, toxin moieties will be localized to these cells and will cause their death.
The present invention thus concerns and provides a means for preventing or attenuating a borrelial infection resulting from organisms which have antigens that are recognized and bound by antisera produced in response to the polypeptides of the present invention. As used herein, a vaccine is said to prevent or attenuate a disease if its administration to an animal results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the disease, or in the total or partial immunity of the animal to the disease.
The administration of the vaccine (or the antisera which it elicits) may be for either a "prophylactic" or "therapeutic" puφose. When provided prophylactically, the compound(s) are provided in advance of any symptoms of borrelial infection. The prophylactic administration of the compound(s) serves to prevent or attenuate any subsequent infection. When provided therapeutically, the compound(s) is provided upon or after the detection of symptoms which indicate that an animal may be infected with a member of the Borrelia genus. The therapeutic administration of the compound(s) serves to attenuate any actual infection. Thus, the B. burgdorferi polypeptides, and fragments thereof, of the present invention may be provided either prior to the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection.
The polypeptides of the invention, whether encoding a portion of a native protein or a functional derivative thereof, may be administered in pure form or may be coupled to a macromolecular carrier. Example of such carriers are proteins and carbohydrates. Suitable proteins which may act as macromolecular carrier for enhancing the immunogenicity of the polypeptides of the present invention include keyhole limpet hemacyanin (KLH) tetanus toxoid, pertussis toxin, bovine serum albumin, and ovalbumin. Methods for coupling the polypeptides of the present invention to such macromolecular carriers are disclosed in Harlow et al, Antibodies: A Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988), the entire disclosure of which is incoφorated by reference herein.
A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient animal and is otherwise suitable for administration to that animal. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.
While in all instances the vaccine of the present invention is administered as a pharmacologically acceptable compound, one skilled in the art would recognize that the composition of a pharmacologically acceptable compound varies with the animal to which it is administered. For example, a vaccine intended for human use will generally not be co- administered with Freund's adjuvant. Further, the level of purity of the R. burgdorferi polypeptides of the present invention will normally be higher when administered to a human than when administered to a non-human animal. As would be understood by one of ordinary skill in the art, when the vaccine of the present invention is provided to an animal, it may be in a composition which may contain salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. Adjuvants are substances that can be used to specifically augment a specific immune response. These substances generally perform two functions: (1) they protect the antigen(s) from being rapidly catabolized after administration and (2) they nonspecifically stimulate immune responses.
Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the animal being immunized. Adjuvants can be loosely divided into several groups based upon their composition. These groups include oil adjuvants (for example, Freund's complete and incomplete), mineral salts (for example,
AlK(SO4)2, AlNa(SO4)2, AlNH4(SO4), silica, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from Mycobacterium tuberculosis, as well as substances found in Corynebacterium parvum, or Bordetella pertussis, and members of the genus Brucella. Other substances useful as adjuvants are the saponins such as, for example, Quil A. (Superfos A/S, Denmark). Preferred adjuvants for use in the present invention include aluminum salts, such as AlK(SO4)2, AlNa(SO4)2, and AlNH4(SO4). Examples of materials suitable for use in vaccine compositions are provided in Remington's Pharmaceutical Sciences (Osol, A, Ed, Mack Publishing Co, Easton, PA, pp. 1324- 1341 (1980), which reference is incoφorated herein by reference). The therapeutic compositions of the present invention can be administered parenterally by injection, rapid infusion, nasopharyngeal absoφtion (intranasopharangeally), dermoabsoφtion, or orally. The compositions may alternatively be administered intramuscularly, or intravenously. Compositions for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absoφtion. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring, or perfuming agents.
Therapeutic compositions of the present invention can also be administered in encapsulated form. For example, intranasal immunization of mice against Bordetella pertussis infection using vaccines encapsulated in biodegradable microsphere composed of poly(DL-lactide- co-glycolide) has been shown to stimulate protective immune responses. Shahin, R. et al, Infect. Immun. 63: 1195-1200 (1995). Similarly, orally administered encapsulated Salmonella typhimurium antigens have also been shown to elicit protective immunity in mice. Allaoui- Attarki, K. et al, Infect. Immun. 65:853-857 (1997). Encapsulated vaccines of the present invention can be administered by a variety of routes including those involving contacting the vaccine with mucous membranes (e.g., intranasally, intracolonicly, intraduodenally).
Many different techniques exist for the timing of the immunizations when a multiple administration regimen is utilized. It is possible to use the compositions of the invention more than once to increase the levels and diversities of expression of the immunoglobulin repertoire expressed by the immunized animal. Typically, if multiple immunizations are given, they will be given one to two months apart.
According to the present invention, an "effective amount" of a therapeutic composition is one which is sufficient to achieve a desired biological effect. Generally, the dosage needed to provide an effective amount of the composition will vary depending upon such factors as the animal's or human's age, condition, sex, and extent of disease, if any, and other variables which can be adjusted by one of ordinary skill in the art.
The antigenic preparations of the invention can be administered by either single or multiple dosages of an effective amount. Effective amounts of the compositions of the invention can vary from 0.01-1,000 μg/ml per dose, more preferably 0.1-500 μg/ml per dose, and most preferably 10-300 μg/ml per dose.
Having now generally described the invention, the same will be more readily understood through reference to the following example which is provided by way of illustration, and is not intended to be limiting of the present invention, unless specified.
Examples
1. Preparation of PCR Primers and Amplification of DNA Various fragments of the Borrelia burgdorferi genome, such as those of Table 1, can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.
2. Isolation of a Selected DNA Clone From B. burgdorferi
Three approaches are used to isolate a B. burgdorferi clone comprising a polynucleotide of the present invention from any R. burgdorferi genomic DNA library. The R. burgdorferi strain B31PU has been deposited as a convienent source for obtaining a B. burgdorferi strain although a wide varity of strains B. burgdorferi strains can be used which are known in the art.
B. burgdorferi genomic DNA is prepared using the following method. A 20ml overnight bacterial culture grown in a rich medium (e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth), pelleted, ished two times with TES (3OmM Tris-pH 8.0, 25mM EDTA, 50mM NaCl), and resuspended in 5ml high salt TES (2.5M NaCl). Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells. The solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C. Five hundred micro liter of 20% sarcosyl in TES (final concentration 2%) is then added to lyse the cells. Next, guanidine HCl is added to a final concentration of 7M (3.69g in 5.5 ml). The mixture is swirled slowly at 55C for 60-90 min (solution should clear). A CsCl gradient is then set up in SW41 ultra clear tubes using 2.0ml 5.7M CsCl and overlaying with 2.85M CsCl. The gradient is carefully overlayed with the DNA-containing GuHCl solution. The gradient is spun at 30,000 φm, 20C for 24 hr and the lower DNA band is collected. The volume is increased to 5 ml with TE buffer. The DNA is then treated with protease K (10 ug/ml) overnight at 37 C, and precipitated with ethanol. The precipitated DNA is resuspended in a desired buffer.
In the first method, a plasmid is directly isolated by screening a plasmid B. burgdorferi genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention. Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 2P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (See, e.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.
Alternatively, two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of Table 1 are synthesized and used to amplify the desired DNA by PCR using a B. burgdorferi genomic DNA prep as a template. PCR is carried out under routine conditions, for instance, in 25 μl of reaction mixture with 0.5 ug of the above DNA template. A convenient reaction mixture is 1.5-5 mM MgCl2, 0.01% (w/v) gelatin, 20 μM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR
(denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.
Finally, overlapping oligos of the DNA sequences of Table 1 can be chemically synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.
3(a). Expression and Purification Borrelia polypeptides in E. coli
The bacterial expression vector pQE60 is used for bacterial expression of some of the polypeptide fragements of the present invention. (QIAGEN, Inc., 9259 Eton Avenue,
Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel- nitrilo-tri-acetic acid ("Ni-NTA") affinity resin (QIAGEN, Inc., supra) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the carboxyl terminus of that polypeptide.
The DNA sequence encoding the desired portion of a B. burgdorferi protein of the present invention is amplified from B. burgdorferi genomic DNA using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portions of the B. burgdorferi polynucleotide shown in Table 1. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.
For cloning the mature protein, the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired B. burgdorferi polynucleotide sequence in Table 1. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form. The 3' primer has a sequence containing an appropriate restriction site followed by nucleotides complementary to the 3' end of the polypeptide coding sequence of Table
1, excluding a stop codon, with the coding sequence aligned with the restriction site so as to maintain its reading frame with that of the six His codons in the pQE60 vector.
The amplified B. burgdorferi DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together. The B. burgdorferi DNA is inserted into the restricted pQE60 vector in a manner which places the B. burgdorferi protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.
The ligation mixture is transformed into competent E. coli cells using standard procedures such as those described by Sambrook et al., supra.. E. coli strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing a B. burgdorferi polypeptide, is available commercially (QIAGEN, Inc., supra). Transformants are identified by their ability to grow on LB agar plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.
Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μg/ml) and kanamycin (25 μg/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1 :25 to 1 :250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl-β-D- thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lad repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation. The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the B. burgdorferi polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity are purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., supra). Briefly the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the B. burgdorferi polypeptide is eluted with 6 M guanidine-HCl, pH 5.
The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein could be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4° C or frozen at -80° C.
The polypeptide of the present invention are also prepared using a non-denaturing protein purification method. For these polypeptides, the cell pellet from each liter of culture is resuspended in 25 mis of Lysis Buffer A at 4°C (Lysis Buffer A = 50 mM Na-phosphate, 300 mM NaCl, 10 mM 2-mercaptoethanol, 10% Glycerol, pH 7.5 with 1 tablet of Complete EDTA- free protease inhibitor cocktail (Boehringer Mannheim #1873580) per 50 ml of buffer).
Absorbance at 550 nm is approximately 10-20 O.D./ml. The suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature. The cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice. The sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C. The supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.
The pre-cleared flow-through is applied to a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (Quiagen, Inc., supra). Proteins with a 6 X His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure. Briefly, the supernatant is loaded onto the column in Lysis Buffer A at 4°C, the column is first washed with 10 volumes of Lysis Buffer A until the A280 of the eluate returns to the baseline. Then, the column is washed with 5 volumes of 40 mM Imidazole (92% Lysis Buffer A / 8% Buffer B) (Buffer B = 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5). The protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of 150 mM Imidazole, 5 volumes of 500 mM Imidazole. The fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE depending on the protein size. The purified protein is then dialyzed 2X against phosphate-buffered saline (PBS) in order to place it into an easily workable buffer. The purified protein is stored at 4° C or frozen at -80°. The following alternative method may be used to purify B. burgdorferi expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.
Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer. The cells are then lysed by passing the solution through a microfluidizer (Microfuidics,
Coφ. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.
The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride
(GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the
B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further
GuHCl extraction. Following high speed centrifugation (30,000 x g) to remove insoluble particles, the
GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring.
The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps. To clarify the refolded R. burgdorferi polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area
(e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.
Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A280 monitoring of the effluent. Fractions containing the R. burgdorferi polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
The resultant B. burgdorferi polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 μg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
3(b). Alternative Expression and Purification Borrelia polypeptides in E. coli
Tthe vector pQElO is alternatively used to clone and express some of the polypeptides of the present invention for use in the soft tissue and systemic infection models discussed below. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide. The bacterial expression vector pQElO (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) was used in this example . The components of the pQElO plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag")) covalently linked to the amino terminus.
The DNA sequences encoding the desired portions of a polypeptide of Table 1 were amplified using PCR oligonucleotide primers from genomic B. burgdorferi DNA. The PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention. Additional nucleotides containing restriction sites to facilitate cloning in the pQElO vector were added to the 5' and 3' primer sequences, respectively. For cloning a polypeptide of the present invention, the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 5' primer was designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of B. burgdorferi polypeptide. The 3' was designed to include an stop codon. The amplified DNA fragment was then cloned, and the protein expressed, as described above for the pQE60 plasmid.
The DNA sequences of Table 1 encoding amino acid sequences may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE 10.
The above methods are not limited to the polypeptide fragements actually produced. The above method, like the methods below, can be used to produce either full length polypeptides or desired fragements therof.
3(c). Alternative Expression and Purification of Borrelia polypeptides in E. coli
The bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented and, therefore, the polypeptide is produced with no 6 X His tag.
The DNA sequence encoding the desired portion of the B. burgdorferi amino acid sequence is amplified from an B. burgdorferi genomic DNA prep the deposited DNA clones using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the B. burgdorferi polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences. For cloning a B. burgdorferi polypeptides of the present invention, 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively. The 3' primer is additionally designed to include an in-frame stop codon.
The amplified B. burgdorferi DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the B. burgdorferi DNA into the restricted pQE60 vector places the B. burgdorferi protein coding region including its associated stop codon downstream from the IPTG- inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.
The ligation mixture is transformed into competent E. coli cells using standard procedures such as those described by Sambrook et al. E. coli strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance
("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing B. burgdorferi polypeptide, is available commercially (QIAGEN, Inc., supra). Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.
Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μg/ml) and kanamycin (25 μg/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D- thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lad repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.
To purify the B. burgdorferi polypeptide, the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the B. burgdorferi polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure B. burgdorferi polypeptide. The purified protein is stored at 4° C or frozen at -80° C. The following alternative method may be used to purify R. burgdorferi polypeptides expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.
Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 φm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM ΕDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.
The cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Coφ. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM ΕDTA, pH 7.4.
The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the
B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further
GuHCl extraction.
Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM ΕDTA by vigorous stirring.
The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.
To clarify the refolded B. burgdorferi polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGΕ. Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl.
The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M
NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A^ monitoring of the effluent. Fractions containing the B. burgdorferi polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
The resultant B. burgdorferi polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 μg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
3(d). Cloning and Expression of B. burgdorferi in Other Bacteria
B. burgdorferi polypeptides can also be produced in: R. burgdorferi using the methods of S. Skinner et al, (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.
4. Cloning and Expression in COS Cells
A B. burgdorferi expression plasmid is made by cloning a portion of the DNA encoding a B. burgdorferi polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.). The expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the S V40 intron and the polyadenylation signal by means of restriction sites in the polylinker.
The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767. The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope. pDNAIII contains, in addition, the selectable neomycin marker. A DNA fragment encoding a B. burgdorferi polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The DNA from a B. burgdorferi genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of B. burgdorferi in E. coli. The 5' primer contains a
Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the B. burgdorferi polypeptide. The 3' primer, contains nucleotides complementary to the 3' coding sequence of the R. burgdorferi DNA, a stop codon, and a convenient restriction site. The PCR amplified DNA fragment and the vector, pDNAI/Amp, are digested with appropriate restriction enzymes and then ligated. The ligation mixture is transformed into an appropriate E. coli strain such as SURE™ (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the B. burgdorferi polypeptide
For expression of a recombinant B. burgdorferi polypeptide, COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (supra). Cells are incubated under conditions for expression of B. burgdorferi by the vector.
Expression of the B. burgdorferi-KA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., supra.. To this end, two days after transfection, the cells are labeled by incubation in media containing 35S- cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1 % NP-40, 0.1 % SDS, 1 % NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (supra ). Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.
5. Cloning and Expression in CHO Cells
The vector pC4 is used for the expression of B. burgdorferi polypeptide in this example. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented. See, e.g., Alt et al., 1978, J. Biol. Chem. 253: 1357-1370; Hamlin et al., 1990, Biochem. et Biophys. Acta, 1097: 107-143; Page et al., 1991, Biotechnology 9:64-68. Cells grown in increasing concentrations of MTX develop resistance to the drug by oveφroducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s).
Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.
Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol.
5:438-447; plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV), Boshart, et al., 1985, Cell 41:521-530. Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes:
Bam HI, Xba I, and Asp 718. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human β-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet- On gene expression systems and similar systems can be used to express the B. burgdorferi polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci. USA 89:5547-5551. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate. The plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel. The DNA sequence encoding the B. burgdorferi polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene. A 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the B. burgdorferi polypeptide is synthesized and used. A 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the B. burgdorferi polypeptides is synthesized and used. The amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. cø/j' HBlOl or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.
Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. Five μg of the expression plasmid pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using a lipid-mediated transfection agent such as Lipofectin™ or LipofectAMINΕ.™ (LifeTechnologies Gaithersburg, MD). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about
10-14 days single clones are trypsinized and then seeded in 6- well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM).
Clones growing at the highest concentrations of methotrexate are then transferred to new 6- well plates containing even higher concentrations of methotrexate (1 μM, 2 μM, 5 μM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of
100-200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.
6. Immunization and Detection of Immune Responses
6(a). B. burgdorferi propagation
B. burgdorferi sensu stricto isolate B31 is propagated in tightly-closed containers at 34°C in modified Barbour-Stoenner-Kelly (BSKII) medium (Barbour, A.G., Yale J. Biol. Med. 57:521-525 (1984)) overlaid with a 5%O2/5%CO2/90%N2 gas mixture. Cell densities of these cultures are determined by darkfield microscopy at 400X.
Immunization of Mice and Challenge with B. burgdorferi. For active immunizations BALB/cByJ mice (BALB, Jackson Laboratories) are injected intraperitoneally (i.p.) at week 0 with 20 g of recombinant borrelial protein, or phosphate-buffered saline (PBS), emulsified with complete Freund's adjuvant (CFA), given a similar booster immunization in incomplete Freund's adjuvant (IF A) at week 4, and challenged at week 6. For challenge B. burgdorferi are diluted in BSKII from exponentially-growing cultures and mice are injected subcutaneously (s.c.) at the base of the tail with 0.1 ml of these dilutions (typically 103-104 borreliae; approximately 10-100 times the median infectious dose). Borreliae used for challenge are passaged fewer than six times in vitro. To assess infection, mice are sacrificed at 14-17 days post-challenge, and specimens derived from ear, bladder, and tibiotarsal joints are placed in BSKH plus 1.4% gelatin, 13 g/ml amphotericin B, 1.5 g/ml phosphomycin, and 15 g/ml rifampicin, and borrelia outgrowth at two or three weeks is quantified by darkfield microscopy. Batches of BSKH are qualified for infection testing by confirming that they supported the growth of 1-5 cells of isolate B31. In some instances seroconversion for protein P39 reactivity is also used to confirm infections (see below). Others have previously shown that mice elicited antibodies to P39 when inoculated with live borreliae by syringe or tick bite, but not with killed borreliae (Simpson, W.J., et al, J. Clin. Microbiol. 29:236-243 (1991)).
6(b). Immunoassays Several immunoassay formats are used to quantify levels of borrelia-specific antibodies
(ELISA and immunoblot), and to evaluate the functional properties of these antibodies (growth inhibition assay). The ELISA and immunoblot assays are also used to detect and quantify antibodies elicited in response to borrelial infection that react with specific borrelial antigens. Where antibodies to certain borrelial antigens are elicited by infection this is taken as evidence that the borrelial proteins in question are expressed in vivo. Absence of infection-derived antibodies (seroconversion) following borrelial challenge is evidence that infection is prevented or suppressed. The immunoblot assay is also used to ascertain whether antibodies raised against recombinant borrelial antigens recognize a protein of similar size in extracts of whole borreliae. Where the natural protein is of similar, or identical, size in the immunoblot assay to the recombinant version of the same protein, this is taken as evidence that the recombinant protein is the product of a full-length clone of the respective gene.
Enzyme-Linked Immunosorbant Assay (ELISA). The ELISA is used to quantify levels of antibodies reactive with borrelial antigens elicited in response to immunization with these borrelial antigens. Wells of 96 well microtiter plates (Immunlon 4, Dynatech, Chantilly, Virginia, or equivalent) are coated with antigen by incubating 50 1 of 1 g/ml protein antigen solution in a suitable buffer, typically 0.1 M sodium carbonate buffer at pH 9.6. After decanting unbound antigen, additional binding sites are blocked by incubating 100 1 of 3% nonfat milk in wash buffer (PBS, 0.2% Tween 20, pH 7.4). After washing, duplicate serial two-fold dilutions of sera in PBS, Tween 20, 1% fetal bovine serum, are incubated for 1 hr, removed, wells are washed three times, and incubated with horseradish peroxidase-conjugated goat anti-mouse IgG. After three washes, bound antibodies are detected with H2O2 and 2,2'-azino-di-(3-ethylbenzthiazoline sulfonate) (Schwan, T.G., et al, Proc. Natl. Acad. Sci. USA 92:2909-2913 (1985)) (ABTS®, Kirkegaard & Perry Labs., Gaithersburg, MD) and A405 is quantified with a Molecular Devices, Coφ. (Menlo Park, California) Vmax™ plate reader. IgG levels twice the background level in serum from naive mice are assigned the minimum titer of 1 : 100.
6(c). In Vitro Growth Inhibition Assay
Unlike other bacteria, borreliae can be killed by the binding of specific antibodies to their surface antigens. The mechanism for this in vitro killing or growth-inhibitory effect is not known, but can occur in the absence of serum complement, or other immune effector functions. Antibodies elicited in animals receiving immunizations with specific borrelial antigens that result in protection from borrelial challenge usually will directly kill borreliae in vitro. Thus, the in vitro growth inhibition assay also has a high predictive value for the protective potency of the borrelial antibodies, although exceptions, such as antibodies against OspC which are weak at in vitro growth inhibition, have been observed. Also, this assay can be used to evaluate the serologic conservation of epitope binding protective antibodies. A microwell antibody titration assay (Sadziene, A., et al, J. Infect. Dis. 167: 165-172 (1993)) is used to evaluate the growth inhibition (GI) properties of antisera against recombinant borrelial antigens against the homologous B31 isolate, and against various strains of borrelia. Briefly, 105 borrelia in 100 1 BSKII are added to serial two-fold dilutions of sera in 100 1 BSKII in 96- well plates, and the plates are covered and incubated at 34°C in a 5%O2/5%CO2/90%N2 gas mixture for 72 h prior to quantification of borrelia growth by darkfield microscopy. 6(d). Sodiumdodecylsulfate-Polyacrylamide Gel Electrophoresis
(SDS-PAGE) and Immunoblotting
Using a single well format, total borrelial protein extracts, recombinant borrelial antigen, or recombinant P39 samples (2 g of purified protein, or more for total borrelial extracts) are boiled in SDS/2-ME sample buffer before electrophoresis through 3% acrylamide stacking gels, and resolving gels of higher acrylamide concentration, typically 10-15% acrylamide monomer. Gels are electro-blotted to nitrocellulose membranes and lanes are probed with dilutions of antibody to be tested for reactivity with specific borrelial antigens, followed by the appropriate secondary antibody-enzyme (horseradish peroxidase) conjugate. When it is desirable to confirm that the protein had transferred following electro-blotting, membranes are stained with Ponceau S. Immunoblot signals from bound antibodies are detected on x-ray film as chemiluminescence using ECL™ reagents (Amersham Coφ., Arlington Heights, Illinois).
6(e). Detection of Borrelia mRNA expression Northern blot analysis is carried out using methods described by, among others,
Sambrook etal, supra, to detect the expression of the B. burgdorferi nucleotide sequences of the present invention in animal tissues. A cDNA probe containing an entire nucleotide sequence shown in Table 1 is labeled with 32P using the ra/iprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using a CHROMA SPIN- 100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PTl 200-1. The purified labeled probe is then used to detect the expression of Borrelia mRNA in an animal tissue sample.
Animal tissues, such as blood or spinal fluid, are examined with the labeled probe using ExpressHyb™ hybridization solution (Clontech) according to manufacturer's protocol number PTl 190-1. Following hybridization and washing, the blots are mounted and exposed to film at - 70 C overnight, and films developed according to standard procedures.
The disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incoφorated by reference in their entireties. The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and components are within the scope of the invention, in addition to those shown and described herein and will become apparant to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
Provisional Application Serial No. 60/057,483 filed 3 September 1997 is incoφorated by reference herein in its entirety. TABLE 1. Nucleotide and Amino Acid Sequences
flOl.aa
MSKIF LFNAGFFF KIIYVFSYPEIK FSRQDPVFSDLKIKVLKYNKKQHIPLFFYSYKVKKGDTFFKIANKING WQSGIATINI-LDSPAVSVGQEI IPSKKGVFVFDSKDYRFN LLATRDLAKAEKVKIKRNDRVYEFYFFDFVKNP DFG FSGTEL FFLNA FIFP KKFIVSSDFGFRNDPFTGNKSFHTGIDLAAPMNAEVY LLLE tlOl.aa
SYPEIKNFSRQDPVFSDLKIKVLKYNKKQHIP FFYSYKVKKGDTFFKIA KINGWQSGIATINL DSPAVSVGQE I IPSKKGVFVFDSKDYRFNNLLLATRD AKAEKVKIKR DRVYEFYFFDFVKNPDFGLFSGTEL FF NANFIFP KKFIVSSDFGFRNDPFTGNKSFHTGID AAPM AEVY LLLE
flOl.nt
ATGAGTAAAATTTTTTTATTATTTAATGCAGGTTTCTTTTTTTTAAAAATAATTTATGTTTTTTCTTATCCAGAAA TAAAAAATTTCTCAAGGCAAGATCCTGTTTTTTCTGATCTTAAAATTAAAGTTTTAAAATATAACAAAAAACAACA TATTCCTCTGTTTTTTTACTCATATAAAGTTAAAAAAGGGGATACTTTTTTTAAAATTGCCAATAAAATAAATGGA TGGCAGTCCGGCATTGCTACTATTAATTTATTAGATTCTCCTGCTGTGAGTGTTGGGCAAGAGATTCTTATTCCCA GTAAAAAAGGAGTTTTTGTTTTTGATAGTAAAGATTATAGATTTAATAATTTGCTTTTAGCAACAAGGGATCTTGC TAAAGCTGAAAAGGTAAAAATTAAAAGGAACGACAGAGTTTATGAATTTTATTTTTTTGATTTTGTTAAGAATCCA GATTTTGGACTTTTTTCAGGCACAGAATTGCTTTTTTTCTTAAATGCCAATTTTATTTTTCCTTTAAAAAAATTTA TTGTTAGTTCTGATTTTGGATTTAGAAATGACCCTTTCACTGGCAACAAAAGTTTCCATACAGGAATAGATCTTGC AGCTCCAATGAATGCTGAAGTGTATCTTCTTCTTCTGGAATAG
tlOl.nt
TCTTATCCAGAAATAAAAAATTTCTCAAGGCAAGATCCTGTTTTTTCTGATCTTAAAATTAAAGTTTTAAAATATA ACAAAAAACAACATATTCCTCTGTTTTTTTACTCATATAAAGTTAAAAAAGGGGATACTTTTTTTAAAATTGCCAA TAAAATAAATGGATGGCAGTCCGGCATTGCTACTATTAATTTATTAGATTCTCCTGCTGTGAGTGTTGGGCAAGAG ATTCTTATTCCCAGTAAAAAAGGAGTTTTTGTTTTTGATAGTAAAGATTATAGATTTAATAATTTGCTTTTAGCAA CAAGGGATCTTGCTAAAGCTGAAAAGGTAAAAATTAAAAGGAACGACAGAGTTTATGAATTTTATTTTTTTGATTT TGTTAAGAATCCAGATTTTGGACTTTTTTCAGGCACAGAATTGCTTTTTTTCTTAAATGCCAATTTTATTTTTCCT TTAAAAAAATTTATTGTTAGTTCTGATTTTGGATTTAGAAATGACCCTTTCACTGGCAACAAAAGTTTCCATACAG GAATAGATCTTGCAGCTCCAATGAATGCTGAAGTGTATCTTCTTCTTCTGGAATAG fll.aa
VKKYIKTIFLISMVYFYCCTTIKINHDYETDFKVLESPSKYINIDVIKATNEYIYIQIT NSLDWKI WQNTSLN ITOKIVLKKEDLTI NETGYKNKYREFFIGPKTSFKFKVYPLKIHSKNKNSNNLSSTIKYPSIFK NITKVGIEAKK TINVLITRTTKINITNK tll.aa
CCTTIKINHDYETDFKVLESPSKYINIDVIKATNEYIYIQITNNSLDVVKIN QNTSLNNDKIV KKEDLTINNET GYKNKYREFFIGPKTSFKFKVYPLKIHSKNKNS NLSSTIKYPSIFKLNITKVGIEAKKTINVLITRTTKINITNK fll.nt
GTGGAAAAATTTCTTTTATTCCAGGAAATGAAAATATTGCAGATCTTGGTTTTCATAAAACTAAGTAGAAATATTG TCAAAAAATACATAAAAACAATATTTCTGATTTCAATGGTTTATTTTTATTGTTGTACGACAATAAAAATAAACCA TGATTATGAAACTGATTTTAAAGTTCTAGAATCTCCCTCTAAATACATCAATATAGATGTAATTAAAGCTACAAAT GAATATATTTATATTCAAATTACAAACAATAGCTTAGACGTAGTAAAAATAAATTGGCAAAACACTAGTCTTAACA ACGATAAGATCGTCTTAAAAAAAGAAGATCTTACAATAAACAATGAAACAGGGTATAAAAATAAATACAGAGAGTT TABLE 1. Nucleotide and Amino Acid Sequences
TTTTATTGGTCCTAAAACTTCATTTAAATTTAAAGTATATCCACTAAAAATTCATTCTAAAAACAAAAATAGCAAT AACTTAAGCTCAACTATTAAATATCCGTCTATTTTTAAGCTCAACATAACAAAAGTAGGAATTGAAGCAAAAAAAA CAATAAATGTTTTAATAACAAGAACTACAAAAATTAATATTACTAATAAATGA tll.nt
TGTTGTACGACAATAAAAATAAACCATGATTATGAAACTGATTTTAAAGTTCTAGAATCTCCCTCTAAATACATCA ATATAGATGTAATTAAAGCTACAAATGAATATATTTATATTCAAATTACAAACAATAGCTTAGACGTAGTAAAAAT AAATTGGCAAAACACTAGTCTTAACAACGATAAGATCGTCTTAAAAAAAGAAGATCTTACAATAAACAATGAAACA GGGTATAAAAATAAATACAGAGAGTTTTTTATTGGTCCTAAAACTTCATTTAAATTTAAAGTATATCCACTAAAAA TTCATTCTAAAAACAAAAATAGCAATAACTTAAGCTCAACTATTAAATATCCGTCTATTTTTAAGCTCAACATAAC AAAAGTAGGAATTGAAGCAAAAAAAACAATAAATGTTTTAATAACAAGAACTACAAAAATTAATATTACTAATAAA TGA fl2.aa
MREFLYRNVFKKSFIVFLIFLTFSNAIFAQTIDDENSKKRDK T SQKSYLRELELSTDEDLKKWA KEG KETDV SKIRELL KKFGIDPELFIKGKG AGSGRYKIIIETADN ENFTYGLTKDESIIFEGRVNI VEDIKENKKHNIKG DRIV NK SKKLYAIGNVEYILDMDTNEKLYFYGNEF VDFDSQNF LKNGI QKKMQKNQIDHILSFGGKVLKKI D DVTILEQAFATTSKIPEPYYSIKASKI ALPSGDFGFLNAIFYMGRVPVFYIPFFFRPGDSLFFNPS G NPRK GFSVFNTVYLFGNKSSSEDSSFLDFDFNSVYNSGKKPYIRNGYLTYFFAEN APSVNKDYVKLIFDIYANLGFYSG IDFN GNTLGHFKT EGNFGLGFTRNVYSYDGGYYPFDNRT KQSLFSFSN NKGDVFGFEVPFRYLFKFKTEFLL SDALFSWLEHYSDPYVNIDFRDRIESATFFS LN DKDSVKEQTSISTFDWNLSSFYKRTFNDGSI DYK NNLG LSFK SGYENLYVKSP EKPKDVΗDPTRKWFY ERIYAPYID NFQKD YNNQWTFPADTKEMIMRPEIK LEDKD NDKKSVKEKNTKKTTELTKDLYIPPEPITLKNIDQSDSFFIRFGINPYLR NVFFDNYGITSPKDFNYEIK YLFD IKNKTDIKIHADFYNRLITFENLLYLNTIEYSPLNKDFKVEDKDKKSEHSIINQIN NLLPFIRYPLFSRST KFE NKATLYSFNKKYDSDVKSLVNKNSSIFLSDPETFYQSLTASLIYDYDYFTTE SGE KNSFEDIKASSE K S DF PYLLQEAGIGIKYYKKFKEDA K SGISAVQSPLEPQKPSSPYK EMSPALYYKIEPRY DYFKFSF VAYDPLI NRVSE SFK NVFDFQFLFAMKDDFEYNYDPLKGDFSKIGTTTKLVPYS DSSYKKELYV TFFDNKLSFT GVDV GWKINLQKFTDNE RSALTLKFKYTEFLEIYFSTLSINTKTFKYFKGYMDQIGLEPVNFFVDLSKSFNFFNSQDRK DS FKIKKFSSGFKFNFYDWKFVGEYNLEPD RGSDGIYSPIWRN FTIYIS NFFAPIKASFE NKDTNYEFII NRKTKK tl2.aa
IFAQTIDDENSKKRDKLTLSQKSYLRE E STDED KKWALKEGLKETDVSKIRELLLKKFGIDPE FIKGKG AG SGRYKIIIETADNLENFTYGLTKDESIIFEGRVNILVEDIKENKKHNIKGDRIVLNKNSKKLYAIGNVEYI DMDT NE1K YFYGNEFLVDFDSQNF LKNGI QKKMQK QIDHILSFGGKV KKIDNDVTI EQAFATTSKIPEPYYSIK ASKIWA PSGDFGF NAIFYMGRVPVFYIPFFFRPGDS FFNPSLG NPRKGFSVFNTVYLFGNKSSSEDSSF DF DFNSVY SGKKPYIR GY TYFFAENLAPSV KDYVKLIFDIYANLGFYSGIDFN GNT GHFKTLEGNFGLGFTR NVYSYDGGYYPFDNRTLKQSLFSFSNLNKGDVFGFEVPFRYLFKFKTEF SDALFSWLEHYSDPYVNIDFRDRI ESATFFSLLN DKDSVKEQTSISTFD SSFYKRTFNDGSILDYKLNNLG SFK SGYEN YVKSPLEKPKDVND PTRK FY ERIYAPYIDLNFQKDLYNNQWTFPADTKEMIMRPEIKNLEDKDNDKKSVKEKNTKKTTELTKD YIPP EPIT KNIDQSDSFFIRFGINPY R VFFDNYGITSPKDFJNTYEIK Y FDIKNKTDIKIHADFYNRLITFENLLY LNTIEYSPLNKDFKVEDKDKKSEHSIINQINLNL PFIRYPLFSRST KFENKATLYSFNKKYDSDVKSLVNKNSS IFLSDPETFYQSLTASLIYDYDYFTTELSGELKNSFEDIKASSELKLS DFPY LQEAGIGIKYYKKFKEDAMKNS GISAVQSP EPQKPSSPYKN EMSPALYYKIEPRYLDYFKFSFLVAYDPLINRVSELSFK NVFDFQFLFAMKDDF EYNYDPLKGDFSKIGTTTKLVPYS DSSYKKELYVLTFFDNKLSFTLGVDVG KIN QKFTDNELRSA TLKFKYT EFLEIYFST SINTKTFKYFKGYMDQIGLEPVNFFVDLSKSFNFFNSQDRKDS FKIKKFSSGFKFNFYDWKFVGE YN EPD LRGSDGIYSPI RN FTIYIS NFFAPIKASFENNKDTNYEFIINRKTKK fl2.nt
ATGCGAGAATTCCTATACAGGAATGTTTTTAAAAAATCTTTTATAGTATTTTTAATTTTTTTAACATTTTCTAATG CAATTTTTGCCCAGACTATAGATGATGAAAATTCTAAAAAAAGGGATAAGCTAACTTTAAGTCAAAAATCTTATTT AAGAGAACTTGAGCTTTCAACCGATGAGGATTTAAAAAAATGGGCCTTAAAAGAGGGTTTAAAAGAAACAGATGTT TABLE 1. Nucleotide and Amino Acid Sequences
TCAAAAATACGAGAATTGCTTTTAAAAAAGTTTGGAATAGATCCTGAGCTTTTTATCAAAGGAAAGGGACTTGCCG GATCTGGTAGATATAAAATAATCATTGAAACTGCAGATAATCTTGAAAATTTCACTTATGGACTTACTAAAGATGA AAGTATTATTTTTGAAGGAAGAGTTAATATCTTGGTTGAAGATATTAAAGAAAATAAAAAGCACAATATTAAAGGC GACAGAATAGTCCTTAATAAGAACTCTAAAAAACTTTATGCTATTGGAAATGTTGAATATATTCTTGATATGGATA CCAATGAAAAGCTTTATTTTTATGGCAATGAATTTCTTGTCGATTTTGATTCTCAAAATTTTTTATTAAAAAATGG TATTCTTCAAAAAAAAATGCAAAAAAATCAAATAGATCATATTCTTTCGTTTGGAGGAAAGGTTTTAAAAAAGATA GACAATGATGTTACCATTTTGGAACAAGCTTTTGCAACAACTAGTAAAATTCCAGAGCCTTACTATTCAATCAAGG CTTCTAAAATATGGGCATTGCCCTCGGGAGATTTTGGGTTTTTAAATGCCATATTTTACATGGGAAGAGTTCCAGT ATTTTATATTCCTTTTTTTTTCAGACCGGGAGATAGTTTGTTTTTTAATCCATCTTTAGGTCTAAATCCACGAAAA GGTTTTTCTGTTTTTAATACCGTTTATCTTTTTGGTAATAAATCTTCAAGTGAAGATTCTTCTTTTTTGGATTTTG ATTTCAATTCTGTTTATAATTCGGGTAAAAAACCTTATATAAGAAATGGATATTTAACTTATTTTTTTGCAGAAAA TTTAGCACCCAGTGTTAATAAAGATTATGTTAAGCTTATTTTTGACATTTATGCTAATCTGGGATTTTATTCTGGA ATTGATTTTAATTTGGGCAATACTTTGGGGCATTTTAAAACTTTGGAAGGAAATTTTGGATTGGGTTTTACCAGGA ATGTTTATAGTTACGATGGAGGATATTATCCTTTTGATAATAGGACTTTAAAACAATCTCTTTTTAGTTTTTCCAA TCTTAACAAAGGAGATGTATTTGGGTTTGAAGTTCCTTTTAGATATTTATTTAAATTTAAAACAGAATTTCTTTTA AGTGATGCACTTTTCTCGGTTGTTTTAGAGCACTATTCTGACCCGTATGTTAATATTGATTTTAGAGATAGGATAG AAAGTGCTACATTTTTTTCTCTTTTAAATTTAGATAAAGATTCGGTTAAAGAGCAAACTAGCATTAGCACTTTTGA TTGGAATTTATCTTCTTTTTATAAGCGAACATTTAATGACGGTTCGATTTTAGATTATAAATTAAATAATTTAGGT TTAAGTTTTAAATTGTCGGGCTATGAAAATCTTTATGTTAAATCTCCTTTAGAGAAACCAAAAGATGTTAATGATC CTACAAGAAAATGGTTTTATTTGGAGAGAATTTATGCTCCATATATTGATTTGAATTTTCAAAAAGATCTTTACAA TAACCAATGGACATTTCCAGCTGATACTAAAGAAATGATAATGCGCCCAGAAATTAAAAATCTAGAAGATAAAGAT AATGATAAAAAGAGTGTGAAGGAGAAAAATACTAAAAAAACAACAGAATTAACCAAAGATTTATATATTCCTCCAG AACCAATTACTTTAAAAAATATTGATCAATCCGATTCTTTTTTTATTAGGTTTGGCATTAATCCTTATTTAAGAAA TAATGTTTTTTTTGATAATTATGGCATAACAAGTCCAAAGGACTTTAATTATGAAATAAAAAATTATTTATTTGAT ATAAAAAATAAAACGGATATAAAAATTCATGCTGATTTTTACAATCGTTTAATTACTTTTGAAAATTTATTATATC TTAATACTATTGAGTATAGTCCTTTAAATAAAGATTTTAAAGTTGAAGATAAAGATAAAAAAAGTGAGCACTCTAT TATTAACCAAATAAATTTAAACTTGCTTCCTTTTATTAGATATCCTTTATTTTCTAGAAGTACTTTAAAGTTTGAA AATAAGGCTACTTTATATTCATTTAATAAAAAATATGATTCTGATGTAAAATCTTTGGTTAATAAGAATAGTAGTA TTTTTTTATCTGATCCGGAAACTTTTTATCAAAGTTTAACAGCCTCTTTAATTTATGATTATGATTATTTTACTAC TGAGCTTTCAGGTGAATTAAAAAATAGTTTTGAAGATATTAAAGCTTCTTCTGAGCTTAAACTTTCTTTAGATTTT CCTTATTTGCTACAAGAAGCTGGGATTGGAATTAAATATTATAAAAAGTTTAAAGAAGATGCTATGAAAAACTCTG GAATTTCTGCTGTTCAAAGTCCTTTGGAGCCTCAAAAACCATCATCGCCTTATAAAAATTTAGAAATGTCTCCTGC TTTGTATTATAAAATTGAGCCGAGATATTTGGATTATTTTAAATTTAGTTTTTTAGTCGCCTATGATCCTTTGATA AATAGAGTTTCTGAACTTTCTTTTAAGCTTAATGTTTTTGATTTTCAATTTTTGTTTGCTATGAAAGACGACTTTG AATATAATTATGATCCTTTAAAAGGAGATTTTTCCAAGATTGGTACTACAACCAAACTTGTTCCATATTCTTTAGA TTCTAGTTACAAAAAGGAATTGTACGTTTTAACTTTTTTTGACAATAAGCTTTCTTTTACCTTGGGGGTAGATGTT GGTTGGAAAATAAATTTGCAGAAATTTACGGATAATGAACTTCGATCTGCATTGACTTTGAAGTTTAAATATACAG AATTTTTAGAAATTTACTTTTCTACTTTATCTATTAATACTAAGACTTTTAAATATTTTAAAGGGTATATGGACCA AATTGGTCTAGAACCTGTTAATTTCTTTGTTGATTTATCAAAATCTTTCAATTTCTTTAATTCTCAAGACAGAAAA GATTCACTTTTTAAAATTAAAAAATTTTCATCAGGCTTTAAATTCAATTTTTATGATTGGAAATTTGTTGGAGAAT ATAATTTAGAACCAGATTTATTAAGGGGATCTGATGGGATTTATTCTCCTATTTGGAGAAATAATTTTACAATTTA TATTTCTTGGAACTTTTTTGCTCCTATAAAAGCGTCATTTGAAAACAACAAAGATACAAACTACGAGTTTATTATT AATAGAAAAACAAAAAAATAA tl2.nt
ATTTTTGCCCAGACTATAGATGATGAAAATTCTAAAAAAAGGGATAAGCTAACTTTAAGTCAAAAATCTTATTTAA GAGAACTTGAGCTTTCAACCGATGAGGATTTAAAAAAATGGGCCTTAAAAGAGGGTTTAAAAGAAACAGATGTTTC AAAAATACGAGAATTGCTTTTAAAAAAGTTTGGAATAGATCCTGAGCTTTTTATCAAAGGAAAGGGACTTGCCGGA TCTGGTAGATATAAAATAATCATTGAAACTGCAGATAATCTTGAAAATTTCACTTATGGACTTACTAAAGATGAAA GTATTATTTTTGAAGGAAGAGTTAATATCTTGGTTGAAGATATTAAAGAAAATAAAAAGCACAATATTAAAGGCGA CAGAATAGTCCTTAATAAGAACTCTAAAAAACTTTATGCTATTGGAAATGTTGAATATATTCTTGATATGGATACC AATGAAAAGCTTTATTTTTATGGCAATGAATTTCTTGTCGATTTTGATTCTCAAAATTTTTTATTAAAAAATGGTA TTCTTCAAAAAAAAATGCAAAAAAATCAAATAGATCATATTCTTTCGTTTGGAGGAAAGGTTTTAAAAAAGATAGA CAATGATGTTACCATTTTGGAACAAGCTTTTGCAACAACTAGTAAAATTCCAGAGCCTTACTATTCAATCAAGGCT TCTAAAATATGGGCATTGCCCTCGGGAGATTTTGGGTTTTTAAATGCCATATTTTACATGGGAAGAGTTCCAGTAT TABLE 1. Nucleotide and Amino Acid Sequences
TTTATATTCCTTTTTTTTTCAGACCGGGAGATAGTTTGTTTTTTAATCCATCTTTAGGTCTAAATCCACGAAAAGG TTTTTCTGTTTTTAATACCGTTTATCTTTTTGGTAATAAATCTTCAAGTGAAGATTCTTCTTTTTTGGATTTTGAT TTCAATTCTGTTTATAATTCGGGTAAAAAACCTTATATAAGAAATGGATATTTAACTTATTTTTTTGCAGAAAATT TAGCACCCAGTGTTAATAAAGATTATGTTAAGCTTATTTTTGACATTTATGCTAATCTGGGATTTTATTCTGGAAT TGATTTTAATTTGGGCAATACTTTGGGGCATTTTAAAACTTTGGAAGGAAATTTTGGATTGGGTTTTACCAGGAAT GTTTATAGTTACGATGGAGGATATTATCCTTTTGATAATAGGACTTTAAAACAATCTCTTTTTAGTTTTTCCAATC TTAACAAAGGAGATGTATTTGGGTTTGAAGTTCCTTTTAGATATTTATTTAAATTTAAAACAGAATTTCTTTTAAG TGATGCACTTTTCTCGGTTGTTTTAGAGCACTATTCTGACCCGTATGTTAATATTGATTTTAGAGATAGGATAGAA AGTGCTACATTTTTTTCTCTTTTAAATTTAGATAAAGATTCGGTTAAAGAGCAAACTAGCATTAGCACTTTTGATT GGAATTTATCTTCTTTTTATAAGCGAACATTTAATGACGGTTCGATTTTAGATTATAAATTAAATAATTTAGGTTT AAGTTTTAAATTGTCGGGCTATGAAAATCTTTATGTTAAATCTCCTTTAGAGAAACCAAAAGATGTTAATGATCCT ACAAGAAAATGGTTTTATTTGGAGAGAATTTATGCTCCATATATTGATTTGAATTTTCAAAAAGATCTTTACAATA ACCAATGGACATTTCCAGCTGATACTAAAGAAATGATAATGCGCCCAGAAATTAAAAATCTAGAAGATAAAGATAA TGATAAAAAGAGTGTGAAGGAGAAAAATACTAAAAAAACAACAGAATTAACCAAAGATTTATATATTCCTCCAGAA CCAATTACTTTAAAAAATATTGATCAATCCGATTCTTTTTTTATTAGGTTTGGCATTAATCCTTATTTAAGAAATA ATGTTTTTTTTGATAATTATGGCATAACAAGTCCAAAGGACTTTAATTATGAAATAAAAAATTATTTATTTGATAT AAAAAATAAAACGGATATAAAAATTCATGCTGATTTTTACAATCGTTTAATTACTTTTGAAAATTTATTATATCTT AATACTATTGAGTATAGTCCTTTAAATAAAGATTTTAAAGTTGAAGATAAAGATAAAAAAAGTGAGCACTCTATTA TTAACCAAATAAATTTAAACTTGCTTCCTTTTATTAGATATCCTTTATTTTCTAGAAGTACTTTAAAGTTTGAAAA TAAGGCTACTTTATATTCATTTAATAAAAAATATGATTCTGATGTAAAATCTTTGGTTAATAAGAATAGTAGTATT TTTTTATCTGATCCGGAAACTTTTTATCAAAGTTTAACAGCCTCTTTAATTTATGATTATGATTATTTTACTACTG AGCTTTCAGGTGAATTAAAAAATAGTTTTGAAGATATTAAAGCTTCTTCTGAGCTTAAACTTTCTTTAGATTTTCC TTATTTGCTACAAGAAGCTGGGATTGGAATTAAATATTATAAAAAGTTTAAAGAAGATGCTATGAAAAACTCTGGA ATTTCTGCTGTTCAAAGTCCTTTGGAGCCTCAAAAACCATCATCGCCTTATAAAAATTTAGAAATGTCTCCTGCTT TGTATTATAAAATTGAGCCGAGATATTTGGATTATTTTAAATTTAGTTTTTTAGTCGCCTATGATCCTTTGATAAA TAGAGTTTCTGAACTTTCTTTTAAGCTTAATGTTTTTGATTTTCAATTTTTGTTTGCTATGAAAGACGACTTTGAA TATAATTATGATCCTTTAAAAGGAGATTTTTCCAAGATTGGTACTACAACCAAACTTGTTCCATATTCTTTAGATT CTAGTTACAAAAAGGAATTGTACGTTTTAACTTTTTTTGACAATAAGCTTTCTTTTACCTTGGGGGTAGATGTTGG TTGGAAAATAAATTTGCAGAAATTTACGGATAATGAACTTCGATCTGCATTGACTTTGAAGTTTAAATATACAGAA TTTTTAGAAATTTACTTTTCTACTTTATCTATTAATACTAAGACTTTTAAATATTTTAAAGGGTATATGGACCAAA TTGGTCTAGAACCTGTTAATTTCTTTGTTGATTTATCAAAATCTTTCAATTTCTTTAATTCTCAAGACAGAAAAGA TTCACTTTTTAAAATTAAAAAATTTTCATCAGGCTTTAAATTCAATTTTTATGATTGGAAATTTGTTGGAGAATAT AATTTAGAACCAGATTTATTAAGGGGATCTGATGGGATTTATTCTCCTATTTGGAGAAATAATTTTACAATTTATA TTTCTTGGAACTTTTTTGCTCCTATAAAAGCGTCATTTGAAAACAACAAAGATACAAACTACGAGTTTATTATTAA TAGAAAAACAAAAAAATAA fl29.aa
MTKK FVRV IFLISNNYAFAKDTIKDLFFIQDILIKKEKYSEV NNAS EGIIEIEHNGPYIKDHDSEVKLILKE NGYRRNFNFFN LNTSNIIKSLSLFDSRPKNIKENEIILLETKMIKENPYKRYKDDDDFE KLSYTRKNNQIYLI DFNFLFDQRKTFPSIYIKEEDVSTIINSFMKLQDSSFL-SPQAS tl29.aa
KDTIKDLFFIQDILIKKEKYSEVLNNAS EGIIEIEHNGPYIKDHDSEVK ILKENGYRRNFNFFNLLNTSNIIKS LS FDSRPKNIKENEII LETKMIKENPYKRYKDDDDFELK SVTRKNNQIYLI DFNFLFDQRKTFPSIYIKEED VSTIINSFMK QDSSFLSPQAS fl29.nt
ATGACAAAAAAATTGTTTGTGAGGGTATTAATCTTTTTAATATCCAATAATTATGCTTTTGCAAAAGACACAATCA AAGATTTGTTCTTTATACAAGATATACTAATAAAAAAAGAGAAATATTCCGAGGTTCTAAATAATGCAAGCCTTGA AGGCATTATTGAAATTGAACATAACGGACCATACATTAAAGATCACGATTCAGAAGTTAAACTTATCCTAAAAGAA AACGGATATAGAAGAAATTTCAACTTTTTTAATCTTTTAAATACTAGTAATATAATCAAAAGTCTAAGCTTATTTG ACAGCAGACCAAAAAACATTAAAGAAAATGAAATCATATTATTAGAGACAAAAATGATTAAAGAAAATCCCTATAA ACGATACAAAGACGATGATGATTTTGAATTAAAACTAAGTGTAACTCGAAAAAATAATCAAATTTATTTAATTCTT TABLE 1. Nucleotide and Amino Acid Sequences
GATTTCAATTTCCTATTTGATCAAAGAAAAACGTTTCCATCAATTTACATCAAAGAAGAAGATGTATCAACAATAA TAAACAGCTTCATGAAACTACAAGATTCAAGCTTTTTATCTCCTCAAGCTTCTTAA tl29.nt
AAAGACACAATCAAAGATTTGTTCTTTATACAAGATATACTAATAAAAAAAGAGAAATATTCCGAGGTTCTAAATA ATGCAAGCCTTGAAGGCATTATTGAAATTGAACATAACGGACCATACATTAAAGATCACGATTCAGAAGTTAAACT TATCCTAAAAGAAAACGGATATAGAAGAAATTTCAACTTTTTTAATCTTTTAAATACTAGTAATATAATCAAAAGT CTAAGCTTATTTGACAGCAGACCAAAAAACATTAAAGAAAATGAAATCATATTATTAGAGACAAAAATGATTAAAG AAAATCCCTATAAACGATACAAAGACGATGATGATTTTGAATTAAAACTAAGTGTAACTCGAAAAAATAATCAAAT TTATTTAATTCTTGATTTCAATTTCCTATTTGATCAAAGAAAAACGTTTCCATCAATTTACATCAAAGAAGAAGAT GTATCAACAATAATAAACAGCTTCATGAAACTACAAGATTCAAGCTTTTTATCTCCTCAAGCTTCTTAA fl42.aa
MDKISILYT INIIIMLILISIVYLCKRKNVSFTKRVFIALAIGIVFGMTIQYFYGTNSEITNETINWISILGDGY VRL KMIIIP IITSIISAIIK TNSKDVGKMS VILTLVFTAGIAAIIGIFTALALGLTAEGLQAGTIEI QSE K QKGLEI NQTTITKKITD IPQNIFEDFAG RKNSTIGWIFSAIIGIAALKTSIKKPESIEFFKKIILTLQDI ILGVλ/ ILK TPYAI A MTKITATSEIKSIIKLGEFVIASYIAIGLTFLMHMTLIAINKLNPITFIKKIFPALS FAFISRSSAATIPINIEIQTKNLGVSEGIAN SSSFGTSIGQNGCAALHPAM AIMIAPTQGINPTDISFILTLIG LIIITSFGAAGAGGGATTASLMVLSAMNFPVGLVG VISVEPIIDMGRTAVNVGGSMLAGVISAKQLKQFNHNIYN QKELV K tl42.aa
CKRKNVSFTKRVFIALAIGIVFG TIQYFYGTNSEITNETIN ISI GDGYVRLLKMIIIP IITSIISAIIKLTN SKDVGKMSLLVILTLVFTAGIAAIIGIFTA A G TAEGLQAGTIEILQSEKLQKG EI NQTTITKKITDLIPQN IFEDFAG RKNSTIGWIFSAIIGIAALKTSIKKPESIEFFKKII TLQDIILGVVTLI KLTPYAILALMTKITA TSEIKSIIKLGEFVIASYIAIGLTF MHMTLIAINKLNPITFIKKIFPA SFAFISRSSAATIPINIEIQTKN GV SEGIAN SSSFGTSIGQNGCAALHPAM AIMIAPTQGINPTDISFILTLIGLIIITSFGAAGAGGGATTASLMV S AMNFPVGLVGLVISVEPIIDMGRTAVNVGGSMLAGVISAKQLKQFNHNIYNQKELVNK
fl42.nt
TAAGAGGTAATAATGGATAAAATAAGTATATTATATACATTAATCAATATTATAATAATGCTTATTCTAATAAGCA TAGTTTATCTTTGTAAAAGAAAAAATGTTTCTTTTACAAAAAGAGTGTTTATAGCGTTAGCAATCGGAATAGTATT TGGAATGACCATTCAATATTTTTATGGAACAAATTCAGAAATAACAAACGAAACTATAAATTGGATAAGTATTTTG GGCGATGGATACGTAAGGCTCCTTAAAATGATTATAATCCCCTTAATAATAACATCAATAATCTCTGCAATAATAA AACTAACCAATAGTAAAGATGTTGGGAAAATGAGCCTACTTGTAATATTAACACTAGTATTTACAGCAGGTATTGC TGCCATAATTGGCATTTTCACTGCTTTAGCATTGGGATTAACAGCCGAAGGACTACAAGCGGGAACCATCGAAATT TTACAAAGTGAAAAATTGCAAAAAGGCCTTGAAATATTAAATCAAACAACAATCACAAAAAAAATCACAGATCTTA TTCCACAAAATATATTTGAAGATTTTGCAGGGCTTAGAAAAAACTCAACCATCGGGGTCGTGATATTTTCAGCTAT CATAGGAATAGCCGCCCTTAAAACATCTATCAAAAAGCCAGAATCAATAGAATTTTTTAAAAAAATAATATTAACA CTCCAAGACATAATATTAGGTGTAGTAACTTTGATTTTAAAACTAACGCCTTATGCTATATTAGCTTTAATGACAA AAATTACAGCAACCAGCGAAATCAAAAGCATAATAAAGCTTGGAGAATTTGTAATTGCTTCCTACATTGCCATAGG TCTTACATTTCTTATGCATATGACATTAATTGCAATAAATAAATTAAACCCAATTACTTTTATAAAAAAAATATTC CCAGCACTATCATTTGCATTCATATCTAGGTCGAGTGCTGCAACCATACCCATTAATATAGAAATTCAAACTAAAA ATCTGGGAGTAAGCGAAGGAATAGCAAATTTATCAAGCTCCTTTGGAACATCAATTGGGCAAAATGGTTGTGCAGC ACTACACCCCGCTATGCTTGCAATAATGATAGCACCAACTCAGGGAATAAACCCCACAGATATTTCATTTATACTC ACACTTATTGGATTAATAATAATAACTTCATTTGGAGCTGCTGGCGCTGGTGGAGGCGCAACAACAGCCTCACTAA TGGTGCTCTCAGCAATGAACTTTCCAGTGGGATTGGTAGGACTTGTAATATCTGTTGAGCCTATAATTGACATGGG AAGAACAGCTGTTAATGTAGGCGGCTCAATGCTTGCAGGCGTTATATCTGCTAAACAGCTCAAACAATTCAACCAT AATATATACAACCAAAAAGAGCTTGTAAACAAATAA tl42.nt TABLE 1. Nucleotide and Amino Acid Sequences
TGTAAAAGAAAAAATGTTTCTTTTACAAAAAGAGTGTTTATAGCGTTAGCAATCGGAATAGTATTTGGAATGACCA TTCAATATTTTTATGGAACAAATTCAGAAATAACAAACGAAACTATAAATTGGATAAGTATTTTGGGCGATGGATA CGTAAGGCTCCTTAAAATGATTATAATCCCCTTAATAATAACATCAATAATCTCTGCAATAATAAAACTAACCAAT AGTAAAGATGTTGGGAAAATGAGCCTACTTGTAATATTAACACTAGTATTTACAGCAGGTATTGCTGCCATAATTG GCATTTTCACTGCTTTAGCATTGGGATTAACAGCCGAAGGACTACAAGCGGGAACCATCGAAATTTTACAAAGTGA AAAATTGCAAAAAGGCCTTGAAATATTAAATCAAACAACAATCACAAAAAAAATCACAGATCTTATTCCACAAAAT ATATTTGAAGATTTTGCAGGGCTTAGAAAAAACTCAACCATCGGGGTCGTGATATTTTCAGCTATCATAGGAATAG CCGCCCTTAAAACATCTATCAAAAAGCCAGAATCAATAGAATTTTTTAAAAAAATAATATTAACACTCCAAGACAT AATATTAGGTGTAGTAACTTTGATTTTAAAACTAACGCCTTATGCTATATTAGCTTTAATGACAAAAATTACAGCA ACCAGCGAAATCAAAAGCATAATAAAGCTTGGAGAATTTGTAATTGCTTCCTACATTGCCATAGGTCTTACATTTC TTATGCATATGACATTAATTGCAATAAATAAATTAAACCCAATTACTTTTATAAAAAAAATATTCCCAGCACTATC ATTTGCATTCATATCTAGGTCGAGTGCTGCAACCATACCCATTAATATAGAAATTCAAACTAAAAATCTGGGAGTA AGCGAAGGAATAGCAAATTTATCAAGCTCCTTTGGAACATCAATTGGGCAAAATGGTTGTGCAGCACTACACCCCG CTATGCTTGCAATAATGATAGCACCAACTCAGGGAATAAACCCCACAGATATTTCATTTATACTCACACTTATTGG AT AATAATAATAACTTCATTTGGAGCTGCTGGCGCTGGTGGAGGCGCAACAACAGCCTCACTAATGGTGCTCTCA GCAATGAACTTTCCAGTGGGATTGGTAGGACTTGTAATATCTGTTGAGCCTATAATTGACATGGGAAGAACAGCTG TTAATGTAGGCGGCTCAATGCTTGCAGGCGTTATATCTGCTAAACAGCTCAAACAATTCAACCATAATATATACAA CCAAAAAGAGCTTGTAAACAAATAA fl47.aa
MKIIIIGGTSAGTSAAAKANR NKKLDITIYEKTNIVSFGTCGLPYFVGGFFDNPNTMISRTQEEFEKTGISVKTN HEVIKVDAKNNTIVIKNQKTGTIFNNTYDQ MIATGAKPIIPPINNIN ENFHTLKN EDGQKIKKLMDREEIKNI VIIGGGYIGIEMVEAAKNKRKNVRLIQLDKHILIDSFDEEIVTIMEEELTKKGVNLHTNEFVKS IGEKKAEGWT NKNTYQADAVILATGIKPDTEFLENQLKTTKNGAIIVNEYGETSIKNIFSAGDCATIYNIVSKKNEYIP ATTANK GRIVGENLAGNHTAFKGTLGSASIKILS EAARTGLTEKDAKKLQIKYKTIFVKDKNHTNYYPGQED YIKLIYE ENTKII GAQAIGKNGAVIRIHALSIAIYSKLTTKELGMMDFSYSPPFSRTWDILNIAGNAAK tl47.aa
AAAKANR NKKLDITIYEKTNIVSFGTCG PYFVGGFFDNPNTMISRTQEEFEKTGISVKTNHEVIKVDAKNNTIV IKNQKTGTIFNNTYDQLMIATGAKPIIPPINNINLENFHTLKNLEDGQKIKKLMDREEIKNIVIIGGGYIGIEMVE AAKNKRKNVRLIQLDKHILIDSFDEEIVTIMEEE TKKGV HTNEFVKSLIGEKKAEGVVTNKNTYQADAVILAT GIKPDTEFLENQ KTTKNGAIIVNEYGETSIKNIFSAGDCATIYNIVSKKNEYIP ATTANKLGRIVGEN AGNHT AFKGT GSASIKI S EAARTG TEKDAKKLQIKYKTIFVKDKNHTNYYPGQEDLYIKLIYEENTKIILGAQAIGK NGAVIRIHALSIAIYSK TTKELGMMDFSYSPPFSRT DILNIAGNAAK fl47.nt
ATGAAAATAATAATTATTGGGGGCACATCAGCAGGAACTAGTGCCGCAGCTAAAGCAAACCGCTTAAACAAAAAGC TAGACATTACTATCTATGAAAAAACAAATATTGTATCTTTTGGAACCTGTGGCCTGCCTTACTTTGTGGGGGGATT CTTTGACAACCCCAATACAATGATCTCAAGAACACAAGAAGAATTCGAAAAAACTGGAATCTCTGTTAAAACTAAC CACGAAGTTATCAAAGTAGATGCAAAAAACAATACAATTGTAATAAAAAATCAAAAAACAGGAACCATTTTTAACA ATACTTACGATCAACTTATGATAGCAACTGGTGCAAAACCTATTATTCCACCAATCAATAATATCAATCTAGAAAA TTTTCATACTCTGAAAAATTTAGAAGACGGTCAAAAAATAAAAAAATTAATGGATAGAGAAGAGATTAAAAATATA GTGATAATTGGTGGTGGATACATTGGAATTGAAATGGTAGAAGCAGCAAAAAATAAAAGAAAAAATGTAAGATTAA TTCAACTAGATAAGCACATACTCATAGATTCCTTTGACGAAGAAATAGTCACAATAATGGAAGAAGAACTAACAAA AAAGGGGGTTAATCTTCATACAAATGAGTTTGTAAAAAGTTTAATAGGAGAAAAAAAGGCAGAAGGAGTAGTAACA AACAAAAATACTTATCAAGCTGACGCTGTTATACTTGCTACCGGAATAAAACCTGACACTGAATTTTTAGAAAACC AGCTTAAAACTACTAAAAATGGAGCAATAATTGTAAATGAGTATGGCGAAACTAGCATAAAAAATATTTTTTCTGC AGGAGATTGTGCAACTATTTATAATATAGTAAGTAAAAAAAATGAATACATACCCTTGGCAACAACAGCCAACAAA CTTGGAAGAATAGTTGGTGAAAATTTAGCTGGGAATCATACAGCATTTAAAGGCACATTGGGCTCAGCTTCAATTA AAATACTATCTTTAGAAGCTGCAAGAACAGGACTTACAGAAAAAGATGCAAAAAAGCTCCAAATAAAATATAAAAC GATTTTTGTAAAGGACAAAAATCATACAAATTATTATCCAGGCCAAGAAGATCTTTATATTAAATTAATTTATGAG GAAAATACCAAAATAATCCTTGGGGCACAAGCAATAGGAAAAAATGGAGCCGTAATAAGAATTCATGCTTTATCAA TABLE 1. Nucleotide and Amino Acid Sequences
TTGCAATCTATTCAAAACTTACAACAAAAGAGCTAGGGATGATGGATTTCTCATATTCCCCACCCTTCTCAAGAAC TTGGGATATATTAAATATTGCTGGCAATGCTGCCAAATAG tl47.nt
GCCGCAGCTAAAGCAAACCGCTTAAACAAAAAGCTAGACATTACTATCTATGAAAAAACAAATATTGTATCTTTTG GAACCTGTGGCCTGCCTTACTTTGTGGGGGGATTCTTTGACAACCCCAATACAATGATCTCAAGAACACAAGAAGA ATTCGAAAAAACTGGAATCTCTGTTAAAACTAACCACGAAGTTATCAAAGTAGATGCAAAAAACAATACAATTGTA ATAAAAAATCAAAAAACAGGAACCATTTTTAACAATACTTACGATCAACTTATGATAGCAACTGGTGCAAAACCTA TTATTCCACCAATCAATAATATCAATCTAGAAAATTTTCATACTCTGAAAAATTTAGAAGACGGTCAAAAAATAAA AAAATTAATGGATAGAGAAGAGATTAAAAATATAGTGATAATTGGTGGTGGATACATTGGAATTGAAATGGTAGAA GCAGCAAAAAATAAAAGAAAAAATGTAAGATTAATTCAACTAGATAAGCACATACTCATAGATTCCTTTGACGAAG AAATAGTCACAATAATGGAAGAAGAACTAACAAAAAAGGGGGTTAATCTTCATACAAATGAGTTTGTAAAAAGTTT AATAGGAGAAAAAAAGGCAGAAGGAGTAGTAACAAACAAAAATACTTATCAAGCTGACGCTGTTATACTTGCTACC GGAATAAAACCTGACACTGAATTTTTAGAAAACCAGCTTAAAACTACTAAAAATGGAGCAATAATTGTAAATGAGT ATGGCGAAACTAGCATAAAAAATATTTTTTCTGCAGGAGATTGTGCAACTATTTATAATATAGTAAGTAAAAAAAA TGAATACATACCCTTGGCAACAACAGCCAACAAACTTGGAAGAATAGTTGGTGAAAATTTAGCTGGGAATCATACA GCATTTAAAGGCACATTGGGCTCAGCTTCAATTAAAATACTATCTTTAGAAGCTGCAAGAACAGGACTTACAGAAA AAGATGCAAAAAAGCTCCAAATAAAATATAAAACGATTTTTGTAAAGGACAAAAATCATACAAATTATTATCCAGG CCAAGAAGATCTTTATATTAAATTAATTTATGAGGAAAATACCAAAATAATCCTTGGGGCACAAGCAATAGGAAAA AATGGAGCCGTAATAAGAATTCATGCTTTATCAATTGCAATCTATTCAAAACTTACAACAAAAGAGCTAGGGATGA TGGATTTCTCATATTCCCCACCCTTCTCAAGAACTTGGGATATATTAAATATTGCTGGCAATGCTGCCAAATAG fl52.aa
M KFEFSDRFLLFSYFVLIMFIGS LMLPISWEGDGKLAYIDALFTAVSAVSITG TTVKMEGFSTFGFILIMLL IQ GG GFISITTFYLLIPKKKMN TDARIIKQYS SNIEYNPIRI KSI FITFSIEMIG ILILICFKLRGVNI SF EALFTTISAFCNAGFSMHSESIYA RDVPEAIVWSILIICGGLGFMVYRDVNNTIKNKKKLS HAKIVFSLS FF IIIGAILFFFTEMHKLKAGYSMST IFNSIFYSISTRTAGFNYLDNSLISGRTQIISLPFMFIGGAPGSTAGG IKITTFFLIV AVVKNQNGNGYIIGSYKVSIDSIRFALLFFARAIFILSFSFFMLLFFEGGSGN KVIDLGYEVFS AFGTVGLSVGVTQD SF GKVIIIFTMFAGRIGLFSMAVFVSRKSRFEEFTRPRQDILVG tl52.aa
WEGDGK AYIDALFTAVSAVSITGLTTVKMEGFSTFGFILIM LIQLGGLGFISITTFYL IPKKKMNLTDARIIK QYS SNIEYNPIRI KSI FITFSIEMIGLI ILICFKLRGV ISFLEALFTTISAFCNAGFSMHSESIYAWRDVP EAIVVVSILIICGGLGFMVYRDVN TIKNKKKLS HAKIVFS SFFLIIIGAI FFFTEMHK KAGYSMSTLIFNS IFYSISTRTAGFNYLDNS ISGRTQIIS PFMFIGGAPGSTAGGIKITTFF IVLAWKNQNGNGYIIGSYKVSID SIRFAL FFARAIFILSFSFFMLLFFEGGSG WKVID GYEVFSAFGTVGLSVGVTQDLSFWGKVIIIFTMFAGRI GLFSMAVFVSRKSRFEEFTRPRQDILVG fl52.nt
ATGTTGAAATTTGAATTTAGCGACAGGTTTTTACTTTTTAGTTATTTTGTTTTAATTATGTTTATAGGCTCTCTTT TGTTGATGTTGCCTATTTCCTGGGAAGGTGATGGCAAATTAGCATACATTGATGCTCTTTTTACTGCTGTTTCTGC TGTAAGTATTACGGGCCTTACAACGGTTAAAATGGAAGGCTTTTCTACTTTTGGATTTATTTTGATAATGTTGCTA ATCCAGCTTGGGGGACTTGGATTTATAAGTATTACTACTTTTTATTTGCTTATACCTAAAAAGAAAATGAATTTAA CAGATGCAAGAATAATAAAGCAGTATTCCCTTTCAAATATAGAATATAATCCTATTAGAATTTTAAAAAGCATATT GTTTATAACTTTTTCAATTGAAATGATAGGTTTAATATTAATACTTATTTGTTTTAAACTTAGGGGAGTGAATATT TCATTCTTAGAGGCTTTGTTTACGACAATTTCTGCTTTTTGCAATGCAGGTTTTTCCATGCATTCTGAGAGTATTT ATGCATGGCGAGATGTTCCTGAAGCTATAGTTGTGGTCTCTATTTTAATAATTTGTGGTGGGCTTGGGTTTATGGT CTATAGAGATGTAAATAACACTATTAAAAACAAAAAAAAACTATCGCTTCATGCCAAGATAGTTTTTTCTTTAAGC TTCTTTTTAATTATAATTGGTGCAATTTTATTTTTTTTTACAGAGATGCATAAATTAAAAGCTGGTTATTCAATGA GCACTTTAATATTTAATTCAATTTTTTATTCGATTAGTACCAGAACAGCTGGTTTTAATTATCTTGATAATTCTTT AATAAGCGGAAGAACTCAAATAATTTCTCTACCATTCATGTTTATTGGTGGTGCACCCGGATCAACTGCAGGAGGG ATTAAGATTACAACATTTTTTTTAATTGTATTGGCTGTTGTTAAAAATCAAAACGGCAATGGATATATTATTGGTT TABLE 1. Nucleotide and Amino Acid Sequences
CTTACAAGGTTTCAATAGATAGTATAAGATTTGCACTTTTATTTTTTGCAAGAGCTATTTTTATTTTAAGTTTTTC TTTTTTCATGCTTCTTTTTTTTGAGGGAGGATCTGGCAATTGGAAGGTTATTGATTTAGGTTATGAAGTATTTTCT GCTTTTGGAACGGTTGGTCTTTCAGTTGGAGTAACTCAGGATTTGTCATTTTGGGGGAAAGTCATTATAATTTTTA CTATGTTTGCAGGACGAATAGGGCTTTTTTCAATGGCTGTTTTTGTTTCAAGAAAGTCGCGTTTTGAAGAATTTAC AAGGCCAAGGCAAGATATTTTGGTTGGTTGA tl52.nt
TGGGAAGGTGATGGCAAATTAGCATACATTGATGCTCTTTTTACTGCTGTTTCTGCTGTAAGTATTACGGGCCTTA CAACGGTTAAAATGGAAGGCTTTTCTACTTTTGGATTTATTTTGATAATGTTGCTAATCCAGCTTGGGGGACTTGG ATTTATAAGTATTACTACTTTTTATTTGCTTATACCTAAAAAGAAAATGAATTTAACAGATGCAAGAATAATAAAG CAGTATTCCCTTTCAAATATAGAATATAATCCTATTAGAATTTTAAAAAGCATATTGTTTATAACTTTTTCAATTG AAATGATAGGTTTAATATTAATACTTATTTGTTTTAAACTTAGGGGAGTGAATATTTCATTCTTAGAGGCTTTGTT TACGACAATTTCTGCTTTTTGCAATGCAGGTTTTTCCATGCATTCTGAGAGTATTTATGCATGGCGAGATGTTCCT GAAGCTATAGTTGTGGTCTCTATTTTAATAATTTGTGGTGGGCTTGGGTTTATGGTCTATAGAGATGTAAATAACA CTATTAAAAACAAAAAAAAACTATCGCTTCATGCCAAGATAGTTTTTTCTTTAAGCTTCTTTTTAATTATAATTGG TGCAATTTTATTTTTTTTTACAGAGATGCATAAATTAAAAGCTGGTTATTCAATGAGCACTTTAATATTTAATTCA ATTTTTTATTCGATTAGTACCAGAACAGCTGGTTTTAATTATCTTGATAATTCTTTAATAAGCGGAAGAACTCAAA TAATTTCTCTACCATTCATGTTTATTGGTGGTGCACCCGGATCAACTGCAGGAGGGATTAAGATTACAACATTTTT TTTAATTGTATTGGCTGTTGTTAAAAATCAAAACGGCAATGGATATATTATTGGTTCTTACAAGGTTTCAATAGAT AGTATAAGATTTGCACTTTTATTTTTTGCAAGAGCTATTTTTATTTTAAGTTTTTCTTTTTTCATGCTTCTTTTTT TTGAGGGAGGATCTGGCAATTGGAAGGTTATTGATTTAGGTTATGAAGTATTTTCTGCTTTTGGAACGGTTGGTCT TTCAGTTGGAGTAACTCAGGATTTGTCATTTTGGGGGAAAGTCATTATAATTTTTACTATGTTTGCAGGACGAATA GGGCTTTTTTCAATGGCTGTTTTTGTTTCAAGAAAGTCGCGTTTTGAAGAATTTACAAGGCCAAGGCAAGATATTT TGGTTGGTTGA fl54.aa
MKINKTFIL F FTKFSFVQAQANQILTEISPLSI SKNGKGSVY KVSKSSDYI TLDKSSNSDFVFKIYDISNK
KYITDKVKRRDFKIRLDKNSLYAIIYVGTKNENIKFS TDLDFSI SSDSLKAKTSKIEKEDLFFTLKDLPVLNLT
AKLKKYVLRIYKSNIYIAYQLENSDDIKVAEFIEDVGWFN DSSVNRNITNIVNFDFSINSKGNLYIAFVTKSGAD
FASELIVKKFNSRKWIDISPGHIENFGS LNISIDLKDRLYLAY REIRGEYKIN ISNMGYGSI TDVIHAY SK
GDSNVNSSNIGLISEPF GIFYNYKSNNEIKSEFIVNNENA VNANIPSVYMANFIKGFFDSNFNQIIMSFVSENR
PIVNICPLKSSRWINISPNVEMEG S-ADIGLYKlrøLFLAFEDNlS-NVRLIYFK KNV^
YGNQGLVISTLSSNSNELFFTLICQ tl54.aa
NQILTEISPLSILSKNGKGSVYLKVSKSSDYI TLDKSSNSDFVFKIYDISNKKYITDKVKRRDFKIRLDKNSLYA IIYVGTKNENIKFSLTD DFSI SSDSLKAKTSKIEKED FFT KD PVLN TAK KKYVLRIYKSNIYIAYQLEN SDDIKVAEFIEDVGWFNLDSSVNRNITNIVNFDFSINSKGNLYIAFVTKSGADFASELIVKKFNSRK IDISPGHI ENFGSLLNISIDLKDRLYLAYLREIRGEYKIN ISNMGYGSI TDVIHAYLSKGDSNVNSSNIGLISEPFLGIFYN YKSN EIKSEFIVN ENA VNANIPSVYMANFIKGFFDSNFNQIIMSFVSENRPIVNICPLKSSRWINISPNVEME GLSADIGLYKNNLFLAFEDNI VRLIYFKNKNWYFLNKLENFKSNVKSPQIGIYGNQGLVISTLSSNSNELFFTLI CQ fl54.nt
ATGAAAATAAATAAGACATTCATTTTGCTATTTTTATTTACAAAATTTTCTTTTGTTCAAGCTCAAGCAAATCAAA TATTAACAGAAATTAGTCCTTTAAGTATTTTAAGCAAAAATGGGAAAGGAAGTGTTTACTTAAAAGTTAGCAAATC TTCCGATTATATTTTAACCCTAGATAAGAGTTCAAATTCCGATTTTGTTTTTAAAATTTATGACATTTCTAATAAA AAATATATAACCGATAAAGTAAAAAGAAGAGATTTTAAAATAAGATTAGATAAAAATTCTCTTTATGCAATAATAT ATGTTGGTACTAAAAATGAAAACATAAAGTTTTCGCTTACAGATTTAGATTTTTCAATTTTAAGTAGCGATTCCCT GAAAGCTAAAACATCTAAGATTGAAAAAGAAGATTTATTTTTTACTTTAAAAGATTTGCCTGTTTTAAATTTAACT TABLE 1. Nucleotide and Amino Acid Sequences
GCCAAGCTTAAAAAATATGTATTAAGGATTTATAAAAGCAATATTTATATTGCTTATCAGCTAGAAAATAGCGATG ATATTAAAGTTGCTGAATTTATTGAGGATGTTGGTTGGTTTAATCTTGATTCATCTGTTAATAGAAATATTACTAA TATAGTTAATTTTGATTTTTCAATTAATTCTAAAGGAAATTTATATATTGCTTTTGTTACGAAATCAGGGGCTGAT TTTGCCAGCGAGCTTATAGTTAAAAAATTTAATAGTAGAAAATGGATTGATATTAGTCCTGGTCACATAGAAAATT TTGGATCTTTATTAAATATTAGCATTGATTTAAAAGATAGGTTGTATTTAGCATATTTAAGGGAAATTAGGGGTGA ATATAAAATTAATTTAATCTCGAATATGGGTTACGGAAGTATTTGGACCGATGTAATACATGCTTATTTAAGTAAA GGTGATTCTAATGTTAATTCATCAAACATTGGTTTAATATCTGAACCTTTTTTGGGCATTTTTTATAATTATAAGT CAAATAATGAGATTAAATCTGAATTTATTGTAAACAATGAAAATGCTTGGGTAAATGCAAATATTCCTTCTGTTTA TATGGCCAATTTTATTAAAGGCTTTTTTGATTCTAATTTTAATCAAATAATTATGAGTTTTGTTTCTGAAAATAGA CCTATTGTAAACATTTGTCCTTTGAAAAGTAGTAGATGGATTAATATAAGTCCTAATGTTGAAATGGAAGGTTTAA GTGCTGACATTGGGCTTTATAAAAATAATTTGTTTTTAGCTTTTGAGGACAATAATAATGTGAGATTAATTTATTT TAAGAATAAAAATTGGTATTTTTTAAATAAGCTTGAGAATTTTAAGAGTAATGTTAAAAGCCCTCAGATTGGAATT TATGGCAATCAAGGGCTTGTAATCTCTACTTTAAGCTCTAATTCCAATGAATTATTTTTTACTTTGATTTGCCAAT GA tl54.nt
AATCAAATATTAACAGAAATTAGTCCTTTAAGTATTTTAAGCAAAAATGGGAAAGGAAGTGTTTACTTAAAAGTTA GCAAATCTTCCGATTATATTTTAACCCTAGATAAGAGTTCAAATTCCGATTTTGTTTTTAAAATTTATGACATTTC TAATAAAAAATATATAACCGATAAAGTAAAAAGAAGAGATTTTAAAATAAGATTAGATAAAAATTCTCTTTATGCA ATAATATATGTTGGTACTAAAAATGAAAACATAAAGTTTTCGCTTACAGATTTAGATTTTTCAATTTTAAGTAGCG ATTCCCTGAAAGCTAAAACATCTAAGATTGAAAAAGAAGATTTATTTTTTACTTTAAAAGATTTGCCTGTTTTAAA TTTAACTGCCAAGCTTAAAAAATATGTATTAAGGATTTATAAAAGCAATATTTATATTGCTTATCAGCTAGAAAAT AGCGATGATATTAAAGTTGCTGAATTTATTGAGGATGTTGGTTGGTTTAATCTTGATTCATCTGTTAATAGAAATA TTACTAATATAGTTAATTTTGATTTTTCAATTAATTCTAAAGGAAATTTATATATTGCTTTTGTTACGAAATCAGG GGCTGATTTTGCCAGCGAGCTTATAGTTAAAAAATTTAATAGTAGAAAATGGATTGATATTAGTCCTGGTCACATA GAAAATTTTGGATCTTTATTAAATATTAGCATTGATTTAAAAGATAGGTTGTATTTAGCATATTTAAGGGAAATTA GGGGTGAATATAAAATTAATTTAATCTCGAATATGGGTTACGGAAGTATTTGGACCGATGTAATACATGCTTATTT AAGTAAAGGTGATTCTAATGTTAATTCATCAAACATTGGTTTAATATCTGAACCTTTTTTGGGCATTTTTTATAAT TATAAGTCAAATAATGAGATTAAATCTGAATTTATTGTAAACAATGAAAATGCTTGGGTAAATGCAAATATTCCTT CTGTTTATATGGCCAATTTTATTAAAGGCTTTTTTGATTCTAATTTTAATCAAATAATTATGAGTTTTGTTTCTGA AAATAGACCTATTGTAAACATTTGTCCTTTGAAAAGTAGTAGATGGATTAATATAAGTCCTAATGTTGAAATGGAA GGTTTAAGTGCTGACATTGGGCTTTATAAAAATAATTTGTTTTTAGCTTTTGAGGACAATAATAATGTGAGATTAA TTTATTTTAAGAATAAAAATTGGTATTTTTTAAATAAGCTTGAGAATTTTAAGAGTAATGTTAAAAGCCCTCAGAT TGGAATTTATGGCAATCAAGGGCTTGTAATCTCTACTTTAAGCTCTAATTCCAATGAATTATTTTTTACTTTGATT TGCCAATGA
fl57.aa
MKIFLKVIGRGILGRLMVFRKNYDYLALISLLIVSFVGILLIYSSDYNISGSLTKNEYIKQTF VIIGFF IFIVG KYD KFVYS VYPLYFLLILALIFTAFFGMTVNGARSWIGIWK GGQPSEFGKVVIILTLSKFYTEKKGYNEFFTF ITAFL IFPSVI IL QPDFGTAIVY TIFIFISFFAGIDLHYVLAFA IGFFSFVFAI PVWYEYKVNMGNVFYL IFSNPFYFRVIMGVLLLI LISV GFFISKYGLSIKIIYFYVFFASSILLVSIVFSKVLSKLMKTYQIKRF VFLD PAIDAKGAG NLNQVKIAIGSGGLLGKGF KGPYTHANYVPSQSTDFIFSILAEEFGFLGVSTILI FFFLFFKF IIMNKSQDRYMALVISGILGL FFHTSFNVGMSLGVLPITGIPFPFLSYGGSSTITFFLAMSFYFNIESIVAMD
tl57.aa
RK YDY ALIS LIVSFVGIL IYSSDYNISGS TKNEYIKQTFWVIIGFFLIFIVGKYDLKFVYSMVYPLYF I LALIFTAFFGMTVNGARSWIGI KLGGQPSEFGKVVIILTLSKFYTEKKGYNEFFTFITAFLLIFPSVI IL QPD FGTAIVYLTIFIFISFFAGID HYVLAFALIGFFSFVFAILPV YEYKVN GNVFYLIFSNPFYFRVIMGV IL TABLE 1. Nucleotide and Amino Acid Sequences ISVLGFFISKYG SIKIIYFYVFFASSIL VSIVFSKVLSKLMKTYQIKRF VFLDPAIDAKGAGWNLNQVKIAI GSGGLLGKGF KGPYTHANYVPSQSTDFIFSILAEEFGF GVSTILILFFFLFFKFLIIMNKSQDRYMALVISGIL GL FFHTSFNVGMSLGVLPITGIPFPFLSYGGSSTITFF AMSFYFNIESIVAMD
fl57.nt
ATGAAGATATTCTTAAAGGTTATAGGCCGTGGTATATTAGGTAGATTAATGGTTTTTAGAAAAAATTATGATTATT TGGCTTTGATAAGCTTACTTATAGTTTCTTTTGTTGGTATATTGTTGATTTATTCTAGCGATTATAATATTAGTGG ATCTTTAACCAAGAATGAATATATAAAACAAACCTTTTGGGTAATTATTGGATTTTTTCTAATTTTTATAGTGGGC AAATATGATTTAAAATTTGTTTATAGCATGGTATATCCTTTATATTTTTTATTAATATTGGCTTTAATTTTTACTG CATTTTTTGGAATGACAGTAAATGGAGCAAGATCTTGGATTGGCATATGGAAACTTGGAGGACAGCCTTCTGAATT TGGTAAAGTTGTTATTATTTTAACCCTTTCAAAATTTTACACTGAAAAAAAGGGTTATAATGAATTTTTTACCTTT ATTACTGCATTTTTATTAATTTTTCCATCGGTAATTCTTATATTATTGCAACCTGATTTTGGTACAGCAATAGTAT ATTTAACCATTTTTATATTTATTTCTTTTTTTGCAGGAATAGATTTGCACTATGTTTTAGCATTTGCGTTGATAGG GTTTTTTTCTTTTGTTTTTGCAATTTTACCGGTTTGGTATGAATATAAGGTGAATATGGGTAATGTATTTTATCTT ATTTTCTCAAATCCTTTTTATTTTAGAGTAATAATGGGAGTGCTGCTTTTAATTCTTTTGATTTCTGTTTTAGGAT TTTTCATTTCTAAATATGGTTTGAGTATTAAAATAATTTATTTTTATGTATTTTTTGCAAGTTCTATTTTATTAGT TTCAATAGTGTTTTCAAAGGTTCTTTCAAAGTTAATGAAGACTTATCAGATTAAACGGTTTTTGGTATTCTTAGAT CCGGCTATTGATGCTAAGGGTGCTGGTTGGAATTTAAATCAGGTTAAAATAGCAATTGGTTCTGGCGGTCTTTTGG GCAAAGGATTTTTAAAGGGACCTTATACCCACGCTAATTATGTGCCATCTCAAAGCACAGATTTTATTTTTTCTAT TCTTGCCGAAGAGTTTGGGTTTTTGGGTGTTAGCACTATTTTAATATTATTTTTTTTCCTTTTTTTTAAATTTTTG ATAATAATGAATAAAAGTCAAGATAGATATATGGCCTTAGTAATATCTGGAATTTTGGGACTTTTATTTTTTCATA CTTCTTTTAATGTTGGAATGTCTTTAGGAGTTCTTCCTATTACCGGGATTCCCTTTCCTTTTCTCTCTTATGGAGG TTCTTCTACTATTACATTTTTTTTAGCAATGTCTTTTTATTTTAATATTGAATCAATAGTTGCTATGGATTGA
tl57.nt
AGAAAAAATTATGATTATTTGGCTTTGATAAGCTTACTTATAGTTTCTTTTGTTGGTATATTGTTGATTTATTCTA GCGATTATAATATTAGTGGATCTTTAACCAAGAATGAATATATAAAACAAACCTTTTGGGTAATTATTGGATTTTT TCTAATTTTTATAGTGGGCAAATATGATTTAAAATTTGTTTATAGCATGGTATATCCTTTATATTTTTTATTAATA TTGGCTTTAATTTTTACTGCATTTTTTGGAATGACAGTAAATGGAGCAAGATCTTGGATTGGCATATGGAAACTTG GAGGACAGCCTTCTGAATTTGGTAAAGTTGTTATTATTTTAACCCTTTCAAAATTTTACACTGAAAAAAAGGGTTA TAATGAATTTTTTACCTTTATTACTGCATTTTTATTAATTTTTCCATCGGTAATTCTTATATTATTGCAACCTGAT TTTGGTACAGCAATAGTATATTTAACCATTTTTATATTTATTTCTTTTTTTGCAGGAATAGATTTGCACTATGTTT TAGCATTTGCGTTGATAGGGTTTTTTTCTTTTGTTTTTGCAATTTTACCGGTTTGGTATGAATATAAGGTGAATAT GGGTAATGTATTTTATCTTATTTTCTCAAATCCTTTTTATTTTAGAGTAATAATGGGAGTGCTGCTTTTAATTCTT TTGATTTCTGTTTTAGGATTTTTCATTTCTAAATATGGTTTGAGTATTAAAATAATTTATTTTTATGTATTTTTTG CAAGTTCTATTTTATTAGTTTCAATAGTGTTTTCAAAGGTTCTTTCAAAGTTAATGAAGACTTATCAGATTAAACG GTTTTTGGTATTCTTAGATCCGGCTATTGATGCTAAGGGTGCTGGTTGGAATTTAAATCAGGTTAAAATAGCAATT GGTTCTGGCGGTCTTTTGGGCAAAGGATTTTTAAAGGGACCTTATACCCACGCTAATTATGTGCCATCTCAAAGCA CAGATTTTATTTTTTCTATTCTTGCCGAAGAGTTTGGGTTTTTGGGTGTTAGCACTATTTTAATATTATTTTTTTT CCTTTTTTTTAAATTTTTGATAATAATGAATAAAAGTCAAGATAGATATATGGCCTTAGTAATATCTGGAATTTTG GGACTTTTATTTTTTCATACTTCTTTTAATGTTGGAATGTCTTTAGGAGTTCTTCCTATTACCGGGATTCCCTTTC CTTTTCTCTCTTATGGAGGTTCTTCTACTATTACATTTTTTTTAGCAATGTCTTTTTATTTTAATATTGAATCAAT AGTTGCTATGGATTGA
fl7.aa
MIVF FFSIYLIILFKRSSNSP YFVPDTKFETLSIRIVLSCSLLLIFFCTM DARPSTIAVFPTPGSPISIALF F KSIFVRVLISASLPTKGSNFLAFASAVKF TYFPISKCSFSSRISSSNSL TABLE 1. Nucleotide and Amino Acid Sequences
tl7 . aa
PLYFVPDTKFETLSIRIVLSCS L IFFCTMLDARPSTIAVFPTPGSPISIALFLF KSIFVRVLISASLPTKGS NF AFASAVKFLTYFPISKCSFSSRISSSNSL
fl7.nt
ATGATTGTGTTTTTGTTTTTTTCAATATACTTAATTATATTATTTAAACGATCTTCAAACTCGCCTCTATATTTTG TTCCCGATACCAAGTTTGAAACCTTAAGCATTAGAATTGTTTTGTCTTGTAGTTTGCTACTTATTTTTTTTTGCAC TATGCTTGATGCAAGGCCTTCAACTATTGCTGTTTTTCCCACACCAGGTTCGCCTATTAGCATTGCACTATTTTTA TTTCTTCTCAAGAGTATATTTGTAAGAGTTTTAATCTCTGCTTCTCTTCCAACCAAGGGGTCTAATTTTTTGGCTT TTGCAAGTGCTGTTAAATTTTTGACATACTTTCCAATTTCAAAGTGCTCATTTTCAAGTCGTATTTCTTCATCAAA TTCTTTGTAG
tl7.nt
CCTCTATATTTTGTTCCCGATACCAAGTTTGAAACCTTAAGCATTAGAATTGTTTTGTCTTGTAGTTTGCTACTTA TTTTTTTTTGCACTATGCTTGATGCAAGGCCTTCAACTATTGCTGTTTTTCCCACACCAGGTTCGCCTATTAGCAT TGCACTATTTTTATTTCTTCTCAAGAGTATATTTGTAAGAGTTTTAATCTCTGCTTCTCTTCCAACCAAGGGGTCT AATTTTTTGGCTTTTGCAAGTGCTGTTAAATTTTTGACATACTTTCCAATTTCAAAGTGCTCATTTTCAAGTCGTA TTTCTTCATCAAATTCTTTGTAG
fl70.aa
KAFKVK RRFSNFIRI VIVLF NSLLSLFVF AGSYNIFVYNFQKFYLD AII SSVSFG ESTRLIFFYFLK NKKIKYYLILIFSFIIFFIAI-VFKIFLSGNK
tl70.aa
YNIFVYNFQKFY DLAIILSSVSFG ESTR IFFYFLKNKKIKYY ILIFSFIIFFIALVFKIFLSGNK
fl70.nt
ATGAAAGCTTTTAAAGTAAAAAATCTAAGACGTTTTTCAAATTTTATTAGAATTTTGGTTATTGTATTGTTTTTAA
ATTCTTTGTTAAGTTTGTTCGTGTTTTTGGCTGGTTCTTACAATATTTTTGTTTACAATTTTCAGAAATTTTATCT
TGATCTTGCTATTATTTTAAGCTCTGTTTCTTTTGGACTTGAATCTACTAGACTGATATTTTTTTATTTTTTGAAA
AATAAAAAAATTAAGTATTATTTAATTTTAATTTTTAGTTTTATAATTTTTTTTATTGCTCTTGTTTTTAAAATTT
TTCTTTCTGGTAATAA
ATAG
tl70.nt TABLE 1. Nucleotide and Amino Acid Sequences
TACAATATTTTTGTTTACAATTTTCAGAAATTTTATCTTGATCTTGCTATTATTTTAAGCTCTGTTTCTTTTGGAC TTGAATCTACTAGACTGATATTTTTTTATTTTTTGAAAAATAAAAAAATTAAGTATTATTTAATTTTAATTTTTAG TTTTATAATTTTTTTTATTGCTCTTGTTTTTAAAATTTTTCTTTCTGGTAATAAATAG
fl86.aa
MKKLIIIFTLFLSQACN STMHKIDTKEDMKILYSEIAE RKK N NHLEIDDTLEKVAKEYAIKLGENRTITHTL FGTTPMQRIHKYDQSFNLTREILASGIE NRWNA LNSPSHKEALINTDTDKIGGYR KTTDNIDIFW FGKRK YK
tl86 . aa
T HKIDTKEDMKI YSEIAELRKKLN NH EIDDTLEKVAKEYAIKLGENRTITHTLFGTTPMQRIHKYDQSFNLT REILASGIE NRVVNA LNSPSHKEALINTDTDKIGGYR KTTDNIDIFVVLFGKRKYKN
fl86.nt
ATGAAAAAATTGATTATAATTTTTACACTGTTTTTATCTCAAGCATGCAATTTAAGTACAATGCATAAAATAGATA CAAAAGAAGATATGAAAATTCTATATTCAGAAATTGCTGAATTGAGAAAAAAATTAAATCTAAACCATCTAGAAAT AGATGATACCCTTGAAAAAGTTGCAAAAGAATATGCCATTAAACTGGGAGAAAATAGAACAATAACTCACACCCTT TTTGGCACAACCCCAATGCAAAGAATACATAAATACGATCAATCCTTTAATTTAACAAGAGAAATACTGGCATCAG GAATTGAACTTAACAGAGTAGTTAATGCATGGCTTAATAGTCCAAGCCACAAAGAAGCTCTTATTAATACAGATAC CGATAAAATAGGTGGCTATAGATTAAAAACGACTGACAATATAGATATATTTGTAGTTCTTTTTGGAAAAAGAAAA TATAAGAATTGA
tl86.nt
ACAATGCATAAAATAGATACAAAAGAAGATATGAAAATTCTATATTCAGAAATTGCTGAATTGAGAAAAAAATTAA ATCTAAACCATCTAGAAATAGATGATACCCTTGAAAAAGTTGCAAAAGAATATGCCATTAAACTGGGAGAAAATAG AACAATAACTCACACCCTTTTTGGCACAACCCCAATGCAAAGAATACATAAATACGATCAATCCTTTAATTTAACA AGAGAAATACTGGCATCAGGAATTGAACTTAACAGAGTAGTTAATGCATGGCTTAATAGTCCAAGCCACAAAGAAG CTCTTATTAATACAGATACCGATAAAATAGGTGGCTATAGATTAAAAACGACTGACAATATAGATATATTTGTAGT TCTTTTTGGAAAAAGAAAATATAAGAATTGA
fl96.aa
K KARML LVLILIAFFISILFFAFGMLINSKLVDQQFN MINLIESIKSSFNLYISSMEEKVRVSSMYFNSAEK FNEASKIKSKRLSFISDQSEILIQTGSNMMVTDKEGKIVFTTAVKDNSDFGKSIGDREYFTKLKESNSIVYNSFVM LADPGSIEESLLKDISKIKNKKGQIPYI IGMPLRDFETDNIFGYFMF YSMDYIYRSFRGINFGILSSGRALAYD TTGRL VHHWLPGDILTDISASYSNIIKKTSEDLLQKNKEISTVYYYDPKSNKKYVGISQKV LNLSNNKFILLM RTSEDDFYYMSRATTIILAISFVFT MLAIAT YLVKK SSS NKILEYSER ASGNFTADINFGKWDTVELYSL YEG EQLRTNFSSVAKGVIENLDYLYENAIQIANASQNLSSGAVEQASTLEQMTANIEQISQGVSENTENAATTEK IAV TNERTKEGHKSWKAIEAMTVITEKIGIIDEITRQTNL ALNASIEAARVGEKGKGFEVVAAEVRKLADQSK ESAREIIDIANRS TVASRAGENFEQIVPGMEQTARLVINISNESYKQSVQIEQFKNAIEQVSQLVQTTASSSEEL SAMSEKMLESVKDI-KESVDYFKIEK TABLE 1. Nucleotide and Amino Acid Sequences
tl96.aa
MLINSKLVDQQFNLMIN IESIKSSFNLYISSMEEKVRVSSMYFNSAEKFNEASKIKSKRLSFISDQSEI IQTGS NMMVTDKEGKIVFTTAVKDNSDFGKSIGDREYFTKLKESNSIVYNSFVMLADPGSIEESLLKDISKIKNKKGQIPY I IGMPLRDFETDNIFGYFMFLYSMDYIYRSFRGINFGI SSGRA AYDTTGRL VHHWLPGDI TDISASYSNI IKKTSEDLLQKNKEISTVYYYDPKSNKKYVGISQKVL N SNNKFI LMRTSEDDFYYMSRATTIILAISFVFT L LAIAT Y VKK SSSLNKI EYSER ASGNFTADINFGK DTVELYSLYEGLEQLRTNFSSVAKGVIENLDY YE NAIQIANASQNLSSGAVEQASTLEQMTANIEQISQGVSENTENAATTEKIAVNTNERTKEGHKSWKAIEA TVIT EKIGIIDEITRQTNLLALNASIEAARVGEKGKGFEWAAEYRK ADQSKESAREIIDIANRS TVASRAGENFEQI VPGMEQTARLVKNISNESYKQSVQIEQFKNAIEQVSQ VQTTASSSEELSAMSEKM ESVKDLKESVDYFKIEK
fl96.nt
ATGAAGCTTAAAGCTAGGATGTTGCTACTTGTTCTTATTCTGATAGCATTCTTTATATCAATTTTGTTTTTTGCTT TTGGAATGCTTATTAATAGTAAATTGGTGGATCAACAGTTTAATCTTATGATAAATCTTATTGAAAGCATTAAAAG TTCTTTTAATCTTTACATCTCTTCAATGGAAGAGAAAGTTAGGGTTAGTTCCATGTATTTCAACTCTGCTGAAAAA TTTAATGAGGCTAGTAAAATTAAATCCAAAAGGTTGAGCTTTATTTCAGATCAATCTGAAATTCTTATTCAAACCG GTAGTAATATGATGGTTACAGACAAAGAAGGTAAAATAGTGTTTACTACGGCGGTTAAGGATAATAGTGATTTTGG CAAATCTATTGGGGATAGAGAATATTTTACAAAACTTAAGGAGTCTAATAGTATTGTTTACAATTCCTTTGTCATG TTGGCAGATCCCGGGTCTATTGAGGAGTCTTTACTTAAAGATATTTCCAAGATAAAAAATAAAAAAGGTCAGATTC CTTACATATTAATAGGTATGCCATTAAGAGATTTTGAAACAGATAACATTTTTGGTTATTTTATGTTTCTTTATTC AATGGATTATATATATAGGTCTTTTAGAGGGATTAATTTTGGAATACTCTCTAGCGGTCGTGCGCTAGCTTATGAT ACTACGGGTAGATTGTTGGTTCATCATGTAGTATTGCCAGGTGATATTTTGACTGATATTAGTGCTTCTTATTCCA ATATTATTAAGAAAACATCTGAAGATTTGTTGCAAAAGAATAAAGAAATTTCAACTGTTTATTATTATGATCCTAA AAGCAATAAGAAATATGTGGGAATTAGTCAAAAGGTGTTATTAAACTTGTCTAATAATAAATTTATTCTTTTAATG AGAACTTCAGAGGACGATTTTTATTACATGTCACGAGCTACAACTATAATCTTAGCAATTAGTTTTGTATTTACAT TACTTATGCTTGCTATTGCAACTCTTTATCTTGTGAAAAAGTTAAGCTCTTCTTTGAATAAGATACTGGAATATTC TGAGAGACTTGCTTCTGGTAATTTTACTGCTGATATTAATTTTGGCAAATGGGATACTGTAGAGCTTTACAGTTTG TACGAAGGGCTTGAGCAGTTGAGAACCAATTTTTCTTCAGTTGCAAAAGGAGTTATTGAAAATCTAGATTATCTTT ATGAAAATGCAATTCAAATAGCAAATGCAAGCCAGAATTTAAGTTCTGGCGCTGTTGAGCAGGCTTCTACTTTAGA GCAAATGACAGCAAATATTGAGCAAATTTCACAAGGTGTTTCTGAGAATACTGAAAATGCAGCTACTACTGAAAAA ATTGCTGTTAATACTAATGAAAGGACTAAAGAGGGGCATAAATCTGTTGTTAAGGCTATTGAGGCAATGACTGTAA TTACTGAAAAAATTGGAATTATTGATGAGATAACAAGGCAAACCAATTTGCTTGCTTTAAATGCCTCGATTGAAGC TGCACGAGTGGGAGAAAAGGGCAAGGGATTTGAAGTGGTAGCTGCTGAGGTTAGAAAGCTTGCAGATCAAAGCAAA GAATCAGCAAGAGAGATTATTGATATTGCAAACAGAAGTTTAACTGTTGCAAGTCGTGCTGGGGAAAATTTTGAAC AAATAGTTCCTGGTATGGAACAAACAGCCAGACTTGTAAAAAATATTTCTAATGAAAGTTATAAGCAAAGTGTTCA AATAGAGCAATTTAAAAATGCAATAGAGCAGGTTAGTCAGTTAGTCCAAACTACAGCCTCAAGCAGTGAAGAGCTT TCTGCAATGTCTGAAAAGATGTTAGAGAGTGTAAAAGATTTAAAAGAATCTGTTGATTATTTTAAGATCGAAAAGT AA tl96.nt
ATGCTTATTAATAGTAAATTGGTGGATCAACAGTTTAATCTTATGATAAATCTTATTGAAAGCATTAAAAGTTCTT TTAATCTTTACATCTCTTCAATGGAAGAGAAAGTTAGGGTTAGTTCCATGTATTTCAACTCTGCTGAAAAATTTAA TGAGGCTAGTAAAATTAAATCCAAAAGGTTGAGCTTTATTTCAGATCAATCTGAAATTCTTATTCAAACCGGTAGT AATATGATGGTTACAGACAAAGAAGGTAAAATAGTGTTTACTACGGCGGTTAAGGATAATAGTGATTTTGGCAAAT CTATTGGGGATAGAGAATATTTTACAAAACTTAAGGAGTCTAATAGTATTGTTTACAATTCCTTTGTCATGTTGGC AGATCCCGGGTCTATTGAGGAGTCTTTACTTAAAGATATTTCCAAGATAAAAAATAAAAAAGGTCAGATTCCTTAC ATATTAATAGGTATGCCATTAAGAGATTTTGAAACAGATAACATTTTTGGTTATTTTATGTTTCTTTATTCAATGG ATTATATATATAGGTCTTTTAGAGGGATTAATTTTGGAATACTCTCTAGCGGTCGTGCGCTAGCTTATGATACTAC GGGTAGATTGTTGGTTCATCATGTAGTATTGCCAGGTGATATTTTGACTGATATTAGTGCTTCTTATTCCAATATT TABLE 1. Nucleotide and Amino Acid Sequences
AT AAGAAAACATCTGAAGATTTGTTGCAAAAGAATAAAGAAATTTCAACTGTTTATTATTATGATCCTAAAAGCA ATAAGAAATATGTGGGAATTAGTCAAAAGGTGTTATTAAACTTGTCTAATAATAAATTTATTCTTTTAATGAGAAC TTCAGAGGACGATTTTTATTACATGTCACGAGCTACAACTATAATCTTAGCAATTAGTTTTGTATTTACATTACTT ATGCTTGCTATTGCAACTCTTTATCTTGTGAAAAAGTTAAGCTCTTCTTTGAATAAGATACTGGAATATTCTGAGA GACTTGCTTCTGGTAATTTTACTGCTGATATTAATTTTGGCAAATGGGATACTGTAGAGCTTTACAGTTTGTACGA AGGGCTTGAGCAGTTGAGAACCAATTTTTCTTCAGTTGCAAAAGGAGTTATTGAAAATCTAGATTATCTTTATGAA AATGCAATTCAAATAGCAAATGCAAGCCAGAATTTAAGTTCTGGCGCTGTTGAGCAGGCTTCTACTTTAGAGCAAA TGACAGCAAATATTGAGCAAATTTCACAAGGTGTTTCTGAGAATACTGAAAATGCAGCTACTACTGAAAAAATTGC TGTTAATACTAATGAAAGGACTAAAGAGGGGCATAAATCTGTTGTTAAGGCTATTGAGGCAATGACTGTAATTACT GAAAAAATTGGAATTATTGATGAGATAACAAGGCAAACCAATTTGCTTGCTTTAAATGCCTCGATTGAAGCTGCAC GAGTGGGAGAAAAGGGCAAGGGATTTGAAGTGGTAGCTGCTGAGGTTAGAAAGCTTGCAGATCAAAGCAAAGAATC AGCAAGAGAGATTATTGATATTGCAAACAGAAGTTTAACTGTTGCAAGTCGTGCTGGGGAAAATTTTGAACAAATA GTTCCTGGTATGGAACAAACAGCCAGACTTGTAAAAAATATTTCTAATGAAAGTTATAAGCAAAGTGTTCAAATAG AGCAATTTAAAAATGCAATAGAGCAGGTTAGTCAGTTAGTCCAAACTACAGCCTCAAGCAGTGAAGAGCTTTCTGC AATGTCTGAAAAGATGTTAGAGAGTGTAAAAGATTTAAAAGAATCTGTTGATTATTTTAAGATCGAAAAGTAA
f899.aa
MRFIIAF MI NQGFSN FSLPPEDIIFESSYEVAIKKAQKLNKNVLI VGRDIKENLIKDFLNSFTNGEIIHKVS RKSVFLVIDKDNEIFNKINLQKSPTIFFVDSKNEQIKAAYVGAV SSVQFDKDFLNYVMGATKSTSV KKQKDYEI NTADERTFFYKTLKGD RLKFNGKDRKLVLFDTDLKEFLVFKDINENK YAIPKSRIGNIYFSLLGNEEWKLFGKI K
t899.aa f899.nt
ATGAGATTTATAATTGCATTTTTAATGATTTTAAATCAAGGATTTTCAAATTTGTTTTCTTTGCCTCCGGAAGATA TTATTTTTGAGAGTTCTTATGAGGTTGCAATTAAAAAAGCTCAAAAATTGAATAAAAATGTTTTAATTTTGGTTGG TAGAGATATTAAAGAAAATTTAATAAAAGATTTTTTAAACTCTTTTACAAATGGTGAAATTATTCACAAAGTATCT AGAAAAAGTGTTTTTTTAGTTATTGATAAGGATAATGAAATTTTTAATAAAATTAATCTACAAAAAAGTCCGACTA TTTTTTTTGTTGATTCTAAGAATGAGCAAATAAAGGCAGCTTATGTGGGAGCTGTTTTGAGCAGTGTTCAATTTGA TAAGGATTTTTTAAACTATGTTATGGGAGCTATAAAATCAACAAGTGTTTTAAAAAAGCAAAAAGATTATGAAATT AATACTGCTGATGAGAGAACCTTTTTTTACAAAACATTAAAAGGTGATTGGCGATTAAAGTTTAATGGTAAAGACA GAAAGCTTGTTCTTTTTGATACAGATCTTAAAGAATTTTTAGTTTTTAAAGATATTAATGAAAACAAGCTTTATGC TATTCCTAAGTCTAGGATTGGTAATATTTATTTTTCATTATTGGGAAATGAAGAATGGAAGCTTTTTGGAAAAATA AAATAA
t899.nt
TTGCCTCCGGAAGATATTATTTTTGAGAGTTCTTATGAGGTTGCAATTAAAAAAGCTCAAAAATTGAATAAAAATG TTTTAATTTTGGTTGGTAGAGATATTAAAGAAAATTTAATAAAAGATTTTTTAAACTCTTTTACAAATGGTGAAAT TATTCACAAAGTATCTAGAAAAAGTGTTTTTTTAGTTATTGATAAGGATAATGAAATTTTTAATAAAATTAATCTA CAAAAAAGTCCGACTATTTTTTTTGTTGATTCTAAGAATGAGCAAATAAAGGCAGCTTATGTGGGAGCTGTTTTGA GCAGTGTTCAATTTGATAAGGATTTTTTAAACTATGTTATGGGAGCTATAAAATCAACAAGTGTTTTAAAAAAGCA AAAAGATTATGAAATTAATACTGCTGATGAGAGAACCTTTTTTTACAAAACATTAAAAGGTGATTGGCGATTAAAG TTTAATGGTAAAGACAGAAAGCTTGTTCTTTTTGATACAGATCTTAAAGAATTTTTAGTTTTTAAAGATATTAATG AAAACAAGCTTTATGCTATTCCTAAGTCTAGGATTGGTAATATTTATTTTTCATTATTGGGAAATGAAGAATGGAA GCTTTTTGGAAAAATAAAATAA TABLE 1. Nucleotide and Amino Acid Sequences
f924 . aa
MQDRKFSFRKYFLISVF IFIVSGITYFYSTQM EKSQKCVEDNLDAKVKLVDMEDFYFD NEC NMDDFFIPRPD FLNEN NKNLWDGLIKNKFLDENFFKDL IKKENLFNVDIEKENEK IDKILEISK
t924.aa
TQM EKSQKCVEDNLDAKVK VDMEDFYFDLNEC NMDDFFIPRPDFLNENLNKNLWDGLIKNKF DENFFKD W IKKEN FNVDIEKΞNEK IDKI EISK
f924.nt
ATGCAAGATAGAAAGTTTAGTTTTAGAAAATATTTTTTAATTTCAGTATTTTTGATTTTTATTGTTTCTGGTATTA CTTATTTCTATTCAACACAAATGTTGGAAAAATCTCAAAAGTGTGTTGAAGACAATTTAGACGCTAAGGTTAAATT AGTTGATATGGAAGATTTTTATTTTGATTTAAATGAATGTCTAAATATGGATGATTTTTTTATTCCAAGACCTGAT TTTTTAAATGAAAATTTAAATAAGAATTTAGTTGTTGATGGATTGATTAAAAATAAATTTCTTGATGAGAATTTTT TCAAGGATCTTTGGATTAAAAAGGAAAATTTATTTAACGTTGATATTGAGAAGGAGAATGAAAAATTAATAGATAA GATTTTAGAAATTTCCAAATGA
t924.nt
ACACAAATGTTGGAAAAATCTCAAAAGTGTGTTGAAGACAATTTAGACGCTAAGGTTAAATTAGTTGATATGGAAG ATTTTTATTTTGATTTAAATGAATGTCTAAATATGGATGATTTTTTTATTCCAAGACCTGATTTTTTAAATGAAAA TTTAAATAAGAATTTAGTTGTTGATGGATTGATTAAAAATAAATTTCTTGATGAGAATTTTTTCAAGGATCTTTGG ATTAAAAAGGAAAATTTATTTAACGTTGATATTGAGAAGGAGAATGAAAAATTAATAGATAAGATTTTAGAAATTT CCAAATGA f925.aa
MIRKYLIYISLLFIVFEVYSKPAFISQDDSYE DFSSGEVDISVNTNSKFNLSFKDES IYIKSIENEAFIKLIGE SYDNGAVFTFQTFKKEGKIK VFTYQNVKDSSEFNKIIILKITKNFEVAIPQGVGGGSSRDNNIETG NLELGGGS ISGATSKEIIVRALN SYINDYKGAID LNKYNFNDDKYIL KAEIHYKNGDY KSYENYLK KSKYFQSIVFDLI RLAIELNIKEEV ENARY VEKNVDFSESIYLEIFEFLVTRGEHEFA NFSS YFPKYINSSFSDKYSY LGKLYE SESKHKDFLKALHYYKLVIDNYPFSYYYERAKIRYLFLKRFF t925.aa
KPAFISQDDSYELDFSSGEVDISλ TNSKFNLSFKDES IYIKSIENEAFIK IGESYDNGAVFTFQTFKKEGKIK LVFTYQNVKDSSEFNKIIILKITKNFEVAIPQGVGGGSSRDNNIETGNNLELGGGSISGATSKEIIλ/RA N SYIN DYKGAIDLLNKYNFNDDKYILLKAEIHYKNGDYLKSYENYLK KSKYFQSIVFD IR AIELNIKEEVLENARYLV EKNVDFSESIYLEIFEFLVTRGEHEFA NFSSLYFPKYINSSFSDKYSYLLGKLYESESKHKDFLKA HYYKLVID NYPFSYYYERAKIRYLF KRFF f925.nt
ATGATTAGAAAATATTTGATTTATATAAGTTTGCTATTTATTGTTTTTGAAGTTTACTCTAAGCCAGCTTTTATAA GTCAAGACGATTCGTATGAGCTTGATTTTAGTAGTGGAGAGGTAGATATTAGTGTAAATACCAATTCAAAATTTAA TCTTTCTTTTAAAGATGAGTCTTGGATTTATATCAAAAGCATTGAAAATGAAGCTTTTATTAAGTTAATTGGAGAA TABLE 1. Nucleotide and Amino Acid Sequences
TCTTATGATAACGGTGCTGTTTTTACTTTTCAGACTTTTAAAAAAGAAGGCAAAATTAAATTGGTTTTCACTTATC AAAATGTTAAAGATTCAAGTGAATTTAATAAAATAATTATCTTGAAAATTACAAAGAATTTTGAAGTTGCAATTCC ACAAGGCGTTGGTGGTGGCTCTAGCAGGGACAATAACATTGAAACTGGTAATAATCTTGAACTTGGGGGGGGGAGT ATTAGCGGGGCAACTTCTAAAGAGATTATTGTTAGGGCTTTAAATTTGTCCTACATAAATGATTACAAAGGAGCAA TAGATTTGCTTAATAAGTATAATTTCAATGACGATAAATATATTTTATTGAAGGCGGAAATTCATTATAAAAATGG TGATTATTTAAAATCTTATGAAAATTATTTGAAATTGAAGAGTAAATATTTTCAAAGCATTGTTTTTGATCTAATT AGGCTTGCTATAGAATTAAATATTAAAGAAGAGGTTTTAGAGAACGCTAGATATTTAGTTGAAAAGAATGTTGATT TTTCTGAGAGCATTTATCTTGAGATCTTTGAATTCTTAGTAACAAGGGGAGAGCATGAGTTTGCTTTAAATTTTAG CTCTCTTTACTTTCCTAAGTATATTAATTCAAGCTTTTCAGACAAATATAGTTATTTGTTGGGAAAACTTTATGAG TCTGAGAGCAAGCATAAAGATTTTTTAAAGGCTTTGCATTACTATAAATTGGTTATTGATAATTACCCTTTTAGTT ATTATTATGAGAGAGCCAAGATAAGATATTTATTTTTAAAGCGGTTTTTTTAG t925.nt
AAGCCAGCTTTTATAAGTCAAGACGATTCGTATGAGCTTGATTTTAGTAGTGGAGAGGTAGATATTAGTGTAAATA CCAATTCAAAATTTAATCTTTCTTTTAAAGATGAGTCTTGGATTTATATCAAAAGCATTGAAAATGAAGCTTTTAT TAAGTTAATTGGAGAATCTTATGATAACGGTGCTGTTTTTACTTTTCAGACTTTTAAAAAAGAAGGCAAAATTAAA TTGGTTTTCACTTATCAAAATGTTAAAGATTCAAGTGAATTTAATAAAATAATTATCTTGAAAATTACAAAGAATT TTGAAGTTGCAATTCCACAAGGCGTTGGTGGTGGCTCTAGCAGGGACAATAACATTGAAACTGGTAATAATCTTGA ACTTGGGGGGGGGAGTATTAGCGGGGCAACTTCTAAAGAGATTATTGTTAGGGCTTTAAATTTGTCCTACATAAAT GATTACAAAGGAGCAATAGATTTGCTTAATAAGTATAATTTCAATGACGATAAATATATTTTATTGAAGGCGGAAA TTCATTATAAAAATGGTGATTATTTAAAATCTTATGAAAATTATTTGAAATTGAAGAGTAAATATTTTCAAAGCAT TGTTTTTGATCTAATTAGGCTTGCTATAGAATTAAATATTAAAGAAGAGGTTTTAGAGAACGCTAGATATTTAGTT GAAAAGAATGTTGATTTTTCTGAGAGCATTTATCTTGAGATCTTTGAATTCTTAGTAACAAGGGGAGAGCATGAGT TTGCTTTAAATTTTAGCTCTCTTTACTTTCCTAAGTATATTAATTCAAGCTTTTCAGACAAATATAGTTATTTGTT GGGAAAACTTTATGAGTCTGAGAGCAAGCATAAAGATTTTTTAAAGGCTTTGCATTACTATAAATTGGTTATTGAT AATTACCCTTTTAGTTATTATTATGAGAGAGCCAAGATAAGATATTTATTTTTAAAGCGGTTTTTTTAG
f929.aa
MTKV WSAIA LSKDKELIPFYKF F FFFFTLLACSKVSKDFIVFNKDVKTSSRIDNPNSNVLEVNKMEDFFGD IID KGYKILSVQQENLN DVYFEQWLAQNFSNLNAYLFIIGFDPKIKAGTILFKTQIDIDPKNSY MYLEDITG DYDFNIVIQGFLKDKSV YVFQKSVLNDVSSYRPIFFDKVNGTV INKYARSSAYEENRSRESYPISLEKYEKVGE DLIISKIEKYEYSNVQGRYCLSSVSEKVGKID NIYKTLKNLSKDEVYKF HGV YDVHDYNKMHVKDIDEVLFLS FERQSSEINLFRKNSQEVAKIEYISKPAYNTLNVSAKSLFSDLIVYNFWIKIVDKENIEIKIDTSTNSYDNSGFSG TFKRFDENVLNVKKGSSDIYFIPSGNYVYKDKIYDFSYPH TYIDENKIYYGIFNIFPLKNNFV EYEIDMGSYKL VESFF EHSERIVQKQKFSTIILNPIKILKDDVS VKGQK K ERIEKI
t929.aa
KDKE IPFYKFLFLFFFFTLLACSKVSKDFIVFNKDVKTSSRIDNPNS VLEVNK EDFFGDIIDLKGYKI SVQQ ENLNLDVYFEQW AQNFSNLNAYLFIIGFDPKIKAGTILFKTQIDIDPKNSYNMYLEDITGDYDFNIVIQGFLKD KSV YVFQKSV NDVSSYRPIFFDKλ/ GTV INKYARSSAYEENRSRESYPISLEKYEKVGED IISKIEKYEYSN VQGRYCLSSVSEKVGKIDNNIYKTLKNLSKDEVYKFLHGV YDVHDYNKMHVKDIDEVLF SFERQSSEIN FRKN SQEVAKIEYISKPAYNTLNVSAKSLFSD Iλn--NFWIKIVDKENIEIKIDTSTNSYDNSGFSGTFKRFDENV NVKK GSSDIYFIPSGNYVYKDKIYDFSYPH TYIDENKIYYGIFNIFPLKNNFV EYEIDMGSYK VESFFLEHSERIVQ KQKFSTIILNPIKILKDDVS VKGQK KLERIEKI
f929 . nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGACAAAGGTTTTGGTTGTTAGTGCGATTGCTCTTCTGAGTAAGGATAAAGAATTAATCCCATTTTATAAATTTT TGTTTTTATTCTTTTTTTTTACATTACTTGCTTGTTCCAAGGTAAGCAAAGATTTTATTGTTTTTAACAAAGATGT AAAGACTTCTTCCAGGATCGATAATCCAAATTCCAATGTTTTAGAAGTTAATAAAATGGAAGATTTTTTTGGAGAT ATTATAGATTTAAAAGGTTATAAAATTCTTTCAGTTCAGCAGGAAAATTTAAATTTAGATGTGTATTTTGAGCAGG TGGTTTTAGCTCAAAATTTTTCAAATCTTAATGCATATTTGTTTATTATTGGTTTTGATCCTAAAATTAAAGCTGG AACGATTCTTTTTAAAACTCAAATAGATATTGATCCAAAAAATTCTTATAACATGTATCTTGAAGATATTACAGGT GATTATGATTTTAATATAGTTATTCAAGGATTTTTAAAAGATAAATCTGTTTTGTATGTTTTTCAAAAATCTGTTT TAAATGATGTGTCTTCTTATAGGCCTATATTTTTTGACAAAGTTAATGGAACTGTTCTTATTAATAAGTATGCAAG ATCTTCAGCTTATGAAGAAAACAGATCAAGAGAAAGCTATCCTATTTCTTTAGAAAAATATGAAAAAGTGGGGGAA GATTTAATAATTAGCAAGATTGAAAAATATGAATATTCTAATGTTCAGGGTAGATATTGTCTTTCTTCTGTGAGCG AAAAAGTTGGTAAAATTGATAATAATATTTATAAAACTTTAAAGAATTTAAGCAAAGATGAAGTTTATAAATTTTT GCATGGAGTTTGGTATGATGTTCATGACTATAATAAAATGCATGTCAAAGATATTGATGAAGTTTTATTCTTGTCT TTTGAAAGGCAATCAAGCGAGATTAATCTTTTCAGGAAAAATTCTCAAGAAGTTGCAAAGATTGAATATATTTCAA AACCTGCTTACAATACTCTTAATGTTAGTGCAAAGTCTCTTTTTTCAGATTTGATAGTTTATAACTTTTGGATCAA AATTGTAGATAAAGAAAACATTGAAATCAAAATTGACACTAGCACAAATTCTTATGATAATAGTGGATTTTCGGGT ACATTTAAGAGGTTTGATGAGAATGTCTTAAATGTTAAAAAAGGGAGTAGTGATATTTATTTTATTCCTAGTGGAA ATTACGTGTATAAGGATAAAATTTATGATTTTTCTTACCCCCATTTAACTTATATTGATGAGAATAAAATTTATTA TGGCATTTTTAATATTTTTCCTTTAAAAAATAATTTTGTTCTTGAATATGAGATTGACATGGGTAGTTACAAGCTT GTTGAATCTTTTTTCCTTGAGCATAGCGAAAGAATTGTTCAAAAGCAAAAATTTTCTACAATCATTTTAAATCCTA TTAAAATTTTAAAAGATGATGTAAGCTTAGTTAAAGGGCAAAAATTAAAGCTTGAGCGAATAGAAAAAATATGA t929.nt
AAGGATAAAGAATTAATCCCATTTTATAAATTTTTGTTTTTATTCTTTTTTTTTACATTACTTGCTTGTTCCAAGG TAAGCAAAGATTTTATTGTTTTTAACAAAGATGTAAAGACTTCTTCCAGGATCGATAATCCAAATTCCAATGTTTT AGAAGTTAATAAAATGGAAGATTTTTTTGGAGATATTATAGATTTAAAAGGTTATAAAATTCTTTCAGTTCAGCAG GAAAATTTAAATTTAGATGTGTATTTTGAGCAGGTGGTTTTAGCTCAAAATTTTTCAAATCTTAATGCATATTTGT TTATTATTGGTTTTGATCCTAAAATTAAAGCTGGAACGATTCTTTTTAAAACTCAAATAGATATTGATCCAAAAAA TTCTTATAACATGTATCTTGAAGATATTACAGGTGATTATGATTTTAATATAGTTATTCAAGGATTTTTAAAAGAT AAATCTGTTTTGTATGTTTTTCAAAAATCTGTTTTAAATGATGTGTCTTCTTATAGGCCTATATTTTTTGACAAAG TTAATGGAACTGTTCTTATTAATAAGTATGCAAGATCTTCAGCTTATGAAGAAAACAGATCAAGAGAAAGCTATCC TATTTCTTTAGAAAAATATGAAAAAGTGGGGGAAGATTTAATAATTAGCAAGATTGAAAAATATGAATATTCTAAT GTTCAGGGTAGATATTGTCTTTCTTCTGTGAGCGAAAAAGTTGGTAAAATTGATAATAATATTTATAAAACTTTAA AGAATTTAAGCAAAGATGAAGTTTATAAATTTTTGCATGGAGTTTGGTATGATGTTCATGACTATAATAAAATGCA TGTCAAAGATATTGATGAAGTTTTATTCTTGTCTTTTGAAAGGCAATCAAGCGAGATTAATCTTTTCAGGAAAAAT TCTCAAGAAGTTGCAAAGATTGAATATATTTCAAAACCTGCTTACAATACTCTTAATGTTAGTGCAAAGTCTCTTT TTTCAGATTTGATAGTTTATAACTTTTGGATCAAAATTGTAGATAAAGAAAACATTGAAATCAAAATTGACACTAG CACAAATTCTTATGATAATAGTGGATTTTCGGGTACATTTAAGAGGTTTGATGAGAATGTCTTAAATGTTAAAAAA GGGAGTAGTGATATTTATTTTATTCCTAGTGGAAATTACGTGTATAAGGATAAAATTTATGATTTTTCTTACCCCC ATTTAACTTATATTGATGAGAATAAAATTTATTATGGCATTTTTAATATTTTTCCTTTAAAAAATAATTTTGTTCT TGAATATGAGATTGACATGGGTAGTTACAAGCTTGTTGAATCTTTTTTCCTTGAGCATAGCGAAAGAATTGTTCAA AAGCAAAAATTTTCTACAATCATTTTAAATCCTATTAAAATTTTAAAAGATGATGTAAGCTTAGTTAAAGGGCAAA AATTAAAGCTTGAGCGAATAGAAAAAATATGA
f933.aa
MNKL IFVLATFCVFSSFAQANDSKNGAFGMSAGEKL VYETSKQDPIVPFL NLF GFGIGSFAQGDILGGSLIL GFDAVGIGLI AGAYLDIKA DGITKKAAFQWTWGKGVMLAGWTMAVTR TEIILPFTFANSYNRK KNSLNVAL GGFEPSFDVA GQSSALGFELSFKKSY
t933 . aa TABLE 1. Nucleotide and Amino Acid Sequences
NDSKNGAFGMSAGEK LVYETSKQDPIVPF LN FLGFGIGSFAQGDILGGSLILGFDAVGIG ILAGAYLDIKA DGITKKAAFQ T GKGVMLAGλ/VTMAVTRLTEIILPFTFANSYNRKLKNS NVA GGFEPSFDVAMGQSSALGFE SFKKSY
f933.nt
ATGAATAAACTTTTAATTTTTGTTTTGGCAACCTTTTGTGTTTTTTCTAGCTTTGCTCAAGCTAATGATTCTAAAA ATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTGGTTTATGAAACTAGCAAGCAAGATCCTATTGTACCATT TTTATTGAACCTTTTTTTAGGGTTTGGAATAGGCTCCTTTGCTCAAGGAGATATTCTTGGAGGTTCTCTTATTCTT GGATTTGATGCGGTTGGTATAGGGCTTATACTTGCGGGGGCTTATTTGGATATCAAAGCGCTTGATGGTATTACTA AAAAAGCTGCTTTTCAATGGACTTGGGGTAAGGGAGTTATGTTAGCAGGTGTGGTTACTATGGCTGTGACAAGATT AACAGAAATTATTCTTCCATTTACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTTA GGAGGATTTGAACCTAGTTTTGATGTTGCAATGGGCCAATCCAGTGCTCTTGGGTTTGAACTGTCTTTCAAAAAAA GCTATTAA
t933.nt
AATGATTCTAAAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTGGTTTATGAAACTAGCAAGCAAGATC CTATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAGGCTCCTTTGCTCAAGGAGATATTCTTGGAGG TTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCTTATACTTGCGGGGGCTTATTTGGATATCAAAGCGCTT GATGGTATTACTAAAAAAGCTGCTTTTCAATGGACTTGGGGTAAGGGAGTTATGTTAGCAGGTGTGGTTACTATGG CTGTGACAAGATTAACAGAAATTATTCTTCCATTTACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCT TAATGTAGCTTTAGGAGGATTTGAACCTAGTTTTGATGTTGCAATGGGCCAATCCAGTGCTCTTGGGTTTGAACTG TCTTTCAAAAAAAGCTATTAA
f940.aa
MRKYIFIILIAVL IGVNIKKIAAAANIDRHTNST GIDLSVGIPIFYNDLSKAYPTNLYPGGIGAIKYQYHILNN AIGLE RYMFNFDINHSFNI NPDSSVGKIFYSVPITFSINYIFDIGELFQIPVFTNIGFSLNTYGDRN1S-NITNL RTFDALPTISFGSGILVrøF-STYKWAFGATAS MMFEFGNSAKJ AHFALVS SVTVNVNK
t940 . aa
ANIDRHTNSTLGID SVGIPIFYNDLSKAYPTNLYPGGIGAIKYQYHILN LAIG ELRYMFNFDINHSFNILNPD SSVGKIFYSVPITFSINYIFDIGELFQIPVFTNIGFSLNTYGDRNNNITNLRTFDALPTISFGSGI NFNYKWAF GATASWWMMFEFGNSAK AHFALVSLSVTVNVNKL
f940.nt
ATGAGAAAGTATATTTTTATAATACTAATTGCAGTCTTGCTAATTGGTGTAAACATAAAAAAAATTGCGGCCGCAG CCAATATTGATAGGCATACAAACTCCACTTTAGGAATAGATTTAAGTGTAGGAATCCCTATTTTTTACAACGACTT ATCAAAAGCTTATCCTACCAATTTATATCCAGGAGGTATTGGGGCAATAAAATACCAGTACCATATTTTAAACAAT TTAGCAATTGGACTTGAACTAAGGTATATGTTTAACTTTGATATTAACCATTCTTTTAATATATTAAATCCAGATT CAAGTGTAGGTAAAATTTTTTATAGCGTGCCTATTACATTTTCAATAAATTATATATTTGATATAGGAGAATTATT TABLE 1. Nucleotide and Amino Acid Sequences
TCAAATTCCAGTCTTCACAAATATAGGGTTTTCTCTTAATACATATGGAGATAGAAACAACAATATTACAAATTTA AGAACTTTTGATGCACTCCCTACAATCTCTTTTGGATCTGGAATTTTATGGAACTTTAACTATAAATGGGCTTTTG GAGCAACAGCATCTTGGTGGATGATGTTTGAATTTGGAAATTCTGCTAAAATGGCACATTTTGCACTTGTATCATT ATCAGTTACAGTGAATGTAAATAAATTGTAG
t940.nt
GCCAATATTGATAGGCATACAAACTCCACTTTAGGAATAGATTTAAGTGTAGGAATCCCTATTTTTTACAACGACT TATCAAAAGCTTATCCTACCAATTTATATCCAGGAGGTATTGGGGCAATAAAATACCAGTACCATATTTTAAACAA TTTAGCAATTGGACTTGAACTAAGGTATATGTTTAACTTTGATATTAACCATTCTTTTAATATATTAAATCCAGAT TCAAGTGTAGGTAAAATTTTTTATAGCGTGCCTATTACATTTTCAATAAATTATATATTTGATATAGGAGAATTAT TTCAAATTCCAGTCTTCACAAATATAGGGTTTTCTCTTAATACATATGGAGATAGAAACAACAATATTACAAATTT AAGAACTTTTGATGCACTCCCTACAATCTCTTTTGGATCTGGAATTTTATGGAACTTTAACTATAAATGGGCTTTT GGAGCAACAGCATCTTGGTGGATGATGTTTGAATTTGGAAATTCTGCTAAAATGGCACATTTTGCACTTGTATCAT TATCAGTTACAGTGAATGTAAATAAATTGTAG
f943.aa
MKNQFLNSYFQ ITTIF ISSITIAAEEITSTLKVPNGFKVEIF NNTIEKPRGITSDQDGNIFIGSGSTFAYFVT K RKIYTIAKT QKPIGIDY DNKLYISSVDKIYWKNVKEEINKSIKSHKDYTWKMQIFALLPKNNSQMHSGRYI KVDSK NKLIV IGSQHNVKIPPKKEAVILSINLKTKKEEIVAFGVRNSVGFDFHPISNEIYFSDNGQDGLGDNIP PDEINVITEYKEHFGFPYVFGKNQKNYGFYNIAPKNTKFIPSIYE PAHVAP GIHFYRGNNFPKEYINKLFIAEH GSWNRSSPVGYKITTLDIDSKTRTARNYKTF YGF KHDKSKFGRPVDIITYYDGSILFTDDFGNKIYRVYYEKI
t943.aa
EITSTLKVPNGFKVEIFLNNTIEKPRGITSDQDGNIFIGSGSTFAYFVTKNRKIYTIAKTLQKPIGIDYWDNKLYI SSVDKIYVVKNVKEEINKSIKSHKDYTW-^QIFA LPKNNSQMHSGRYIKVDSKNNKLIVNIGSQH VKIPPKKEA VI SIN KTKKEEIVAFGVRNSVGFDFHPISNEIYFSDNGQDG GDNIPPDEINVITEYKEHFGFPYVFGKNQKNY GFYNKAPKNTKFIPSIYELPAHVAPLGIHFYRGNNFPKEYINK FIAEHGSWNRSSPVGYKITTLDIDSKTRTARN YKTF YGFLKHDKSKFGRPVDIITYYDGSILFTDDFGNKIYRVYYEKI
f943.nt
ATGAAAAATCAATTTTTAAATAGCTATTTTCAATTAATTACAACTATTTTCTTAATCTCATCTATAACTATTGCAG CAGAAGAAATAACAAGCACACTAAAAGTTCCTAATGGATTTAAAGTCGAAATTTTTTTAAACAATACAATTGAAAA ACCTAGAGGAATCACAAGCGATCAAGATGGAAATATATTCATAGGATCTGGAAGCACTTTTGCATACTTTGTAACA AAAAACAGAAAAATTTATACCATAGCAAAAACCCTGCAAAAACCTATTGGTATTGATTATTGGGATAATAAACTCT ACATATCTTCTGTCGATAAAATATATGTAGTTAAAAATGTAAAAGAAGAAATTAATAAAAGCATAAAATCACATAA AGACTATACATGGAAAATGCAAATTTTTGCACTTTTGCCAAAAAATAATTCTCAAATGCACTCAGGACGTTACATT AAAGTAGATTCTAAAAATAACAAATTAATAGTAAATATAGGATCCCAGCACAATGTTAAAATTCCCCCAAAAAAAG AAGCAGTAATCCTTAGTATTAATTTAAAAACAAAAAAAGAAGAAATAGTAGCTTTTGGAGTGAGAAACTCAGTTGG GTTTGATTTTCACCCAATTAGCAATGAAATATATTTTAGCGACAATGGCCAAGACGGATTAGGAGACAACATTCCC CCAGATGAAATAAACGTAATAACCGAATATAAAGAACATTTTGGATTTCCCTATGTGTTTGGAAAAAATCAAAAAA ATTACGGTTTTTATAACAAAGCACCCAAAAACACTAAGTTTATCCCATCTATTTACGAACTTCCCGCACATGTAGC TCCACTTGGAATACACTTTTACCGGGGAAATAACTTTCCAAAAGAATACATAAATAAATTATTCATAGCAGAACAC GGCTCGTGGAACAGATCTTCTCCTGTTGGCTACAAAATAACAACACTAGACATTGATTCTAAAACCAGAACAGCAA TABLE 1. Nucleotide and Amino Acid Sequences
GAAATTACAAGACTTTTTTATATGGATTTTTAAAGCACGACAAATCTAAATTTGGACGCCCTGTTGATATAATCAC ATATTATGACGGTTCAATTCTTTTTACAGATGACTTTGGAAATAAAATATACAGAGTTTACTACGAAAAGATTTAA
t943.nt
GAAATAACAAGCACACTAAAAGTTCCTAATGGATTTAAAGTCGAAATTTTTTTAAACAATACAATTGAAAAACCTA GAGGAATCACAAGCGATCAAGATGGAAATATATTCATAGGATCTGGAAGCACTTTTGCATACTTTGTAACAAAAAA CAGAAAAATTTATACCATAGCAAAAACCCTGCAAAAACCTATTGGTATTGATTATTGGGATAATAAACTCTACATA TCTTCTGTCGATAAAATATATGTAGTTAAAAATGTAAAAGAAGAAATTAATAAAAGCATAAAATCACATAAAGACT ATACATGGAAAATGCAAATTTTTGCACTTTTGCCAAAAAATAATTCTCAAATGCACTCAGGACGTTACATTAAAGT AGATTCTAAAAATAACAAATTAATAGTAAATATAGGATCCCAGCACAATGTTAAAATTCCCCCAAAAAAAGAAGCA GTAATCCTTAGTATTAATTTAAAAACAAAAAAAGAAGAAATAGTAGCTTTTGGAGTGAGAAACTCAGTTGGGTTTG ATTTTCACCCAATTAGCAATGAAATATATTTTAGCGACAATGGCCAAGACGGATTAGGAGACAACATTCCCCCAGA TGAAATAAACGTAATAACCGAATATAAAGAACATTTTGGATTTCCCTATGTGTTTGGAAAAAATCAAAAAAATTAC GGTTTTTATAACAAAGCACCCAAAAACACTAAGTTTATCCCATCTATTTACGAACTTCCCGCACATGTAGCTCCAC TTGGAATACACTTTTACCGGGGAAATAACTTTCCAAAAGAATACATAAATAAATTATTCATAGCAGAACACGGCTC GTGGAACAGATCTTCTCCTGTTGGCTACAAAATAACAACACTAGACATTGATTCTAAAACCAGAACAGCAAGAAAT TACAAGACTTTTTTATATGGATTTTTAAAGCACGACAAATCTAAATTTGGACGCCCTGTTGATATAATCACATATT ATGACGGTTCAATTCTTTTTACAGATGACTTTGGAAATAAAATATACAGAGTTTACTACGAAAAGATTTAA
f952.aa
M YARFAVLIV LFFYI FFII RMKRTN F LEKIQNGAKILDIRSPKEYSKSHY KSINIPFNN FAKKDKLGD FESPIIVYGKSFNKSYEAKKVLKSMGFKNVFVAGT KDMPQAKKEVG
t952.aa
R KRTNLF LEKIQNGAKI DIRSPKEYSKSHYLKSINIPFNNLFAKKDKLGDFESPIIVYGKSFNKSYEAKKVLK SMGFKNVFVAGT KDMPQAKKEVG
f952.nt
ATGAATTATGCAAGATTTGCAGTATTAATAGTTCTGCTTTTTTTTTATATTTGGTTTTTTATTATCCTTAGGATGA AAAGAACTAATCTGTTTTTGTTAGAAAAAATCCAAAATGGAGCAAAAATTTTGGATATTCGGTCTCCCAAAGAATA TAGCAAGTCTCATTATTTGAAGTCAATTAACATTCCTTTTAATAATTTATTTGCTAAAAAGGATAAATTAGGTGAT TTTGAGTCCCCAATAATTGTTTATGGTAAAAGTTTTAATAAGTCTTACGAGGCTAAAAAAGTTTTAAAAAGCATGG GATTTAAGAATGTGTTTGTTGCTGGAACCTTGAAAGACATGCCACAAGCAAAAAAAGAAGTTGGTTGA
t952.nt
AGGATGAAAAGAACTAATCTGTTTTTGTTAGAAAAAATCCAAAATGGAGCAAAAATTTTGGATATTCGGTCTCCCA AAGAATATAGCAAGTCTCATTATTTGAAGTCAATTAACATTCCTTTTAATAATTTATTTGCTAAAAAGGATAAATT AGGTGATTTTGAGTCCCCAATAATTGTTTATGGTAAAAGTTTTAATAAGTCTTACGAGGCTAAAAAAGTTTTAAAA AGCATGGGATTTAAGAATGTGTTTGTTGCTGGAACCTTGAAAGACATGCCACAAGCAAAAAAAGAAGTTGGTTGA TABLE 1. Nucleotide and Amino Acid Sequences f378 . aa
MIKKFLLFAMLNIFLTNKAHSNEEIIEISTEIQKEKYIPF ISRGKTQ EDLVKYTLEINPELDKNYVNTVAKTYI DESLIEGVNYDIAYAQM LETGALKFNGIVSKEQHNFSGIGATNNLTKGNSFSNITEGIKAHIQH KAYASKQNIK SNMVDPRFY VKRGSAPTIYD TGKWAKDKLYDKK KKI LE LEYNNANKS
t378.aa
NEEIIEISTEIQKEKYIPFLISRGKTQ EDLVKYTLEINPE DK YVNTVAKTYIDESLIEGVNYDIAYAQMLLET GALKFNGIVSKEQHNFSGIGATNNLTKGNSFSNITEGIKAHIQHLKAYASKQNIKSNMVDPRFYLVKRGSAPTIYD TGKWAKDKLYDKKLKKIL EL EYNNANKS
f378.nt
ATGATAAAAAAATTCTTGCTATTTGCAATGCTCAACATCTTTTTAACAAATAAAGCTCATAGTAATGAAGAGATAA TCGAAATAAGTACTGAAATACAAAAGGAAAAATATATTCCCTTTTTAATAAGTAGAGGAAAAACTCAACTAGAAGA CCTTGTAAAATATACTCTAGAAATAAATCCAGAGCTTGACAAAAACTATGTAAATACTGTTGCTAAAACCTATATA GACGAATCTTTGATTGAAGGGGTTAATTATGACATTGCCTATGCTCAAATGTTACTAGAAACAGGAGCTCTAAAAT TCAATGGAATAGTTTCAAAAGAACAACACAATTTTTCAGGAATAGGCGCTACTAATAATCTTACAAAAGGAAATTC TTTTTCCAATATTACAGAAGGAATTAAAGCTCATATTCAACATTTAAAAGCTTATGCTTCAAAACAAAATATCAAA TCAAATATGGTTGATCCTAGATTTTACCTTGTTAAAAGAGGATCTGCTCCAACAATATATGATTTGACTGGGAAAT GGGCAAAAGACAAACTTTACGACAAAAAACTTAAAAAAATATTATTAGAACTATTAGAATATAATAATGCAAATAA AAGCTAA
t378.nt
AATGAAGAGATAATCGAAATAAGTACTGAAATACAAAAGGAAAAATATATTCCCTTTTTAATAAGTAGAGGAAAAA CTCAACTAGAAGACCTTGTAAAATATACTCTAGAAATAAATCCAGAGCTTGACAAAAACTATGTAAATACTGTTGC TAAAACCTATATAGACGAATCTTTGATTGAAGGGGTTAATTATGACATTGCCTATGCTCAAATGTTACTAGAAACA GGAGCTCTAAAATTCAATGGAATAGTTTCAAAAGAACAACACAATTTTTCAGGAATAGGCGCTACTAATAATCTTA CAAAAGGAAATTCTTTTTCCAATATTACAGAAGGAATTAAAGCTCATATTCAACATTTAAAAGCTTATGCTTCAAA ACAAAATATCAAATCAAATATGGTTGATCCTAGATTTTACCTTGTTAAAAGAGGATCTGCTCCAACAATATATGAT TTGACTGGGAAATGGGCAAAAGACAAACTTTACGACAAAAAACTTAAAAAAATATTATTAGAACTATTAGAATATA ATAATGCAAATAAAAGCTAA
f4.aa
MKLFRRNVMIKMPSSFTIIFSLIVFVTI TYVIPAGKFDKEFKQMGDGSKREIIVAGTYQYVDRGSRGFLHPIMTI LTAMSKGMEHAVEVIVFVLIVGGAYGIIMKTGAIDVGIYFLIKKLGHKDKL IPLLMFIFSIGGTVTGMSEET PF YFVMIP IVALGYDSLVGAAIIA GAGVGTMASTVNPFATGIASAIASISLQDGFYFRIVLYFVSVLAAITYVCVY ASKIKKDPSKS VYSQKDEHYQYFVKKDG STGDNAQNALEFTFAHK V FGFMILILIFSIVNLGWWMQEMTM YLGVAIISAFICKLGETEMWDAFVKGSESLLTAA VIG ARGVMIVCDDGLITDTMLNAATNFLYNLPRP FIIL NEIIQIFIGFWPSSSGHASLTMPIMAP ADFLSIPRASWIAMQTASGLIN ITPTSGVIMAVLGISRLSYGT F KFV PLFMIEFFISIL-VIIANIY SF
t4.aa TABLE 1. Nucleotide and Amino Acid Sequences
KFDKEFKQMGDGSKREIIVAGTYQYVDRGSRGF HPIMTILTAMSKGMEHAVEVIVFVLIVGGAYGIIMKTGAIDV GIYFLIKK GHKDKLLIP LMFIFSIGGTVTGMSEETLPFYFVMIPLIVA GYDSLVGAAIIALGAGVGTMASTVN PFATGIASAIASISLQDGFYFRIVLYFVSVLAAITYVCVYASKIKKDPSKS VYSQKDEHYQYFVKKDGLSTGDNA QNALEFTFAHK VLLLFGFMILILIFSIλ/NLGW MQEMTMLYLGVAIISAFICKLGETEM DAFVKGSESLLTAA VIG ARGVMIVCDDGLITDTM NAATNFLYNLPRPLFIILNEIIQIFIGFWPSSSGHAS TMPIMAPLADFLSIP RASWIAMQTASGLIN ITPTSGVIMAVLGISRLSYGT FKFVLP FMIEFFISILVIIANIYLSF
f4.nt
ATGAAATTATTTAGGAGAAACGTTATGATCAAAATGCCAAGTAGTTTTACAATAATATTTTCTTTAATTGTATTTG TTACCATTTTAACGTATGTGATTCCTGCCGGTAAGTTTGATAAAGAATTTAAGCAAATGGGTGATGGATCTAAAAG GGAAATAATTGTTGCTGGAACTTATCAATATGTAGATCGAGGCTCTAGGGGATTTTTACATCCTATTATGACTATT TTAACCGCAATGTCAAAGGGGATGGAACATGCAGTTGAAGTTATTGTTTTTGTTTTAATTGTTGGGGGTGCTTATG GGATTATTATGAAAACTGGAGCAATAGATGTGGGAATTTATTTTTTAATCAAGAAGTTGGGGCACAAAGATAAGTT GCTTATTCCTTTGTTAATGTTTATTTTTTCAATTGGTGGAACTGTAACCGGAATGAGTGAAGAGACCCTTCCTTTT TATTTTGTTATGATTCCCTTGATAGTAGCTTTGGGTTATGATAGTCTTGTTGGAGCGGCTATTATTGCTTTAGGAG CTGGAGTGGGAACTATGGCTTCTACTGTAAATCCATTTGCGACAGGAATTGCATCTGCAATAGCTTCTATTAGCTT GCAGGATGGATTTTATTTTAGAATTGTTCTTTATTTTGTATCAGTATTGGCTGCTATAACCTATGTTTGTGTTTAT GCGTCTAAAATTAAAAAGGATCCCTCAAAATCGCTTGTGTATTCTCAAAAAGATGAACATTATCAATATTTTGTTA AAAAAGATGGACTTTCTACCGGAGATAATGCTCAGAATGCTCTTGAGTTTACTTTTGCTCATAAATTAGTTTTACT TTTATTTGGATTTATGATATTGATTTTGATATTTAGCATTGTTAATCTTGGTTGGTGGATGCAAGAAATGACAATG TTGTATCTTGGAGTTGCTATTATATCGGCTTTTATTTGTAAATTAGGTGAAACTGAAATGTGGGATGCGTTTGTGA AAGGTTCTGAAAGTCTGCTAACCGCTGCTCTTGTTATTGGACTTGCTAGAGGTGTTATGATAGTATGTGATGATGG GTTGATTACAGATACTATGTTAAATGCTGCTACTAATTTTTTATACAATCTTCCAAGACCCCTTTTTATCATATTG AATGAAATTATTCAAATATTTATAGGATTTGTTGTTCCATCTTCATCAGGACATGCTAGTCTCACTATGCCAATAA TGGCTCCTCTTGCCGATTTTTTGTCAATTCCAAGAGCTTCAGTTGTTATTGCCATGCAGACTGCATCTGGGCTTAT TAATTTGATAACACCTACCAGCGGAGTTATAATGGCTGTATTGGGGATATCCAGATTGAGTTATGGTACGTGGTTT AAGTTTGTTTTACCATTATTTATGATTGAGTTTTTTATCTCTATTTTAGTTATTATAGCTAACATTTATTTAAGTT TTTAG
t4.nt
AAGTTTGATAAAGAATTTAAGCAAATGGGTGATGGATCTAAAAGGGAAATAATTGTTGCTGGAACTTATCAATATG TAGATCGAGGCTCTAGGGGATTTTTACATCCTATTATGACTATTTTAACCGCAATGTCAAAGGGGATGGAACATGC AGTTGAAGTTATTGTTTTTGTTTTAATTGTTGGGGGTGCTTATGGGATTATTATGAAAACTGGAGCAATAGATGTG GGAATTTATTTTTTAATCAAGAAGTTGGGGCACAAAGATAAGTTGCTTATTCCTTTGTTAATGTTTATTTTTTCAA TTGGTGGAACTGTAACCGGAATGAGTGAAGAGACCCTTCCTTTTTATTTTGTTATGATTCCCTTGATAGTAGCTTT GGGTTATGATAGTCTTGTTGGAGCGGCTATTATTGCTTTAGGAGCTGGAGTGGGAACTATGGCTTCTACTGTAAAT CCATTTGCGACAGGAATTGCATCTGCAATAGCTTCTATTAGCTTGCAGGATGGATTTTATTTTAGAATTGTTCTTT ATTTTGTATCAGTATTGGCTGCTATAACCTATGTTTGTGTTTATGCGTCTAAAATTAAAAAGGATCCCTCAAAATC GCTTGTGTATTCTCAAAAAGATGAACATTATCAATATTTTGTTAAAAAAGATGGACTTTCTACCGGAGATAATGCT CAGAATGCTCTTGAGTTTACTTTTGCTCATAAATTAGTTTTACTTTTATTTGGATTTATGATATTGATTTTGATAT TTAGCATTGTTAATCTTGGTTGGTGGATGCAAGAAATGACAATGTTGTATCTTGGAGTTGCTATTATATCGGCTTT TATTTGTAAATTAGGTGAAACTGAAATGTGGGATGCGTTTGTGAAAGGTTCTGAAAGTCTGCTAACCGCTGCTCTT GTTATTGGACTTGCTAGAGGTGTTATGATAGTATGTGATGATGGGTTGATTACAGATACTATGTTAAATGCTGCTA CTAATTTTTTATACAATCTTCCAAGACCCCTTTTTATCATATTGAATGAAATTATTCAAATATTTATAGGATTTGT TGTTCCATCTTCATCAGGACATGCTAGTCTCACTATGCCAATAATGGCTCCTCTTGCCGATTTTTTGTCAATTCCA AGAGCTTCAGTTGTTATTGCCATGCAGACTGCATCTGGGCTTATTAATTTGATAACACCTACCAGCGGAGTTATAA TGGCTGTATTGGGGATATCCAGATTGAGTTATGGTACGTGGTTTAAGTTTGTTTTACCATTATTTATGATTGAGTT TTTTATCTCTATTTTAGTTATTATAGCTAACATTTATTTAAGTTTTTAG TABLE 1. Nucleotide and Amino Acid Sequences
f43.aa
MKYFYFLFFLLIFNλ/YAQNVNSPALPSPPL PEITENKPVERENSSKGENFS VG DGKYVNDTILYGLDSQVTSI IKALKKSSDSQYNFSLKKRLEKTFNAELKREILELFISLKYSGGIDTANYILENYESKRYSNALFGLAISYLKEFD DKEK KKT IDILENKEGNλ/VSIAAYY GE NS EYSK MMEVFEKYSGNDGARREILIA GKMSAVDYQDRIYEI S DNYEGPSIKAAAIEALSYLASDKVTENAD Y QSNNNN NVKLAIIASLSKDPS KSKEILQGFLRDSDDNIRF KAINAIKGHRDSSAKDILIYKLKSDPSLKVREASAKALIDMDLGNIEIKNIMFDFKIDNNFKISMFSYLLDKDSLK A SIA EIVNKENINRPSNVLRGVASM AGKKGNFDNFYSKIIDSKNID RHLALKGAVYNKSSS SDKLKKIKSE TNSEYIKML KDY
t43.aa
LPSPP PEITENKPVERENSSKGENFSNVGLDGKYVNDTILYGLDSQVTSIIKALKKSSDSQYNFSLKKRLEKTF NAELKREILELFISLKYSGGIDTANYI ENYESKRYSNALFGLAISYLKEFDDKEKLKKT IDI ENKEGNWSIA AYYLGELNSLEYSKNMMEVFEKYSGNDGARREILIALGKMSAVDYQDRIYEISLDNYEGPSIKAAAIEALSYLASD KVTENADLYLQSNNNNLNVKLAIIASLSKDPSLKSKEILQGFLRDSDDNIRFKAINAIKGHRDSSAKDILIYKLKS DPSLKVREASAKALIDMDLGNIEIKNIMFDFKIDNNFKISMFSYLLDKDSLKALSIALEIVNKENINRPSNVLRGV ASMLAGKKGNFDNFYSKIIDSKNIDLRHLALKGAVYNKSSSLSDKLKKIKΞETNSEYIKMLLKDY
f43.nt
ATGAAATACTTTTATTTTTTATTTTTTTTACTTATTTTTAATGTGTATGCTCAAAATGTTAATTCTCCAGCTCTTC CTAGTCCGCCTTTGTTGCCCGAAATTACAGAAAATAAGCCTGTTGAGAGAGAAAATTCTTCTAAGGGAGAGAATTT TTCTAATGTTGGTTTAGATGGTAAGTATGTTAACGATACAATTCTTTATGGGCTTGATAGTCAAGTGACAAGCATT ATAAAAGCTCTTAAAAAATCAAGCGATAGTCAATATAATTTTTCTCTTAAAAAAAGACTTGAGAAAACTTTTAATG CTGAGCTTAAAAGGGAAATACTTGAATTGTTTATTTCTCTTAAGTATTCGGGGGGCATTGATACAGCAAATTATAT TCTTGAAAATTATGAGAGTAAAAGATATTCAAACGCTTTATTTGGCTTGGCAATTTCGTATCTTAAGGAGTTTGAT GATAAAGAAAAATTAAAAAAAACTCTTATTGACATTCTTGAAAATAAAGAGGGCAATGTGGTATCTATTGCAGCTT ATTATTTAGGAGAGCTTAATTCTCTTGAGTATTCTAAAAACATGATGGAAGTTTTTGAAAAATATTCTGGAAATGA TGGGGCTAGAAGAGAAATACTTATTGCTCTTGGAAAAATGTCCGCTGTTGATTATCAGGATAGAATTTATGAAATT TCGCTAGATAATTACGAGGGCCCATCAATTAAGGCTGCTGCAATCGAAGCGTTGTCATATCTTGCTTCAGATAAAG TAACTGAAAATGCTGATTTGTATCTTCAGAGTAATAACAATAATTTAAATGTTAAATTAGCTATTATTGCTTCTTT GTCCAAAGATCCTTCTTTAAAGTCTAAAGAGATTTTACAAGGATTTTTAAGAGATTCTGATGATAATATTAGGTTT AAAGCTATTAATGCAATCAAAGGACATAGGGACTCTTCTGCAAAGGATATTTTGATTTATAAGCTTAAAAGCGATC CATCTCTTAAAGTTAGGGAGGCTTCTGCTAAGGCCTTAATTGATATGGATCTTGGGAATATTGAGATAAAAAACAT TATGTTTGATTTTAAGATTGACAATAATTTTAAAATTTCAATGTTTAGTTACCTTTTAGATAAGGATTCTCTAAAA GCATTGTCAATTGCTTTAGAAATTGTTAATAAAGAAAATATTAATAGACCCTCAAATGTTTTAAGGGGCGTTGCTT CAATGTTGGCTGGTAAAAAGGGTAATTTTGATAATTTTTATTCTAAAATCATTGACAGCAAAAATATTGATTTAAG GCATTTAGCATTAAAAGGAGCTGTTTATAATAAATCTTCATCGCTTTCTGATAAGCTTAAAAAAATTAAAAGTGAA ACGAACTCCGAATATATTAAAATGCTTTTAAAAGATTATTGA
t43.nt
CTTCCTAGTCCGCCTTTGTTGCCCGAAATTACAGAAAATAAGCCTGTTGAGAGAGAAAATTCTTCTAAGGGAGAGA ATTTTTCTAATGTTGGTTTAGATGGTAAGTATGTTAACGATACAATTCTTTATGGGCTTGATAGTCAAGTGACAAG CATTATAAAAGCTCTTAAAAAATCAAGCGATAGTCAATATAATTTTTCTCTTAAAAAAAGACTTGAGAAAACTTTT AATGCTGAGCTTAAAAGGGAAATACTTGAATTGTTTATTTCTCTTAAGTATTCGGGGGGCATTGATACAGCAAATT ATATTCTTGAAAATTATGAGAGTAAAAGATATTCAAACGCTTTATTTGGCTTGGCAATTTCGTATCTTAAGGAGTT TABLE 1. Nucleotide and Amino Acid Sequences
TGATGATAAAGAAAAATTAAAAAAAACTCTTATTGACATTCTTGAAAATAAAGAGGGCAATGTGGTATCTATTGCA GCTTATTATTTAGGAGAGCTTAATTCTCTTGAGTATTCTAAAAACATGATGGAAGTTTTTGAAAAATATTCTGGAA ATGATGGGGCTAGAAGAGAAATACTTATTGCTCTTGGAAAAATGTCCGCTGTTGATTATCAGGATAGAATTTATGA AATTTCGCTAGATAATTACGAGGGCCCATCAATTAAGGCTGCTGCAATCGAAGCGTTGTCATATCTTGCTTCAGAT AAAGTAACTGAAAATGCTGATTTGTATCTTCAGAGTAATAACAATAATTTAAATGTTAAATTAGCTATTATTGCTT CTTTGTCCAAAGATCCTTCTTTAAAGTCTAAAGAGATTTTACAAGGATTTTTAAGAGATTCTGATGATAATATTAG GTTTAAAGCTATTAATGCAATCAAAGGACATAGGGACTCTTCTGCAAAGGATATTTTGATTTATAAGCTTAAAAGC GATCCATCTCTTAAAGTTAGGGAGGCTTCTGCTAAGGCCTTAATTGATATGGATCTTGGGAATATTGAGATAAAAA ACATTATGTTTGATTTTAAGATTGACAATAATTTTAAAATTTCAATGTTTAGTTACCTTTTAGATAAGGATTCTCT AAAAGCATTGTCAATTGCTTTAGAAATTGTTAATAAAGAAAATATTAATAGACCCTCAAATGTTTTAAGGGGCGTT GCTTCAATGTTGGCTGGTAAAAAGGGTAATTTTGATAATTTTTATTCTAAAATCATTGACAGCAAAAATATTGATT TAAGGCATTTAGCATTAAAAGGAGCTGTTTATAATAAATCTTCATCGCTTTCTGATAAGCTTAAAAAAATTAAAAG TGAAACGAACTCCGAATATATTAAAATGCTTTTAAAAGATTATTGA
f50.aa
MKFVLNNLFKGCLICFFLFFSCLTTDRSIQDSHISDIVEKKKEAVIIDDNNWLGSNEGKFKRDYLIGLKDNESFF LSDAFLKENNFYFKKARESYAKKNIGLTNYYLNKIVTNENQHSRELLAKANLFFGYVNYENGFYDLSEYNFDLFLK DYKYSHASLRLAELKYLVKEKSDAISAFKEINEFSISGYDREIYGFLSNKLGVSHLNLESLGFLDNSVFDTFVFND NIFVTNILGGLLRYNIKKNDCRVYLKDKKSIFLNGIRGFADYNGTIYIGGKNWYYIDDVDGDLKQINVPGNADFS NVQVLLAVKNGIFVGTLNSGLWFYDLKN KNIPLGSNKISSLCFDSLKNLLLVGTVDKAIYSVNVDNLKKIEHLDF FSKNDNEKNINFIKEYKDSYFVGTYGGGLFELNLNKNSYKKHVIANNIDVNYFMDMEIKDKKLLFATFDHGLLIYD SENDN DYFGPNNGLLNLNLIKVSRFENYVILGTINNGLVFVDENIKKQL
t50.aa
CLTTDRSIQDSHISDIVEKKKEAVIIDDNNWLGSNEGKFKRDYLIGLKDNESFFLSDAFLKENNFYFKKARESYA KKNIGLTNYYLNKIVTNENQHSRELLAKANLFFGYVNYENGFYDLSEYNFDLFLKDYKYSHASLRLAELKYLVKEK SDAISAFKEINEFSISGYDREIYGFLSNKLGVSHLNLESLGFLDNSVFDTFVFNDNIFVTNILGGLLRYNIKKNDC RVYLKDKKSIFLNGIRGFADYNGTIYIGGKNVVYYIDDVDGDLKQINVPGNADFSNVQVLLAVKNGIFVGTLNSGL WFYDLKNWKNIPLGSNKISSLCFDSLKNLLLVGTVDKAIYSVNVDNLKKIEHLDFFSKNDNEKNINFIKEYKDSYF VGTYGGGLFELNLNKNSYKKHVIANNIDVNYFMDMEIKDKKLLFATFDHGLLIYDSENDNWDYFGPNNGLLNLNLI KVSRFENYVILGTINNGLVFVDENIKKQL
f50.nt
ATGAAATTTGTTTTGAATAATTTATTTAAAGGTTGTCTTATATGTTTTTTCTTGTTTTTTTCCTGCCTTACTACAG ATAGATCTATTCAAGATTCTCATATTAGTGATATTGTAGAGAAGAAAAAAGAAGCAGTCATTATTGATGATAATAA TGTTGTTCTTGGGAGTAATGAGGGTAAATTTAAAAGAGACTATTTGATAGGATTAAAAGATAATGAATCTTTTTTT CTTAGTGATGCTTTTTTAAAAGAAAATAATTTTTATTTTAAAAAAGCCAGGGAAAGTTATGCTAAAAAAAATATTG GCTTGACAAATTATTATTTGAATAAAATAGTAACTAATGAGAATCAGCACAGCAGAGAATTGCTAGCTAAAGCGAA TTTGTTTTTTGGATATGTAAATTATGAGAATGGTTTTTATGATCTTTCCGAATATAATTTTGATCTATTTTTAAAA GACTATAAATATTCTCATGCTAGTTTAAGATTAGCTGAATTAAAATATCTTGTTAAAGAAAAATCTGATGCAATTT CTGCATTTAAAGAGATTAATGAATTTTCTATCTCAGGTTATGATAGAGAGATTTATGGCTTTTTAAGTAATAAACT TGGAGTAAGTCATTTAAACTTAGAGTCTTTAGGATTTCTTGACAACAGCGTTTTTGATACATTTGTCTTTAATGAC AATATATTTGTAACTAATATATTGGGAGGGCTTTTAAGATATAATATTAAAAAAAATGATTGTAGAGTCTATCTTA AGGATAAAAAAAGCATTTTTTTAAATGGCATTAGGGGTTTTGCGGATTATAATGGAACAATTTATATTGGTGGTAA AAATGTTGTTTATTATATAGATGATGTTGATGGGGATTTAAAGCAAATAAATGTTCCCGGTAATGCTGATTTTAGC AATGTACAAGTTTTGCTTGCTGTTAAAAATGGAATATTTGTTGGCACTCTAAATTCTGGATTATGGTTTTATGATT TAAAAAATTGGAAAAATATACCGCTTGGATCTAATAAAATTTCTTCACTCTGCTTTGATAGTTTAAAAAATTTATT TABLE 1. Nucleotide and Amino Acid Sequences
ATTAGTTGGAACAGTTGACAAGGCTATTTATAGTGTTAATGTCGATAATTTGAAAAAGATTGAACATTTGGATTTT TTTAGCAAAAATGATAATGAAAAAAATATTAATTTTATAAAAGAATATAAAGATAGTTATTTTGTTGGAACATATG GTGGGGGTCTTTTTGAATTAAATTTAAATAAAAATAGTTACAAAAAGCACGTTATTGCCAATAATATTGATGTTAA TTATTTTATGGATATGGAGATTAAAGATAAAAAGCTATTGTTTGCAACCTTTGATCATGGGTTATTGATTTATGAT TCTGAAAATGACAACTGGGATTATTTTGGACCCAATAATGGGCTTCTTAATTTGAATTTAATAAAAGTTTCTAGAT TTGAAAATTATGTCATACTGGGCACTATTAATAACGGTTTGGTTTTTGTAGATGAAAATATTAAAAAACAGTTATG A
t50.nt
TGCCTTACTACAGATAGATCTATTCAAGATTCTCATATTAGTGATATTGTAGAGAAGAAAAAAGAAGCAGTCATTA TTGATGATAATAATGTTGTTCTTGGGAGTAATGAGGGTAAATTTAAAAGAGACTATTTGATAGGATTAAAAGATAA TGAATCTTTTTTTCTTAGTGATGCTTTTTTAAAAGAAAATAATTTTTATTTTAAAAAAGCCAGGGAAAGTTATGCT AAAAAAAATATTGGCTTGACAAATTATTATTTGAATAAAATAGTAACTAATGAGAATCAGCACAGCAGAGAATTGC TAGCTAAAGCGAATTTGTTTTTTGGATATGTAAATTATGAGAATGGTTTTTATGATCTTTCCGAATATAATTTTGA TCTATTTTTAAAAGACTATAAATATTCTCATGCTAGTTTAAGATTAGCTGAATTAAAATATCTTGTTAAAGAAAAA TCTGATGCAATTTCTGCATTTAAAGAGATTAATGAATTTTCTATCTCAGGTTATGATAGAGAGATTTATGGCTTTT TAAGTAATAAACTTGGAGTAAGTCATTTAAACTTAGAGTCTTTAGGATTTCTTGACAACAGCGTTTTTGATACATT TGTCTTTAATGACAATATATTTGTAACTAATATATTGGGAGGGCTTTTAAGATATAATATTAAAAAAAATGATTGT AGAGTCTATCTTAAGGATAAAAAAAGCATTTTTTTAAATGGCATTAGGGGTTTTGCGGATTATAATGGAACAATTT ATATTGGTGGTAAAAATGTTGTTTATTATATAGATGATGTTGATGGGGATTTAAAGCAAATAAATGTTCCCGGTAA TGCTGATTTTAGCAATGTACAAGTTTTGCTTGCTGTTAAAAATGGAATATTTGTTGGCACTCTAAATTCTGGATTA TGGTTTTATGATTTAAAAAATTGGAAAAATATACCGCTTGGATCTAATAAAATTTCTTCACTCTGCTTTGATAGTT TAAAAAATTTATTATTAGTTGGAACAGTTGACAAGGCTATTTATAGTGTTAATGTCGATAATTTGAAAAAGATTGA ACATTTGGATTTTTTTAGCAAAAATGATAATGAAAAAAATATTAATTTTATAAAAGAATATAAAGATAGTTATTTT GTTGGAACATATGGTGGGGGTCTTTTTGAATTAAATTTAAATAAAAATAGTTACAAAAAGCACGTTATTGCCAATA ATATTGATGTTAATTATTTTATGGATATGGAGATTAAAGATAAAAAGCTATTGTTTGCAACCTTTGATCATGGGTT ATTGATTTATGATTCTGAAAATGACAACTGGGATTATTTTGGACCCAATAATGGGCTTCTTAATTTGAATTTAATA AAAGTTTCTAGATTTGAAAATTATGTCATACTGGGCACTATTAATAACGGTTTGGTTTTTGTAGATGAAAATATTA AAAAACAGTTATGA
f65.aa HIFKNVPFQINLILFLLVSVAKINASSKFYYAEQWYVIFNSQMKKKPENYKKNIFFLQKALKYPFGNPKYSLTKI ETKEQWEKYKLLFKMHVNLLLVRQNLHLGDLFDTRNLYFFKTPEKDGIISNLEKSKKLYKLAINYYSEALKYHKKL ENYTTVKLENDGITN EDEYHKISLKELNYYDIIKKELLRIDETKAFFEQGPNYY t65.aa
KINASSKFYYAEQWYVIFNSQMKKKPENYKKNIFFLQKALKYPFGNPKYSLTKIETKEQWEKYKLLFKMHVNLLLV RQNLHLGDLFDTRNLYFFKTPEKDGIISNLEKSKKLYKLAINYYSEALKYHKKLENYTTVKLENDGITNWEDEYHK ISLKELNYYDIIKKELLRIDETKAFFEQGPNYY f65.nt
ATGCATATTTTCAAAAATGTCCCCTTCCAAATAAATTTAATTTTATTTCTTTTAGTATCAGTTGCAAAGATAAATG CATCGTCCAAATTTTATTACGCAGAACAATGGTATGTAATTTTTAATTCTCAAATGAAAAAAAAACCTGAAAACTA TAAAAAAAATATATTTTTTCTTCAAAAAGCCTTAAAATACCCATTTGGAAATCCAAAATATTCTCTAACTAAAATA GAAACCAAAGAACAGTGGGAAAAATATAAACTTCTTTTCAAAATGCATGTAAACTTGCTTCTAGTTAGGCAAAATT TACATTTAGGAGATTTATTCGACACAAGAAATTTATATTTTTTCAAAACTCCAGAAAAAGATGGAATTATTTCCAA TCTAGAAAAATCAAAAAAATTATATAAACTAGCTATTAATTACTACAGCGAAGCACTAAAATACCACAAAAAACTT GAAAATTACACAACTGTTAAACTAGAAAACGATGGAATAACAAACTGGGAAGATGAATATCATAAAATTTCTCTTA TABLE 1. Nucleotide and Amino Acid Sequences
AAGAGCTTAATTACTATGACATTATTAAAAAAGAACTACTAAGAATTGACGAAACTAAAGCATTTTTTGAACAAGG GCCAAACTATTATTAA t65.nt
KINASSKFYYAEQWYVIFNSQMKKKPENYKKNIFFLQKALKYPFGNPKYSLTKIETKEQWEKYKLLFKMHλ/NLLLV RQNLHLGDLFDTRNLYFFKTPEKDGIISNLEKSKKLYKLAINYYSEALKYHKKLENYTTVKLENDGITNWEDEYHK ISLKELNYYDIIKKELLRIDETKAFFEQGPNYY
fδ.aa
MKNINRLILLILTTHTLLFSCALIADNKSKNLSTSEIILTQKTLLESSLIKNPSNVEYRIPISSIQEILNNNNDSF LIKKTAAKIKISPQKLEEIKNYLNAYKNYLNNETE IKFIDQSSVNGNLTIKIDTAFEKKTNFNHTNSDNENLTEL IELQMHLEKEILNLIEQTFHDKNLGYIQLSHINSFFPQENINSITKEIIDGKEYIAPHIIANQLLKIKDKKYFEQF MHFLKVENSKIKTIIEKQKISDLHNELYYSKQSPPRRRKRSTADSDNNNKYDIIPKIIDPNTGIEITPKNLRSILS NGDIILIKPKIDWTEFFYF QHVGIFDEEKYEATKKIAFNGIDSFDIKSIITSNQIKFDTASTQGSGYEKLSTYVQ SRILKIFSPITDIRTIQKAINFGRSRYIDNNFGYMVPLISSNLWTDSFNLEEIHNKTYCSLMVDRIYKIAGLNVSR NYEISGIITPGEINAAAYNFYMSYTIAGILPSVLPKRLIKPTLKEKFIGYNKEIVDAIELKKSKEKIFGRACNITN LWCSGS
tδ.aa
CALIADNKSKNLSTSEIILTQKTLLESSLIKNPSNVEYRIPISSIQEILNNNNDSFLIKKTAAKIKISPQKLEEIK NYLNAYKNYLNNETEWIKFIDQSSVNGNLTIKIDTAFEKKTNFNHTNSDNENLTELIELQMHLEKEILNLIEQTFH DKNLGYIQLSHINSFFPQENINSITKEIIDGKEYIAPHIIANQLLKIKDKKYFEQFMHFLKVENSKIKTIIEKQKI SDLHNELYYSKQSPPRRRKRSTADSDNNNKYDIIPKIIDPNTGIEITPKNLRSILSNGDIILIKPKID TEFFYFW QHVGIFDEEKYEATKKIAFNGIDSFDIKSIITSNQIKFDTASTQGSGYEKLSTYVQSRILKIFSPITDIRTIQKAI NFGRSRYIDNNFGYIV-VPLISSNLWTDSFNLEEIHNKTYCSLIWDRIYKIAGLN^SRNYEISGIITPGEINAAAYNF YMSYTIAGILPSVLPKRLIKPTLKEKFIGYNKEIVDAIELKKSKEKIFGRACNITNL CSGS
fβ.nt
ATGAAGAATATTAATAGATTAATATTATTAATATTAACTACACACACTTTATTATTCTCTTGTGCCTTAATTGCAG ATAATAAGTCAAAAAATTTAAGCACATCAGAAATCATATTAACACAAAAAACACTACTAGAAAGCTCTTTAATAAA AAATCCTTCTAATGTAGAATATCGAATACCAATATCCAGTATCCAAGAAATTTTAAACAATAACAATGATTCTTTT TTAATAAAAAAAACAGCAGCAAAAATCAAAATAAGCCCTCAAAAACTTGAAGAAATAAAAAACTATCTAAATGCTT ATAAAAATTATCTAAATAATGAAACAGAATGGATAAAGTTTATAGATCAAAGTAGCGTCAATGGAAATTTAACAAT TAAAATTGATACTGCTTTTGAAAAAAAAACAAATTTTAATCATACAAATTCAGATAATGAAAATTTAACAGAACTA ATAGAACTACAAATGCATCTGGAAAAAGAAATTTTAAACTTAATTGAGCAAACATTTCATGATAAAAATTTAGGAT ATATACAATTAAGTCACATCAACTCATTCTTTCCTCAAGAAAATATAAACTCAATAACAAAAGAAATAATAGATGG AAAAGAATATATTGCACCGCACATAATAGCAAATCAATTATTAAAAATAAAAGATAAAAAATATTTTGAACAATTT ATGCACTTTTTAAAAGTTGAAAACAGCAAAATAAAAACAATAATTGAAAAACAAAAAATTTCAGATCTTCACAATG AACTGTATTATTCAAAACAATCCCCGCCCAGAAGAAGAAAAAGGTCAACTGCCGATTCCGATAATAACAATAAATA CGATATAATACCAAAAATAATAGACCCAAATACAGGCATTGAAATAACTCCTAAAAATTTAAGATCTATTTTATCA AATGGCGACATAATACTAATAAAACCAAAAATAGATTGGACAGAATTTTTTTATTTTTGGCAACATGTGGGAATAT TTGATGAAGAAAAATATGAAGCCACTAAAAAAATTGCATTCAATGGAATTGATAGCTTTGATATAAAATCAATAAT TACAAGCAATCAAATCAAATTCGATACAGCATCTACTCAAGGTTCAGGATACGAAAAGCTTTCAACATACGTACAA TCAAGAATATTAAAAATATTCTCACCAATAACAGACATAAGAACAATTCAAAAAGCTATTAATTTTGGAAGAAGTA GATACATTGACAATAACTTTGGATATATGGTTCCATTAATATCCTCTAATTTATGGACAGATTCATTCAATCTTGA AGAAATTCACAACAAAACCTATTGCTCTTTAATGGTTGATAGAATATATAAAATAGCAGGACTTAATGTATCAAGA TABLE 1. Nucleotide and Amino Acid Sequences
AATTACGAAATTTCGGGAATAATTACTCCTGGAGAAATAAATGCAGCAGCTTACAATTTTTACATGTCTTATACGA TTGCAGGAATACTTCCAAGCGTGCTTCCAAAAAGGCTCATTAAACCAACATTAAAAGAAAAATTCATTGGTTACAA TAAAGAAATAGTAGATGCAATAGAATTAAAAAAATCGAAAGAAAAAATTTTTGGGAGAGCTTGCAACATTACAAAT CTCTGGTGCTCAGGAAGTTAA
tδ.nt
TGTGCCTTAATTGCAGATAATAAGTCAAAAAATTTAAGCACATCAGAAATCATATTAACACAAAAAACACTACTAG AAAGCTCTTTAATAAAAAATCCTTCTAATGTAGAATATCGAATACCAATATCCAGTATCCAAGAAATTTTAAACAA TAACAATGATTCTTTTTTAATAAAAAAAACAGCAGCAAAAATCAAAATAAGCCCTCAAAAACTTGAAGAAATAAAA AACTATCTAAATGCTTATAAAAATTATCTAAATAATGAAACAGAATGGATAAAGTTTATAGATCAAAGTAGCGTCA ATGGAAATTTAACAATTAAAATTGATACTGCTTTTGAAAAAAAAACAAATTTTAATCATACAAATTCAGATAATGA AAATTTAACAGAACTAATAGAACTACAAATGCATCTGGAAAAAGAAATTTTAAACTTAATTGAGCAAACATTTCAT GATAAAAATTTAGGATATATACAATTAAGTCACATCAACTCATTCTTTCCTCAAGAAAATATAAACTCAATAACAA AAGAAATAATAGATGGAAAAGAATATATTGCACCGCACATAATAGCAAATCAATTATTAAAAATAAAAGATAAAAA ATATTTTGAACAATTTATGCACTTTTTAAAAGTTGAAAACAGCAAAATAAAAACAATAATTGAAAAACAAAAAATT TCAGATCTTCACAATGAACTGTATTATTCAAAACAATCCCCGCCCAGAAGAAGAAAAAGGTCAACTGCCGATTCCG ATAATAACAATAAATACGATATAATACCAAAAATAATAGACCCAAATACAGGCATTGAAATAACTCCTAAAAATTT AAGATCTATTTTATCAAATGGCGACATAATACTAATAAAACCAAAAATAGATTGGACAGAATTTTTTTATTTTTGG CAACATGTGGGAATATTTGATGAAGAAAAATATGAAGCCACTAAAAAAATTGCATTCAATGGAATTGATAGCTTTG ATATAAAATCAATAATTACAAGCAATCAAATCAAATTCGATACAGCATCTACTCAAGGTTCAGGATACGAAAAGCT TTCAACATACGTACAATCAAGAATATTAAAAATATTCTCACCAATAACAGACATAAGAACAATTCAAAAAGCTATT AATTTTGGAAGAAGTAGATACATTGACAATAACTTTGGATATATGGTTCCATTAATATCCTCTAATTTATGGACAG ATTCATTCAATCTTGAAGAAATTCACAACAAAACCTATTGCTCTTTAATGGTTGATAGAATATATAAAATAGCAGG ACTTAATGTATCAAGAAATTACGAAATTTCGGGAATAATTACTCCTGGAGAAATAAATGCAGCAGCTTACAATTTT TACATGTCTTATACGATTGCAGGAATACTTCCAAGCGTGCTTCCAAAAAGGCTCATTAAACCAACATTAAAAGAAA AATTCATTGGTTACAATAAAGAAATAGTAGATGCAATAGAATTAAAAAAATCGAAAGAAAAAATTTTTGGGAGAGC TTGCAACATTACAAATCTCTGGTGCTCAGGAAGTTAA
f82.aa
MTRVFSKFFLFFCFSMLLFANSEDSNEKDIVSKDENPVFENEVLGY VGYNDVSNIKNSI IYIYKYNGEVYGRILT IIKDGKKYDAKNPSGDTWGFENLAIEGLDFM GLKYSSSSKK DRGKI IDPKNGKIYNSEMRVDSKTGNLITKGK VWIFGRSKIWTRAKDDEIPKLDLHNLVPAPPVKK
t82 . aa
EDSNEKDIVSKDENPVFENEVLGY VGYNDVSNIKNSIIYIYKYNGEVYGRILTIIKDGKKYDAKNPSGDTWGFE NLAIEGLDFM GLKYSSSSKK DRGKIIDPKNGKIYNSEMRVDSKTGNLITKGKV IFGRSKIWTRAKDDEIPKLD LHNLVPAPPVKK
f82nt
ATGACTAGAGTTTTTTCAAAGTTTTTTCTTTTTTTTTGTTTTTCAATGCTTTTATTTGCAAATTCAGAAGATTCAA ATGAAAAGGACATTGTTAGCAAGGATGAAAACCCTGTTTTTGAAAATGAAGTTTTAGGATATTGGGTTGGTTATAA TGATGTAAGTAACATAAAGAATTCTATTATCTATATTTATAAATATAATGGGGAAGTTTATGGCCGAATTTTAACT ATAATAAAAGATGGCAAAAAGTATGATGCTAAAAATCCTTCAGGAGATACTGTAGTTGGGTTTGAAAATCTTGCAA TAGAGGGTCTTGATTTTATGTGGGGTCTTAAGTATTCTTCTTCTTCTAAAAAGTGGGATAGGGGCAAAATAATAGA TABLE 1. Nucleotide and Amino Acid Sequences
TCCTAAAAACGGTAAAATTTATAATTCTGAGATGCGTGTTGATAGTAAAACCGGAAATCTTATTACCAAGGGGAAA GTTTGGATTTTTGGTAGAAGTAAAATTTGGACAAGAGCTAAAGATGATGAAATACCAAAATTAGATTTGCATAATC TTGTTCCAGCGCCCCCTGTGAAAAAATAA f82.nt
GAAGATTCAAATGAAAAGGACATTGTTAGCAAGGATGAAAACCCTGTTTTTGAAAATGAAGTTTTAGGATATTGGG TTGGTTATAATGATGTAAGTAACATAAAGAATTCTATTATCTATATTTATAAATATAATGGGGAAGTTTATGGCCG AATTTTAACTATAATAAAAGATGGCAAAAAGTATGATGCTAAAAATCCTTCAGGAGATACTGTAGTTGGGTTTGAA AATCTTGCAATAGAGGGTCTTGATTTTATGTGGGGTCTTAAGTATTCTTCTTCTTCTAAAAAGTGGGATAGGGGCA AAATAATAGATCCTAAAAACGGTAAAATTTATAATTCTGAGATGCGTGTTGATAGTAAAACCGGAAATCTTATTAC CAAGGGGAAAGTTTGGATTTTTGGTAGAAGTAAAATTTGGACAAGAGCTAAAGATGATGAAATACCAAAATTAGAT TTGCATAATCTTGTTCCAGCGCCCCCTGTGAAAAAATAA
f86.aa
MNKLMLMLITFATSLLAQTNKASTGLKTDQSFNNSLSESVKLKEIADIYPTNTNFLTGIGIVAGLAGKGDSIKQKD LIIKILEENNIINEIGSNNIESKNIALVNVSLQVKGNTIKGSKHKACVASILDSKDLTNGILLKTNLKNKEGEIIA IASGITQPNNKLKGSGYTIDSVIINENQNINHSYNIILKKGNYTLINRIHKILTSKKINNKIKSDSTIEIEAKNIS LLEEIENIKIETNPKILIDKKNGIILASENAKIGTFTFSIEKDNQNIFLSKNNKTTIQVNSMKLNEFILKNSNNLS NKELIQIIQAAQKINKLNGELILEEIDGNQN
t86.aa
LKTDQSFNNSLSESVKLKEIADIYPTNTNFLTGIGIVAGLAGKGDSIKQKDLIIKILEENNIINEIGSNNIESKNI ALVNVSLQVKGNTIKGSKHKACVASILDSKDLTNGILLKTNLKNKEGEIIAIASGITQPNNKLKGSGYTIDSVIIN ENQNINHSYNIILKKGNYTLINRIHKILTSKKINNKIKSDSTIEIEAKNISLLEEIENIKIETNPKILIDKKNGII LASENAKIGTFTFSIEKDNQNIFLSKNNKTTIQVNSMKLNEFILKNSNNLSNKELIQIIQAAQKINKLNGELILEE IDGNQN f86.nt
ATGAACAAACTAATGTTGATGTTAATTACATTTGCAACGAGTCTATTAGCCCAAACAAACAAAGCTTCAACAGGAC TAAAAACAGATCAATCATTTAACAATAGCCTATCTGAAAGCGTAAAATTAAAAGAAATTGCGGATATTTATCCCAC AAATACAAATTTTTTAACAGGTATTGGAATAGTAGCGGGACTTGCTGGAAAAGGAGACTCTATAAAACAAAAAGAC CTTATAATTAAAATTTTAGAAGAAAACAATATAATAAATGAAATAGGCTCTAATAACATAGAAAGTAAAAATATTG CACTAGTAAATGTCAGTCTCCAAGTAAAAGGTAATACAATCAAAGGTTCAAAACATAAAGCTTGCGTTGCATCAAT ACTGGACTCAAAAGATTTAACAAATGGAATACTTTTAAAAACAAATCTTAAAAATAAAGAGGGGGAAATAATAGCA ATTGCATCAGGAATTACACAGCCCAATAATAAATTAAAAGGATCTGGATATACTATAGATAGTGTAATAATAAATG AGAATCAAAATATTAACCACAGTTATAATATAATTCTTAAAAAAGGAAATTATACATTAATAAATAGAATTCATAA AATATTAACCTCTAAAAAAATCAACAACAAAATTAAATCAGACAGCACAATAGAAATAGAAGCAAAAAACATAAGC CTATTAGAAGAGATTGAAAATATTAAAATAGAAACCAACCCCAAGATATTAATAGACAAAAAAAATGGTATTATTT TAGCAAGTGAAAATGCAAAAATAGGAACTTTTACATTTTCCATTGAAAAAGACAATCAAAACATTTTTTTAAGTAA AAATAACAAAACAACAATTCAAGTAAACTCAATGAAATTAAATGAATTTATATTAAAAAATTCCAACAATCTTAGC AATAAAGAATTAATTCAAATAATTCAAGCTGCGCAAAAAATTAATAAATTAAATGGGGAACTTATCTTGGAGGAAA TTGATGGAAACCAAAATTAA
tδδ.nt TABLE 1. Nucleotide and Amino Acid Sequences
CTAAAAACAGATCAATCATTTAACAATAGCCTATCTGAAAGCGTAAAATTAAAAGAAATTGCGGATATTTATCCCA CAAATACAAATTTTTTAACAGGTATTGGAATAGTAGCGGGACTTGCTGGAAAAGGAGACTCTATAAAACAAAAAGA CCTTATAATTAAAATTTTAGAAGAAAACAATATAATAAATGAAATAGGCTCTAATAACATAGAAAGTAAAAATATT GCACTAGTAAATGTCAGTCTCCAAGTAAAAGGTAATACAATCAAAGGTTCAAAACATAAAGCTTGCGTTGCATCAA TACTGGACTCAAAAGATTTAACAAATGGAATACTTTTAAAAACAAATCTTAAAAATAAAGAGGGGGAAATAATAGC AATTGCATCAGGAATTACACAGCCCAATAATAAATTAAAAGGATCTGGATATACTATAGATAGTGTAATAATAAAT GAGAATCAAAATATTAACCACAGTTATAATATAATTCTTAAAAAAGGAAATTATACATTAATAAATAGAATTCATA -AAATATTAACCTCTAAAAAAATCAACAACAAAATTAAATCAGACAGCACAATAGAAATAGAAGCAAAAAACATAAG CCTATTAGAAGAGATTGAAAATATTAAAATAGAAACCAACCCCAAGATATTAATAGACAAAAAAAATGGTATTATT TTAGCAAGTGAAAATGCAAAAATAGGAACTTTTACATTTTCCATTGAAAAAGACAATCAAAACATTTTTTTAAGTA AAAATAACAAAACAACAATTCAAGTAAACTCAATGAAATTAAATGAATTTATATTAAAAAATTCCAACAATCTTAG CAATAAAGAATTAATTCAAATAATTCAAGCTGCGCAAAAAATTAATAAATTAAATGGGGAACTTATCTTGGAGGAA ATTGATGGAAACCAAAATTAA
f90.aa
MCPITFTIPFFLAIFFAFSSSFVTDSSVSLLSRNTSLFSTLTPISLPIISGTLPAIVTLSKKYLSISLSFΞKMIFI KSLFEVIKLPIWLFIIFASGYFLNAFSIFLCISSFLSFMFI
t90.aa
SSFVTDSSVSLLSRNTSLFSTLTPISLPIISGTLPAIVTLSKKYLSISLSFSKMIFIKSLFEVIKLPI LFIIFAS GYFLNAFSIFLCISSFLSFMFI f90.nt
ATGTGTCCTATTACTTTTACCATTCCATTTTTTCTAGCAATATTTTTTGCTTTTTCAAGCTCCTTTGTTACGGACT CTTCTGTGTCTTTGCTATCAAGAAATACGTCTCTTTTTTCTACTTTAACTCCAATTTCTTTGCCTATTATTTCTGG TACGCTTCCTGCAATAGTTACGCTGTCGAAAAAATATCTGTCAATCTCTTTAAGCTTTTCTAAAATGATTTTCATC AAATCTTTATTTGAAGTGATTAAACTTCCCATATGGTTATTCATTATTTTTGCATCAGGATACTTTTTAAATGCTT TTTCGATTTTTTTGTGTATTTCTTCTTTTTTATCTTTTATGTTTATATGA
t90.nt
AGCTCCTTTGTTACGGACTCTTCTGTGTCTTTGCTATCAAGAAATACGTCTCTTTTTTCTACTTTAACTCCAATTT CTTTGCCTATTATTTCTGGTACGCTTCCTGCAATAGTTACGCTGTCGAAAAAATATCTGTCAATCTCTTTAAGCTT TTCTAAAATGATTTTCATCAAATCTTTATTTGAAGTGATTAAACTTCCCATATGGTTATTCATTATTTTTGCATCA GGATACTTTTTAAATGCTTTTTCGATTTTTTTGTGTATTTCTTCTTTTTTATCTTTTATGTTTATATGA
f469.aa
MANVALSSGFISQKIFGIIIIMVFLPTIIATPIINFLFKINKSGLKKELPIDQNTHICVSFEYDNLAKILI DFKN ELRKEGFFTQQIKNDSSQYINARKNNISFSIKREGSKITFECPNNHLIIIQDLFRETILNLEKITKEVETVSLRAK KLDYSINYDKILSNINLNKRIKKENIILELKSSNKADVIRELLSVINIEIDKERIFQDLMEREKLITTALKEGFAI PHLKTNLISKIHIAIGISHEGIDFNALDKNLSHVFILILCPAKDYVSYPRILASWGKVDLYKKEILNAKTDKEIY NIIVSZ t469.aa TABLE 1. Nucleotide and Amino Acid Sequences
VFLPTIIATPIINFLFKINKSGLKKELPIDQNTHICVSFEYDNLAKILIWDFKNELRKEGFFTQQIKNDSSQYINA RKNNISFSIKREGSKITFECPNNHLIIIQDLFRETILNLEKITKEVETVSLRAKKLDYSINYDKILSNINLNKRIK KENIILELKSSNKADVIRELLSVINIEIDKERIFQDLMEREKLITTALKEGFAIPHLKTNLISKIHIAIGISHEGI DFNALDKNLSHVFILILCPAKDYVSYPRILASWGKVDLYKKEILNAKTDKEIYNIIVSZ f469.nt
ATGGCAAATGTAGCATTATCTTCAGGATTTATTAGCCAAAAAATATTTGGAATCATAATAATAATGGTGTTTTTGC CAACAATCATTGCAACACCCATAATAAACTTTTTATTTAAAATAAATAAAAGTGGACTTAAAAAAGAACTCCCAAT AGATCAAAATACACACATATGCGTATCATTTGAATATGATAATTTAGCCAAAATTCTTATATGGGACTTTAAAAAT GAGTTAAGAAAAGAAGGATTTTTTACACAACAAATTAAAAATGATTCTTCACAATATATTAATGCAAGAAAAAACA ATATATCCTTCTCAATAAAACGAGAAGGTAGCAAAATCACATTTGAATGCCCAAATAATCATTTAATTATAATACA AGATCTTTTTAGAGAAACAATCTTAAACCTAGAAAAAATAACCAAAGAAGTTGAAACAGTCTCTTTAAGAGCAAAA AAACTAGATTACTCAATAAATTACGATAAAATCCTTAGTAATATCAACCTAAATAAAAGAATAAAAAAGGAAAACA TTATTCTAGAATTAAAATCAAGCAATAAGGCTGATGTAATAAGAGAGCTTCTAAGCGTAATAAACATTGAAATTGA TAAAGAAAGAATATTCCAAGATTTAATGGAAAGAGAAAAGTTAATTACTACTGCACTAAAAGAAGGCTTTGCCATT CCCCATTTAAAAACAAATTTAATATCAAAAATACATATTGCAATAGGAATAAGCCATGAGGGAATTGACTTTAATG CTCTTGACAAGAACTTAAGTCATGTTTTTATATTAATACTGTGCCCAGCAAAAGATTACGTTAGCTACCCTAGAAT TTTAGCATCTGTTGTGGGCAAAGTTGATCTGTACAAAAAAGAAATTTTAAATGCAAAAACAGATAAAGAAATTTAT AATATAATAGTGAGCTAA t469.nt
TTTTTGCCAACAATCATTGCAACACCCATAATAAACTTTTTATTTAAAATAAATAAAAGTGGACTTAAAAAAGAAC TCCCAATAGATCAAAATACACACATATGCGTATCATTTGAATATGATAATTTAGCCAAAATTCTTATATGGGACTT TAAAAATGAGTTAAGAAAAGAAGGATTTTTTACACAACAAATTAAAAATGATTCTTCACAATATATTAATGCAAGA AAAAACAATATATCCTTCTCAATAAAACGAGAAGGTAGCAAAATCACATTTGAATGCCCAAATAATCATTTAATTA TAATACAAGATCTTTTTAGAGAAACAATCTTAAACCTAGAAAAAATAACCAAAGAAGTTGAAACAGTCTCTTTAAG AGCAAAAAAACTAGATTACTCAATAAATTACGATAAAATCCTTAGTAATATCAACCTAAATAAAAGAATAAAAAAG GAAAACATTATTCTAGAATTAAAATCAAGCAATAAGGCTGATGTAATAAGAGAGCTTCTAAGCGTAATAAACATTG AAATTGATAAAGAAAGAATATTCCAAGATTTAATGGAAAGAGAAAAGTTAATTACTACTGCACTAAAAGAAGGCTT TGCCATTCCCCATTTAAAAACAAATTTAATATCAAAAATACATATTGCAATAGGAATAAGCCATGAGGGAATTGAC TTTAATGCTCTTGACAAGAACTTAAGTCATGTTTTTATATTAATACTGTGCCCAGCAAAAGATTACGTTAGCTACC CTAGAATTTTAGCATCTGTTGTGGGCAAAGTTGATCTGTACAAAAAAGAAATTTTAAATGCAAAAACAGATAAAGA AATTTATAATATAATAGTGAGCTAA f477.aa
MEKPQGVSIVGAISGAMHVHLMAEHYGVPWLHTDHCAKNLLPWVEGLLEYGEKYYSQHKKPLFSSHMLDLSEEPI KENIEISKKFLERMAKIEMFLEIELGITGGEEDGVDNSDRALHELFSTPEDIYYGYSELLKVSPNFQIAAAFGNVH GVYKPGNVKLTPKVLKDGQDYVISKTGVNMAKPVSYVFHGGSGSTIDEINEALSYGWKMNIDTDTQWAA EGVLN YYKKNESRLQGQLGDGKDIDIPNKKFYDPRV LREAEVSMKDRVKIACKNLNNINRNZ t477 . aa
MHVHLMAEHYGVPWLHTDHCAKNLLPWVEGLLEYGEKYYSQHKKPLFSSHMLDLSEEPIKENIEISKKFLERMAK IEMFLEIELGITGGEEDGVDNSDRALHELFSTPEDIYYGYSELLKVSPNFQIAAAFGNVHGVYKPGNVKLTPKVLK DGQDYVISKTGVNMAKPVSYVFHGGSGSTIDEINEALSYGWKMNIDTDTQ AA EGVLNYYKKNESRLQGQLGDG KDIDIPNKKFYDPRVWLREAEVSMKDRVKIACKNLNNINRNZ f477 . nt
ATGGAAAAACCACAAGGAGTTTCAATAGTTGGAGCTATTTCTGGTGCTATGCATGTTCATTTAATGGCAGAGCATT ATGGTGTTCCTGTTGTTCTTCATACTGATCACTGTGCTAAAAATTTGCTTCCTTGGGTTGAAGGCCTTTTAGAATA TGGAGAGAAATACTATAGTCAGCACAAAAAACCATTATTTTCTTCACATATGTTAGATTTATCAGAAGAACCTATT TABLE 1. Nucleotide and Amino Acid Sequences
AAAGAAAATATTGAAATTTCTAAAAAATTCTTAGAAAGAATGGCAAAAATTGAAATGTTTTTGGAAATAGAGCTTG GAATTACGGGTGGGGAAGAGGATGGAGTTGACAATTCAGATAGAGCTTTGCATGAACTATTTTCTACTCCTGAGGA TATTTATTATGGATATTCAGAACTTTTAAAAGTTAGCCCAAATTTTCAGATTGCAGCAGCTTTTGGAAATGTTCAT GGGGTATATAAACCGGGGAATGTTAAGCTTACTCCAAAAGTTTTAAAAGATGGTCAAGATTATGTCATATCAAAAA CAGGAGTAAATATGGCTAAGCCAGTTTCTTATGTTTTTCATGGAGGGTCTGGATCTACAATTGATGAGATTAATGA GGCGCTTTCTTATGGCGTTGTAAAGATGAATATTGACACAGATACACAGTGGGCTGCCTGGGAGGGTGTTTTAAAT TATTACAAAAAAAATGAAAGTCGTTTGCAAGGTCAATTAGGAGATGGCAAGGATATTGATATTCCAAATAAGAAAT TTTATGATCCAAGGGTTTGGTTAAGAGAAGCTGAAGTTTCTATGAAAGACCGTGTGAAGATTGCATGCAAAAATCT TAATAATATTAATAGAAATTAA t477.nt
ATGCATGTTCATTTAATGGCAGAGCATTATGGTGTTCCTGTTGTTCTTCATACTGATCACTGTGCTAAAAATTTGC TTCCTTGGGTTGAAGGCCTTTTAGAATATGGAGAGAAATACTATAGTCAGCACAAAAAACCATTATTTTCTTCACA TATGTTAGATTTATCAGAAGAACCTATTAAAGAAAATATTGAAATTTCTAAAAAATTCTTAGAAAGAATGGCAAAA ATTGAAATGTTTTTGGAAATAGAGCTTGGAATTACGGGTGGGGAAGAGGATGGAGTTGACAATTCAGATAGAGCTT TGCATGAACTATTTTCTACTCCTGAGGATATTTATTATGGATATTCAGAACTTTTAAAAGTTAGCCCAAATTTTCA GATTGCAGCAGCTTTTGGAAATGTTCATGGGGTATATAAACCGGGGAATGTTAAGCTTACTCCAAAAGTTTTAAAA GATGGTCAAGATTATGTCATATCAAAAACAGGAGTAAATATGGCTAAGCCAGTTTCTTATGTTTTTCATGGAGGGT CTGGATCTACAATTGATGAGATTAATGAGGCGCTTTCTTATGGCGTTGTAAAGATGAATATTGACACAGATACACA GTGGGCTGCCTGGGAGGGTGTTTTAAATTATTACAAAAAAAATGAAAGTCGTTTGCAAGGTCAATTAGGAGATGGC AAGGATATTGATATTCCAAATAAGAAATTTTATGATCCAAGGGTTTGGTTAAGAGAAGCTGAAGTTTCTATGAAAG ACCGTGTGAAGATTGCATGCAAAAATCTTAATAATATTAATAGAAATTAA f488.aa
MPSSFPFLLVNGSSGIAVGMATNMAPHNLREICDAIλ TMLDNENASIFDLLKIVKGPDFPTFGEIVYNDNLIKAYK TGKGSWIRARYHIEERAEDRNAIIVTEIPYTVNKSALLMKVALLAKEEKLEGLLDIRDESDREGIRIVLEVKRGF DPHVIMNLLYEYTEFKKHFSINNLALVNGIPKQLNLEELLFEFIEHRKNIIERRIEFDLRKAKEKAHVLEGLNIAL NNIDEVIKIIKSSKLAKDARERLVSNFGLSEIQANSVLDMRLQKLTALEIFKLEEELNILLSLIKDYEDILLNPVR IINIIREETINLGLKFGDERRTKIIYDEEVLKTSMSDLM KENIWMLTKKGFLKRLSQNEYKLQGTGGKGLSSFD LNDGDEIVIALCVNTHDYLFMISNEGKLYLINAYEIKDSSRASKGQNISELINLGDQEEILTIKNSKDLTDDAYLL LTTASGKIARFESTDFKAVKSRGVIVIKLNDKDFVTSAEIVFKDEKVICLSKKGSAFIFNSRDVRLTNRGTQGVCG MKLKEGDLFVKVLSVKENPYLLIVSENGYGKRLNMSKISELKRGATGYTSYKKSDKKAGSVλDAIAVSEDDEILLV SKRSKALRTVAGKVSEQGKDARGIQVLFLDNDSLVSVSKFIKZ t488.aa
MATNMAPHNLREICDAIVYMLDNENASIFDLLKIVKGPDFPTFGEIVYNDNLIKAYKTGKGSWIRARYHIEERAE DRNAIIVTEIPYTVNKSALLMKVALLAKEEKLEGLLDIRDESDREGIRIVLEVKRGFDPHVIMNLLYEYTEFKKHF SINNLALVNGIPKQLNLEELLFEFIEHRKNIIERRIEFDLRKAKEKAHVLEGLNIALNNIDEVIKIIKSSKLAKDA RERLVSNFGLSEIQANSVLDMRLQKLTALEIFKLEEELNILLSLIKDYEDILLNPVRIINIIREETINLGLKFGDE RRTKIIYDEEVLKTSMSDLMQKENIWMLTKKGFLKRLSQNEYKLQGTGGKGLSSFDLNDGDEIVIALCVNTHDYL FMISNEGKLYLINAYEIKDSSRASKGQNISELINLGDQEEILTIKNSKDLTDDAYLLLTTASGKIARFESTDFKAV KSRGVIVIKLNDKDFVTSAEIVFKDΞKVICLSKKGSAFIFNSRDVRLTNRGTQGVCGMKLKEGDLFVKVLSVKENP YLLIVSENGYGKRLNMSKISELKRGATGYTSYKKSDKKAGSWDAIAVSEDDEILLVSKRSKALRTVAGKVSEQGK DARGIQVLFLDNDSLVSVSKFIKZ f4δδ.nt
ATGCCGTCATCATTTCCATTTCTTTTGGTAAATGGCTCTAGTGGAATTGCTGTTGGAATGGCTACTAATATGGCAC CTCATAATTTAAGAGAAATTTGTGATGCCATTGTTTACATGCTAGATAATGAGAATGCTTCTATATTTGATTTGCT TAAAATAGTTAAAGGGCCTGATTTCCCAACTTTTGGAGAGATTGTTTATAATGATAATTTAATTAAAGCATACAAA ACTGGCAAGGGAAGTGTTGTTATTAGGGCAAGATATCATATTGAAGAAAGAGCAGAAGATAGAAATGCTATAATTG TTACAGAAATACCTTATACGGTAAATAAATCTGCACTTCTTATGAAAGTTGCGCTTTTAGCAAAAGAAGAAAAGCT AGAAGGACTTTTAGATATAAGAGATGAATCTGATCGAGAAGGTATTAGGATAGTTCTTGAAGTTAAAAGAGGATTT TABLE 1. Nucleotide and Amino Acid Sequences
GATCCTCATGTTATTATGAATTTGCTTTATGAATATACTGAATTTAAAAAGCATTTTAGTATAAATAATTTAGCCC TTGTTAATGGTATTCCCAAACAGTTAAATTTAGAAGAATTGTTATTTGAATTTATTGAGCATAGAAAAAATATTAT CGAAAGACGTATTGAATTTGACTTGAGAAAGGCAAAAGAGAAAGCACATGTTCTTGAGGGATTAAATATTGCTTTA AATAATATAGATGAGGTTATTAAGATTATTAAATCATCTAAATTAGCAAAAGATGCAAGGGAGAGGCTTGTTTCGA ATTTTGGTCTTTCAGAGATTCAGGCCAATTCAGTTCTTGATATGAGGTTACAAAAACTTACAGCCCTTGAGATTTT TAAGCTTGAAGAGGAGCTTAATATACTGTTAAGCTTAATAAAAGATTATGAAGATATTCTCTTGAATCCAGTAAGG ATTATTAATATTATAAGAGAAGAAACTATTAATTTAGGTTTGAAATTTGGCGATGAACGTCGAACTAAAATAATTT ATGATGAGGAGGTTTTAAAAACTAGTATGTCGGATTTAATGCAAAAAGAAAATATTGTTGTTATGCTTACAAAGAA AGGTTTCCTTAAAAGACTTTCACAAAATGAGTATAAATTGCAAGGTACGGGAGGAAAAGGACTAAGTTCGTTTGAT CTAAATGATGGAGATGAGATTGTTATTGCTTTGTGTGTCAATACTCATGATTATTTATTTATGATTTCAAATGAAG GAAAGCTTTATTTAATCAATGCTTATGAAATAAAAGATTCTTCAAGAGCTTCAAAAGGTCAGAATATTAGTGAGCT TATTAATTTAGGAGATCAAGAAGAAATATTAACTATTAAGAATAGTAAAGATTTAACTGATGATGCTTATTTATTG CTTACAACTGCAAGTGGAAAGATAGCTAGATTCGAATCTACAGATTTTAAAGCAGTAAAGTCACGAGGTGTTATTG TTATTAAACTGAATGATAAAGATTTTGTTACAAGTGCAGAGATTGTTTTTAAGGATGAAAAAGTAATTTGTCTTTC TAAAAAGGGTAGTGCATTTATATTTAATTCAAGGGATGTTAGGCTTACTAATAGAGGTACCCAAGGTGTTTGTGGA ATGAAATTAAAAGAAGGTGATTTGTTTGTTAAAGTTTTATCGGTTAAAGAAAATCCTTATCTTTTGATTGTTTCTG AAAATGGGTATGGAAAAAGGTTAAACATGTCTAAAATATCTGAGCTTAAAAGAGGAGCCACTGGTTATACTAGTTA TAAAAAATCTGATAAAAAAGCGGGTAGTGTTGTTGATGCTATAGCAGTTTCAGAGGATGATGAAATCTTGCTTGTA AGTAAACGTTCAAAAGCTTTAAGAACAGTAGCTGGAAAAGTATCTGAACAAGGCAAAGATGCTAGAGGAATTCAAG TATTATTTCTTGATAATGACAGCTTGGTTTCTGTTTCAAAATTTATTAAATAA t488.nt
ATGGCTACTAATATGGCACCTCATAATTTAAGAGAAATTTGTGATGCCATTGTTTACATGCTAGATAATGAGAATG CTTCTATATTTGATTTGCTTAAAATAGTTAAAGGGCCTGATTTCCCAACTTTTGGAGAGATTGTTTATAATGATAA TTTAATTAAAGCATACAAAACTGGCAAGGGAAGTGTTGTTATTAGGGCAAGATATCATATTGAAGAAAGAGCAGAA GATAGAAATGCTATAATTGTTACAGAAATACCTTATACGGTAAATAAATCTGCACTTCTTATGAAAGTTGCGCTTT TAGCAAAAGAAGAAAAGCTAGAAGGACTTTTAGATATAAGAGATGAATCTGATCGAGAAGGTATTAGGATAGTTCT TGAAGTTAAAAGAGGATTTGATCCTCATGTTATTATGAATTTGCTTTATGAATATACTGAATTTAAAAAGCATTTT AGTATAAATAATTTAGCCCTTGTTAATGGTATTCCCAAACAGTTAAATTTAGAAGAATTGTTATTTGAATTTATTG AGCATAGAAAAAATATTATCGAAAGACGTATTGAATTTGACTTGAGAAAGGCAAAAGAGAAAGCACATGTTCTTGA GGGATTAAATATTGCTTTAAATAATATAGATGAGGTTATTAAGATTATTAAATCATCTAAATTAGCAAAAGATGCA AGGGAGAGGCTTGTTTCGAATTTTGGTCTTTCAGAGATTCAGGCCAATTCAGTTCTTGATATGAGGTTACAAAAAC TTACAGCCCTTGAGATTTTTAAGCTTGAAGAGGAGCTTAATATACTGTTAAGCTTAATAAAAGATTATGAAGATAT TCTCTTGAATCCAGTAAGGATTATTAATATTATAAGAGAAGAAACTATTAATTTAGGTTTGAAATTTGGCGATGAA CGTCGAACTAAAATAATTTATGATGAGGAGGTTTTAAAAACTAGTATGTCGGATTTAATGCAAAAAGAAAATATTG TTGTTATGCTTACAAAGAAAGGTTTCCTTAAAAGACTTTCACAAAATGAGTATAAATTGCAAGGTACGGGAGGAAA AGGACTAAGTTCGTTTGATCTAAATGATGGAGATGAGATTGTTATTGCTTTGTGTGTCAATACTCATGATTATTTA TTTATGATTTCAAATGAAGGAAAGCTTTATTTAATCAATGCTTATGAAATAAAAGATTCTTCAAGAGCTTCAAAAG GTCAGAATATTAGTGAGCTTATTAATTTAGGAGATCAAGAAGAAATATTAACTATTAAGAATAGTAAAGATTTAAC TGATGATGCTTATTTATTGCTTACAACTGCAAGTGGAAAGATAGCTAGATTCGAATCTACAGATTTTAAAGCAGTA AAGTCACGAGGTGTTATTGTTATTAAACTGAATGATAAAGATTTTGTTACAAGTGCAGAGATTGTTTTTAAGGATG AAAAAGTAATTTGTCTTTCTAAAAAGGGTAGTGCATTTATATTTAATTCAAGGGATGTTAGGCTTACTAATAGAGG TACCCAAGGTGTTTGTGGAATGAAATTAAAAGAAGGTGATTTGTTTGTTAAAGTTTTATCGGTTAAAGAAAATCCT TATCTTTTGATTGTTTCTGAAAATGGGTATGGAAAAAGGTTAAACATGTCTAAAATATCTGAGCTTAAAAGAGGAG CCACTGGTTATACTAGTTATAAAAAATCTGATAAAAAAGCGGGTAGTGTTGTTGATGCTATAGCAGTTTCAGAGGA TGATGAAATCTTGCTTGTAAGTAAACGTTCAAAAGCTTTAAGAACAGTAGCTGGAAAAGTATCTGAACAAGGCAAA GATGCTAGAGGAATTCAAGTATTATTTCTTGATAATGACAGCTTGGTTTCTGTTTCAAAATTTATTAAATAA f494.aa
MFALIRKIFMIYFLCITLAGFAMIFIDSKFTEQPNVKENQSKINQHTIEPNLIMFTSSIGGFLGλ/YVGIWIFNYDK SNFYLN GNLIILIYNIALIITVYSKSHS t494.aa TABLE 1. Nucleotide and Amino Acid Sequences
MIFIDSKFTEQPNVKENQSKINQHTIEPNLIMFTSSIGGFLGVYVGIWIFNYDKSNFYLNWGNLIILIYNIALIIT VYSKSHS f494.nt
ATGTTTGCATTAATTAGAAAAATATTTATGATCTATTTTTTATGCATTACTCTTGCAGGTTTTGCCATGATTTTTA TTGACAGCAAATTTACCGAACAGCCTAATGTTAAAGAAAATCAAAGCAAAATTAATCAACATACAATTGAACCCAA TTTAATCATGTTTACATCTTCTATAGGAGGATTTTTAGGTGTTTATGTTGGAATTTGGATCTTTAACTATGACAAA AGCAATTTTTACCTAAATTGGGGAAATTTAATAATATTAATATACAACATAGCCCTAATTATCACTGTATACTCAA AATCACATAGTTAG t494.nt
ATGATTTTTATTGACAGCAAATTTACCGAACAGCCTAATGTTAAAGAAAATCAAAGCAAAATTAATCAACATACAA TTGAACCCAATTTAATCATGTTTACATCTTCTATAGGAGGATTTTTAGGTGTTTATGTTGGAATTTGGATCTTTAA CTATGACAAAAGCAATTTTTACCTAAATTGGGGAAATTTAATAATATTAATATACAACATAGCCCTAATTATCACT GTATACTCAAAATCACATAGTTAG f516.aa
MKKTPNTCIFLTLLIISNLNALANEEGNTNEKNDQPKQISNFFSPERGFIYSTGIGIGVGFFLNSNIKHLIFRPYY TFSNNTFDFLIVAMILTRESLNIPKKMQYFKSYIGGGINWHIANLIKKTKYFSATIGIGGRFYLSTNFIEDIRFYE KLPYVIEPYMFIEISSKKAIPLMGLDFKIDFLFLDTFNISFNFTIRYNFKDKNEMET t516.aa
NEEGNTNEKNDQPKQISNFFSPERGFIYSTGIGIGVGFFLNSNIKHLIFRPYYTFSNNTFDFLIVAMILTRESLNI PKKMQYFKSYIGGGINWHIANLIKKTKYFSATIGIGGRFYLSTNFIEDIRFYEKLPYVIEPYMFIEISSKKAIPLM GLDFKIDFLFLDTFNISFNFTIRYNFKDKNEMET f516.nt
ATGAAAAAAACTCCAAACACTTGTATTTTCTTAACATTGCTTATCATTTCCAATTTAAATGCACTTGCAAATGAAG AAGGCAATACTAATGAAAAAAATGATCAACCCAAACAAATCTCTAATTTTTTTAGCCCAGAAAGAGGGTTCATATA TTCAACAGGAATTGGGATTGGAGTTGGATTTTTTCTAAATTCAAATATTAAACACCTTATCTTTAGACCTTATTAT ACATTCTCTAATAATACTTTTGATTTTTTAATCGTTGCTATGATATTAACAAGGGAAAGCCTTAATATCCCCAAAA AAATGCAATACTTTAAATCTTATATTGGAGGAGGAATAAACTGGCACATTGCAAACTTAATTAAAAAAACAAAATA TTTTTCCGCCACCATTGGCATAGGTGGTCGTTTTTACCTATCTACAAACTTTATAGAAGACATTCGATTTTACGAA AAATTGCCTTATGTAATAGAGCCTTATATGTTTATTGAAATTTCTTCTAAAAAGGCAATTCCTTTAATGGGGTTAG ACTTTAAAATTGATTTTTTATTTTTAGATACATTTAACATTTCTTTTAATTTTACTATTAGATATAATTTTAAGGA CAAAAACGAGATGGAAACATGA t516.nt
AATGAAGAAGGCAATACTAATGAAAAAAATGATCAACCCAAACAAATCTCTAATTTTTTTAGCCCAGAAAGAGGGT TCATATATTCAACAGGAATTGGGATTGGAGTTGGATTTTTTCTAAATTCAAATATTAAACACCTTATCTTTAGACC TTATTATACATTCTCTAATAATACTTTTGATTTTTTAATCGTTGCTATGATATTAACAAGGGAAAGCCTTAATATC CCCAAAAAAATGCAATACTTTAAATCTTATATTGGAGGAGGAATAAACTGGCACATTGCAAACTTAATTAAAAAAA CAAAATATTTTTCCGCCACCATTGGCATAGGTGGTCGTTTTTACCTATCTACAAACTTTATAGAAGACATTCGATT TTACGAAAAATTGCCTTATGTAATAGAGCCTTATATGTTTATTGAAATTTCTTCTAAAAAGGCAATTCCTTTAATG GGGTTAGACTTTAAAATTGATTTTTTATTTTTAGATACATTTAACATTTCTTTTAATTTTACTATTAGATATAATT TTAAGGACAAAAACGAGATGGAAACATGA f517.aa TABLE 1. Nucleotide and Amino Acid Sequences
MIPWASGGILIALSIAFVGIGPDGPNFAEHPFYKQIADIGSIAFGMMLPVLAGFIAMAIADKPGLTPGLVGGVMS GNVKAGFLGAIFAGFLAGYVARFLARRSVPEWLRPVMPIFVIPLISTIIVGFFMLYFGVYIGKFMGVLESGLKSLQ SNSETFGVLGKIFLGLVLGSMITVDMGGPFNKVAFLFGVGLIPQVPEIMGMVAAAIPVPPMAMGLATFLAPKLFEN EEKESGKIAFLISFIGISEGAIPFAASDPGRVIPSIVVGGAVSSIIAAFLGVANHAPHGGPIVLPVIDNKFGFIIA IAVGVAVATALVIFLKSLKLKESE t517.aa
DKPGLTPGLVGGVMSGNVKAGFLGAIFAGFLAGYVARFLARRSVPEWLRPVMPIFVIPLISTIIVGFFMLYFGVYI GKF GVLESGLKSLQSNSETFGVLGKIFLGLVLGSMITVDMGGPFNKVAFLFGVGLIPQVPEIMGMVAAAIPVPPM AMGLATFLAPKLFENEEKESGKIAFLISFIGISEGAIPFAASDPGRVIPSIWGGAVSSIIAAFLGVANHAPHGGP IVLPVIDNKFGFIIAIAVGVAVATALVIFLKSLKLKESE
f517.nt
ATGATTCCTGTTGTTGCAAGTGGAGGAATTTTAATTGCTCTTAGCATTGCTTTTGTTGGGATTGGACCTGATGGGC CTAATTTTGCTGAGCATCCATTTTATAAGCAGATTGCAGATATTGGTTCTATAGCTTTTGGGATGATGTTGCCCGT GCTTGCTGGTTTTATTGCAATGGCAATTGCTGATAAGCCTGGTCTTACCCCCGGTCTTGTTGGTGGAGTAATGTCT GGGAATGTAAAAGCAGGTTTCTTGGGCGCAATATTTGCGGGCTTTCTTGCAGGTTATGTTGCAAGGTTTTTAGCAA GAAGATCTGTTCCTGAGTGGTTAAGACCTGTAATGCCTATATTTGTAATTCCGCTAATAAGCACCATTATTGTCGG CTTTTTTATGCTGTATTTTGGTGTTTATATTGGAAAATTTATGGGGGTGCTTGAGAGTGGGCTTAAATCTTTACAG AGTAATTCGGAAACTTTTGGCGTGTTGGGTAAAATTTTCTTAGGCTTAGTACTAGGTTCAATGATTACTGTTGATA TGGGCGGACCTTTTAATAAAGTGGCATTTCTTTTTGGTGTAGGGCTAATTCCTCAAGTGCCAGAAATAATGGGAAT GGTAGCAGCAGCAATTCCTGTTCCTCCTATGGCTATGGGGCTTGCAACCTTTTTAGCACCTAAATTGTTTGAAAAT GAAGAAAAAGAATCTGGTAAAATAGCCTTTTTAATTTCATTTATTGGTATTAGCGAAGGAGCTATTCCTTTTGCTG CTAGTGATCCCGGACGGGTAATCCCTTCGATAGTGGTAGGGGGAGCTGTATCAAGCATTATTGCCGCTTTTTTAGG CGTTGCTAATCATGCTCCACACGGAGGACCAATAGTACTTCCTGTTATTGATAATAAATTTGGGTTTATTATTGCA ATTGCTGTTGGAGTTGCGGTTGCAACAGCTTTGGTAATTTTTTTGAAATCTTTAAAATTAAAGGAATCTGAATGA t517.nt
GATAAGCCTGGTCTTACCCCCGGTCTTGTTGGTGGAGTAATGTCTGGGAATGTAAAAGCAGGTTTCTTGGGCGCAA TATTTGCGGGCTTTCTTGCAGGTTATGTTGCAAGGTTTTTAGCAAGAAGATCTGTTCCTGAGTGGTTAAGACCTGT AATGCCTATATTTGTAATTCCGCTAATAAGCACCATTATTGTCGGCTTTTTTATGCTGTATTTTGGTGTTTATATT GGAAAATTTATGGGGGTGCTTGAGAGTGGGCTTAAATCTTTACAGAGTAATTCGGAAACTTTTGGCGTGTTGGGTA AAATTTTCTTAGGCTTAGTACTAGGTTCAATGATTACTGTTGATATGGGCGGACCTTTTAATAAAGTGGCATTTCT TTTTGGTGTAGGGCTAATTCCTCAAGTGCCAGAAATAATGGGAATGGTAGCAGCAGCAATTCCTGTTCCTCCTATG GCTATGGGGCTTGCAACCTTTTTAGCACCTAAATTGTTTGAAAATGAAGAAAAAGAATCTGGTAAAATAGCCTTTT TAATTTCATTTATTGGTATTAGCGAAGGAGCTATTCCTTTTGCTGCTAGTGATCCCGGACGGGTAATCCCTTCGAT AGTGGTAGGGGGAGCTGTATCAAGCATTATTGCCGCTTTTTTAGGCGTTGCTAATCATGCTCCACACGGAGGACCA ATAGTACTTCCTGTTATTGATAATAAATTTGGGTTTATTATTGCAATTGCTGTTGGAGTTGCGGTTGCAACAGCTT TGGTAATTTTTTTGAAATCTTTAAAATTAAAGGAATCTGAATGA f519.aa
MIKIFKKIYILTLVLGMAHLSFASDNYMVRCSKEEDSTTCIAKLKEIKEKKNYDLFSMGIGIGDPIANIMITIPYI NIDFGYGGFIGLKSNNFENYLNGGIDVIFKKQIGQYMKIGGGIGIGADWSKTSLIPPNEEEETDYERIGAVIRIPF IMEYNFAKNLSIGFKIYPAVGPTILLTKPSILFEGIKFNFFGFGFIKFAFN t519.aa
DNYMVRCSKEEDSTTCIAKLKEIKEKKNYDLFSMGIGIGDPIANIMITIPYINIDFGYGGFIGLKSNNFENYLNGG IDVIFKKQIGQYMKIGGGIGIGADWSKTSLIPPNEEEETDYERIGAVIRIPFIMEYNFAKNLSIGFKIYPAVGPTI LLTKPSILFEGIKFNFFGFGFIKFAFN TABLE 1. Nucleotide and Amino Acid Sequences f519 . nt
ATGATAAAAATTTTTAAAAAAATATACATTTTAACATTAGTATTAGGTATGGCACACCTTTCTTTTGCATCTGACA ATTATATGGTCAGATGCAGCAAGGAAGAAGATTCAACCACCTGTATCGCAAAGCTTAAAGAAATAAAAGAAAAGAA AAATTATGACTTATTTTCAATGGGCATTGGAATAGGAGATCCTATTGCAAATATTATGATTACAATTCCTTATATA AATATTGATTTTGGATATGGAGGTTTTATTGGCCTTAAGTCAAACAATTTTGAAAATTATCTAAATGGTGGAATAG ACGTTATTTTTAAAAAGCAAATTGGACAATATATGAAAATTGGCGGCGGCATTGGAATAGGTGCGGATTGGTCAAA AACATCCCTTATACCCCCTAATGAAGAAGAAGAAACTGATTATGAGAGAATAGGCGCTGTTATAAGAATTCCTTTT ATAATGGAATATAATTTTGCAAAAAATTTATCCATAGGATTCAAAATTTATCCTGCAGTAGGGCCAACAATATTAC TAACAAAACCAAGCATTTTATTTGAAGGAATTAAATTCAATTTTTTTGGATTTGGATTCATAAAATTTGCATTTAA TTAA t519.nt
GACAATTATATGGTCAGATGCAGCAAGGAAGAAGATTCAACCACCTGTATCGCAAAGCTTAAAGAAATAAAAGAAA AGAAAAATTATGACTTATTTTCAATGGGCATTGGAATAGGAGATCCTATTGCAAATATTATGATTACAATTCCTTA TATAAATATTGATTTTGGATATGGAGGTTTTATTGGCCTTAAGTCAAACAATTTTGAAAATTATCTAAATGGTGGA ATAGACGTTATTTTTAAAAAGCAAATTGGACAATATATGAAAATTGGCGGCGGCATTGGAATAGGTGCGGATTGGT CAAAAACATCCCTTATACCCCCTAATGAAGAAGAAGAAACTGATTATGAGAGAATAGGCGCTGTTATAAGAATTCC TTTTATAATGGAATATAATTTTGCAAAAAATTTATCCATAGGATTCAAAATTTATCCTGCAGTAGGGCCAACAATA TTACTAACAAAACCAAGCATTTTATTTGAAGGAATTAAATTCAATTTTTTTGGATTTGGATTCATAAAATTTGCAT TTAATTAA f520.aa
MRMLLATIILILTTGLLAAQSKSKSMTEDDFDFDKLLAKEESVRRLFGIGFGVGYPLANITISVPYVDIDLGYGGF VGLKPNNFLPYWMGVDLLFKDEIHKNTMISGGIGIGADWSKGSPEKSNEKLEEEEENEAQQVASLQNRIGWIRL PLVIEYSFLKNIVIGFKAVATIGTTMLLGSPMSFEGARFNFLGTGFIKIYI t520 . aa
QSKSKSMTEDDFDFDKLLAKEESVRRLFGIGFGVGYPLANITISVPYVDIDLGYGGFVGLKPNNFLPYWMGVDLL FKDEIHKNTMISGGIGIGAD SKGSPEKSNEKLEEEEENEAQQVASLQNRIGWIRLPLVIEYSFLKNIVIGFKAV ATIGTTMLLGSPMSFEGARFNFLGTGFIKIYI f520.nt
ATGAGAATGCTATTAGCAACAATAATACTTATATTAACAACGGGTTTATTAGCTGCACAATCCAAAAGCAAAAGTA TGACTGAAGATGACTTTGATTTTGATAAACTTCTTGCAAAAGAAGAGTCTGTGCGCCGTTTATTTGGCATAGGTTT TGGAGTTGGATATCCACTTGCAAACATTACAATATCTGTTCCATATGTAGACATAGACCTTGGGTACGGAGGATTC GTAGGGCTTAAACCCAACAATTTCTTGCCCTATGTTGTGATGGGTGTAGATCTTCTATTTAAAGATGAAATACACA AAAACACTATGATTTCTGGAGGCATTGGAATAGGTGCAGATTGGTCAAAAGGAAGTCCTGAAAAATCAAATGAAAA ACTTGAAGAAGAGGAAGAAAATGAAGCACAACAAGTAGCTTCTCTTCAAAATAGAATAGGGGTTGTGATAAGATTG CCTTTGGTAATAGAGTACAGCTTTCTTAAAAATATTGTGATTGGATTTAAAGCTGTTGCTACTATTGGAACAACTA TGCTACTTGGCAGCCCAATGTCATTTGAAGGAGCTAGATTTAATTTCTTAGGCACAGGCTTTATAAAAATATATAT ATAG t520.nt
CAATCCAAAAGCAAAAGTATGACTGAAGATGACTTTGATTTTGATAAACTTCTTGCAAAAGAAGAGTCTGTGCGCC GTTTATTTGGCATAGGTTTTGGAGTTGGATATCCACTTGCAAACATTACAATATCTGTTCCATATGTAGACATAGA CCTTGGGTACGGAGGATTCGTAGGGCTTAAACCCAACAATTTCTTGCCCTATGTTGTGATGGGTGTAGATCTTCTA TTTAAAGATGAAATACACAAAAACACTATGATTTCTGGAGGCATTGGAATAGGTGCAGATTGGTCAAAAGGAAGTC CTGAAAAATCAAATGAAAAACTTGAAGAAGAGGAAGAAAATGAAGCACAACAAGTAGCTTCTCTTCAAAATAGAAT AGGGGTTGTGATAAGATTGCCTTTGGTAATAGAGTACAGCTTTCTTAAAAATATTGTGATTGGATTTAAAGCTGTT TABLE 1. Nucleotide and Amino Acid Sequences
GCTACTATTGGAACAACTATGCTACTTGGCAGCCCAATGTCATTTGAAGGAGCTAGATTTAATTTCTTAGGCACAG GCTTTATAAAAATATATATATAG f523.aa
MNIKINFFFTLPIGIFLGLFFPLGIYSSLSHAFIRLSYLSLIPFLIFSIPLGIENIIENKNFKKLFGKTIYYGILT NLSGVAVSIIAATIYLPQRIPILEKTIQNTCFFEKEALLETFFPKNIFKIFTSSNPNLLSIYMISIIIGTSFYYAK QKGRIAREL LSASNLFYHANGFIVNILNIGIIFITANYAANLKNFKDYPNYTNSITFFLAWTIIILFVILPTISY RLTKSFKMIYKGIFVSFQNIIFSGLAKDSYSPYVILIEDIKNERINIKKSIIINIPLINFVSKFGTIFVSVISFFI ILKSYSSLPISIYEISYMSTLSFVFVFAFPHIPNSLIYIITMLCSTYTKGIELNVSNITPMLPILISLALLIDFAF NIAIIHIINFKELKDQEKIN t523.aa
IENIIENKNFKKLFGKTIYYGILTNLSGVAVSIIAATIYLPQRIPILEKTIQNTCFFΞKEALLETFFPKNIFKIFT SSNPNLLSIYMISIIIGTSFYYAKQKGRIARELMLSASNLFYHANGFIVNILNIGIIFITANYAANLKNFKDYPNY TNSITFFLA TIIILFVILPTISYRLTKSFKMIYKGIFVSFQNIIFSGLAKDSYSPYVILIEDIKNERINIKKSII INIPLINFVSKFGTIFVSVISFFIILKSYSSLPISIYEISYMSTLSFVFVFAFPHIPNSLIYIITMLCSTYTKGIE LNVSNITPMLPILISLALLIDFAFNIAIIHIINFKELKDQEKIN f523.nt
ATGAATATAAAAATCAATTTTTTTTTCACTTTGCCTATTGGAATCTTTTTAGGATTGTTTTTCCCTCTTGGAATTT ATAGCTCCTTATCACATGCTTTTATAAGATTATCATACTTATCTCTTATTCCCTTTTTAATATTTTCAATTCCATT AGGAATTGAAAATATTATTGAAAATAAAAACTTTAAAAAGCTTTTTGGTAAAACAATTTATTATGGAATTTTAACT AACCTATCTGGAGTTGCTGTATCAATAATAGCTGCAACAATATATCTTCCGCAAAGAATTCCAATACTAGAAAAAA CAATACAAAATACATGTTTTTTTGAAAAAGAAGCTTTACTAGAAACATTCTTTCCAAAAAATATTTTCAAAATATT TACATCTAGCAATCCAAATCTACTAAGCATTTACATGATTTCAATAATAATAGGCACAAGTTTTTATTATGCAAAA CAAAAAGGCAGAATAGCTAGAGAACTGATGCTAAGCGCATCCAATCTTTTTTACCATGCAAATGGGTTTATTGTAA ACATATTAAATATAGGGATCATTTTTATAACAGCAAATTACGCTGCAAACTTAAAAAACTTCAAAGATTACCCAAA TTATACAAACAGCATAACATTCTTTTTGGCATGGACAATTATAATTTTATTCGTAATATTGCCAACAATTAGTTAT AGATTAACAAAAAGTTTTAAAATGATATATAAAGGCATTTTTGTATCATTTCAAAACATAATATTTTCAGGACTTG CAAAAGATTCTTATTCCCCTTATGTGATATTAATAGAAGATATTAAAAACGAAAGAATAAATATAAAAAAATCCAT AATTATAAACATACCTTTAATAAATTTTGTATCTAAATTTGGCACTATTTTTGTTTCAGTAATATCATTTTTTATA ATTTTAAAATCATATTCTAGCTTACCCATTTCTATTTATGAAATAAGCTATATGAGCACTTTATCATTTGTTTTTG TCTTTGCATTTCCTCATATACCAAATAGTTTAATTTATATAATTACAATGCTTTGCTCTACATATACAAAAGGAAT AGAGCTAAATGTTTCAAACATAACACCAATGCTGCCGATATTAATCTCTTTGGCTTTACTAATCGACTTTGCTTTT AACATTGCAATCATTCATATAATAAACTTCAAAGAATTAAAAGATCAAGAAAAAATTAATTAA f523.nt
ATTGAAAATATTATTGAAAATAAAAACTTTAAAAAGCTTTTTGGTAAAACAATTTATTATGGAATTTTAACTAACC TATCTGGAGTTGCTGTATCAATAATAGCTGCAACAATATATCTTCCGCAAAGAATTCCAATACTAGAAAAAACAAT ACAAAATACATGTTTTTTTGAAAAAGAAGCTTTACTAGAAACATTCTTTCCAAAAAATATTTTCAAAATATTTACA TCTAGCAATCCAAATCTACTAAGCATTTACATGATTTCAATAATAATAGGCACAAGTTTTTATTATGCAAAACAAA AAGGCAGAATAGCTAGAGAACTGATGCTAAGCGCATCCAATCTTTTTTACCATGCAAATGGGTTTATTGTAAACAT ATTAAATATAGGGATCATTTTTATAACAGCAAATTACGCTGCAAACTTAAAAAACTTCAAAGATTACCCAAATTAT ACAAACAGCATAACATTCTTTTTGGCATGGACAATTATAATTTTATTCGTAATATTGCCAACAATTAGTTATAGAT TAACAAAAAGTTTTAAAATGATATATAAAGGCATTTTTGTATCATTTCAAAACATAATATTTTCAGGACTTGCAAA AGATTCTTATTCCCCTTATGTGATATTAATAGAAGATATTAAAAACGAAAGAATAAATATAAAAAAATCCATAATT ATAAACATACCTTTAATAAATTTTGTATCTAAATTTGGCACTATTTTTGTTTCAGTAATATCATTTTTTATAATTT TAAAATCATATTCTAGCTTACCCATTTCTATTTATGAAATAAGCTATATGAGCACTTTATCATTTGTTTTTGTCTT TGCATTTCCTCATATACCAAATAGTTTAATTTATATAATTACAATGCTTTGCTCTACATATACAAAAGGAATAGAG CTAAATGTTTCAAACATAACACCAATGCTGCCGATATTAATCTCTTTGGCTTTACTAATCGACTTTGCTTTTAACA TTGCAATCATTCATATAATAAACTTCAAAGAATTAAAAGATCAAGAAAAAATTAATTAA TABLE 1. Nucleotide and Amino Acid Sequences f526 . aa KKEFIMLLLLLQ IMNLNSINTNTSTSIVKELQKNLYIFNSKEYQKDKDTLNEFINSININDKEILQSLEKIKNE LFIISVFFNNKKGILIALNLGAEINFKYKISPISISIINNEFEITKILIDYGISLNQIDDTGYSPIFWAIYTNNEK IFEFLKESGADLSFTLKNRKTPMQAAIETENIKLIKSLEKKKIYIDDNFKKKLKKLKNKEIVRILVK t526.aa
NSINTNTSTSIVKELQKNLYIFNSKEYQKDKDTLNEFINSININDKEILQSLEKIKNELFIISVFFNNKKGILIAL NLGAEINFKYKISPISISIINNEFEITKILIDYGISLNQIDDTGYSPIFWAIYTNNEKIFEFLKESGADLSFTLKN RKTPMQAAIETENIKLIKSLEKKKIYIDDNFKKKLKKLKNKEIVRILVK f526.nt
ATGAAAAAAGAATTCATTATGCTTTTACTGTTATTGCAAACAATAATGAATTTAAACTCAATAAATACTAATACAA GTACTTCAATAGTAAAAGAATTGCAAAAAAATTTATATATTTTCAATAGCAAAGAATATCAAAAAGATAAAGACAC TTTAAATGAATTTATAAATTCAATAAATATAAATGACAAAGAAATCTTACAAAGTTTAGAAAAAATCAAAAATGAG CTTTTTATAATATCTGTTTTTTTCAACAATAAAAAAGGGATTTTAATTGCACTAAATCTTGGAGCAGAAATAAACT TTAAATATAAAATATCTCCAATTTCAATTTCAATAATAAACAATGAATTTGAAATCACAAAAATATTGATAGATTA CGGAATAAGCCTTAATCAAATAGATGATACAGGTTATTCTCCAATATTTTGGGCAATATATACTAATAACGAAAAA ATATTTGAATTTTTAAAAGAAAGCGGAGCTGATTTAAGTTTCACACTTAAAAATAGAAAAACACCAATGCAAGCCG CAATAGAAACAGAAAATATAAAACTAATTAAATCTCTGGAAAAGAAAAAAATTTACATTGACGACAATTTCAAAAA AAAACTTAAAAAGCTTAAAAACAAAGAAATAGTTCGAATTTTAGTAAAATAG t526.nt
AACTCAATAAATACTAATACAAGTACTTCAATAGTAAAAGAATTGCAAAAAAATTTATATATTTTCAATAGCAAAG AATATCAAAAAGATAAAGACACTTTAAATGAATTTATAAATTCAATAAATATAAATGACAAAGAAATCTTACAAAG TTTAGAAAAAATCAAAAATGAGCTTTTTATAATATCTGTTTTTTTCAACAATAAAAAAGGGATTTTAATTGCACTA AATCTTGGAGCAGAAATAAACTTTAAATATAAAATATCTCCAATTTCAATTTCAATAATAAACAATGAATTTGAAA TCACAAAAATATTGATAGATTACGGAATAAGCCTTAATCAAATAGATGATACAGGTTATTCTCCAATATTTTGGGC AATATATACTAATAACGAAAAAATATTTGAATTTTTAAAAGAAAGCGGAGCTGATTTAAGTTTCACACTTAAAAAT AGAAAAACACCAATGCAAGCCGCAATAGAAACAGAAAATATAAAACTAATTAAATCTCTGGAAAAGAAAAAAATTT ACATTGACGACAATTTCAAAAAAAAACTTAAAAAGCTTAAAAACAAAGAAATAGTTCGAATTTTAGTAAAATAG f544.aa
MTKNRIIWLLVLMVSSTFTATIISNYQNLMLSLWLANFIPLLMDTSGNAGSQASALIIRELALGTVKVKDFFKVF LKEICVSILVGAILASVNFLRIVFFVAPHHSDKLKIAFWSSCLMVSLTVAKILGGLLPIVAKLLKLDPALMAGPL ITTIADAITLIAYFNIAKWVLVSYAV t544.aa
STFTATIISNYQNLMLSLWLANFIPLLMDTSGNAGΞQASALIIRELALGTVKVKDFFKVFLKEICVSILVGAILA SVNFLRIVFFVAPHHSDKLKIAFWSSCLMVSLTVAKILGGLLPIVAKLLKLDPALMAGPLITTIADAITLIAYFN IAKWVLVSYAV f544.nt
ATGACAAAAAATAGAATAATTTGGCTTTTAGTTCTTATGGTGTCTTCTACTTTTACAGCTACAATTATTTCAAATT ATCAAAATTTAATGTTGTCTTTAGTGGTTTTAGCTAATTTTATTCCCCTTTTAATGGATACTTCAGGCAATGCCGG CTCTCAGGCATCTGCGCTAATAATTCGTGAGCTTGCTCTTGGTACTGTCAAGGTAAAAGATTTTTTTAAAGTGTTT TTAAAGGAAATATGTGTTAGCATTCTAGTGGGAGCAATTCTTGCTAGTGTTAATTTTTTAAGAATTGTCTTTTTTG TAGCTCCACACCATTCTGATAAGCTGAAAATAGCTTTTGTAGTTTCATCTTGCTTGATGGTAAGTTTGACAGTAGC AAAGATATTGGGAGGTCTTTTACCCATTGTTGCTAAACTTTTAAAGTTGGATCCAGCACTTATGGCAGGCCCTTTA TABLE 1. Nucleotide and Amino Acid Sequences
ATCACTACAATTGCAGATGCTATTACTTTAATAGCTTATTTTAATATAGCAAAATGGGTTTTAGTTAGCTATGCTG TTTAA t544.nt
TCTACTTTTACAGCTACAATTATTTCAAATTATCAAAATTTAATGTTGTCTTTAGTGGTTTTAGCTAATTTTATTC CCCTTTTAATGGATACTTCAGGCAATGCCGGCTCTCAGGCATCTGCGCTAATAATTCGTGAGCTTGCTCTTGGTAC TGTCAAGGTAAAAGATTTTTTTAAAGTGTTTTTAAAGGAAATATGTGTTAGCATTCTAGTGGGAGCAATTCTTGCT AGTGTTAATTTTTTAAGAATTGTCTTTTTTGTAGCTCCACACCATTCTGATAAGCTGAAAATAGCTTTTGTAGTTT CATCTTGCTTGATGGTAAGTTTGACAGTAGCAAAGATATTGGGAGGTCTTTTACCCATTGTTGCTAAACTTTTAAA GTTGGATCCAGCACTTATGGCAGGCCCTTTAATCACTACAATTGCAGATGCTATTACTTTAATAGCTTATTTTAAT ATAGCAAAATGGGTTTTAGTTAGCTATGCTGTTTAA f545.aa
MTKNRIIWLLVLMVSSTFTATIISNYQNLMLSLVVLANFIPLLMDTSGNAGSQASALIIRELALGTVKVKDFFKVF LKEICVSILVGAILASλTNFLRIVFFVAPHHSDKLKIAFWSSCLMVSLTVAKILGGLLPIVAKLLKLDPALMAGPL ITTIADAITLIAYFNIAK VLVSYAV t545.aa
GSQASALIIRELALGTVKVKDFFKVFLKEICVSILVGAILASVNFLRIVFFVAPHHSDKLKIAFWSSCLMVSLTV AKILGGLLPIVAKLLKLDPALMAGPLITTIADAITLIAYFNIAKWVLVSYAV f545.nt
ATGACAAAAAATAGAATAATTTGGCTTTTAGTTCTTATGGTGTCTTCTACTTTTACAGCTACAATTATTTCAAATT ATCAAAATTTAATGTTGTCTTTAGTGGTTTTAGCTAATTTTATTCCCCTTTTAATGGATACTTCAGGCAATGCCGG CTCTCAGGCATCTGCGCTAATAATTCGTGAGCTTGCTCTTGGTACTGTCAAGGTAAAAGATTTTTTTAAAGTGTTT TTAAAGGAAATATGTGTTAGCATTCTAGTGGGAGCAATTCTTGCTAGTGTTAATTTTTTAAGAATTGTCTTTTTTG TAGCTCCACACCATTCTGATAAGCTGAAAATAGCTTTTGTAGTTTCATCTTGCTTGATGGTAAGTTTGACAGTAGC AAAGATATTGGGAGGTCTTTTACCCATTGTTGCTAAACTTTTAAAGTTGGATCCAGCACTTATGGCAGGCCCTTTA ATCACTACAATTGCAGATGCTATTACTTTAATAGCTTATTTTAATATAGCAAAATGGGTTTTAGTTAGCTATGCTG TTTAA t545.nt
GGCTCTCAGGCATCTGCGCTAATAATTCGTGAGCTTGCTCTTGGTACTGTCAAGGTAAAAGATTTTTTTAAAGTGT TTTTAAAGGAAATATGTGTTAGCATTCTAGTGGGAGCAATTCTTGCTAGTGTTAATTTTTTAAGAATTGTCTTTTT TGTAGCTCCACACCATTCTGATAAGCTGAAAATAGCTTTTGTAGTTTCATCTTGCTTGATGGTAAGTTTGACAGTA GCAAAGATATTGGGAGGTCTTTTACCCATTGTTGCTAAACTTTTAAAGTTGGATCCAGCACTTATGGCAGGCCCTT TAATCACTACAATTGCAGATGCTATTACTTTAATAGCTTATTTTAATATAGCAAAATGGGTTTTAGTTAGCTATGC TGTTTAA f577.aa
MRIKNLILIAILLISPSCSTNKNIWLTDNKTIPFYINQFNIENKANFIIKFRNNIDLQTIEKENAQIIISKNIGN TNIANHFKSVKINYNPDYPILKHIFKQFNYKIIPLGFDIPILIYKNTHHIKKYINTKYLKEEYENFIKDGKFFISP YVSENLFYVISQINNVRFSFEKNKLNYNENQILKMLEYFSSFLNTKQMDLQKDFFNKYGYLKLNKILLNKKSLLIA GLSDITFYNSLSEQEKSQIKFSYLINDNNEIVISNPNFIGILETSVLTKKFIN ILYKKTQKTLIGFNNQSQSNIC FGFANGFTPYKELNLKIKHSIDGISPFIIDETQINSHSYVLSKKTIEKENLLINE FFSKANNLKKNKN t577.aa
NKNIWLTDNKTIPFYINQFNIENKANFIIKFRNNIDLQTIEKENAQIIISKNIGNTNIANHFKSVKINYNPDYPI LKHIFKQFNYKIIPLGFDIPILIYKNTHHIKKYINTKYLKEEYENFIKDGKFFISPYVSENLFYVISQINNVRFSF TABLE 1. Nucleotide and Amino Acid Sequences
EKNKLNYNENQILKMLEYFSSFLNTKQMDLQKDFFNKYGYLKLNKILLNKKSLLIAGLSDITFYNSLSEQEKSQIK FSYLINDNNEIVISNPNFIGILETSVLTKKFIN ILYKKTQKTLIGFNNQSQSNICFGFANGFTPYKELNLKIKHS IDGISPFIIDETQINSHSYVLSKKTIEKENLLINEWFFSKANNLKKNKN f577.nt
ATGAGAATAAAAAATTTAATACTAATAGCAATTTTATTAATTAGCCCTAGCTGTTCAACAAATAAGAACATCGTTG TACTAACTGACAATAAAACAATACCATTTTATATAAATCAATTTAATATAGAAAATAAAGCAAATTTTATAATTAA GTTTAGAAATAATATTGATCTGCAAACAATAGAAAAAGAAAATGCACAAATAATTATTTCTAAAAACATTGGTAAC ACAAATATTGCTAACCATTTTAAATCTGTAAAAATCAATTATAATCCAGATTATCCTATCTTAAAGCATATTTTCA AGCAATTTAACTACAAAATTATTCCATTGGGCTTTGACATTCCTATTTTAATCTATAAAAATACACATCATATTAA AAAATACATAAACACTAAATATCTAAAAGAAGAATACGAAAATTTCATTAAAGATGGAAAATTTTTTATATCGCCT TATGTTTCTGAAAATTTATTTTATGTGATTTCTCAAATAAATAATGTGAGATTTTCTTTTGAAAAAAATAAATTAA ATTATAATGAGAATCAAATTTTAAAAATGCTAGAATATTTCTCATCATTTTTAAATACAAAACAAATGGACTTGCA AAAAGATTTCTTTAATAAATACGGCTACCTAAAGTTAAATAAAATATTGCTTAATAAAAAATCTCTTTTAATAGCA GGATTGAGCGATATAACCTTCTACAATAGCTTAAGCGAACAAGAGAAGTCACAAATAAAATTTTCCTATTTAATAA ACGATAACAATGAAATTGTTATCTCAAACCCAAATTTTATTGGCATTTTAGAAACATCTGTTTTAACTAAAAAATT TATCAACTGGATATTGTATAAAAAAACTCAAAAAACCCTAATTGGATTTAACAATCAATCCCAATCAAATATATGT TTTGGATTTGCCAATGGTTTTACCCCTTACAAAGAATTAAATTTAAAAATAAAACATTCAATTGATGGAATATCTC CTTTTATTATTGACGAAACTCAAATCAATAGCCATTCCTATGTATTAAGCAAAAAAACAATTGAAAAAGAAAACTT ACTAATAAATGAATGGTTTTTCTCTAAAGCTAATAATCTAAAAAAAAATAAAAATTAA t577.nt
AATAAGAACATCGTTGTACTAACTGACAATAAAACAATACCATTTTATATAAATCAATTTAATATAGAAAATAAAG CAAATTTTATAATTAAGTTTAGAAATAATATTGATCTGCAAACAATAGAAAAAGAAAATGCACAAATAATTATTTC TAAAAACATTGGTAACACAAATATTGCTAACCATTTTAAATCTGTAAAAATCAATTATAATCCAGATTATCCTATC TTAAAGCATATTTTCAAGCAATTTAACTACAAAATTATTCCATTGGGCTTTGACATTCCTATTTTAATCTATAAAA ATACACATCATATTAAAAAATACATAAACACTAAATATCTAAAAGAAGAATACGAAAATTTCATTAAAGATGGAAA ATTTTTTATATCGCCTTATGTTTCTGAAAATTTATTTTATGTGATTTCTCAAATAAATAATGTGAGATTTTCTTTT GAAAAAAATAAATTAAATTATAATGAGAATCAAATTTTAAAAATGCTAGAATATTTCTCATCATTTTTAAATACAA AACAAATGGACTTGCAAAAAGATTTCTTTAATAAATACGGCTACCTAAAGTTAAATAAAATATTGCTTAATAAAAA ATCTCTTTTAATAGCAGGATTGAGCGATATAACCTTCTACAATAGCTTAAGCGAACAAGAGAAGTCACAAATAAAA TTTTCCTATTTAATAAACGATAACAATGAAATTGTTATCTCAAACCCAAATTTTATTGGCATTTTAGAAACATCTG TTTTAACTAAAAAATTTATCAACTGGATATTGTATAAAAAAACTCAAAAAACCCTAATTGGATTTAACAATCAATC CCAATCAAATATATGTTTTGGATTTGCCAATGGTTTTACCCCTTACAAAGAATTAAATTTAAAAATAAAACATTCA ATTGATGGAATATCTCCTTTTATTATTGACGAAACTCAAATCAATAGCCATTCCTATGTATTAAGCAAAAAAACAA TTGAAAAAGAAAACTTACTAATAAATGAATGGTTTTTCTCTAAAGCTAATAATCTAAAAAAAAATAAAAATTAA f584.aa
MIKTILLLVLYPVWFSQISANQYFEGIYAKYQNIEDMQATINFTLKGLKQTGVLLYKFPDKFIINLDSNNQVFVS DGEFLTVYVPSLGTSFNQQLLKGSSGGGLMKVLNSEYSVSYTNSPNLEDLDSSEPGKYIKLTFSRKLYKGAATINS FIIAFAPDGIIRRITAFPTSGGREIVIDLTAVKFNVGILDSKFKYDPPKSSNKVDNFLYDIKKN
t584.aa
QISANQYFEGIYAKYQNIEDMQATINFTLKGLKQTGVLLYKFPDKFIINLDSNNQVFVSDGEFLTVYVPSLGTSFN QQLLKGSSGGGLMKVLNSEYSVSYTNSPNLEDLDSSEPGKYIKLTFSRKLYKGAATINSFIIAFAPDGIIRRITAF PTSGGREIVIDLTAVKFNVGILDSKFKYDPPKSSNKVDNFLYDIKKN f584.nt
ATGATAAAAACAATACTTTTATTAGTTTTGTATCCTGTTGTTGTGTTTTCTCAAATATCTGCAAATCAATATTTTG AAGGAATTTATGCTAAATATCAAAATATAGAGGACATGCAAGCAACAATTAATTTTACTTTAAAGGGGTTAAAGCA TABLE 1. Nucleotide and Amino Acid Sequences
AACAGGTGTTTTGCTTTATAAGTTTCCAGACAAGTTTATTATCAATTTAGATTCAAATAATCAAGTTTTTGTAAGT GATGGTGAATTTTTGACAGTTTATGTTCCATCTCTTGGGACTTCTTTTAATCAGCAATTATTAAAGGGTAGTAGTG GGGGAGGTCTTATGAAAGTTTTAAATAGTGAGTATAGCGTATCTTATACCAATTCTCCAAATTTAGAAGATCTCGA TTCATCTGAGCCTGGAAAATATATTAAATTAACCTTTTCTAGAAAGCTTTACAAGGGGGCTGCTACTATTAATTCT TTTATTATTGCTTTTGCTCCGGATGGAATAATTAGAAGAATTACTGCTTTTCCTACTAGTGGTGGGCGCGAAATAG TTATTGATTTGACTGCTGTGAAGTTTAATGTTGGAATTCTTGATAGCAAATTTAAATATGATCCTCCAAAATCTTC AAATAAGGTAGATAATTTTTTATATGATATTAAAAAAAATTAA t584.nt
CAAATATCTGCAAATCAATATTTTGAAGGAATTTATGCTAAATATCAAAATATAGAGGACATGCAAGCAACAATTA ATTTTACTTTAAAGGGGTTAAAGCAAACAGGTGTTTTGCTTTATAAGTTTCCAGACAAGTTTATTATCAATTTAGA TTCAAATAATCAAGTTTTTGTAAGTGATGGTGAATTTTTGACAGTTTATGTTCCATCTCTTGGGACTTCTTTTAAT CAGCAATTATTAAAGGGTAGTAGTGGGGGAGGTCTTATGAAAGTTTTAAATAGTGAGTATAGCGTATCTTATACCA ATTCTCCAAATTTAGAAGATCTCGATTCATCTGAGCCTGGAAAATATATTAAATTAACCTTTTCTAGAAAGCTTTA CAAGGGGGCTGCTACTATTAATTCTTTTATTATTGCTTTTGCTCCGGATGGAATAATTAGAAGAATTACTGCTTTT CCTACTAGTGGTGGGCGCGAAATAGTTATTGATTTGACTGCTGTGAAGTTTAATGTTGGAATTCTTGATAGCAAAT TTAAATATGATCCTCCAAAATCTTCAAATAAGGTAGATAATTTTTTATATGATATTAAAAAAAATTAA f596.aa
MKERCLYLLVFVALCVNNLFSDDYLIYDFDLSLNEFLEVSTRKDNLEPMVDSNRILLFYPPKKEIRKIFAAFDFDQ YSKKYLFKKNEHGVFFVKVNIPHGTSSIKYRLIVDGV TNDEYNKNWYNEDLIPFSKIEIAKEKSSYISLRNPIQ SYDNNEIEIFYIGRPGQIVTIAGSFNNFNPFLNRLIEKEDNKGIYTIKLKNLPKDRIYYYFIDSGNKVIDKNNVNR INLYFVEGIDNKIDFEVSYFDHK t596.aa
DDYLIYDFDLSLNEFLEVSTRKDNLEPMVDSNRILLFYPPKKEIRKIFAAFDFDQYSKKYLFKKNEHGVFFVKVNI PHGTSSIKYRLIVDGV TNDEYNKNWYNEDLIPFSKIEIAKEKSSYISLRNPIQSYDNNEIEIFYIGRPGQIVTI AGSFNNFNPFLNRLIEKEDNKGIYTIKL-^LPKDRIYYYFIDSGNKVIDKNNVNRINLYFVEGIDNKIDFEVSYFD HK f596.nt
ATGAAAGAAAGGTGTTTGTATTTATTGGTTTTTGTAGCTTTATGTGTTAACAATCTTTTTTCAGATGATTATTTAA TTTATGACTTTGATTTAAGTTTAAATGAATTTCTAGAAGTTTCAACAAGAAAAGACAATCTTGAGCCTATGGTTGA TTCCAATCGTATATTATTGTTTTATCCTCCTAAAAAAGAAATTAGAAAAATTTTTGCTGCCTTTGACTTTGATCAG TATTCTAAGAAATATTTATTCAAAAAAAATGAGCATGGAGTTTTTTTTGTTAAAGTTAATATTCCTCATGGCACAA GCAGTATAAAATATAGGCTTATTGTAGACGGTGTTTGGACTAATGACGAGTATAATAAAAATGTAGTTTATAATGA GGATTTAATCCCATTTTCTAAAATTGAGATCGCTAAAGAGAAGTCCAGCTATATTTCTTTGAGAAATCCAATACAA TCATATGATAACAATGAAATTGAAATTTTTTACATAGGTCGTCCTGGACAAATAGTTACAATAGCTGGTAGTTTTA ACAATTTTAATCCTTTTTTAAATAGGCTTATTGAGAAAGAGGACAATAAGGGAATTTATACTATTAAGCTTAAAAA TTTACCCAAGGATAGAATTTATTATTATTTTATTGATTCTGGTAACAAAGTAATAGATAAAAATAATGTTAATAGA ATTAATTTATATTTTGTTGAGGGAATTGATAATAAAATAGATTTCGAAGTTTCCTATTTTGATCATAAGTAA t596.nt
GATGATTATTTAATTTATGACTTTGATTTAAGTTTAAATGAATTTCTAGAAGTTTCAACAAGAAAAGACAATCTTG AGCCTATGGTTGATTCCAATCGTATATTATTGTTTTATCCTCCTAAAAAAGAAATTAGAAAAATTTTTGCTGCCTT TGACTTTGATCAGTATTCTAAGAAATATTTATTCAAAAAAAATGAGCATGGAGTTTTTTTTGTTAAAGTTAATATT CCTCATGGCACAAGCAGTATAAAATATAGGCTTATTGTAGACGGTGTTTGGACTAATGACGAGTATAATAAAAATG TAGTTTATAATGAGGATTTAATCCCATTTTCTAAAATTGAGATCGCTAAAGAGAAGTCCAGCTATATTTCTTTGAG AAATCCAATACAATCATATGATAACAATGAAATTGAAATTTTTTACATAGGTCGTCCTGGACAAATAGTTACAATA GCTGGTAGTTTTAACAATTTTAATCCTTTTTTAAATAGGCTTATTGAGAAAGAGGACAATAAGGGAATTTATACTA TTAAGCTTAAAAATTTACCCAAGGATAGAATTTATTATTATTTTATTGATTCTGGTAACAAAGTAATAGATAAAAA TABLE 1. Nucleotide and Amino Acid Sequences
TAATGTTAATAGAATTAATTTATATTTTGTTGAGGGAATTGATAATAAAATAGATTTCGAAGTTTCCTATTTTGAT CATAAGTAA
f598.aa
MRQRVMIAMALSCHPSLLIADEPTTALDVTIQEQILLLIKNLSKKFNTSTIFITHDLAWAEICDTVSVMYQGKIV EEGTVEEIFNNPKHPYTIGLLKSILTLEHDPNKKLYSTKENPMKITKTSTEEF t598.aa
EPTTALDVTIQEQILLLIKNLSKKFNTSTIFITHDLAWAEICDTVSVMYQGKIVEEGTVEEIFNNPKHPYTIGLL KSILTLEHDPNKKLYSTKENPMKITKTSTEEF f598.nt
ATGAGACAAAGAGTTATGATTGCCATGGCTCTTAGCTGTCATCCATCCTTATTAATAGCAGATGAACCAACAACAG CCCTTGATGTTACAATCCAAGAGCAAATATTATTATTAATCAAAAACCTATCTAAAAAATTCAATACTTCTACCAT ATTTATAACTCATGATCTTGCGGTTGTTGCTGAAATTTGTGATACAGTATCTGTAATGTATCAAGGAAAAATTGTA GAAGAAGGAACAGTAGAGGAAATATTTAACAATCCTAAGCATCCTTACACCATTGGGCTTTTAAAATCAATTCTTA CGCTAGAACACGATCCAAATAAAAAGCTTTATTCAACAAAAGAAAACCCTATGAAGATCACAAAAACCAGCACCGA GGAGTTTTAA t598.nt
GAACCAACAACAGCCCTTGATGTTACAATCCAAGAGCAAATATTATTATTAATCAAAAACCTATCTAAAAAATTCA ATACTTCTACCATATTTATAACTCATGATCTTGCGGTTGTTGCTGAAATTTGTGATACAGTATCTGTAATGTATCA AGGAAAAATTGTAGAAGAAGGAACAGTAGAGGAAATATTTAACAATCCTAAGCATCCTTACACCATTGGGCTTTTA AAATCAATTCTTACGCTAGAACACGATCCAAATAAAAAGCTTTATTCAACAAAAGAAAACCCTATGAAGATCACAA AAACCAGCACCGAGGAGTTTTAA fβOO.aa
MAI ERSIIGLFIALAFVSWLTVARWRGQVQSLSSSEFIQAAKTLGATNQRIILKHLIPNSIGMIVIFTTIRVPS FIMAEAFLSFLGLGISAPMTSWGELVQNGIATFVEYPWKVFIPAIVMTIFLLFMNFLGDGLRDAFDPKDSI
tβO O . aa
RWRGQVQSLSSSEFIQAAKTLGATNQRIILKHLIPNSIGMIVIFTTIRVPSFIMAEAFLSFLGLGISAPMTS GE LVQNGIATFVEYPWKVFIPAIVMTIFLLFMNFLGDGLRDAFDPKDSI fδOO.nt
ATGGCAATAATGGAAAGAAGTATAATCGGCTTATTCATAGCACTTGCATTTGTATCATGGTTAACAGTAGCTCGAG TTGTACGAGGCCAAGTACAATCACTATCAAGTTCGGAATTTATACAAGCAGCCAAAACCCTTGGTGCAACAAATCA AAGAATAATCTTAAAACACTTGATCCCTAATAGCATTGGAATGATAGTTATATTCACAACAATAAGGGTTCCAAGC TTTATTATGGCTGAAGCATTTTTATCCTTTTTAGGACTTGGAATTTCAGCTCCAATGACAAGCTGGGGAGAATTAG TGCAAAATGGAATTGCTACATTTGTTGAATATCCATGGAAAGTTTTTATTCCAGCTATAGTTATGACAATATTTCT ATTATTTATGAACTTTTTAGGTGATGGGCTAAGGGATGCTTTTGATCCAAAAGATAGCATCTAA tβOO.nt
CGAGTTGTACGAGGCCAAGTACAATCACTATCAAGTTCGGAATTTATACAAGCAGCCAAAACCCTTGGTGCAACAA ATCAAAGAATAATCTTAAAACACTTGATCCCTAATAGCATTGGAATGATAGTTATATTCACAACAATAAGGGTTCC AAGCTTTATTATGGCTGAAGCATTTTTATCCTTTTTAGGACTTGGAATTTCAGCTCCAATGACAAGCTGGGGAGAA TABLE 1. Nucleotide and Amino Acid Sequences
TTAGTGCAAAATGGAATTGCTACATTTGTTGAATATCCATGGAAAGTTTTTATTCCAGCTATAGTTATGACAATAT TTCTATTATTTATGAACTTTTTAGGTGATGGGCTAAGGGATGCTTTTGATCCAAAAGATAGCATCTAA f603.aa
MLKFTLKKILGIIPTLLVIIFLCFFVMR APGSPFDSEKPIDPQVKARL EKYHLDKPFYIQAFYYITNALRGDLG PSLKKKDLTVSQYIKLGFPKSLTLGVISLIISLSIGIPIGILAAIYKNTYVDYIITSIAILGISIPLFVIGPILQY FFAIKWGLLYTSG ITERGGFSNLILPIITLS PNVAIFARIIRGSMLEIIQSDFIRTARAKGLSFKKIVIKHMLR GA LPWSYIGPAFAAIISGSWIEKIFRIAGMG FITESALNRDYPVLMGGLLVYSIILLISILISDIIYKILDP RV t603.aa
SPFDSEKPIDPQVKARLMEKYHLDKPFYIQAFYYITNALRGDLGPSLKKKDLTVSQYIKLGFPKSLTLGVISLIIS LSIGIPIGILAAIYKNTYVDYIITSIAILGISIPLFVIGPILQYFFAIK GLLYTSGWITERGGFSNLILPIITLS MPNVAIFARIIRGSMLEIIQSDFIRTARAKGLSFKKIVIKHMLRGAMLPWSYIGPAFAAIISGSWIEKIFRIAG MGMFITESALNRDYPVLMGGLLVYSIILLISILISDIIYKILDPRV f603.nt
ATGTTAAAGTTTACTTTAAAGAAAATATTAGGAATAATACCAACTTTACTGGTAATAATTTTTTTATGCTTTTTTG TAATGAGAATGGCTCCTGGAAGTCCATTTGATTCTGAAAAACCTATTGATCCTCAAGTAAAAGCAAGATTGATGGA AAAATATCACCTTGACAAGCCTTTTTATATTCAAGCTTTTTATTACATTACAAACGCTCTCAGGGGAGATCTGGGA CCTTCTTTGAAAAAGAAAGACCTTACAGTTAGTCAATACATAAAATTAGGATTTCCAAAATCACTTACACTAGGAG TAATATCCCTTATTATATCACTATCAATAGGAATACCAATAGGTATATTAGCTGCCATTTATAAAAATACTTATGT GGATTATATAATAACATCAATAGCAATATTGGGGATTTCAATACCATTATTCGTAATAGGGCCAATTTTACAATAT TTTTTTGCAATTAAATGGGGTTTGCTTTATACCTCTGGATGGATTACAGAAAGAGGAGGATTTTCAAATTTAATTC TACCCATAATAACTCTTAGCATGCCCAACGTAGCTATTTTCGCAAGAATAATCAGAGGATCAATGCTAGAAATAAT ACAAAGCGACTTTATAAGAACTGCGCGTGCAAAAGGGCTAAGCTTCAAAAAGATAGTTATAAAGCATATGTTAAGA GGAGCAATGTTGCCTGTAGTAAGCTATATAGGTCCAGCATTTGCTGCTATAATATCTGGAAGCGTGGTTATTGAAA AAATATTTAGAATTGCTGGAATGGGAATGTTTATAACAGAATCCGCACTAAACAGAGATTACCCAGTATTAATGGG CGGATTGTTAGTATATTCAATAATACTGCTTATTTCTATATTAATATCAGATATTATATATAAAATATTAGATCCA AGAGTATAA t603.nt
AGTCCATTTGATTCTGAAAAACCTATTGATCCTCAAGTAAAAGCAAGATTGATGGAAAAATATCACCTTGACAAGC CTTTTTATATTCAAGCTTTTTATTACATTACAAACGCTCTCAGGGGAGATCTGGGACCTTCTTTGAAAAAGAAAGA CCTTACAGTTAGTCAATACATAAAATTAGGATTTCCAAAATCACTTACACTAGGAGTAATATCCCTTATTATATCA CTATCAATAGGAATACCAATAGGTATATTAGCTGCCATTTATAAAAATACTTATGTGGATTATATAATAACATCAA TAGCAATATTGGGGATTTCAATACCATTATTCGTAATAGGGCCAATTTTACAATATTTTTTTGCAATTAAATGGGG TTTGCTTTATACCTCTGGATGGATTACAGAAAGAGGAGGATTTTCAAATTTAATTCTACCCATAATAACTCTTAGC ATGCCCAACGTAGCTATTTTCGCAAGAATAATCAGAGGATCAATGCTAGAAATAATACAAAGCGACTTTATAAGAA CTGCGCGTGCAAAAGGGCTAAGCTTCAAAAAGATAGTTATAAAGCATATGTTAAGAGGAGCAATGTTGCCTGTAGT AAGCTATATAGGTCCAGCATTTGCTGCTATAATATCTGGAAGCGTGGTTATTGAAAAAATATTTAGAATTGCTGGA ATGGGAATGTTTATAACAGAATCCGCACTAAACAGAGATTACCCAGTATTAATGGGCGGATTGTTAGTATATTCAA TAATACTGCTTATTTCTATATTAATATCAGATATTATATATAAAATATTAGATCCAAGAGTATAA f607.aa
MKYIKIALMLIIFSLIACISNAKKEKIVFRVSNLSEPSSLDPQLSTDLYGSNIITNLFLGLAVKDSQTGKYKPGLA KS NISEDGIIYTFNLREDIVWSDGVAITAEEIKKSYLRILNKKTAAMYANLIKSTIKNAQEYFDETVPESELGIK AIDSKTLEITLTSPKPYFPDMLTHSAYIPVPMHIVEKYGEN TNPENIWSGAYKLKERSINDKIVIEKNEKYYNA KNVEIDEVIFYPTEGSVAYNMYINGELDFLQGAEKNNLEEIKIRDDYYSGLKNGMAYIAFNTTIKPLDNLKVRQAI SLAIDRETLTKWLKGSSDPTRNLTPKFDDYSYGKNLILFDPENAKKLLAEAGYPDGKGFPTLKYKISEGRPTTAE TABLE 1. Nucleotide and Amino Acid Sequences
FLQEQFKKILNINLEIENEEWTTFLGSRRTGNYQMSSVG IGDYFDPLTFLDSLFTTENHFLGAYKYSNKEYDALI KKSNFELDPIKRQDILRQAEEIIAEKDFPMAPLYIPKSHYLFRNDKWTGWVPNIAESYLYEDIKTKK t607.aa
CISNAKKEKIVFRVSNLSEPSSLDPQLSTDLYGSNIITNLFLGLAVKDSQTGKYKPGLAKSWNISEDGIIYTFNLR EDIVWSDGVAITAEEIKKSYLRILNKKTAAMYANLIKSTIKNAQEYFDETVPESELGIKAIDSKTLEITLTSPKPY FPDMLTHSAYIPVP HIVEKYGEN TNPENIWSGAYKLKERSINDKIVIEKNEKYYNAKNVEIDEVIFYPTEGSV AYNMYINGELDFLQGAEKNNLEEIKIRDDYYSGLKNGMAYIAFNTTIKPLDNLKVRQAISLAIDRETLTKWLKGS SDPTRNLTPKFDDYSYGKNLILFDPENAKKLLAEAGYPDGKGFPTLKYKISEGRPTTAEFLQEQFKKILNINLEIE NEE TTFLGSRRTGNYQMSSVGWIGDYFDPLTFLDSLFTTENHFLGAYKYSNKEYDALIKKSNFELDPIKRQDILR QAEEIIAEKDFPMAPLYIPKSHYLFRNDKWTGWVPNIAESYLYEDIKTKK f607.nt
ATGAAATATATAAAAATAGCCTTAATGCTAATAATTTTTTCTTTAATAGCATGTATTAGTAATGCTAAAAAAGAAA AAATAGTTTTCAGAGTATCAAACTTAAGCGAGCCATCATCACTTGATCCTCAACTCTCAACAGACCTTTACGGTAG CAACATTATTACAAACCTATTCTTAGGCCTAGCGGTAAAAGATTCTCAAACTGGAAAATATAAACCAGGACTTGCA AAAAGTTGGAATATTTCTGAAGATGGAATTATTTACACATTTAACCTAAGAGAAGATATAGTTTGGAGCGATGGAG TTGCCATTACTGCCGAGGAGATAAAAAAATCATACCTAAGAATTTTAAATAAAAAAACAGCTGCAATGTATGCTAA TTTAATAAAATCTACAATAAAAAATGCACAAGAATATTTCGATGAGACAGTGCCTGAATCTGAGCTTGGCATAAAG GCTATTGACAGCAAAACCTTAGAGATAACATTAACATCTCCAAAGCCTTATTTTCCTGATATGCTAACACACTCAG CATACATACCAGTTCCAATGCATATTGTTGAAAAATATGGAGAAAATTGGACAAATCCTGAAAATATAGTTGTTAG TGGCGCATACAAACTTAAAGAAAGATCAATTAACGATAAAATCGTAATAGAAAAAAATGAAAAATACTATAATGCA AAAAATGTAGAAATTGATGAAGTAATATTTTACCCAACAGAAGGTAGCGTGGCTTACAATATGTACATAAACGGTG AACTCGATTTTCTACAAGGAGCAGAAAAGAATAATTTAGAAGAAATTAAAATAAGAGATGATTATTATTCTGGGTT AAAAAACGGAATGGCATACATAGCATTCAATACAACAATAAAACCACTAGACAATTTAAAAGTTAGACAAGCCATC TCCCTTGCCATTGACAGAGAAACTTTAACTAAAGTAGTTTTAAAGGGAAGTTCAGATCCAACAAGAAATCTAACTC CAAAATTTGATGATTATTCTTATGGAAAAAATTTAATACTATTTGATCCTGAGAATGCAAAAAAACTTTTAGCTGA AGCTGGATATCCGGATGGGAAAGGATTCCCCACATTAAAATATAAAATATCGGAGGGAAGACCAACAACAGCAGAA TTTTTGCAAGAACAATTTAAAAAAATACTAAACATTAACTTAGAAATCGAGAATGAAGAATGGACAACATTCCTAG GAAGCAGAAGAACTGGAAATTACCAAATGTCAAGCGTGGGGTGGATAGGAGATTATTTTGATCCCTTAACATTCTT AGACAGCTTATTTACAACAGAAAATCATTTTTTAGGAGCGTACAAATATTCAAACAAAGAGTATGATGCTTTAATA AAAAAATCTAATTTTGAACTTGATCCAATAAAAAGACAAGACATTTTAAGACAAGCTGAAGAGATAATAGCAGAAA AAGACTTTCCTATGGCACCTTTATATATACCCAAATCTCATTATCTTTTCAGAAATGATAAATGGACAGGGTGGGT ACCAAATATCGCAGAAAGCTATTTATATGAAGATATTAAAACTAAAAAATAA t607.nt
TGTATTAGTAATGCTAAAAAAGAAAAAATAGTTTTCAGAGTATCAAACTTAAGCGAGCCATCATCACTTGATCCTC AACTCTCAACAGACCTTTACGGTAGCAACATTATTACAAACCTATTCTTAGGCCTAGCGGTAAAAGATTCTCAAAC TGGAAAATATAAACCAGGACTTGCAAAAAGTTGGAATATTTCTGAAGATGGAATTATTTACACATTTAACCTAAGA GAAGATATAGTTTGGAGCGATGGAGTTGCCATTACTGCCGAGGAGATAAAAAAATCATACCTAAGAATTTTAAATA AAAAAACAGCTGCAATGTATGCTAATTTAATAAAATCTACAATAAAAAATGCACAAGAATATTTCGATGAGACAGT GCCTGAATCTGAGCTTGGCATAAAGGCTATTGACAGCAAAACCTTAGAGATAACATTAACATCTCCAAAGCCTTAT TTTCCTGATATGCTAACACACTCAGCATACATACCAGTTCCAATGCATATTGTTGAAAAATATGGAGAAAATTGGA CAAATCCTGAAAATATAGTTGTTAGTGGCGCATACAAACTTAAAGAAAGATCAATTAACGATAAAATCGTAATAGA AAAAAATGAAAAATACTATAATGCAAAAAATGTAGAAATTGATGAAGTAATATTTTACCCAACAGAAGGTAGCGTG GCTTACAATATGTACATAAACGGTGAACTCGATTTTCTACAAGGAGCAGAAAAGAATAATTTAGAAGAAATTAAAA TAAGAGATGATTATTATTCTGGGTTAAAAAACGGAATGGCATACATAGCATTCAATACAACAATAAAACCACTAGA CAATTTAAAAGTTAGACAAGCCATCTCCCTTGCCATTGACAGAGAAACTTTAACTAAAGTAGTTTTAAAGGGAAGT TCAGATCCAACAAGAAATCTAACTCCAAAATTTGATGATTATTCTTATGGAAAAAATTTAATACTATTTGATCCTG AGAATGCAAAAAAACTTTTAGCTGAAGCTGGATATCCGGATGGGAAAGGATTCCCCACATTAAAATATAAAATATC GGAGGGAAGACCAACAACAGCAGAATTTTTGCAAGAACAATTTAAAAAAATACTAAACATTAACTTAGAAATCGAG AATGAAGAATGGACAACATTCCTAGGAAGCAGAAGAACTGGAAATTACCAAATGTCAAGCGTGGGGTGGATAGGAG ATTATTTTGATCCCTTAACATTCTTAGACAGCTTATTTACAACAGAAAATCATTTTTTAGGAGCGTACAAATATTC TABLE 1. Nucleotide and Amino Acid Sequences
AAACAAAGAGTATGATGCTTTAATAAAAAAATCTAATTTTGAACTTGATCCAATAAAAAGACAAGACATTTTAAGA CAAGCTGAAGAGATAATAGCAGAAAAAGACTTTCCTATGGCACCTTTATATATACCCAAATCTCATTATCTTTTCA GAAATGATAAATGGACAGGGTGGGTACCAAATATCGCAGAAAGCTATTTATATGAAGATATTAAAACTAAAAAATA A fδll.aa KKIFLFLFISFYLFGFEDSSLKIGIDDVYVEAHEEGFHLFIRKKPAIKSVILTESFEIPDKKKDVATYSFRTLSY NKVNGDEIRILNGRVIKNKELLSLTSSTPVPNKKFGEAFHILIPKKLKYGFPNFSTRSGDIDLEVLKSKKEPFWFS IRSFEKKYNDYLGRYQDNAYELLFKDDQNQGKIEFNELKDTFTKFSDEWIANNGIDIVDKINKILKNSEDSVYDL DLVLWDVTDSMKSNIEILKEHLFSIIEPQLQKFKSYRIGLVFYKDYLEDFLTKAFDFNTIPYLNNILKYVNVGGG GDYPEAVFEGIDAAVTQFDWRAERRFIIVIGDAPPHEYPRGSIVYKDVINSAKEKDITIYGIIFQ t δ ll . aa
FEDSSLKIGIDDVYVEAHEEGFHLFIRKKPAIKSVILTESFEIPDKKKDVATYSFRTLSYNKVNGDEIRILNGRVI KNKELLSLTSSTPVPNKKFGEAFHILIPKKLKYGFPNFSTRSGDIDLEVLKSKKEPFWFSIRSFEKKYNDYLGRYQ DNAYELLFKDDQNQGKIEFNELKDTFTKFSDEWIANNGIDIVDKINKILKNSEDSVYDLDLVLWDVTDSMKSNI EILKEHLFSIIEPQLQKFKSYRIGLVFYKDYLEDFLTKAFDFNTIPYLNNILKYVNVGGGGDYPEAVFEGIDAAVT QFDWRAERRFIIVIGDAPPHEYPRGSIVYKDVINSAKEKDITIYGIIFQ fδll.nt
ATGAAGAAAATTTTTTTATTTCTTTTTATTAGTTTTTATTTGTTTGGATTTGAAGATAGTTCTTTGAAAATAGGTA TTGATGATGTTTATGTTGAGGCTCATGAAGAGGGATTTCATCTTTTTATTAGAAAAAAACCTGCAATCAAATCAGT AATATTGACAGAGTCTTTTGAAATTCCTGATAAGAAAAAAGATGTGGCTACTTATTCATTTCGTACATTAAGTTAT AATAAGGTTAATGGAGATGAAATTCGGATTTTAAATGGAAGAGTTATTAAGAATAAAGAACTTTTATCATTGACAT CTTCCACCCCTGTTCCTAATAAAAAGTTTGGAGAAGCTTTTCATATATTGATTCCAAAAAAATTAAAATATGGATT TCCAAATTTTTCAACAAGAAGTGGTGATATTGACTTAGAAGTATTAAAAAGTAAAAAAGAGCCCTTTTGGTTTTCT ATAAGATCTTTTGAGAAAAAATATAATGATTATTTGGGCAGATATCAAGACAATGCTTATGAATTGCTTTTCAAGG ATGATCAAAATCAGGGAAAAATTGAATTTAATGAATTAAAAGATACTTTTACAAAATTTTCAGATGAGGTTGTTAT TGCTAATAATGGCATTGATATTGTTGATAAAATAAACAAAATTTTAAAAAACTCAGAAGATTCAGTTTATGATTTA GATTTAGTGCTTGTTGTTGATGTTACTGATAGTATGAAAAGCAATATTGAGATTCTAAAAGAGCATTTGTTTTCAA TAATAGAACCTCAACTTCAAAAGTTTAAATCCTACAGAATAGGTCTTGTTTTTTATAAAGACTATCTTGAAGATTT TTTAACCAAAGCTTTTGATTTTAATACTATTCCTTATTTAAATAATATTCTTAAGTATGTTAATGTTGGTGGCGGT GGGGATTATCCAGAAGCTGTTTTTGAGGGGATTGATGCTGCTGTGACCCAATTTGATTGGCGGGCAGAAAGAAGGT TTATTATTGTTATAGGAGATGCACCTCCTCATGAGTATCCAAGAGGGTCTATTGTTTATAAAGATGTTATCAATTC TGCAAAGGAAAAAGATATTACAATTTATGGAATAATATTTCAGTAA tδll.nt
TTTGAAGATAGTTCTTTGAAAATAGGTATTGATGATGTTTATGTTGAGGCTCATGAAGAGGGATTTCATCTTTTTA TTAGAAAAAAACCTGCAATCAAATCAGTAATATTGACAGAGTCTTTTGAAATTCCTGATAAGAAAAAAGATGTGGC TACTTATTCATTTCGTACATTAAGTTATAATAAGGTTAATGGAGATGAAATTCGGATTTTAAATGGAAGAGTTATT AAGAATAAAGAACTTTTATCATTGACATCTTCCACCCCTGTTCCTAATAAAAAGTTTGGAGAAGCTTTTCATATAT TGATTCCAAAAAAATTAAAATATGGATTTCCAAATTTTTCAACAAGAAGTGGTGATATTGACTTAGAAGTATTAAA AAGTAAAAAAGAGCCCTTTTGGTTTTCTATAAGATCTTTTGAGAAAAAATATAATGATTATTTGGGCAGATATCAA GACAATGCTTATGAATTGCTTTTCAAGGATGATCAAAATCAGGGAAAAATTGAATTTAATGAATTAAAAGATACTT TTACAAAATTTTCAGATGAGGTTGTTATTGCTAATAATGGCATTGATATTGTTGATAAAATAAACAAAATTTTAAA AAACTCAGAAGATTCAGTTTATGATTTAGATTTAGTGCTTGTTGTTGATGTTACTGATAGTATGAAAAGCAATATT GAGATTCTAAAAGAGCATTTGTTTTCAATAATAGAACCTCAACTTCAAAAGTTTAAATCCTACAGAATAGGTCTTG TTTTTTATAAAGACTATCTTGAAGATTTTTTAACCAAAGCTTTTGATTTTAATACTATTCCTTATTTAAATAATAT TCTTAAGTATGTTAATGTTGGTGGCGGTGGGGATTATCCAGAAGCTGTTTTTGAGGGGATTGATGCTGCTGTGACC CAATTTGATTGGCGGGCAGAAAGAAGGTTTATTATTGTTATAGGAGATGCACCTCCTCATGAGTATCCAAGAGGGT CTATTGTTTATAAAGATGTTATCAATTCTGCAAAGGAAAAAGATATTACAATTTATGGAATAATATTTCAGTAA TABLE 1. Nucleotide and Amino Acid Sequences f617.aa
MIFFRNSFMALIFSFSILSISYFFGDFFQFSYIKMISWRFILFLIMATGIATCAKSNSLNLGNEGQIYFGAFLVYI FSSFFGLTYFNFVFLILLSSFFVGLLGLIPFFITFFFGLNKALTGLLISYGNQRLVDGFILNMLKTGSFSNQTKRI NSLFALDSSLIYLFLLGVSVWLFYVFIHKKTIYGLQLEILSNKKKIDIFFNINEFKYKFFAVFGSAFLNGLAGSMF WFFRPYLVLGLTSGLGWSSLIVAVISGFNYVYVLFFSLLFSILIEFNNFLNINYDFKYEFIGLCQSIAIFISLFL IKARKK t617.aa
AKSNSLNLGNEGQIYFGAFLVYIFSSFFGLTYFNFVFLILLSSFFVGLLGLIPFFITFFFGLNKALTGLLISYGNQ RLVDGFILNMLKTGSFSNQTKRINSLFALDSSLIYLFLLGVSV LFYVFIHKKTIYGLQLEILSNKKKIDIFFNIN EFKYKFFAVFGSAFLNGLAGSMFWFFRPYLVLGLTSGLG SSLIVAVISGFNYVYVLFFSLLFSILIEFNNFLNI NYDFKYEFIGLCQSIAIFISLFLIKARKK f617.nt
ATGATCTTTTTTAGAAATAGCTTTATGGCATTAATTTTTTCTTTTTCAATATTAAGTATTAGCTATTTTTTCGGTG ATTTTTTTCAATTTTCTTATATTAAAATGATATCTTGGCGCTTTATTTTATTTTTAATTATGGCTACGGGGATTGC TACTTGTGCCAAGAGTAATTCATTAAATCTTGGGAATGAAGGTCAGATTTATTTTGGGGCATTTTTAGTTTATATA TTTTCAAGTTTTTTTGGATTAACCTATTTTAATTTTGTATTTTTGATACTTTTAAGTTCTTTTTTTGTAGGACTTT TGGGGCTTATCCCCTTTTTTATTACTTTTTTCTTCGGATTAAATAAAGCCTTAACAGGTCTTTTAATATCTTATGG AAATCAAAGATTGGTGGATGGATTTATTTTAAATATGTTAAAAACAGGTAGTTTTTCTAATCAGACAAAAAGGATT AATAGTTTGTTTGCTTTAGATTCATCACTTATTTACTTGTTTTTGCTTGGTGTATCAGTTTGGCTTTTTTATGTTT TTATTCACAAAAAAACTATTTATGGTCTTCAGCTTGAAATATTAAGCAATAAAAAAAAGATAGACATTTTTTTCAA TATAAATGAATTTAAATATAAGTTTTTCGCTGTATTTGGCAGTGCTTTTTTAAATGGTCTTGCAGGTTCTATGTTT GTAGTGTTTTTTAGACCATATTTGGTTTTAGGGCTAACTTCAGGACTTGGTTGGAGTAGTCTAATTGTTGCTGTAA TTTCAGGATTTAATTATGTTTATGTATTATTTTTTAGCTTATTGTTTTCAATATTAATTGAATTTAATAATTTTCT TAATATAAATTATGACTTTAAGTATGAATTTATTGGGCTTTGTCAATCAATTGCTATTTTTATCTCTTTATTTTTG ATTAAAGCTAGGAAAAAGTAG t617.nt
GCCAAGAGTAATTCATTAAATCTTGGGAATGAAGGTCAGATTTATTTTGGGGCATTTTTAGTTTATATATTTTCAA GTTTTTTTGGATTAACCTATTTTAATTTTGTATTTTTGATACTTTTAAGTTCTTTTTTTGTAGGACTTTTGGGGCT TATCCCCTTTTTTATTACTTTTTTCTTCGGATTAAATAAAGCCTTAACAGGTCTTTTAATATCTTATGGAAATCAA AGATTGGTGGATGGATTTATTTTAAATATGTTAAAAACAGGTAGTTTTTCTAATCAGACAAAAAGGATTAATAGTT TGTTTGCTTTAGATTCATCACTTATTTACTTGTTTTTGCTTGGTGTATCAGTTTGGCTTTTTTATGTTTTTATTCA CAAAAAAACTATTTATGGTCTTCAGCTTGAAATATTAAGCAATAAAAAAAAGATAGACATTTTTTTCAATATAAAT GAATTTAAATATAAGTTTTTCGCTGTATTTGGCAGTGCTTTTTTAAATGGTCTTGCAGGTTCTATGTTTGTAGTGT TTTTTAGACCATATTTGGTTTTAGGGCTAACTTCAGGACTTGGTTGGAGTAGTCTAATTGTTGCTGTAATTTCAGG ATTTAATTATGTTTATGTATTATTTTTTAGCTTATTGTTTTCAATATTAATTGAATTTAATAATTTTCTTAATATA AATTATGACTTTAAGTATGAATTTATTGGGCTTTGTCAATCAATTGCTATTTTTATCTCTTTATTTTTGATTAAAG CTAGGAAAAAGTAG f631.aa
MWEINSLRTCYLLVLLLLVAYGLWFYTSSFFLSLELTGNPNFLFFTRLNYLFLSFMVFLVFERISLNFLKKSIF PVLIITLFLIMATFLSPSISGAKR IFFQGVSIQPSEIFKISFTIYLSAYLSKFDPRKNNGISYWIKPMLIFAIF VLIILQNDYSTAIYFAILFFIVLFVSNMAFSYVFAIWTFLPVSAIFLMLEPYRVSRIFAFLNPYDDPSGKGYQ.il ASLNALKSGGILGKGLGMGEVKLGKLPEANSDFIFSVLGEELGFLGVLFAISLFFLFFYFGYFIAIHSNSRFKFFI AFISSLAIFLQSMMNILIAIGLLPPTGINLPFFSSGGSSIIVTMALSGLISNVSKNLSNN t631 . aa TABLE 1. Nucleotide and Amino Acid Sequences
RISLNFLKKSIFPVLIITLFLIMATFLSPSISGAKRWIFFQGVSIQPSEIFKISFTIYLSAYLSKFDPRKNNGISY WIKPMLIFAIFWVLIILQNDYSTAIYFAILFFIVLFVSNMAFSYVFAIWTFLPVSAIFLMLEPYRVSRIFAFLNP YDDPSGKGYQIIASLNALKSGGILGKGLGMGEVKLGKLPEANSDFIFSVLGEELGFLGVLFAISLFFLFFYFGYFI AIHSNSRFKFFIAFISSLAIFLQSMMNILIAIGLLPPTGINLPFFSSGGSSIIVTMALSGLISNVSKNLSNN f631.nt
ATGGTTGTAGAGATAAATTCACTTAGGACATGTTATTTGCTTGTTTTGCTGCTATTGGTAGCCTATGGCCTTGTAG TTTTTTATACTTCTTCCTTTTTTCTAAGCTTAGAATTGACAGGTAATCCAAATTTTTTATTTTTCACAAGACTTAA TTATCTTTTTTTAAGTTTTATGGTTTTTCTTGTTTTTGAAAGGATTTCTTTAAATTTTTTAAAAAAATCAATATTT CCTGTATTGATTATAACTCTTTTTTTAATTATGGCAACTTTTTTATCTCCAAGTATTTCTGGAGCAAAGAGATGGA TATTCTTTCAAGGTGTTAGCATTCAACCTTCTGAGATTTTTAAAATATCTTTTACTATTTATCTTTCAGCTTATTT GAGCAAGTTTGACCCAAGAAAAAACAATGGTATTTCATACTGGATAAAGCCAATGTTGATTTTTGCAATTTTTTGG GTGTTAATAATTTTGCAAAACGATTATTCAACAGCTATTTATTTTGCCATTCTTTTTTTTATTGTTTTGTTTGTTT CTAATATGGCATTTAGCTATGTTTTTGCTATTGTGGTTACTTTTTTACCAGTTTCTGCTATATTCTTGATGCTTGA ACCTTATAGGGTTTCTAGAATTTTTGCCTTTCTCAATCCTTACGATGATCCTTCTGGCAAAGGTTACCAGATAATA GCATCTCTTAATGCTTTAAAAAGTGGAGGAATTTTAGGTAAAGGGCTGGGAATGGGAGAGGTAAAACTTGGAAAAT TACCAGAGGCCAATTCGGATTTTATTTTTTCAGTTCTTGGAGAAGAATTAGGATTTTTAGGGGTTTTGTTTGCTAT AAGCTTGTTTTTTTTGTTTTTTTACTTTGGTTATTTTATAGCTATTCATTCTAATAGTAGGTTTAAATTTTTTATT GCATTTATTTCAAGTCTTGCAATTTTTCTTCAAAGCATGATGAATATTTTAATTGCAATCGGTCTTTTGCCTCCTA CAGGGATAAATTTACCATTTTTTTCATCTGGGGGATCTTCTATTATTGTTACCATGGCATTGTCTGGCCTTATTTC AAATGTTTCAAAAAATTTAAGTAATAATTGA t631.nt
AGGATTTCTTTAAATTTTTTAAAAAAATCAATATTTCCTGTATTGATTATAACTCTTTTTTTAATTATGGCAACTT TTTTATCTCCAAGTATTTCTGGAGCAAAGAGATGGATATTCTTTCAAGGTGTTAGCATTCAACCTTCTGAGATTTT TAAAATATCTTTTACTATTTATCTTTCAGCTTATTTGAGCAAGTTTGACCCAAGAAAAAACAATGGTATTTCATAC TGGATAAAGCCAATGTTGATTTTTGCAATTTTTTGGGTGTTAATAATTTTGCAAAACGATTATTCAACAGCTATTT ATTTTGCCATTCTTTTTTTTATTGTTTTGTTTGTTTCTAATATGGCATTTAGCTATGTTTTTGCTATTGTGGTTAC TTTTTTACCAGTTTCTGCTATATTCTTGATGCTTGAACCTTATAGGGTTTCTAGAATTTTTGCCTTTCTCAATCCT TACGATGATCCTTCTGGCAAAGGTTACCAGATAATAGCATCTCTTAATGCTTTAAAAAGTGGAGGAATTTTAGGTA AAGGGCTGGGAATGGGAGAGGTAAAACTTGGAAAATTACCAGAGGCCAATTCGGATTTTATTTTTTCAGTTCTTGG AGAAGAATTAGGATTTTTAGGGGTTTTGTTTGCTATAAGCTTGTTTTTTTTGTTTTTTTACTTTGGTTATTTTATA GCTATTCATTCTAATAGTAGGTTTAAATTTTTTATTGCATTTATTTCAAGTCTTGCAATTTTTCTTCAAAGCATGA TGAATATTTTAATTGCAATCGGTCTTTTGCCTCCTACAGGGATAAATTTACCATTTTTTTCATCTGGGGGATCTTC TATTATTGTTACCATGGCATTGTCTGGCCTTATTTCAAATGTTTCAAAAAATTTAAGTAATAATTGA f647.aa
MKVNNFLSFFFRAFFLLFLIVILFFFVLFFIDFIGMYNTKRYFPEFVRTKLLGETSLVFDHNSNIILDEARLVKER EAIDIKNQQIEKLKEDLKLKEDSLNKLEFELKQKQKDLDLKQKIIDDIINKYNDEEANILQTAVYLMNMPPEDAVK RLEDLNPELAISYMRKIEELSKKEGRLSIVPY LSLMDSKKAAILIRKMSVSSLE t647.aa
IDFIGMYNTKRYFPEFVRTKLLGETSLVFDHNSNIILDEARLVKEREAIDIKNQQIEKLKEDLKLKEDSLNKLEFE LKQKQKDLDLKQKIIDDIINKYNDEEANILQTAVYLMNMPPEDAVKRLEDLNPELAISYMRKIEELSKKEGRLSIV PYWLSLMDSKKAAILIRKMSVSSLE f647.nt
ATGAAAGTGAATAATTTTTTATCGTTCTTTTTTAGGGCATTTTTTTTGTTATTTTTAATTGTTATTTTATTTTTCT TTGTATTATTCTTTATTGATTTTATTGGAATGTATAATACTAAAAGATATTTCCCCGAATTTGTAAGAACCAAGTT GTTAGGAGAAACTTCTCTGGTCTTTGATCATAATTCTAATATAATTCTTGATGAAGCTAGACTTGTGAAGGAAAGA GAAGCTATTGATATTAAGAATCAGCAGATTGAAAAGCTTAAAGAAGATCTAAAGTTAAAAGAAGACAGTTTAAATA TABLE 1. Nucleotide and Amino Acid Sequences
AGCTTGAATTTGAGCTTAAGCAAAAGCAGAAAGATTTAGATTTAAAACAAAAAATAATAGATGACATTATAAATAA ATATAATGATGAGGAAGCAAATATTTTGCAAACAGCTGTATATTTAATGAATATGCCACCAGAAGATGCTGTTAAG CGGCTTGAAGATTTAAATCCCGAGCTTGCAATATCTTATATGCGGAAAATTGAAGAGCTTTCCAAAAAAGAAGGTC GTTTATCAATTGTTCCTTATTGGTTATCTCTTATGGATTCTAAAAAAGCTGCTATATTGATTAGAAAAATGTCTGT TAGTTCATTGGAGTAG t647.nt
ATTGATTTTATTGGAATGTATAATACTAAAAGATATTTCCCCGAATTTGTAAGAACCAAGTTGTTAGGAGAAACTT CTCTGGTCTTTGATCATAATTCTAATATAATTCTTGATGAAGCTAGACTTGTGAAGGAAAGAGAAGCTATTGATAT TAAGAATCAGCAGATTGAAAAGCTTAAAGAAGATCTAAAGTTAAAAGAAGACAGTTTAAATAAGCTTGAATTTGAG CTTAAGCAAAAGCAGAAAGATTTAGATTTAAAACAAAAAATAATAGATGACATTATAAATAAATATAATGATGAGG AAGCAAATATTTTGCAAACAGCTGTATATTTAATGAATATGCCACCAGAAGATGCTGTTAAGCGGCTTGAAGATTT AAATCCCGAGCTTGCAATATCTTATATGCGGAAAATTGAAGAGCTTTCCAAAAAAGAAGGTCGTTTATCAATTGTT CCTTATTGGTTATCTCTTATGGATTCTAAAAAAGCTGCTATATTGATTAGAAAAATGTCTGTTAGTTCATTGGAGT AG f653.aa
MLTYGDMVTLLLVFFVTMFSLNDIIFQENVIRIMSASFTGAGFFKGGKTLDFSKLSYLSNSFMSLPSTVRNKQASQ TAKNKSMIEFIEKIQSKNIWRQEERGIVISLAADAFFDSASADVKLEENRDSIQKIASFIGFLSPRGYNFKIEGH TDNIDTDVNGP KSN ELSAARSVNMLEHILNYLDQSDVKRIENNFEVSGFGGSRPIATDDTPEGRAYNRRIDILI TTDASLSFPKEIKQ t653.aa
NDIIFQENVIRIMSASFTGAGFFKGGKTLDFSKLSYLSNSFMSLPSTVRNKQASQTAKNKSMIEFIEKIQSKNIW RQEERGIVISLAADAFFDSASADVKLEENRDSIQKIASFIGFLSPRGYNFKIEGHTDNIDTDVNGPWKSNWELSAA RSVNMLEHILNYLDQSDVKRIENNFEVSGFGGSRPIATDDTPEGRAYNRRIDILITTDASLSFPKEIKQ f653.nt
ATGTTGACTTATGGAGACATGGTTACTTTGCTGCTTGTGTTTTTTGTTACAATGTTTTCATTAAATGATATTATTT TTCAAGAAAATGTGATAAGAATAATGTCTGCTTCTTTCACGGGTGCTGGATTTTTCAAGGGCGGTAAAACTTTAGA TTTTAGTAAATTATCTTATTTGAGTAATAGCTTTATGTCTTTGCCTTCTACTGTGCGCAATAAACAAGCATCTCAG ACTGCTAAAAATAAATCCATGATTGAATTTATTGAGAAGATTCAGTCTAAAAATATTGTAGTTAGGCAAGAAGAAA GAGGTATTGTAATATCTCTTGCAGCAGATGCATTTTTTGATTCTGCTAGTGCAGATGTTAAGCTTGAAGAGAATAG AGATTCTATTCAAAAAATAGCATCTTTTATTGGCTTTTTAAGTCCTAGAGGCTATAATTTTAAAATAGAAGGGCAT ACAGATAATATTGATACTGATGTAAATGGACCTTGGAAAAGCAATTGGGAACTTTCGGCTGCTAGATCTGTTAATA TGCTGGAACATATTTTGAACTATTTAGATCAATCTGATGTTAAAAGAATTGAAAATAATTTTGAAGTATCTGGTTT TGGTGGAAGTAGGCCTATTGCAACAGACGATACCCCTGAGGGTAGGGCTTATAATAGAAGAATTGATATATTAATT ACTACAGATGCATCTTTAAGTTTCCCTAAGGAAATTAAGCAGTAA t653.nt
AATGATATTATTTTTCAAGAAAATGTGATAAGAATAATGTCTGCTTCTTTCACGGGTGCTGGATTTTTCAAGGGCG GTAAAACTTTAGATTTTAGTAAATTATCTTATTTGAGTAATAGCTTTATGTCTTTGCCTTCTACTGTGCGCAATAA ACAAGCATCTCAGACTGCTAAAAATAAATCCATGATTGAATTTATTGAGAAGATTCAGTCTAAAAATATTGTAGTT AGGCAAGAAGAAAGAGGTATTGTAATATCTCTTGCAGCAGATGCATTTTTTGATTCTGCTAGTGCAGATGTTAAGC TTGAAGAGAATAGAGATTCTATTCAAAAAATAGCATCTTTTATTGGCTTTTTAAGTCCTAGAGGCTATAATTTTAA AATAGAAGGGCATACAGATAATATTGATACTGATGTAAATGGACCTTGGAAAAGCAATTGGGAACTTTCGGCTGCT AGATCTGTTAATATGCTGGAACATATTTTGAACTATTTAGATCAATCTGATGTTAAAAGAATTGAAAATAATTTTG AAGTATCTGGTTTTGGTGGAAGTAGGCCTATTGCAACAGACGATACCCCTGAGGGTAGGGCTTATAATAGAAGAAT TGATATATTAATTACTACAGATGCATCTTTAAGTTTCCCTAAGGAAATTAAGCAGTAA f664.aa TABLE 1. Nucleotide and Amino Acid Sequences
MRMSVYTMGFAYIRSIMGYWLFFFASLAVNFFVNIIQVGFFITFKSLEPRWDKISFNFSR AKNSFFSAGAFFNL FKSLLKWIICLIYYFIIENNIGKISKLSEYTLQSGISIVLVIAYKICFFSVMFLAIVGVFDYLFQRSQYIESLKM TKEEVKQERKEMEGDPLLRSRIKERMRVILSTNLRVAIPQADWITNPEHFAVAIKWDSETMLAPKVLAKGQDEIA LTIKKIARENNVPLMENKLLARALYANVKVNEEIPREYWEIVSKILVRVYSITKKFN t664 . aa
FVNIIQVGFFITFKSLEPR DKISFNFSR AKNSFFSAGAFFNLFKSLLKWIICLIYYFIIENNIGKISKLSEYT LQSGISIVLVIAYKICFFSVMFLAIVGVFDYLFQRSQYIESLKMTKEEVKQERKEMEGDPLLRSRIKERMRVILST NLRVAIPQADVVITNPEHFAVAIKWDSETMLAPKVLAKGQDEIALTIKKIARENNVPLMENKLLARALYANVKVNE EIPREYWEIVSKILVRVYSITKKFN f664.nt
ATGCGTATGAGTGTTTATACTATGGGTTTTGCATATATTAGATCTATCATGGGGTATGTCGTTTTGTTTTTTTTCG CATCTTTAGCTGTTAATTTTTTTGTTAATATTATTCAAGTAGGCTTTTTTATTACTTTTAAATCTTTGGAGCCAAG GTGGGATAAAATTAGTTTTAATTTTTCCAGATGGGCAAAAAATTCTTTTTTTTCAGCAGGGGCTTTTTTCAATTTG TTTAAAAGTTTGTTAAAAGTTGTTATAATATGCTTGATATATTATTTTATTATAGAAAACAATATAGGCAAAATTT CTAAGCTTTCGGAGTATACACTTCAATCTGGAATTTCTATTGTGTTAGTGATTGCCTATAAGATATGTTTTTTTTC AGTAATGTTTTTGGCAATTGTAGGGGTGTTTGATTATTTGTTTCAAAGATCTCAGTACATTGAGAGTTTGAAAATG ACAAAAGAAGAGGTAAAGCAGGAAAGAAAGGAAATGGAAGGTGATCCTTTACTTCGATCTAGAATAAAAGAGAGAA TGAGGGTTATTTTAAGTACCAATTTAAGAGTAGCTATTCCTCAAGCAGATGTAGTAATTACAAATCCAGAACATTT TGCAGTTGCTATTAAATGGGATAGCGAAACAATGTTAGCTCCAAAGGTGCTTGCAAAAGGTCAAGATGAAATAGCT CTCACAATTAAAAAAATTGCAAGAGAAAATAATGTTCCTTTAATGGAAAATAAGCTCCTTGCAAGAGCTCTTTATG CTAATGTTAAGGTTAATGAAGAGATTCCAAGAGAATATTGGGAGATTGTTTCAAAAATTCTTGTGAGAGTATATTC TATTACTAAAAAGTTTAATTAG t664.nt
TTTGTTAATATTATTCAAGTAGGCTTTTTTATTACTTTTAAATCTTTGGAGCCAAGGTGGGATAAAATTAGTTTTA ATTTTTCCAGATGGGCAAAAAATTCTTTTTTTTCAGCAGGGGCTTTTTTCAATTTGTTTAAAAGTTTGTTAAAAGT TGTTATAATATGCTTGATATATTATTTTATTATAGAAAACAATATAGGCAAAATTTCTAAGCTTTCGGAGTATACA CTTCAATCTGGAATTTCTATTGTGTTAGTGATTGCCTATAAGATATGTTTTTTTTCAGTAATGTTTTTGGCAATTG TAGGGGTGTTTGATTATTTGTTTCAAAGATCTCAGTACATTGAGAGTTTGAAAATGACAAAAGAAGAGGTAAAGCA GGAAAGAAAGGAAATGGAAGGTGATCCTTTACTTCGATCTAGAATAAAAGAGAGAATGAGGGTTATTTTAAGTACC AATTTAAGAGTAGCTATTCCTCAAGCAGATGTAGTAATTACAAATCCAGAACATTTTGCAGTTGCTATTAAATGGG ATAGCGAAACAATGTTAGCTCCAAAGGTGCTTGCAAAAGGTCAAGATGAAATAGCTCTCACAATTAAAAAAATTGC AAGAGAAAATAATGTTCCTTTAATGGAAAATAAGCTCCTTGCAAGAGCTCTTTATGCTAATGTTAAGGTTAATGAA GAGATTCCAAGAGAATATTGGGAGATTGTTTCAAAAATTCTTGTGAGAGTATATTCTATTACTAAAAAGTTTAATT AG fβδO.aa
MFTLSFVLINFI ITGILILMLEFNFLKVDFKGNILLAGIFMGLMQGLGALPGISRSGITIFSASVIGFNRKSAFEI SFLSLIPIVFGAILLKHKEFYDIFMVLNFFEINLGALVAFWGIFSINFFFKMLNNKKLYYFSIYLFALSIIVCYF VRI tβ δ O . aa
ITGILILMLEFNFLKVDFKGNILLAGIFMGLMQGLGALPGISRSGITIFSASVIGFNRKSAFEISFLSLIPIVFGA ILLKHKEFYDIFMVLNFFEINLGALVAFWGIFSINFFFKMLNNKKLYYFSIYLFALSIIVCYFVRI f β δ O . nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGTTTACATTGTCTTTCGTTTTAATTAATTTTATTATAACAGGGATTTTAATCTTGATGCTAGAATTTAATTTTT TAAAAGTTGATTTTAAAGGTAATATTTTGTTAGCAGGAATTTTTATGGGGCTGATGCAAGGCTTGGGTGCGCTTCC AGGAATCTCTCGTTCAGGAATTACGATCTTTTCGGCATCGGTTATTGGATTTAATAGAAAAAGTGCATTTGAAATT TCATTTTTATCTTTAATTCCAATAGTTTTTGGAGCGATTTTATTAAAACATAAAGAATTTTATGATATTTTTATGG TTTTAAATTTTTTTGAAATAAACTTAGGAGCATTAGTTGCTTTTGTTGTTGGTATTTTCTCAATAAATTTCTTTTT TAAAATGCTTAATAACAAAAAACTGTATTATTTTTCTATATATTTATTTGCACTTTCAATTATAGTTTGTTATTTT GTTAGAATATGA t680.nt
ATAACAGGGATTTTAATCTTGATGCTAGAATTTAATTTTTTAAAAGTTGATTTTAAAGGTAATATTTTGTTAGCAG GAATTTTTATGGGGCTGATGCAAGGCTTGGGTGCGCTTCCAGGAATCTCTCGTTCAGGAATTACGATCTTTTCGGC ATCGGTTATTGGATTTAATAGAAAAAGTGCATTTGAAATTTCATTTTTATCTTTAATTCCAATAGTTTTTGGAGCG ATTTTATTAAAACATAAAGAATTTTATGATATTTTTATGGTTTTAAATTTTTTTGAAATAAACTTAGGAGCATTAG TTGCTTTTGTTGTTGGTATTTTCTCAATAAATTTCTTTTTTAAAATGCTTAATAACAAAAAACTGTATTATTTTTC TATATATTTATTTGCACTTTCAATTATAGTTTGTTATTTTGTTAGAATATGA fβδδ.aa
MIVLLISIGCANAVHIINEIFKLIKKEQLSKESIKATIKKLKTPILLTSFTTAFGFLSLTTSSINAYKTMGIFMSI GVIISMIISLTVLPGIITLIPFAKKKSFEKEKENKLNKISFLERLAKLNTQITKSILKRKYTSSIMVLIILGISFV GLLKIEINFDEKDYFKESTSVKKTLNLMQKEMGGISIFKIEIEGRPGEFKNAKAMQILDLITDKLDAFSAKTQSSS INGILKFTNFKIKKESPLEYKLPENKIILNKLINLIDKSDWTKDNKRMYINDDWSLISIIVRIEDNSTEGIKKFEK YAINTINEYMKNNKYHFSGVYDKVLIAKTMVKEQVINIITTLGSITLLLMFFFKSIKTGIIIAIPVA SVFLNFAV MRLFGITLNPATATIASVSMGVGVDYSIHFFNTFILQYQKNQIYKTALLESIPNVFNGIFANSISVGIGFLTLTFS SYKIISTLGAIIAFTMLTTSLASLTLLPLLIYLFKPRVKLASNNNFKKLKQZ tβδδ.aa
YKTMGIFMSIGVIISMIISLTVLPGIITLIPFAKKKSFEKEKENKLNKISFLERLAKLNTQITKSILKRKYTSSIM VLIILGISFVGLLKIEINFDEKDYFKESTSVKKTLNLMQKEMGGISIFKIEIEGRPGEFKNAKAMQILDLITDKLD AFSAKTQSSSINGILKFTNFKIKKESPLEYKLPENKIILNKLINLIDKSD TKDNKRMYINDDWSLISIIVRIEDN STEGIKKFEKYAINTINEYMKNNKYHFSGVYDKVLIAKTMVKEQVINIITTLGSITLLLMFFFKSIKTGIIIAIPV A SVFLNFAVMRLFGITLNPATATIASVSMGVGVDYSIHFFNTFILQYQKNQIYKTALLESIPNVFNGIFANSISV GIGFLTLTFSSYKIISTLGAIIAFTMLTTSLASLTLLPLLIYLFKPRVKLASNNNFKKLKQZ fβδδ.nt
ATGATTGTTTTACTTATTTCAATCGGATGCGCCAATGCTGTACATATAATAAATGAAATATTTAAATTAATAAAAA AAGAACAGCTCTCAAAAGAATCCATAAAAGCAACAATTAAAAAACTTAAAACACCCATCCTGCTAACATCTTTTAC AACTGCATTTGGATTTTTATCTCTTACAACCTCTTCAATTAATGCCTACAAAACAATGGGTATTTTCATGTCAATT GGAGTAATTATCTCAATGATAATCTCATTAACCGTTTTACCTGGAATAATAACATTAATCCCATTTGCAAAAAAAA AGTCTTTTGAAAAAGAAAAAGAAAATAAACTAAATAAAATATCCTTCCTTGAAAGACTTGCCAAACTAAATACGCA AATAACAAAATCTATATTAAAAAGAAAATATACATCCTCTATAATGGTCCTCATCATACTGGGAATTTCTTTTGTA GGTCTTTTAAAAATCGAAATCAATTTTGATGAAAAAGATTACTTTAAAGAAAGCACAAGTGTAAAAAAAACATTAA ACCTAATGCAAAAAGAAATGGGGGGAATATCGATTTTCAAAATAGAAATTGAAGGCAGGCCCGGTGAATTTAAAAA TGCTAAAGCAATGCAAATATTAGACTTAATTACAGATAAGCTTGATGCATTTTCTGCAAAAACTCAATCTAGTTCT ATTAATGGCATTTTAAAATTTACAAATTTTAAAATTAAAAAAGAATCCCCACTAGAGTATAAACTGCCTGAAAATA AAATTATACTAAACAAACTAATAAATTTGATAGATAAAAGCGATTGGACTAAGGACAATAAAAGAATGTACATTAA CGATGACTGGTCATTAATATCTATCATAGTAAGAATTGAAGACAACTCAACCGAAGGAATAAAAAAATTTGAAAAA TATGCTATTAACACAATTAATGAATATATGAAAAATAATAAATATCATTTCTCAGGTGTTTATGATAAGGTATTAA TAGCTAAAACAATGGTAAAAGAACAGGTTATAAACATTATAACAACTCTTGGATCAATAACACTACTACTTATGTT TTTCTTTAAATCTATAAAAACCGGAATAATTATTGCAATCCCAGTAGCATGGTCAGTGTTTTTAAACTTTGCTGTA ATGAGATTATTTGGGATAACCTTAAACCCCGCAACGGCAACAATTGCATCTGTAAGCATGGGAGTAGGAGTAGATT ATTCAATTCATTTTTTCAATACATTTATTTTACAATACCAAAAAAATCAAATCTACAAAACTGCACTTCTTGAATC AATACCCAATGTATTTAATGGAATATTTGCAAATTCTATTTCTGTTGGAATAGGATTTTTAACTCTAACATTTTCG TABLE 1. Nucleotide and Amino Acid Sequences
TCTTATAAAATAATATCAACTCTTGGAGCAATAATTGCTTTTACAATGCTAACGACATCTCTTGCATCACTAACTC TTCTTCCATTATTAATTTATTTATTTAAACCTAGAGTAAAGCTAGCCTCAAACAACAATTTTAAAAAATTAAAACA ATAA t688.nt
TACAAAACAATGGGTATTTTCATGTCAATTGGAGTAATTATCTCAATGATAATCTCATTAACCGTTTTACCTGGAA TAATAACATTAATCCCATTTGCAAAAAAAAAGTCTTTTGAAAAAGAAAAAGAAAATAAACTAAATAAAATATCCTT CCTTGAAAGACTTGCCAAACTAAATACGCAAATAACAAAATCTATATTAAAAAGAAAATATACATCCTCTATAATG GTCCTCATCATACTGGGAATTTCTTTTGTAGGTCTTTTAAAAATCGAAATCAATTTTGATGAAAAAGATTACTTTA AAGAAAGCACAAGTGTAAAAAAAACATTAAACCTAATGCAAAAAGAAATGGGGGGAATATCGATTTTCAAAATAGA AATTGAAGGCAGGCCCGGTGAATTTAAAAATGCTAAAGCAATGCAAATATTAGACTTAATTACAGATAAGCTTGAT GCATTTTCTGCAAAAACTCAATCTAGTTCTATTAATGGCATTTTAAAATTTACAAATTTTAAAATTAAAAAAGAAT CCCCACTAGAGTATAAACTGCCTGAAAATAAAATTATACTAAACAAACTAATAAATTTGATAGATAAAAGCGATTG GACTAAGGACAATAAAAGAATGTACATTAACGATGACTGGTCATTAATATCTATCATAGTAAGAATTGAAGACAAC TCAACCGAAGGAATAAAAAAATTTGAAAAATATGCTATTAACACAATTAATGAATATATGAAAAATAATAAATATC ATTTCTCAGGTGTTTATGATAAGGTATTAATAGCTAAAACAATGGTAAAAGAACAGGTTATAAACATTATAACAAC TCTTGGATCAATAACACTACTACTTATGTTTTTCTTTAAATCTATAAAAACCGGAATAATTATTGCAATCCCAGTA GCATGGTCAGTGTTTTTAAACTTTGCTGTAATGAGATTATTTGGGATAACCTTAAACCCCGCAACGGCAACAATTG CATCTGTAAGCATGGGAGTAGGAGTAGATTATTCAATTCATTTTTTCAATACATTTATTTTACAATACCAAAAAAA TCAAATCTACAAAACTGCACTTCTTGAATCAATACCCAATGTATTTAATGGAATATTTGCAAATTCTATTTCTGTT GGAATAGGATTTTTAACTCTAACATTTTCGTCTTATAAAATAATATCAACTCTTGGAGCAATAATTGCTTTTACAA TGCTAACGACATCTCTTGCATCACTAACTCTTCTTCCATTATTAATTTATTTATTTAAACCTAGAGTAAAGCTAGC CTCAAACAACAATTTTAAAAAATTAAAACAATAA f704.aa
MNYTKFQEFISEFLGTFILLALGTGSVAMTVLFSSSPEIPGEIIKGGYTNIVFGWGLGVTFGIYTAARMSGAHLNP AVSIGLASVGKFPVSKLLHYIVAQILGAFTGALMTLWFYPKWIEMDPGLENTQGIMATFPAVPGFLPGFIDQIFG TFLLMFLISWGDFTKKHSDNPFIPFIVGAWLSIGISFGGMNGYAINPARDLGPRILLLFAGFKNHGFNNLSIVI VPIIGPIIGAILGATIYEFTLKNNKD t704 . aa
GEIIKGGYTNIVFGWGLGVTFGIYTAARMSGAHLNPAVSIGLASVGKFPVSKLLHYIVAQILGAFTGALMTLWFY PK IEMDPGLENTQGIMATFPAVPGFLPGFIDQIFGTFLLMFLISWGDFTKKHSDNPFIPFIVGAWLSIGISFG GMNGYAINPARDLGPRILLLFAGFKNHGFNNLSIVIVPIIGPIIGAILGATIYEFTLKNNKD f704.nt
ATGAATTATACAAAATTCCAAGAATTTATATCGGAATTTTTGGGAACATTTATCCTATTGGCTCTAGGAACTGGAT CTGTTGCAATGACAGTATTATTTTCCTCAAGTCCCGAAATACCAGGAGAAATAATAAAAGGAGGATATACAAATAT AGTATTTGGATGGGGATTGGGTGTAACGTTTGGTATTTACACAGCAGCAAGAATGAGCGGAGCACACCTAAACCCA GCTGTTAGCATAGGATTAGCAAGTGTTGGAAAGTTTCCCGTTTCAAAACTTTTACATTACATTGTAGCACAAATAT TAGGAGCTTTTACAGGTGCATTAATGACACTTGTCGTATTTTATCCTAAATGGATAGAAATGGATCCTGGCTTAGA AAATACTCAAGGAATAATGGCAACTTTCCCTGCTGTTCCTGGATTTTTGCCTGGATTTATTGATCAAATTTTTGGA ACTTTTTTGCTAATGTTTTTAATTTCTGTTGTTGGAGATTTTACAAAAAAACACAGCGACAATCCATTTATTCCTT TTATTGTAGGAGCAGTGGTTTTATCAATAGGGATAAGTTTCGGAGGAATGAACGGTTATGCTATTAATCCTGCAAG GGATCTGGGACCAAGAATTTTACTCTTATTTGCTGGATTTAAAAATCACGGATTTAACAATCTAAGTATAGTTATT GTACCAATAATTGGCCCAATAATTGGAGCAATTTTGGGAGCTACAATTTACGAATTTACACTAAAAAATAACAAAG ACTAA t704.nt
GGAGAAATAATAAAAGGAGGATATACAAATATAGTATTTGGATGGGGATTGGGTGTAACGTTTGGTATTTACACAG CAGCAAGAATGAGCGGAGCACACCTAAACCCAGCTGTTAGCATAGGATTAGCAAGTGTTGGAAAGTTTCCCGTTTC TABLE 1. Nucleotide and Amino Acid Sequences
AAAACTTTTACATTACATTGTAGCACAAATATTAGGAGCTTTTACAGGTGCATTAATGACACTTGTCGTATTTTAT
CCTAAATGGATAGAAATGGATCCTGGCTTAGAAAATACTCAAGGAATAATGGCAACTTTCCCTGCTGTTCCTGGAT
TTTTGCCTGGATTTATTGATCAAATTTTTGGAACTTTTTTGCTAATGTTTTTAATTTCTGTTGTTGGAGATTTTAC
AAAAAAACACAGCGACAATCCATTTATTCCTTTTATTGTAGGAGCAGTGGTTTTATCAATAGGGATAAGTTTCGGA
GGAATGAACGGTTATGCTATTAATCCTGCAAGGGATCTGGGACCAAGAATTTTACTCTTATTTGCTGGATTTAAAA
ATCACGGATTTAACAATCTAAGTATAGTTATTGTACCAATAATTGGCCCAATAATTGGAGCAATTTTGGGAGCTAC
AATTTACGAATTTACACTAAAAAATAACAAAG
ACTAA f707.aa
MRRLFLLYILCSFVFLNLFAQGSSSYIDKQKELAIFYYEVGQRYINVGKIKKGKLFQAKALKIYPDLKKGFDIKLA VKELDARIKDDNPKWMLEDIKLEEIPGIVHEKIEINDFTNAPKIEYIAQRERSKNQDKIIKFQFGKFARALISRN FDLFDSVIADKVNVMGQFESKNDFISTLSSASSKADADELEYLSVDDYYDLKSLKISKSNDTSFAVNVNAKKNDVT KNFPFWKERQTLIFTTEDDNN FLSSINZ t707.aa
MRRLFLLYILCSFVFLNLFAQGSSSYIDKQKELAIFYYEVGQRYINVGKIKKGKLFQAKALKIYPDLKKGFDIKLA VKELDARIKDDNPKWMLEDIKLEEIPGIVHEKIEINDFTNAPKIEYIAQRERSKNQDKIIKFQFGKFARALISRN FDLFDSVIADKVNVMGQFESKNDFISTLSSASSKADADELEYLSVDDYYDLKSLKISKSNDTSFAVNVNAKKNDVT KNFPFWKERQTLIFTTEDDNNWFLSSINZ f707.nt
ATGAGAAGATTATTTCTTCTATATATTTTATGTTCTTTTGTTTTTTTGAATTTATTTGCTCAAGGTAGTTCTTCTT ATATTGATAAGCAAAAAGAGCTTGCTATTTTTTATTATGAGGTTGGTCAAAGATATATAAACGTTGGTAAAATTAA AAAAGGAAAGCTTTTTCAAGCAAAAGCTTTAAAGATTTATCCAGATTTGAAAAAGGGGTTTGATATCAAGCTTGCA GTTAAAGAGCTTGATGCTAGGATTAAAGATGACAATCCCAAGGTTGTTATGCTTGAGGATATTAAGCTTGAGGAGA TACCTGGAATAGTGCACGAAAAAATAGAAATCAATGATTTTACAAATGCTCCTAAAATAGAATATATTGCTCAAAG AGAGAGAAGCAAAAATCAAGATAAAATTATTAAGTTTCAATTTGGAAAGTTTGCAAGAGCTTTAATTTCTAGGAAC TTTGATTTGTTTGATTCAGTTATTGCGGATAAAGTTAACGTTATGGGTCAATTTGAATCAAAAAATGATTTTATAT CAACTTTATCAAGTGCTTCATCTAAGGCCGATGCTGATGAGTTAGAGTATTTATCAGTTGATGATTATTACGATTT AAAGTCTTTAAAAATTTCAAAATCCAACGATACTTCTTTTGCTGTTAATGTTAATGCCAAAAAAAATGATGTTACT AAAAATTTTCCATTTTGGAAAGAACGTCAAACTTTAATTTTTACTACAGAGGATGATAATAATTGGTTTTTGTCTT CCATAAATTGA t707.nt
CAAGGTAGTTCTTCTTATATTGATAAGCAAAAAGAGCTTGCTATTTTTTATTATGAGGTTGGTCAAAGATATATAA ACGTTGGTAAAATTAAAAAAGGAAAGCTTTTTCAAGCAAAAGCTTTAAAGATTTATCCAGATTTGAAAAAGGGGTT TGATATCAAGCTTGCAGTTAAAGAGCTTGATGCTAGGATTAAAGATGACAATCCCAAGGTTGTTATGCTTGAGGAT ATTAAGCTTGAGGAGATACCTGGAATAGTGCACGAAAAAATAGAAATCAATGATTTTACAAATGCTCCTAAAATAG AATATATTGCTCAAAGAGAGAGAAGCAAAAATCAAGATAAAATTATTAAGTTTCAATTTGGAAAGTTTGCAAGAGC TTTAATTTCTAGGAACTTTGATTTGTTTGATTCAGTTATTGCGGATAAAGTTAACGTTATGGGTCAATTTGAATCA AAAAATGATTTTATATCAACTTTATCAAGTGCTTCATCTAAGGCCGATGCTGATGAGTTAGAGTATTTATCAGTTG ATGATTATTACGATTTAAAGTCTTTAAAAATTTCAAAATCCAACGATACTTCTTTTGCTGTTAATGTTAATGCCAA AAAAAATGATGTTACTAAAAATTTTCCATTTTGGAAAGAACGTCAAACTTTAATTTTTACTACAGAGGATGATAAT AATTGGTTTTTGTCTTCCATAAATTGA f709.aa
MLIFGFIGLFFLNIFSLHAQGIVTNKDAQEEFKWALNSYNNGIYDDALLSFKKILSFDPNNLDYHFWTGNVYYRLG YVEEALMEWRNLKDQGYKVPYLRHLISTIEQRRGIFSNYELNFKKLVKVASLDNSIYKRPHGYQITSLRADKYGGY YAANFVGNEILYFDVNNNVNALVKDGFSYLKSPYDVIEANNLLYVTLYSSDEIGVYDKVLGVKRKSIGNKGTKDGE LLAPQYMAIDKRNYIYVSEWGNKRVSKFGLEGDFILHFGSRTSGYKGLLGPTGVTYLNENIYVADSLRNTIEVFDT TABLE 1. Nucleotide and Amino Acid Sequences
SGNHLYSVFTSIEGIEGLSSDFVGNNVIVSSKDGVYKYSIAKKTITKILKADKMNSKISSSILDANNQMIVSDFNN AKVSVYKSDASLYDSLNVDVRRIIRLGGPKIYVELNVSSKSGLPWGLKSENFSISNENYYIVNPKVAYNVNASKD INIAWFDKSSYMKKYDTDQIVGLNALMELSKNKNFSFINATSVPIIDNIESLTNSIRNTSSLGPYSTDAVKTDVS LKLAGSGLMSKSSRRAWYFSGGILNRKAFEKYSLDTIVSYYKNNDIRFYLILFGNDPINSKLQYLVNETGGAVIP FSSYEGVSKVYDLILEQKTGTYLLEYYYPGPQEPNKYFNLSVEANINQQTGRGEFAYFIN t709 . aa
QGIVTNKDAQEEFKWALNSYNNGIYDDALLSFKKILSFDPNNLDYHFWTGNVYYRLGYVEEALMEWRNLKDQGYKV PYLRHLISTIEQRRGIFSNYELNFKKLVKVASLDNSIYKRPHGYQITSLRADKYGGYYAANFVGNEILYFDVNNNV NALVKDGFSYLKSPYDVIEANNLLYVTLYSSDEIGVYDKVLGVKRKSIGNKGTKDGELLAPQYMAIDKRNYIYVSE WGNKRVSKFGLEGDFILHFGSRTSGYKGLLGPTGVTYLNENIYVADSLRNTIEVFDTSGNHLYSVFTSIEGIEGLS SDFVGNNVIVSSKDGVYKYSIAKKTITKILKAIDKMNSKISSSILDANNQMIVSDFNNAKVSVYKSDASLYDSLNVD VRRIIRLGGPKIYVELNVSSKSGLPWGLKSENFSISNENYYIVNPKVAYNVNASKDINIAWFDKSSYMKKYDTD QIVGLNALMELSKNKNFSFINATSVPIIDNIESLTNSIRNTΞSLGPYSTDAVKTDVSLKLAGSGLMSKSSRRAWY FSGGILNRKAFEKYSLDTIVSYYKNNDIRFYLILFGNDPINSKLQYLVNETGGAVIPFSSYEGVSKVYDLILEQKT GTYLLEYYYPGPQEPNKYFNLSVEANINQQTGRGEFAYFIN f709.nt
ATGTTAATTTTTGGTTTTATTGGTTTGTTTTTTTTAAATATTTTTAGTTTGCATGCCCAAGGAATAGTTACTAATA AAGATGCTCAAGAAGAGTTTAAATGGGCTCTTAATTCTTATAATAATGGAATTTACGATGATGCTCTTTTATCTTT TAAAAAAATTTTAAGCTTTGATCCTAATAATCTTGATTATCATTTTTGGACTGGCAATGTTTATTATAGACTGGGT TATGTTGAAGAAGCTTTAATGGAATGGAGAAATTTAAAAGATCAAGGCTATAAGGTTCCCTATCTTAGACATTTGA TTTCTACTATTGAGCAAAGGAGAGGTATTTTTTCAAATTATGAACTTAATTTTAAAAAACTTGTAAAAGTTGCTTC TCTTGATAATTCTATTTATAAAAGGCCACATGGGTACCAGATTACATCTTTAAGGGCTGATAAGTACGGCGGATAT TACGCTGCTAACTTTGTAGGCAATGAAATATTGTATTTTGATGTTAATAACAATGTTAATGCTTTAGTTAAAGATG GCTTTAGTTATTTAAAATCACCTTATGATGTTATTGAAGCTAATAATCTGCTTTATGTGACTCTTTATTCAAGTGA TGAAATTGGTGTTTATGACAAAGTTCTTGGAGTTAAAAGGAAATCTATTGGGAATAAAGGCACAAAAGATGGCGAA TTGCTTGCTCCTCAGTATATGGCTATTGATAAGAGAAACTATATTTATGTAAGTGAGTGGGGAAATAAAAGAGTAA GTAAATTTGGACTTGAAGGTGATTTTATTTTGCATTTTGGTTCTAGAACTTCAGGCTATAAGGGCCTTTTAGGTCC CACAGGCGTTACTTATTTGAATGAAAACATTTATGTTGCAGATTCTCTGAGAAATACCATTGAAGTTTTTGATACT AGTGGTAATCATTTATATTCAGTTTTTACTTCTATTGAGGGAATAGAGGGGCTTAGCAGTGATTTTGTAGGTAATA ATGTTATAGTATCCTCAAAAGATGGTGTTTATAAATATAGCATTGCTAAAAAGACAATTACAAAAATTTTAAAAGC AGATAAAATGAATTCTAAAATTTCTTCATCTATTTTGGATGCCAATAATCAGATGATTGTCTCAGATTTTAATAAT GCCAAGGTTTCAGTTTACAAGAGTGATGCAAGCCTTTATGATAGTTTAAATGTTGATGTTAGAAGAATAATTAGGC TTGGAGGGCCTAAAATTTACGTTGAGCTTAATGTTAGCAGTAAAAGCGGATTACCAGTTGTTGGGCTTAAAAGTGA AAATTTTTCAATTTCAAATGAAAATTATTACATTGTCAATCCCAAGGTGGCATATAATGTAAATGCTTCAAAAGAC ATTAATATAGCAGTTGTTTTTGATAAATCTTCTTATATGAAAAAATATGATACAGATCAAATTGTAGGGTTAAATG CCCTAATGGAGTTGTCAAAAAATAAAAACTTTAGTTTTATAAATGCAACAAGTGTGCCCATTATAGATAATATTGA AAGCTTAACAAATAGCATTAGAAATACAAGTTCTCTTGGTCCTTATAGTACAGATGCTGTAAAAACAGACGTTAGT TTGAAGTTGGCAGGTTCTGGGCTTATGTCAAAAAGCTCAAGAAGAGCAGTAGTTTATTTTAGTGGTGGTATTTTAA ATCGTAAAGCTTTTGAAAAGTACTCTTTAGATACAATAGTAAGCTATTATAAAAATAATGATATAAGGTTTTACTT AATACTATTTGGTAATGATCCTATTAATAGTAAGCTTCAGTATTTAGTTAATGAAACAGGCGGTGCTGTAATTCCT TTTTCATCTTATGAAGGTGTATCTAAAGTTTATGATTTAATTTTAGAACAAAAAACGGGCACTTATTTGTTGGAAT ATTATTATCCAGGCCCTCAAGAACCTAATAAATATTTTAATTTATCTGTTGAAGCAAATATAAATCAACAGACAGG AAGAGGGGAGTTTGCATATTTTATTAATTAG t709.nt
CAAGGAATAGTTACTAATAAAGATGCTCAAGAAGAGTTTAAATGGGCTCTTAATTCTTATAATAATGGAATTTACG ATGATGCTCTTTTATCTTTTAAAAAAATTTTAAGCTTTGATCCTAATAATCTTGATTATCATTTTTGGACTGGCAA TGTTTATTATAGACTGGGTTATGTTGAAGAAGCTTTAATGGAATGGAGAAATTTAAAAGATCAAGGCTATAAGGTT CCCTATCTTAGACATTTGATTTCTACTATTGAGCAAAGGAGAGGTATTTTTTCAAATTATGAACTTAATTTTAAAA AACTTGTAAAAGTTGCTTCTCTTGATAATTCTATTTATAAAAGGCCACATGGGTACCAGATTACATCTTTAAGGGC TGATAAGTACGGCGGATATTACGCTGCTAACTTTGTAGGCAATGAAATATTGTATTTTGATGTTAATAACAATGTT TABLE 1. Nucleotide and Amino Acid Sequences
AATGCTTTAGTTAAAGATGGCTTTAGTTATTTAAAATCACCTTATGATGTTATTGAAGCTAATAATCTGCTTTATG TGACTCTTTATTCAAGTGATGAAATTGGTGTTTATGACAAAGTTCTTGGAGTTAAAAGGAAATCTATTGGGAATAA AGGCACAAAAGATGGCGAATTGCTTGCTCCTCAGTATATGGCTATTGATAAGAGAAACTATATTTATGTAAGTGAG TGGGGAAATAAAAGAGTAAGTAAATTTGGACTTGAAGGTGATTTTATTTTGCATTTTGGTTCTAGAACTTCAGGCT ATAAGGGCCTTTTAGGTCCCACAGGCGTTACTTATTTGAATGAAAACATTTATGTTGCAGATTCTCTGAGAAATAC CATTGAAGTTTTTGATACTAGTGGTAATCATTTATATTCAGTTTTTACTTCTATTGAGGGAATAGAGGGGCTTAGC AGTGATTTTGTAGGTAATAATGTTATAGTATCCTCAAAAGATGGTGTTTATAAATATAGCATTGCTAAAAAGACAA TTACAAAAATTTTAAAAGCAGATAAAATGAATTCTAAAATTTCTTCATCTATTTTGGATGCCAATAATCAGATGAT TGTCTCAGATTTTAATAATGCCAAGGTTTCAGTTTACAAGAGTGATGCAAGCCTTTATGATAGTTTAAATGTTGAT GTTAGAAGAATAATTAGGCTTGGAGGGCCTAAAATTTACGTTGAGCTTAATGTTAGCAGTAAAAGCGGATTACCAG TTGTTGGGCTTAAAAGTGAAAATTTTTCAATTTCAAATGAAAATTATTACATTGTCAATCCCAAGGTGGCATATAA TGTAAATGCTTCAAAAGACATTAATATAGCAGTTGTTTTTGATAAATCTTCTTATATGAAAAAATATGATACAGAT CAAATTGTAGGGTTAAATGCCCTAATGGAGTTGTCAAAAAATAAAAACTTTAGTTTTATAAATGCAACAAGTGTGC CCATTATAGATAATATTGAAAGCTTAACAAATAGCATTAGAAATACAAGTTCTCTTGGTCCTTATAGTACAGATGC TGTAAAAACAGACGTTAGTTTGAAGTTGGCAGGTTCTGGGCTTATGTCAAAAAGCTCAAGAAGAGCAGTAGTTTAT TTTAGTGGTGGTATTTTAAATCGTAAAGCTTTTGAAAAGTACTCTTTAGATACAATAGTAAGCTATTATAAAAATA ATGATATAAGGTTTTACTTAATACTATTTGGTAATGATCCTATTAATAGTAAGCTTCAGTATTTAGTTAATGAAAC AGGCGGTGCTGTAATTCCTTTTTCATCTTATGAAGGTGTATCTAAAGTTTATGATTTAATTTTAGAACAAAAAACG GGCACTTATTTGTTGGAATATTATTATCCAGGCCCTCAAGAACCTAATAAATATTTTAATTTATCTGTTGAAGCAA ATATAAATCAACAGACAGGAAGAGGGGAGTTTGCATATTTTATTAATTAG f730.aa
MIKSILDYLLTLHPVLLGLLGSTFTWFTTAFGAAAVFFFRKVDNKIMDAMLGFSAGIMIAASFFSLIQPAIERAEE LGYITWVPAVFGFLVGAFFIYIVDVFVPDLDKLTFIDEDLTKHGKKDFLLFTAVTLHNFPEGLAVGVAFGALASNP DIQTLVGAMLLTLGIGIQNIPEGAAISLPLRRGNVALAKCFNYGQMSGLVEIVGGLMGAYAVYSFTRILPFALAFS AGAMIYVSIEQLIPEAKRKDIDNKVPSIFGVIGFTLMMFLDVSLGZ t730.aa
AVFFFRKVDNKIMDAMLGFSAGIMIAASFFSLIQPAIERAEELGYITWVPAVFGFLVGAFFIYIVDVFVPDLDKLT FIDEDLTKHGKKDFLLFTAVTLHNFPEGLAVGVAFGALASNPDIQTLVGAMLLTLGIGIQNIPEGAAISLPLRRGN VALAKCFNYGQMSGLVEIVGGLMGAYAVYSFTRILPFALAFSAGAMIYVSIEQLIPEAKRKDIDNKVPSIFGVIGF TLMMFLDVSLGZ f730.nt
ATGATAAAATCAATTTTAGATTATTTATTAACTTTGCATCCTGTATTATTGGGACTTTTAGGTTCTACTTTCACTT GGTTTACTACAGCTTTTGGAGCAGCAGCAGTTTTTTTCTTTAGAAAGGTAGATAATAAAATAATGGACGCTATGCT TGGTTTTTCAGCTGGCATTATGATAGCGGCCAGTTTTTTTTCGCTTATTCAGCCTGCTATAGAAAGAGCTGAAGAG CTTGGATACATTACTTGGGTGCCGGCTGTTTTTGGATTTCTTGTTGGGGCATTTTTTATATATATTGTAGATGTAT TTGTTCCAGATCTGGATAAACTTACTTTTATTGATGAAGACTTAACTAAACATGGTAAAAAAGATTTTTTACTCTT TACTGCTGTTACTTTACATAATTTTCCAGAAGGATTGGCTGTTGGAGTTGCTTTTGGAGCCTTGGCGTCTAATCCA GATATTCAAACTTTAGTTGGGGCTATGCTTCTTACGCTTGGTATTGGTATTCAAAATATTCCCGAAGGAGCAGCTA TTTCTCTGCCTTTAAGAAGAGGTAATGTTGCTTTGGCAAAATGCTTTAACTATGGCCAAATGTCAGGATTGGTAGA AATTGTGGGGGGGCTTATGGGTGCTTATGCGGTTTATTCTTTTACTCGAATTTTACCTTTTGCTTTGGCTTTTTCT GCAGGAGCTATGATTTATGTGTCAATTGAACAATTAATACCTGAAGCTAAGAGAAAAGACATTGACAATAAAGTGC CAAGTATATTTGGTGTTATTGGTTTTACATTAATGATGTTTCTCGATGTTTCACTAGGTTAA t730.nt
GCAGTTTTTTTCTTTAGAAAGGTAGATAATAAAATAATGGACGCTATGCTTGGTTTTTCAGCTGGCATTATGATAG CGGCCAGTTTTTTTTCGCTTATTCAGCCTGCTATAGAAAGAGCTGAAGAGCTTGGATACATTACTTGGGTGCCGGC TGTTTTTGGATTTCTTGTTGGGGCATTTTTTATATATATTGTAGATGTATTTGTTCCAGATCTGGATAAACTTACT TTTATTGATGAAGACTTAACTAAACATGGTAAAAAAGATTTTTTACTCTTTACTGCTGTTACTTTACATAATTTTC CAGAAGGATTGGCTGTTGGAGTTGCTTTTGGAGCCTTGGCGTCTAATCCAGATATTCAAACTTTAGTTGGGGCTAT TABLE 1. Nucleotide and Amino Acid Sequences
GCTTCTTACGCTTGGTATTGGTATTCAAAATATTCCCGAAGGAGCAGCTATTTCTCTGCCTTTAAGAAGAGGTAAT GTTGCTTTGGCAAAATGCTTTAACTATGGCCAAATGTCAGGATTGGTAGAAATTGTGGGGGGGCTTATGGGTGCTT ATGCGGTTTATTCTTTTACTCGAATTTTACCTTTTGCTTTGGCTTTTTCTGCAGGAGCTATGATTTATGTGTCAAT TGAACAATTAATACCTGAAGCTAAGAGAAAAGACATTGACAATAAAGTGCCAAGTATATTTGGTGTTATTGGTTTT ACATTAATGATGTTTCTCGATGTTTCACTAGGTTAA
fl97.aa
MLLKLKYRFVGFLLLFLIFILLLFSTIFNFVLCGYLEDYYKQLTRAQVRRAAFSLQSFLDTLHVIINGAASNLALE
TISEFAMSENRGKDFSESELIDLRKNPKFVIDSVKVSKKYRQYLYNFMANLKNDTLFEEFAFFDFEGRVIVSTRHE
NNMDFGHSEANTNYFKKAVEDYRQNQLKFIGWYSNLSEGISAEVAIRSKQSEKKAFAIIVPVYSPEDKLVCGYLAG
YLLNDIVADSFDRFRFGFYKRGNFIYVDPNNIAVNPFEEYNETSRVSSKFLNVLKDVFSKPPFPSNIASEVSVYTI
DRILLSEMGEDCYYAMLPISSKLGEKSGVLIARLPYKDIYGVISSLRFQYILYSVLGIIALSIVLSIRIDRIISFR
LNAIRVLVQDMVKGNLDKDYALDDDENTLDELGMLSLQWKMKKAISVAISSVLRNISYVNKASLEVASSSQNLSS
SALQQASALEEMSANVEQIASGVNMSANNSYETEQIALKTNENSQIGGRAVEESVIAMQDIVEKVSVIEEIARKTN
LLALNAAIEAARAGDEGKGFAWASEIRKLADLSKISALEIGELVEDNSKVATEAGVIFKEMLPEIEETANLVKKI
SEGSSKQSDQIAQFKMALDQVGEWQSSASSSEQLSSMSDKMLEKSKELRKSVLFFKIKDSKIENPENDDYDFRLI
DCPENSFKDENQNLKSNGISTSNASGHNNYSLDIESESSVRTINKRVDPKKAIDIADKDLNFDDDFSEF tl97.aa
VLCGYLEDYYKQLTRAQVRRAAFSLQSFLDTLHVIINGAASNLALETISEFAMSENRGKDFSESELIDLRKNPKFV IDSVKVSKKYRQYLYNFMANLKNDTLFEEFAFFDFEGRVIVSTRHENNMDFGHSEANTNYFKKAVEDYRQNQLKFI GWYSNLSEGISAEVAIRSKQSEKKAFAIIVPVYSPEDKLVCGYLAGYLLNDIVADSFDRFRFGFYKRGNFIYVDPN NIAVNPFEEYNETSRVSSKFLNVLKDVFSKPPFPSNIASEVSVYTIDRILLSEMGEDCYYAMLPISSKLGEKSGVL IARLPYKDIYGVISSLRFQYILYSVLGIIALSIVLSIRIDRIISFRLNAIRVLVQDMVKGNLDKDYALDDDENTLD ELGMLSLQWKMKKAISVAISSVLRNISYVNKASLEVASSSQNLSSSALQQASALEEMSANVEQIASGVNMSANNS YETEQIALKTNENSQIGGRAVEESVIAMQDIVEKVSVIEEIARKTNLLALNAAIEAARAGDEGKGFAWASEIRKL ADLSKISALEIGELVEDNSKVATEAGVIFKEMLPEIEETANLVKKISEGSSKQSDQIAQFKMALDQVGEWQSSAS SSEQLSSMSDKMLEKSKELRKSVLFFKIKDSKIENPENDDYDFRLIDCPENSFKDENQNLKSNGISTSNASGHNNY SLDIESESSVRTINKRVDPKKAIDIADKDLNFDDDFSEF fl97.nt
ATGTTATTGAAGCTTAAATACAGGTTTGTTGGATTTTTATTATTGTTTTTAATTTTTATACTGCTACTTTTTTCCA CGATTTTTAATTTTGTTTTATGCGGTTATTTAGAAGATTATTATAAGCAGCTTACAAGGGCGCAAGTAAGAAGAGC AGCTTTTTCTTTGCAATCTTTTTTAGACACCCTGCATGTCATAATCAATGGTGCAGCTTCTAATTTGGCACTTGAA ACCATATCAGAATTTGCAATGTCTGAGAATAGAGGAAAAGATTTCTCTGAGTCGGAATTGATAGATTTAAGAAAAA ATCCAAAATTTGTTATTGACTCTGTAAAGGTGAGCAAAAAATATCGACAATACTTATACAATTTTATGGCCAATCT TAAAAATGATACCCTTTTTGAAGAATTCGCTTTTTTTGATTTTGAAGGGAGAGTAATTGTTAGCACAAGACATGAG AATAATATGGATTTTGGTCATTCTGAGGCTAATACCAATTATTTTAAAAAAGCTGTTGAGGATTATAGGCAAAACC AATTAAAATTTATAGGTTGGTATTCAAATCTTTCTGAAGGAATATCCGCAGAAGTTGCTATTAGGTCTAAACAAAG CGAAAAAAAGGCTTTTGCAATAATTGTACCTGTATATTCCCCAGAAGATAAACTTGTTTGTGGGTATTTGGCCGGA TATTTGCTTAATGATATTGTGGCAGATAGTTTTGATAGATTTAGATTCGGTTTTTATAAAAGAGGCAATTTTATTT ATGTGGATCCCAACAATATAGCAGTTAATCCTTTTGAAGAATATAATGAAACCAGCAGGGTTAGTTCTAAATTTTT GAATGTTCTTAAAGATGTTTTCTCTAAGCCCCCTTTTCCATCAAACATTGCCAGTGAAGTGTCGGTTTACACTATT GATAGAATACTTTTGTCCGAAATGGGAGAAGATTGTTATTATGCAATGTTGCCCATAAGTAGTAAATTGGGAGAAA AGAGTGGAGTACTTATTGCTAGGCTTCCTTATAAGGATATTTACGGAGTAATATCTAGTCTAAGATTTCAGTATAT TTTATATTCAGTCTTAGGCATTATAGCATTAAGTATTGTTCTTTCAATTAGAATAGACAGGATTATTAGTTTTCGT TTAAACGCAATTAGAGTTCTAGTTCAAGATATGGTTAAGGGCAATTTAGATAAAGATTATGCTCTTGATGATGATG AAAATACTCTTGATGAACTTGGCATGTTAAGTCTTCAGGTTGTTAAAATGAAAAAAGCTATTTCTGTAGCAATTTC TAGTGTTTTGAGAAATATTAGCTATGTAAATAAGGCAAGTTTAGAAGTTGCCAGTTCAAGTCAAAATTTAAGCTCT AGTGCATTGCAACAGGCATCTGCTCTTGAAGAAATGTCAGCTAATGTTGAGCAAATAGCCTCAGGTGTCAACATGA GCGCCAATAATTCTTATGAAACAGAACAAATAGCTTTAAAGACGAATGAAAATTCTCAGATAGGTGGTAGGGCCGT TGAAGAATCTGTTATTGCTATGCAAGACATTGTGGAGAAAGTTAGTGTTATTGAAGAGATAGCTAGAAAAACCAAT TTACTTGCTTTGAATGCGGCTATTGAAGCTGCAAGAGCAGGAGATGAGGGAAAGGGATTTGCTGTTGTGGCCAGTG TABLE 1. Nucleotide and Amino Acid Sequences
AGATTAGAAAGTTGGCTGATTTGAGTAAAATTTCTGCTCTTGAGATTGGAGAGTTAGTTGAAGATAACTCTAAGGT AGCAACTGAAGCGGGAGTGATCTTTAAAGAAATGCTACCCGAAATTGAAGAAACGGCTAATCTTGTTAAGAAGATT TCAGAAGGTAGCTCTAAGCAAAGCGATCAGATTGCTCAATTTAAAATGGCTTTAGATCAGGTTGGAGAAGTTGTTC AATCTTCAGCTTCAAGCAGTGAGCAGCTTTCTAGTATGTCCGATAAAATGTTAGAAAAGTCTAAGGAACTTAGAAA ATCTGTATTATTTTTCAAAATTAAAGATTCTAAAATTGAAAATCCAGAAAATGATGATTATGATTTCAGGTTAATA GATTGTCCTGAAAATTCTTTTAAAGATGAAAATCAAAATTTGAAAAGCAATGGAATTTCTACTTCAAATGCCAGTG GGCATAATAATTATTCTTTAGATATTGAGAGCGAATCTTCTGTAAGAACTATTAATAAGCGAGTTGATCCTAAAAA AGCTATCGATATTGCTGATAAGGATTTAAATTTTGATGATGATTTTTCAGAGTTTTAG tl97.nt
GTTTTATGCGGTTATTTAGAAGATTATTATAAGCAGCTTACAAGGGCGCAAGTAAGAAGAGCAGCTTTTTCTTTGC AATCTTTTTTAGACACCCTGCATGTCATAATCAATGGTGCAGCTTCTAATTTGGCACTTGAAACCATATCAGAATT TGCAATGTCTGAGAATAGAGGAAAAGATTTCTCTGAGTCGGAATTGATAGATTTAAGAAAAAATCCAAAATTTGTT ATTGACTCTGTAAAGGTGAGCAAAAAATATCGACAATACTTATACAATTTTATGGCCAATCTTAAAAATGATACCC TTTTTGAAGAATTCGCTTTTTTTGATTTTGAAGGGAGAGTAATTGTTAGCACAAGACATGAGAATAATATGGATTT TGGTCATTCTGAGGCTAATACCAATTATTTTAAAAAAGCTGTTGAGGATTATAGGCAAAACCAATTAAAATTTATA GGTTGGTATTCAAATCTTTCTGAAGGAATATCCGCAGAAGTTGCTATTAGGTCTAAACAAAGCGAAAAAAAGGCTT TTGCAATAATTGTACCTGTATATTCCCCAGAAGATAAACTTGTTTGTGGGTATTTGGCCGGATATTTGCTTAATGA TATTGTGGCAGATAGTTTTGATAGATTTAGATTCGGTTTTTATAAAAGAGGCAATTTTATTTATGTGGATCCCAAC AATATAGCAGTTAATCCTTTTGAAGAATATAATGAAACCAGCAGGGTTAGTTCTAAATTTTTGAATGTTCTTAAAG ATGTTTTCTCTAAGCCCCCTTTTCCATCAAACATTGCCAGTGAAGTGTCGGTTTACACTATTGATAGAATACTTTT GTCCGAAATGGGAGAAGATTGTTATTATGCAATGTTGCCCATAAGTAGTAAATTGGGAGAAAAGAGTGGAGTACTT ATTGCTAGGCTTCCTTATAAGGATATTTACGGAGTAATATCTAGTCTAAGATTTCAGTATATTTTATATTCAGTCT TAGGCATTATAGCATTAAGTATTGTTCTTTCAATTAGAATAGACAGGATTATTAGTTTTCGTTTAAACGCAATTAG AGTTCTAGTTCAAGATATGGTTAAGGGCAATTTAGATAAAGATTATGCTCTTGATGATGATGAAAATACTCTTGAT GAACTTGGCATGTTAAGTCTTCAGGTTGTTAAAATGAAAAAAGCTATTTCTGTAGCAATTTCTAGTGTTTTGAGAA ATATTAGCTATGTAAATAAGGCAAGTTTAGAAGTTGCCAGTTCAAGTCAAAATTTAAGCTCTAGTGCATTGCAACA GGCATCTGCTCTTGAAGAAATGTCAGCTAATGTTGAGCAAATAGCCTCAGGTGTCAACATGAGCGCCAATAATTCT TATGAAACAGAACAAATAGCTTTAAAGACGAATGAAAATTCTCAGATAGGTGGTAGGGCCGTTGAAGAATCTGTTA TTGCTATGCAAGACATTGTGGAGAAAGTTAGTGTTATTGAAGAGATAGCTAGAAAAACCAATTTACTTGCTTTGAA TGCGGCTATTGAAGCTGCAAGAGCAGGAGATGAGGGAAAGGGATTTGCTGTTGTGGCCAGTGAGATTAGAAAGTTG GCTGATTTGAGTAAAATTTCTGCTCTTGAGATTGGAGAGTTAGTTGAAGATAACTCTAAGGTAGCAACTGAAGCGG GAGTGATCTTTAAAGAAATGCTACCCGAAATTGAAGAAACGGCTAATCTTGTTAAGAAGATTTCAGAAGGTAGCTC TAAGCAAAGCGATCAGATTGCTCAATTTAAAATGGCTTTAGATCAGGTTGGAGAAGTTGTTCAATCTTCAGCTTCA AGCAGTGAGCAGCTTTCTAGTATGTCCGATAAAATGTTAGAAAAGTCTAAGGAACTTAGAAAATCTGTATTATTTT TCAAAATTAAAGATTCTAAAATTGAAAATCCAGAAAATGATGATTATGATTTCAGGTTAATAGATTGTCCTGAAAA TTCTTTTAAAGATGAAAATCAAAATTTGAAAAGCAATGGAATTTCTACTTCAAATGCCAGTGGGCATAATAATTAT TCTTTAGATATTGAGAGCGAATCTTCTGTAAGAACTATTAATAAGCGAGTTGATCCTAAAAAAGCTATCGATATTG CTGATAAGGATTTAAATTTTGATGATGATTTTTCAGAGTTTTAG f200.aa
MTISKNVFSKFILKFLNSSAFVSVFALFVGFLIVGLWMGLGHSPFRMYFIILEIIFSSPKHLGYVLSYSAPLIFT GLSIGISLKAGLFNIGVEGQFILGSIVALIASVLLDLPPILHVITIFIITFLASGSLGILIGYLKAKFNISEVISG IMFNWILFHLNNIILDFSFIKRDNSDFSKPIKESAYIDFLASWKLSPEGLAYRSSHPFVNELLKAPLHFGIILGII FAILIWFLLNKTIIGFKINATGSNIEASRCMGINVKAVLIFSMFLSAAVAGLAGAIQLMGVNKAIFKLSYMQGIGF NGIAASLMGNNSPIGIIFSSILFSILLYGSSRVQSLMGLPSSIVSLMMGIIVLVISASYFLNKIVLKGVKRVKYNN ILD
t200.aa
LWMGLGHSPFRMYFIILEIIFSSPKHLGYVLSYSAPLIFTGLSIGISLKAGLFNIGVEGQFILGSIVALIASVLL DLPPILHVITIFIITFLASGSLGILIGYLKAKFNISEVISGIMFNWILFHLNNI ILDFSFIKRDNSDFSKPIKESA YIDFLASWKLSPEGLAYRSSHPFVNELLKAPLHFGIILGIIFAILIWFLLNKTI IGFKINATGSNIEASRCMGINV TABLE 1. Nucleotide and Amino Acid Sequences
KAVLIFSMFLSAAVAGLAGAIQLMGVNKAIFKLSYMQGIGFNGIAASLMGNNSPIGIIFSSILFSILLYGSSRVQS LMGLPSSIVSLMMGIIVLVISASYFLNKIVLKGVKRVKYNNILD f200.nt
ATGACAATTAGTAAAAACGTATTTAGTAAATTTATTTTGAAATTTTTAAATTCTTCAGCATTTGTTAGTGTATTTG CTCTATTTGTTGGATTTTTAATTGTTGGGCTAGTGGTGATGGGGCTTGGTCATTCTCCTTTTAGAATGTATTTTAT AATATTAGAAATTATTTTTTCTTCTCCCAAACATTTAGGTTATGTTTTAAGTTATTCAGCTCCTTTGATTTTTACA GGTCTTTCTATTGGTATTTCTTTAAAAGCGGGTCTTTTTAATATTGGGGTTGAAGGCCAGTTTATACTAGGATCTA TTGTTGCTTTAATAGCATCAGTTTTACTTGATTTGCCTCCAATTTTACATGTAATTACTATTTTTATTATTACTTT TTTAGCTTCAGGCAGTTTAGGAATTTTAATCGGATATTTAAAAGCCAAATTCAATATTAGCGAAGTGATTTCAGGA ATAATGTTTAATTGGATATTATTTCATTTAAATAATATAATTTTAGATTTTAGTTTTATTAAAAGAGATAATAGTG ATTTTTCAAAACCCATTAAAGAAAGCGCATATATTGATTTTTTAGCTTCTTGGAAGCTCTCACCAGAAGGTCTTGC TTATAGATCTTCTCATCCTTTTGTTAATGAGCTTTTAAAAGCACCTCTTCATTTTGGAATAATTTTAGGTATAATT TTTGCTATTTTAATATGGTTTTTACTTAATAAAACTATTATTGGATTTAAAATAAATGCCACAGGAAGTAATATTG AAGCTTCAAGATGTATGGGTATTAATGTAAAAGCTGTGCTAATTTTTTCAATGTTTCTCTCAGCAGCTGTTGCAGG TCTTGCTGGTGCTATTCAACTTATGGGTGTTAATAAAGCTATATTTAAGCTTTCTTATATGCAAGGAATTGGTTTT AATGGGATAGCTGCTTCTCTTATGGGAAACAATTCGCCAATTGGCATAATATTTTCTAGCATTCTTTTTTCTATAT TGCTTTATGGAAGCAGTAGAGTTCAAAGTTTAATGGGCCTTCCATCTTCAATTGTATCTTTGATGATGGGAATAAT TGTTCTTGTAATTTCTGCTAGCTATTTTTTAAATAAAATTGTTTTAAAAGGTGTTAAGCGTGTCAAATATAATAAT ATTCTTGATTAG t200.nt
GGGCTAGTGGTGATGGGGCTTGGTCATTCTCCTTTTAGAATGTATTTTATAATATTAGAAATTATTTTTTCTTCTC CCAAACATTTAGGTTATGTTTTAAGTTATTCAGCTCCTTTGATTTTTACAGGTCTTTCTATTGGTATTTCTTTAAA AGCGGGTCTTTTTAATATTGGGGTTGAAGGCCAGTTTATACTAGGATCTATTGTTGCTTTAATAGCATCAGTTTTA CTTGATTTGCCTCCAATTTTACATGTAATTACTATTTTTATTATTACTTTTTTAGCTTCAGGCAGTTTAGGAATTT TAATCGGATATTTAAAAGCCAAATTCAATATTAGCGAAGTGATTTCAGGAATAATGTTTAATTGGATATTATTTCA TTTAAATAATATAATTTTAGATTTTAGTTTTATTAAAAGAGATAATAGTGATTTTTCAAAACCCATTAAAGAAAGC GCATATATTGATTTTTTAGCTTCTTGGAAGCTCTCACCAGAAGGTCTTGCTTATAGATCTTCTCATCCTTTTGTTA ATGAGCTTTTAAAAGCACCTCTTCATTTTGGAATAATTTTAGGTATAATTTTTGCTATTTTAATATGGTTTTTACT TAATAAAACTATTATTGGATTTAAAATAAATGCCACAGGAAGTAATATTGAAGCTTCAAGATGTATGGGTATTAAT GTAAAAGCTGTGCTAATTTTTTCAATGTTTCTCTCAGCAGCTGTTGCAGGTCTTGCTGGTGCTATTCAACTTATGG GTGTTAATAAAGCTATATTTAAGCTTTCTTATATGCAAGGAATTGGTTTTAATGGGATAGCTGCTTCTCTTATGGG AAACAATTCGCCAATTGGCATAATATTTTCTAGCATTCTTTTTTCTATATTGCTTTATGGAAGCAGTAGAGTTCAA AGTTTAATGGGCCTTCCATCTTCAATTGTATCTTTGATGATGGGAATAATTGTTCTTGTAATTTCTGCTAGCTATT TTTTAAATAAAATTGTTTTAAAAGGTGTTAAGCGTGTCAAATATAATAATATTCTTGATTAG f208.aa
MVKKFSIFLKAIIIFSIFELLIEELSIILFLPYKIRFALIFLGFLFDTIFIFIFLYKITKAYLSQRLEIYVRNNLF FDIIHCLIPLAFYSSYQLKNIIVAHETILNPIMLSLFKLRFLRLLRFNDLIIEIYYNSKEKNLILIAFARTFSMSL LIPFTFFIIISSSKIVNSIPEKQEFNIIKNISIINEKAYIKEKYPFILIIKEKDDIIYSKSDEIFVYYSPSEYRVI EMEKTKFYIDKYLQRKSDSILGIFLFTLFASFTIFLMNFYKFFKASFLNPIILMTKILQDPLEYRKIQIPFTLSEE KVYELAKSFNNLLLKEKLNSKRKSKIPLEIEKVKKIINKNQEIK t20δ.aa
IIIFSIFELLIEELSIILFLPYKIRFALIFLGFLFDTIFIFIFLYKITKAYLSQRLEIYVRNNLFFDIIHCLIPLA FYSSYQLKNIIVAHETILNPIMLSLFKLRFLRLLRFNDLIIEIYYNSKEKNLILIAFARTFSMSLLIPFTFFIIIS SSKIVNSIPEKQEFNIIKNISIINEKAYIKEKYPFILIIKEKDDIIYSKSDEIFVYYSPSEYRVIEMEKTKFYIDK YLQRKSDSILGIFLFTLFASFTIFLMNFYKFFKASFLNPIILMTKILQDPLEYRKIQIPFTLSEEKVYELAKSFNN LLLKEKLNSKRKSKIPLEIEKVKKIINKNQEIK f20δ.nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGGTAAAAAAATTTTCAATTTTCTTAAAAGCAATAATAATTTTTTCAATATTTGAACTTTTAATCGAAGAACTCT CAATAATTCTTTTTTTACCATACAAAATACGATTTGCACTAATATTTCTTGGGTTTCTATTTGACACAATTTTTAT TTTCATTTTTTTATACAAAATAACCAAGGCCTACCTTTCCCAAAGATTAGAAATCTACGTCAGAAACAATCTATTC TTCGATATAATCCACTGCCTTATTCCTTTAGCGTTTTATAGCTCATATCAGCTTAAAAACATAATTGTCGCCCATG AAACAATATTAAATCCAATAATGCTATCACTTTTCAAGTTAAGATTTTTAAGACTTCTTAGGTTTAATGACCTAAT AATAGAAATATATTACAATTCAAAAGAAAAGAACCTAATACTAATAGCATTTGCTAGGACATTTTCAATGAGCTTA TTAATACCATTTACATTTTTTATAATAATATCAAGCTCAAAAATTGTAAATTCAATACCAGAAAAACAAGAATTTA ATATCATTAAAAATATATCAATAATAAATGAAAAAGCTTACATTAAAGAAAAATATCCCTTCATCTTAATAATCAA GGAAAAAGATGACATAATATACTCAAAATCAGACGAAATATTTGTTTACTACAGTCCCAGTGAATATAGAGTAATA GAAATGGAGAAAACAAAATTTTATATAGATAAATATTTGCAAAGAAAAAGCGATTCTATTCTTGGAATTTTTCTAT TTACATTGTTTGCATCATTTACTATTTTTTTAATGAATTTTTATAAATTTTTTAAAGCAAGCTTTTTAAATCCTAT TATTTTAATGACAAAAATTTTACAAGACCCATTAGAATATCGAAAAATTCAAATTCCTTTTACTTTAAGCGAAGAA AAAGTATATGAACTTGCAAAATCATTTAACAATCTCTTGCTAAAAGAAAAACTAAACTCAAAGCGAAAAAGCAAAA TACCTTTAGAAATTGAAAAAGTAAAAAAAATAATTAATAAAAACCAGGAAATAAAATGA t208.nt
ATAATAATTTTTTCAATATTTGAACTTTTAATCGAAGAACTCTCAATAATTCTTTTTTTACCATACAAAATACGAT TTGCACTAATATTTCTTGGGTTTCTATTTGACACAATTTTTATTTTCATTTTTTTATACAAAATAACCAAGGCCTA CCTTTCCCAAAGATTAGAAATCTACGTCAGAAACAATCTATTCTTCGATATAATCCACTGCCTTATTCCTTTAGCG TTTTATAGCTCATATCAGCTTAAAAACATAATTGTCGCCCATGAAACAATATTAAATCCAATAATGCTATCACTTT TCAAGTTAAGATTTTTAAGACTTCTTAGGTTTAATGACCTAATAATAGAAATATATTACAATTCAAAAGAAAAGAA CCTAATACTAATAGCATTTGCTAGGACATTTTCAATGAGCTTATTAATACCATTTACATTTTTTATAATAATATCA AGCTCAAAAATTGTAAATTCAATACCAGAAAAACAAGAATTTAATATCATTAAAAATATATCAATAATAAATGAAA AAGCTTACATTAAAGAAAAATATCCCTTCATCTTAATAATCAAGGAAAAAGATGACATAATATACTCAAAATCAGA CGAAATATTTGTTTACTACAGTCCCAGTGAATATAGAGTAATAGAAATGGAGAAAACAAAATTTTATATAGATAAA TATTTGCAAAGAAAAAGCGATTCTATTCTTGGAATTTTTCTATTTACATTGTTTGCATCATTTACTATTTTTTTAA TGAATTTTTATAAATTTTTTAAAGCAAGCTTTTTAAATCCTATTATTTTAATGACAAAAATTTTACAAGACCCATT AGAATATCGAAAAATTCAAATTCCTTTTACTTTAAGCGAAGAAAAAGTATATGAACTTGCAAAATCATTTAACAAT CTCTTGCTAAAAGAAAAACTAAACTCAAAGCGAAAAAGCAAAATACCTTTAGAAATTGAAAAAGTAAAAAAAATAA TTAATAAAAACCAGGAAATAAAATGA
f210.aa
MKIQIIIMLLALLDFPLNARLLDISIEKRADEEIKKYSSYNLILEKEYYTNFPTSEIEKNIYKLTEHFVKSIMLNK
TNYSLLNSNYKEANKYLIQSELIDKKFLKYKIFKIKNINGIFKSHSLIYTKKGFYKLELYIENNAEPLKIFNLNIT
YFLKNLDKISNEMIFFPREKREVNMIQKTTIAADSSSKPRGINYDTGIPFNVLIVDDSVFTVKQLTQIFTSEGFNI
IDTAADGEEAVIKYKNHYPNIDIVTLDITMPKMDGITCLSNIMEFDKNARVIMISALGKEQLVKDCLIKGAKTFIV
KPLDRAKVLQRVMSVFVK
t210.aa
RLLDISIEKRADEEIKKYSSYNLILEKEYYTNFPTSEIEKNIYKLTEHFVKSIMLNKTNYSLLNSNYKEANKYLIQ SELIDKKFLKYKIFKIKNINGIFKSHSLIYTKKGFYKLELYIENNAEPLKIFNLNITYFLKNLDKISNEMIFFPRE KREVNMIQKTTIAADSSSKPRGINYDTGIPFNVLIVDDSVFTVKQLTQIFTSEGFNIIDTAADGEEAVIKYKNHYP NIDIVTLDITMPKMDGITCLSNIMEFDKNARVIMISALGKEQLVKDCLIKGAKTFIVKPLDRAKVLQRVMSVFVK f210.nt
ATGAAAATTCAAATAATTATAATGCTGCTTGCATTGTTAGATTTTCCACTTAATGCCAGACTTTTGGACATTTCAA TTGAAAAAAGAGCAGATGAAGAAATAAAAAAATATTCGTCTTATAATTTAATTTTAGAAAAAGAATACTATACCAA TTTTCCAACAAGCGAAATAGAAAAAAATATTTATAAACTAACAGAACATTTTGTAAAAAGCATAATGCTCAATAAA ACTAACTACAGCTTATTAAATTCAAACTACAAAGAAGCAAATAAATATCTAATTCAAAGCGAACTCATTGATAAAA AATTTTTAAAATATAAAATATTTAAAATCAAAAATATAAATGGAATTTTTAAAAGCCATTCACTAATATATACAAA TABLE 1. Nucleotide and Amino Acid Sequences
AAAAGGATTTTACAAATTAGAACTTTACATAGAAAATAATGCAGAACCTCTAAAAATATTTAACCTTAACATTACT TATTTTTTAAAGAATTTAGATAAAATAAGTAATGAAATGATTTTTTTCCCAAGGGAATGA t210.nt
AGACTTTTGGACATTTCAATTGAAAAAAGAGCAGATGAAGAAATAAAAAAATATTCGTCTTATAATTTAATTTTAG AAAAAGAATACTATACCAATTTTCCAACAAGCGAAATAGAAAAAAATATTTATAAACTAACAGAACATTTTGTAAA AAGCATAATGCTCAATAAAACTAACTACAGCTTATTAAATTCAAACTACAAAGAAGCAAATAAATATCTAATTCAA AGCGAACTCATTGATAAAAAATTTTTAAAATATAAAATATTTAAAATCAAAAATATAAATGGAATTTTTAAAAGCC ATTCACTAATATATACAAAAAAAGGATTTTACAAATTAGAACTTTACATAGAAAATAATGCAGAACCTCTAAAAAT ATTTAACCTTAACATTACTTATTTTTTAAAGAATTTAGATAAAATAAGTAATGAAATGATTTTTTTCCCAAGGGAA TGA f22.aa
MLKTLTKIITISCLIVGCASLPYTPPKQNLNYLMELLPGANLYAHVNLIKNRSIYNSLSPKYKSVLGLISNLYFSY KKENNDFALLIMGNFPKDIFWGIHKNRNTESIGNIFTNPKWKLKNSNIYIIPNKARTSIAITQKDITAKDNNMLTT KYIGEIEKNEMFFWIQDPTLLLPNQIVSSKNLIPFSSGTLSINSLNQEEYIFKSLIKTNNPPILKILSKKLIPTVL TNMTNLTISSHIKTTIKDQNTVEIEFNIQKSSVESLIEKLASNIQT t22.aa
PYTPPKQNLNYLMELLPGANLYAHVNLIKNRSIYNSLSPKYKSVLGLISNLYFSYKKENNDFALLIMGNFPKDIFW GIHKNRNTESIGNIFTNPKWKLKNSNIYIIPNKARTSIAITQKDITAKDNNMLTTKYIGEIEKNEMFFWIQDPTLL LPNQIVSSKNLIPFSSGTLSINSLNQEEYIFKSLIKTNNPPILKILSKKLIPTVLTNMTNLTISSHIKTTIKDQNT VEIEFNIQKSSVESLIEKLASNIQT f22.nt
ATGTTAAAAACATTAACAAAAATAATTACCATTTCATGCCTCATAGTGGGATGCGCAAGCCTGCCTTACACTCCTC CAAAACAAAATCTAAATTACTTAATGGAACTTTTACCTGGCGCAAATTTATACGCCCATGTAAATTTAATTAAAAA CAGGTCTATTTATAACTCTTTAAGCCCTAAATATAAATCAGTTCTTGGGCTTATAAGCAATTTATACTTTAGCTAT AAAAAAGAAAATAACGATTTTGCTCTACTAATAATGGGTAATTTCCCAAAAGATATTTTCTGGGGAATTCATAAAA ATAGAAATACAGAATCAATAGGCAATATATTTACAAATCCAAAATGGAAACTTAAAAATTCAAATATATACATTAT TCCAAACAAAGCTAGAACTAGCATTGCAATAACCCAAAAAGATATAACCGCAAAAGACAATAATATGCTAACAACA AAATATATTGGGGAAATAGAAAAAAATGAAATGTTTTTTTGGATTCAAGATCCAACATTATTGCTCCCAAACCAAA TAGTAAGCAGCAAAAATTTAATTCCCTTTAGCAGTGGAACTTTGTCTATAAACAGCTTAAATCAAGAAGAATATAT TTTTAAATCCTTAATCAAAACAAATAATCCACCAATACTAAAAATATTGTCAAAAAAGTTAATTCCAACCGTCTTG ACAAACATGACAAACCTCACAATATCAAGCCACATAAAGACCACAATAAAAGACCAAAATACGGTTGAAATAGAAT TTAATATTCAAAAATCTAGTGTTGAAAGCCTTATAGAAAAACTAGCTTCAAATATTCAAACCTAA t22.nt
CCTTACACTCCTCCAAAACAAAATCTAAATTACTTAATGGAACTTTTACCTGGCGCAAATTTATACGCCCATGTAA ATTTAATTAAAAACAGGTCTATTTATAACTCTTTAAGCCCTAAATATAAATCAGTTCTTGGGCTTATAAGCAATTT ATACTTTAGCTATAAAAAAGAAAATAACGATTTTGCTCTACTAATAATGGGTAATTTCCCAAAAGATATTTTCTGG GGAATTCATAAAAATAGAAATACAGAATCAATAGGCAATATATTTACAAATCCAAAATGGAAACTTAAAAATTCAA ATATATACATTATTCCAAACAAAGCTAGAACTAGCATTGCAATAACCCAAAAAGATATAACCGCAAAAGACAATAA TATGCTAACAACAAAATATATTGGGGAAATAGAAAAAAATGAAATGTTTTTTTGGATTCAAGATCCAACATTATTG CTCCCAAACCAAATAGTAAGCAGCAAAAATTTAATTCCCTTTAGCAGTGGAACTTTGTCTATAAACAGCTTAAATC AAGAAGAATATATTTTTAAATCCTTAATCAAAACAAATAATCCACCAATACTAAAAATATTGTCAAAAAAGTTAAT TCCAACCGTCTTGACAAACATGACAAACCTCACAATATCAAGCCACATAAAGACCACAATAAAAGACCAAAATACG GTTGAAATAGAATTTAATATTCAAAAATCTAGTGTTGAAAGCCTTATAGAAAAACTAGCTTCAAATATTCAAACCT AA f221.aa TABLE 1. Nucleotide and Amino Acid Sequences
MGITVFYLFSIFASFVLGSSMDSVKENVLKSTIFYYDVEEVEFPYARKQTLQFIAKTHLKYAVFNFDKNKMFSYTF VFDKKLISQYAIFIEVKKKFGEATLVTPLNYLWDLGDSIIVLNKNILRITLKSYISNYNK t221.aa
SMDSVKENVLKSTIFYYDVEEVEFPYARKQTLQFIAKTHLKYAVFNFDKNKMFSYTFVFDKKLISQYAIFIEVKKK FGEATLVTPLNYLWDLGDSIIVLNKNILRITLKSYISNYNK f221.nt
ATGGGTATTACAGTTTTTTATTTATTTTCTATTTTTGCATCTTTTGTTCTGGGTTCTAGCATGGATTCTGTTAAAG AGAATGTTCTCAAGAGCACTATTTTTTATTATGATGTTGAAGAAGTTGAATTTCCTTATGCTAGGAAGCAGACTTT ACAATTTATTGCTAAAACCCATTTAAAATATGCTGTTTTTAATTTTGACAAAAATAAAATGTTTTCGTACACTTTT GTTTTTGATAAAAAATTAATATCTCAGTATGCAATTTTTATTGAGGTAAAGAAAAAGTTTGGCGAGGCTACACTAG TAACGCCTTTGAATTATTTATGGGATCTTGGTGATTCTATTATTGTTTTAAATAAAAATATTTTAAGAATTACTTT AAAATCTTATATTTCAAATTATAATAAATGA t221.nt
AGCATGGATTCTGTTAAAGAGAATGTTCTCAAGAGCACTATTTTTTATTATGATGTTGAAGAAGTTGAATTTCCTT ATGCTAGGAAGCAGACTTTACAATTTATTGCTAAAACCCATTTAAAATATGCTGTTTTTAATTTTGACAAAAATAA AATGTTTTCGTACACTTTTGTTTTTGATAAAAAATTAATATCTCAGTATGCAATTTTTATTGAGGTAAAGAAAAAG TTTGGCGAGGCTACACTAGTAACGCCTTTGAATTATTTATGGGATCTTGGTGATTCTATTATTGTTTTAAATAAAA ATATTTTAAGAATTACTTTAAAATCTTATATTTCAAATTATAATAAATGA f253.aa
MYMENIEVRGQPNFFGLIPFFVFIIIYLGTGIYLGVIGVEMAFYQLPASVAMFFASIVCFLVFKGKFSDKIHIFIK GAAQYDIILMCLIFMLSGAFSSLCKEIGCVETVANLGIKYINPNWIVSGIFFVTCFLSFSAGTSVGSIVAIAPIAF NIAVKSGINPNLIAASVMCGAMFGDNLSLISDTTIVSSRTQGSSILDVFISSSFYAFPSAILTFFSFFFLSENLSN ATNFLHESSIDLVKTVPYLMIIFFSLAGMNVFIVLFLGILSICLISVLYGNLYFLDVMKNINKGFLNMADLIFLSI LTGGVSFAVIHNGGFKWLLIKLKSLIRGKSSAEFSIGAFVSIVDVFLANNTIAILICGKVAKKIAFENNISVQRSA SILDMFSCIFQGIIPYGAQMIILVNFSNGLVSPISILPFLVYFGFLLFFVILSILGLDIKKVFLFFLKK t253.aa
LVFKGKFSDKIHIFIKGAAQYDIILMCLIFMLSGAFSSLCKEIGCVETVANLGIKYINPNWIVSGIFFVTCFLSFS AGTSVGSIVAIAPIAFNIAVKSGINPNLIAASVMCGAMFGDNLSLISDTTIVSSRTQGSSILDVFISSSFYAFPSA ILTFFSFFFLSENLSNATNFLHESSIDLVKTVPYLMIIFFSLAGMNVFIVLFLGILSICLISVLYGNLYFLDVMKN INKGFLNMADLIFLSILTGGVSFAVIHNGGFKWLLIKLKSLIRGKSSAEFSIGAFVSIVDVFLANNTIAILICGKV AKKIAFENNISVQRSASILDMFSCIFQGIIPYGAQMIILVNFSNGLVSPISILPFLVYFGFLLFFVILSILGLDIK KVFLFFLKK f253.nt
ATGTATATGGAAAATATTGAAGTAAGAGGGCAGCCAAATTTTTTTGGGCTTATTCCTTTTTTTGTTTTTATTATTA TCTATTTAGGCACGGGGATTTATTTGGGAGTTATTGGTGTAGAAATGGCCTTTTATCAACTGCCGGCTAGTGTTGC AATGTTTTTTGCTTCCATTGTTTGTTTTTTGGTATTTAAAGGAAAATTTTCCGACAAAATTCACATATTTATTAAA GGAGCAGCTCAGTACGATATTATACTAATGTGTCTTATTTTTATGCTTTCGGGAGCTTTCTCTTCTCTTTGTAAAG AAATAGGCTGCGTTGAAACTGTAGCAAATTTGGGAATTAAATATATTAATCCTAATTGGATTGTTTCTGGTATATT TTTTGTAACCTGCTTTCTTTCTTTTTCTGCCGGCACTTCTGTTGGATCTATCGTTGCAATTGCTCCTATTGCTTTT AATATTGCTGTTAAAAGCGGCATTAATCCGAATTTAATAGCAGCATCTGTAATGTGTGGAGCTATGTTTGGAGATA ATCTTTCTTTAATATCAGATACAACTATTGTTTCTAGTCGAACTCAAGGTAGTAGCATCTTAGATGTTTTTATTAG TAGCAGTTTTTATGCTTTTCCATCCGCCATACTAACTTTTTTTTCTTTTTTCTTTCTTTCTGAAAATTTGTCCAAT GCCACAAACTTTTTACACGAAAGTTCAATAGATTTAGTGAAAACTGTGCCTTATTTAATGATTATATTTTTCTCTT TABLE 1. Nucleotide and Amino Acid Sequences
TAGCTGGAATGAATGTTTTTATAGTTCTTTTTTTAGGTATTCTTTCTATATGTCTTATTAGCGTTTTGTATGGTAA TTTATACTTTCTAGATGTAATGAAAAACATTAATAAAGGGTTTTTAAATATGGCGGATTTGATTTTTCTTTCAATT TTAACAGGGGGAGTTTCTTTTGCCGTGATTCATAATGGAGGCTTTAAATGGCTACTTATTAAATTAAAATCCTTGA TTAGAGGAAAAAGTTCAGCGGAATTTTCTATTGGGGCTTTTGTTTCAATAGTTGATGTTTTTCTTGCTAATAACAC AATTGCCATACTTATTTGCGGCAAAGTAGCAAAAAAGATAGCTTTTGAAAATAACATCAGTGTTCAAAGAAGTGCT TCTATTTTAGATATGTTCTCTTGTATTTTTCAAGGCATTATTCCTTATGGTGCGCAAATGATTATTTTAGTGAATT TTTCAAATGGACTTGTGTCGCCAATTAGTATTTTGCCATTTTTAGTTTATTTTGGATTTTTATTGTTTTTTGTTAT TTTATCTATTTTGGGCCTTGATATAAAAAAAGTTTTTTTATTTTTTTTAAAAAAATAA t253.nt
TTGGTATTTAAAGGAAAATTTTCCGACAAAATTCACATATTTATTAAAGGAGCAGCTCAGTACGATATTATACTAA TGTGTCTTATTTTTATGCTTTCGGGAGCTTTCTCTTCTCTTTGTAAAGAAATAGGCTGCGTTGAAACTGTAGCAAA TTTGGGAATTAAATATATTAATCCTAATTGGATTGTTTCTGGTATATTTTTTGTAACCTGCTTTCTTTCTTTTTCT GCCGGCACTTCTGTTGGATCTATCGTTGCAATTGCTCCTATTGCTTTTAATATTGCTGTTAAAAGCGGCATTAATC CGAATTTAATAGCAGCATCTGTAATGTGTGGAGCTATGTTTGGAGATAATCTTTCTTTAATATCAGATACAACTAT TGTTTCTAGTCGAACTCAAGGTAGTAGCATCTTAGATGTTTTTATTAGTAGCAGTTTTTATGCTTTTCCATCCGCC ATACTAACTTTTTTTTCTTTTTTCTTTCTTTCTGAAAATTTGTCCAATGCCACAAACTTTTTACACGAAAGTTCAA TAGATTTAGTGAAAACTGTGCCTTATTTAATGATTATATTTTTCTCTTTAGCTGGAATGAATGTTTTTATAGTTCT TTTTTTAGGTATTCTTTCTATATGTCTTATTAGCGTTTTGTATGGTAATTTATACTTTCTAGATGTAATGAAAAAC ATTAATAAAGGGTTTTTAAATATGGCGGATTTGATTTTTCTTTCAATTTTAACAGGGGGAGTTTCTTTTGCCGTGA TTCATAATGGAGGCTTTAAATGGCTACTTATTAAATTAAAATCCTTGATTAGAGGAAAAAGTTCAGCGGAATTTTC TATTGGGGCTTTTGTTTCAATAGTTGATGTTTTTCTTGCTAATAACACAATTGCCATACTTATTTGCGGCAAAGTA GCAAAAAAGATAGCTTTTGAAAATAACATCAGTGTTCAAAGAAGTGCTTCTATTTTAGATATGTTCTCTTGTATTT TTCAAGGCATTATTCCTTATGGTGCGCAAATGATTATTTTAGTGAATTTTTCAAATGGACTTGTGTCGCCAATTAG TATTTTGCCATTTTTAGTTTATTTTGGATTTTTATTGTTTTTTGTTATTTTATCTATTTTGGGCCTTGATATAAAA AAAGTTTTTTTATTTTTTTTAAAAAAATAA f265.aa
MRKCFVSLSLLLIFFACSSNVEIELNDDISGIVSIFVNVNREFEKIRKELLTTLVGEEIANMPLFPVDEIKKYFKN
GEEKLGLKLLSIKTQGDSINLWKFDNLIKILGDYMKKPDISVFKIEKKDGKNIIELNINLENATKNINENKEYIS
DALAALLPSDEIPMSAKEYKDVLVYFLSDFTSKASELIDNSKLNLWKTSRNVQEQFGFKQINSNTLRFEMDMVKG
LSLETPIKLRLV
Y t265 . aa
SIWEIELNDDIΞGIVSIFVNVNREFEKIRKELLTTLVGEEIANMPLFPVDEIKKYFKNGEEKLGLKLLSIKTQGDS INLWKFDNLIKILGDYMKKPDISVFKIEKKDGKNIIELNINLENATKNINENKEYISDALAALLPSDEIPMSAKE YKDVLVYFLSDFTSKASELIDNSKLNLWKTSRNVQEQFGFKQINSNTLRFEMDMVKGLSLETPIKLRLVY f265 . nt
ATGAGAAAGTGTTTTGTTAGCTTGAGTTTATTGTTGATTTTTTTTGCTTGTAGCTCTAATGTTGAAATTGAGTTAA ATGATGATATTAGTGGTATTGTTTCAATATTTGTTAATGTTAATAGAGAATTTGAAAAAATTAGAAAAGAACTCTT AACAACTTTGGTGGGAGAAGAAATTGCAAATATGCCTCTTTTTCCTGTAGATGAAATAAAAAAATACTTTAAAAAT GGAGAGGAAAAGCTTGGGCTTAAGCTTTTGAGTATTAAAACCCAAGGAGATTCTATTAATTTAGTTGTTAAGTTTG ATAATTTAATTAAAATTTTAGGCGATTATATGAAAAAACCCGATATATCTGTGTTTAAGATAGAAAAAAAAGATGG TAAAAATATTATTGAACTTAATATTAATTTGGAAAACGCTACTAAGAATATTAATGAAAATAAAGAATATATTAGT GATGCACTTGCTGCTCTTTTGCCATCGGATGAGATCCCAATGTCTGCCAAAGAATATAAAGATGTTTTGGTTTATT TTTTATCGGATTTTACTTCCAAAGCAAGTGAACTTATTGACAATTCCAAACTTAATCTTGTAGTTAAGACTTCTAG AAATGTTCAAGAACAATTTGGATTCAAACAAATTAACTCAAACACACTGCGGTTTGAGATGGATATGGTTAAAGGA TTAAGTCTTGAAACACCAATAAAACTTAGATTAGTTTATTGA t265.nt TABLE 1. Nucleotide and Amino Acid Sequences
TCTAATGTTGAAATTGAGTTAAATGATGATATTAGTGGTATTGTTTCAATATTTGTTAATGTTAATAGAGAATTTG AAAAAATTAGAAAAGAACTCTTAACAACTTTGGTGGGAGAAGAAATTGCAAATATGCCTCTTTTTCCTGTAGATGA AATAAAAAAATACTTTAAAAATGGAGAGGAAAAGCTTGGGCTTAAGCTTTTGAGTATTAAAACCCAAGGAGATTCT ATTAATTTAGTTGTTAAGTTTGATAATTTAATTAAAATTTTAGGCGATTATATGAAAAAACCCGATATATCTGTGT TTAAGATAGAAAAAAAAGATGGTAAAAATATTATTGAACTTAATATTAATTTGGAAAACGCTACTAAGAATATTAA TGAAAATAAAGAATATATTAGTGATGCACTTGCTGCTCTTTTGCCATCGGATGAGATCCCAATGTCTGCCAAAGAA TATAAAGATGTTTTGGTTTATTTTTTATCGGATTTTACTTCCAAAGCAAGTGAACTTATTGACAATTCCAAACTTA ATCTTGTAGTTAAGACTTCTAGAAATGTTCAAGAACAATTTGGATTCAAACAAATTAACTCAAACACACTGCGGTT TGAGATGGATATGGTTAAAGGATTAAGTCTTGAAACACCAATAAAACTTAGATTAGTTTATTGA f269.aa
MNIRKLLFCIFFMNISFLLFAGDYKGLDFKIKFFNQSIYRVNSNVFIEVSLSNASESVLTLEIGDINSFGFDFDVT DTTNIKVKRPIEYVKKRSKNVAIPVRNMSLRPNEKFSVVINLNQFVKFSKDGVYFVKGIFFPDISDPSKKKESNII TLFLNDGFDENPGSIDLVNLSENNDIQDILKKKKLSPDEIVKYLLKALQLGKKEKFFLYLDIEGLLLNDKGKAYLY KQKLSPIPNKNWEEYKEYLWNSNNSDISKAPNKFSIIETTYSDTSGKVIADLYFDDGQFYISKRYTFFFKKYDYY WIIYDYIVQNTGIKEK t269.aa
GDYKGLDFKIKFFNQSIYRVNSNVFIEVSLSNASESVLTLEIGDINSFGFDFDVTDTTNIKVKRPIEYVKKRSKNV AIPVRNMSLRPNEKFSWINLNQFVKFSKDGVYFVKGIFFPDISDPSKKKESNIITLFLNDGFDENPGSIDLVNLS ENNDIQDILKKKKLSPDEIVKYLLKALQLGKKEKFFLYLDIEGLLLNDKGKAYLYKQKLSPIPNKNWEEYKEYLW NSNNSDISKAPNKFSIIETTYSDTSGKVIADLYFDDGQFYISKRYTFFFKKYDYYWIIYDYIVQNTGIKEK f269 . nt
ATGAATATTAGAAAATTGCTTTTTTGTATCTTTTTTATGAATATTTCTTTTCTTTTGTTTGCGGGAGATTACAAGG GCCTTGATTTTAAAATCAAGTTTTTTAATCAATCTATTTATCGTGTCAATAGTAATGTTTTTATTGAAGTTTCTCT TAGTAATGCGTCTGAGAGTGTTTTAACTTTAGAAATAGGCGATATTAATTCTTTTGGCTTTGATTTTGATGTTACT GATACCACCAATATTAAAGTTAAAAGACCTATTGAATATGTTAAAAAGAGATCTAAAAATGTTGCAATTCCTGTTA GAAATATGAGCTTGAGACCTAATGAAAAATTTTCTGTAGTTATTAACTTAAATCAATTTGTTAAGTTTAGTAAAGA TGGAGTTTATTTTGTTAAGGGTATTTTTTTCCCAGACATTTCAGATCCATCTAAGAAAAAAGAATCCAATATTATT ACGCTTTTTTTGAATGATGGTTTTGATGAAAATCCAGGTAGCATAGACCTTGTTAATTTGTCTGAAAATAATGATA TTCAAGATATCTTGAAAAAGAAAAAATTATCTCCCGATGAAATTGTTAAATATTTGTTAAAGGCATTGCAGCTTGG GAAAAAAGAAAAGTTCTTTTTATATCTTGATATTGAAGGTTTGTTATTAAATGACAAGGGCAAGGCATACCTTTAT AAGCAAAAGTTATCACCTATTCCCAATAAAAATGTAGTTGAAGAGTATAAAGAATATTTGTGGAATTCTAATAATT CGGATATTTCAAAAGCACCAAATAAATTTTCTATTATTGAAACTACTTATTCTGATACTTCTGGCAAGGTGATTGC TGATTTATATTTTGACGATGGGCAATTTTATATTTCCAAAAGATATACTTTCTTCTTTAAAAAATATGATTATTAT TGGATAATTTATGATTACATTGTTCAAAATACTGGCATTAAGGAAAAGTAA t269.nt
GGAGATTACAAGGGCCTTGATTTTAAAATCAAGTTTTTTAATCAATCTATTTATCGTGTCAATAGTAATGTTTTTA TTGAAGTTTCTCTTAGTAATGCGTCTGAGAGTGTTTTAACTTTAGAAATAGGCGATATTAATTCTTTTGGCTTTGA TTTTGATGTTACTGATACCACCAATATTAAAGTTAAAAGACCTATTGAATATGTTAAAAAGAGATCTAAAAATGTT GCAATTCCTGTTAGAAATATGAGCTTGAGACCTAATGAAAAATTTTCTGTAGTTATTAACTTAAATCAATTTGTTA AGTTTAGTAAAGATGGAGTTTATTTTGTTAAGGGTATTTTTTTCCCAGACATTTCAGATCCATCTAAGAAAAAAGA ATCCAATATTATTACGCTTTTTTTGAATGATGGTTTTGATGAAAATCCAGGTAGCATAGACCTTGTTAATTTGTCT GAAAATAATGATATTCAAGATATCTTGAAAAAGAAAAAATTATCTCCCGATGAAATTGTTAAATATTTGTTAAAGG CATTGCAGCTTGGGAAAAAAGAAAAGTTCTTTTTATATCTTGATATTGAAGGTTTGTTATTAAATGACAAGGGCAA GGCATACCTTTATAAGCAAAAGTTATCACCTATTCCCAATAAAAATGTAGTTGAAGAGTATAAAGAATATTTGTGG AATTCTAATAATTCGGATATTTCAAAAGCACCAAATAAATTTTCTATTATTGAAACTACTTATTCTGATACTTCTG GCAAGGTGATTGCTGATTTATATTTTGACGATGGGCAATTTTATATTTCCAAAAGATATACTTTCTTCTTTAAAAA ATATGATTATTATTGGATAATTTATGATTACATTGTTCAAAATACTGGCATTAAGGAAAAGTAA TABLE 1. Nucleotide and Amino Acid Sequences
f29 . aa
MNWLSFFYVLLFLLIFPFELQSNNKENIENLIKLHMLYDLTNNLSKELETINKIKNFDLEQHYLLITKYYLKIKKY KEANDFLKKINQKKIKNQKIKNEIISLKLRINEDNINEEEIKKILNNEKNIDVKIIYQIFSLIKFKNKKLANKIKN IILTNYPKSIYSYKIKRNE
t29.aa røJKENIENLIKLHMLYDLTNNLSKELETINKIKNFDLEQHYLLITKYYLKIKKYKEANDFLKKINQKKIKNQKIKN EIISLKLRINEDNINEEEIKKILNNEKNIDVKIIYQIFSLIKFKNKKLANKIKNIILTNYPKSIYSYKIKRNE f29.nt
ATGAACTGGCTATCCTTTTTTTATGTTTTATTATTTTTATTAATTTTTCCTTTTGAATTACAGAGTAATAATAAAG AAAATATAGAAAATTTAATAAAGCTACATATGCTTTATGATTTAACCAATAACCTGTCAAAAGAATTAGAAACAAT AAATAAAATTAAAAATTTTGACTTAGAACAACATTATCTGCTAATTACAAAATATTATCTAAAAATAAAAAAATAT AAAGAAGCTAATGATTTTTTAAAAAAAATAAACCAAAAAAAGATCAAAAATCAAAAAATAAAAAACGAAATCATTT CGCTAAAATTAAGAATAAATGAAGATAATATTAATGAAGAAGAAATCAAAAAAATTTTAAATAACGAAAAAAATAT AGATGTCAAAATAATTTATCAAATATTCAGTCTTATAAAATTTAAAAATAAAAAATTAGCAAATAAAATTAAAAAC ATAATACTAACAAACTATCCCAAAAGCATTTATTCTTATAAAATAAAAAGAAATGAATAA t29.nt
AATAATAAAGAAAATATAGAAAATTTAATAAAGCTACATATGCTTTATGATTTAACCAATAACCTGTCAAAAGAAT TAGAAACAATAAATAAAATTAAAAATTTTGACTTAGAACAACATTATCTGCTAATTACAAAATATTATCTAAAAAT AAAAAAATATAAAGAAGCTAATGATTTTTTAAAAAAAATAAACCAAAAAAAGATCAAAAATCAAAAAATAAAAAAC GAAATCATTTCGCTAAAATTAAGAATAAATGAAGATAATATTAATGAAGAAGAAATCAAAAAAATTTTAAATAACG AAAAAAATATAGATGTCAAAATAATTTATCAAATATTCAGTCTTATAAAATTTAAAAATAAAAAATTAGCAAATAA AATTAAAAACATAATACTAACAAACTATCCCAAAAGCATTTATTCTTATAAAATAAAAAGAAATGAATAA f290.aa
MNSIYVIGKLLLTLFLIFFPFCYNLFAVNLAEINKLSEYAKSIVLIDFDTKRILYSKKPNLVFPPASLTKIVTIYT ALIEAEKRNIKLKSIVPISDSASYYNAPPNSSLMFLEKGQIVNFEEILKGLSVSSGNDSSIAIAEFWGNLNSFVN LMNINVLNLGLFNMHFVEPSGYSSENKITALDMAFFVKSYIEKFKFMLNIHSLKYFIYPKSRNLGTALSSKFLNLK QRNANLLIYDYPYSDGIKTGYIKESGLNLVATAKKGERRLIAWLGVEKGINGFGEKMRSSIAKNLFEYGFNKYSK FPLIVKLKEKVYNGTVDTVALFSKEPFYYILTKDEFDKINISYTVDKLVAPLSGDMPVGRAMIFLENEKIGDVALF SGKVKRLGFWQGLYKSFINLFSREY t290.aa
VNLAEINKLSEYAKSIVLIDFDTKRILYSKKPNLVFPPASLTKIVTIYTALIEAEKRNIKLKSIVPISDSASYYNA PPNSSLMFLEKGQIVNFEEILKGLSVSSGNDSSIAIAEFWGNLNSFVNLMNINVLNLGLFNMHFVEPSGYSSENK ITALDMAFFVKSYIEKFKFMLNIHSLKYFIYPKSRNLGTALSSKFLNLKQRNANLLIYDYPYSDGIKTGYIKESGL NLVATAKKGERRLIAWLGVEKGINGFGEKMRSSIAKNLFEYGFNKYSKFPLIVKLKEKVYNGTVDTVALFSKEPF YYILTKDEFDKINISYTVDKLVAPLSGDMPVGRAMIFLENEKIGDVALFSGKVKRLGFWQGLYKSFINLFSREY f290 . nt
ATGAATAGTATCTATGTTATTGGGAAATTGTTATTAACTTTATTTTTAATTTTTTTCCCGTTTTGTTATAATCTTT TTGCAGTTAATTTAGCTGAGATTAATAAATTATGAGAGTATGCAAAGTCAATAGTTTTAATAGATTTTGATACTAA GCGAATACTTTATTCTAAGAAGCCCAATTTGGTTTTTCCTCCAGCATCTCTTACAAAGATTGTTACAATTTATACA GCTTTAATTGAAGCTGAAAAGCGAAATATAAAATTAAAAAGCATAGTTCCTATTAGCGATTCTGCTTCATATTATA ATGCACCCCCCAATTCTTCTTTGATGTTTTTAGAAAAAGGTCAAATTGTTAATTTTGAAGAGATTTTAAAAGGACT TABLE 1. Nucleotide and Amino Acid Sequences
TTCAGTTTCTTCGGGTAATGATTCTTCTATTGCAATTGCTGAGTTTGTAGTAGGCAATTTAAATAGCTTTGTTAAT TTAATGAATATTAATGTTTTAAATTTAGGGCTTTTTAATATGCATTTTGTTGAACCTTCTGGATATAGCAGCGAGA ATAAGATTACAGCACTAGATATGGCTTTTTTTGTGAAATCTTATATAGAAAAGTTTAAATTTATGCTTAATATTCA TTCTTTAAAGTATTTTATTTATCCAAAGAGTAGAAATTTAGGAACTGCTTTGTCATCAAAATTTTTAAACTTAAAA CAAAGAAATGCTAATTTATTAATATATGATTACCCTTATTCAGATGGCATTAAAACGGGATATATTAAGGAATCAG GCTTAAATCTTGTTGCTACTGCTAAAAAGGGTGAGAGAAGATTAATAGCAGTTGTATTGGGGGTTGAAAAAGGAAT TAATGGATTTGGAGAGAAAATGAGATCTTCGATTGCAAAAAATTTATTTGAATATGGATTTAATAAATATTCTAAA TTTCCTTTAATAGTAAAATTAAAAGAAAAAGTCTATAATGGTACAGTGGATACAGTTGCTCTTTTTTCTAAAGAGC CTTTTTATTATATTTTAACTAAAGATGAATTTGATAAAATTAATATAAGTTATACTGTTGATAAATTGGTTGCTCC ACTTAGTGGGGATATGCCTGTTGGGAGGGCTATGATTTTTTTAGAAAATGAAAAAATAGGGGATGTTGCTTTGTTT AGTGGCAAGGTAAAAAGATTAGGGTTTTGGCAAGGTCTTTATAAGAGTTTTATAAATCTTTTTTCAAGAGAGTATT AA
t290.nt
GTTAATTTAGCTGAGATTAATAAATTATCAGAGTATGCAAAGTCAATAGTTTTAATAGATTTTGATACTAAGCGAA TACTTTATTCTAAGAAGCCCAATTTGGTTTTTCCTCCAGCATCTCTTACAAAGATTGTTACAATTTATACAGCTTT AATTGAAGCTGAAAAGCGAAATATAAAATTAAAAAGCATAGTTCCTATTAGCGATTCTGCTTCATATTATAATGCA CCCCCCAATTCTTCTTTGATGTTTTTAGAAAAAGGTCAAATTGTTAATTTTGAAGAGATTTTAAAAGGACTTTCAG TTTCTTCGGGTAATGATTCTTCTATTGCAATTGCTGAGTTTGTAGTAGGCAATTTAAATAGCTTTGTTAATTTAAT GAATATTAATGTTTTAAATTTAGGGCTTTTTAATATGCATTTTGTTGAACCTTCTGGATATAGCAGCGAGAATAAG ATTACAGCACTAGATATGGCTTTTTTTGTGAAATCTTATATAGAAAAGTTTAAATTTATGCTTAATATTCATTCTT TAAAGTATTTTATTTATCCAAAGAGTAGAAATTTAGGAACTGCTTTGTCATCAAAATTTTTAAACTTAAAACAAAG AAATGCTAATTTATTAATATATGATTACCCTTATTCAGATGGCATTAAAACGGGATATATTAAGGAATCAGGCTTA AATCTTGTTGCTACTGCTAAAAAGGGTGAGAGAAGATTAATAGCAGTTGTATTGGGGGTTGAAAAAGGAATTAATG GATTTGGAGAGAAAATGAGATCTTCGATTGCAAAAAATTTATTTGAATATGGATTTAATAAATATTCTAAATTTCC TTTAATAGTAAAATTAAAAGAAAAAGTCTATAATGGTACAGTGGATACAGTTGCTCTTTTTTCTAAAGAGCCTTTT TATTATATTTTAACTAAAGATGAATTTGATAAAATTAATATAAGTTATACTGTTGATAAATTGGTTGCTCCACTTA GTGGGGATATGCCTGTTGGGAGGGCTATGATTTTTTTAGAAAATGAAAAAATAGGGGATGTTGCTTTGTTTAGTGG CAAGGTAAAAAGATTAGGGTTTTGGCAAGGTCTTTATAAGAGTTTTATAAATCTTTTTTCAAGAGAGTATTAA f291.aa
MNSYDFITALVPIILIIIGLGIIKKPAYYVIPISLIATVAIVIFYKNLGIVNTSLAMLEGALMGIWPIATVIIAAI FTYKMSEDQKDIETIKNILSNVSSDRRIIVLLVAWGFGNFLEGVAGYGTAVAIPVSILIAMGFEPFFACLICLIMN TSSTAYGSVGIPITSLAQATNLDVNIVSSEIAFQLILPTLTIPFVLVILTGGGIKGLKGVFLLTLLSGMSMAISQV FISKTLGPELPAILGSILSMTITIVYARFFGNKETTERQSKNTISLSKGIIACSPYILIVTFIVLVSPLFNKIHEY LKTFQSTISIYPEANPLHFKWIISPGFLIILATTISYSIRGVPMLKQLKIFTLTLKKMALSSFIIICIVAISRLMT HSGMIRDLANGISIITGKFGPLFSPLIGAIGTFLTGSDTVSNVLFGPLQTQMAENIGANPYWLAAANTTGATGGKM ISPQNITIATTTAGLIGQEGKLLSKTIIYALYYILATGLLVYLV t291.aa
QKDIETIKNILSNVSSDRRIIVLLVAWGFGNFLEGVAGYGTAVAIPVSILIAMGFEPFFACLICLIMNTSSTAYGS VGIPITSLAQATNLDVNIVSSEIAFQLILPTLTIPFVLVILTGGGIKGLKGVFLLTLLSGMSMAISQVFISKTLGP ELPAILGSILSMTITIVYARFFGNKETTERQSKNTISLSKGIIACSPYILIVTFIVLVSPLFNKIHEYLKTFQSTI SIYPEANPLHFKWIISPGFLIILATTISYSIRGVPMLKQLKIFTLTLKKMALSSFIIICIVAISRLMTHSGMIRDL ANGISIITGKFGPLFSPLIGAIGTFLTGSDTVSNVLFGPLQTQMAENIGANPYWLAAANTTGATGGKMISPQNITI ATTTAGLIGQEGKLLSKTIIYALYYILATGLLVYLV f291.nt
ATGAATTCTTATGATTTTATAACAGCTTTGGTACCAATAATCCTAATAATTATTGGACTTGGCATAATAAAAAAGC CAGCTTACTATGTAATACCCATATCATTAATAGCCACCGTTGCTATAGTTATATTTTATAAAAACTTGGGAATAGT AAACACAAGTCTTGCAATGCTTGAGGGCGCCTTAATGGGGATATGGCCAATAGCAACTGTAATTATTGCTGCCATA TABLE 1. Nucleotide and Amino Acid Sequences
TTTACATACAAAATGTCAGAAGATCAAAAAGATATAGAAACTATTAAAAATATTTTATCAAACGTATCTTCTGATA GAAGAATTATAGTATTACTAGTTGCATGGGGATTTGGAAATTTTTTAGAAGGAGTTGCTGGATATGGAACTGCTGT TGCAATTCCTGTATCAATATTAATAGCAATGGGATTTGAACCATTTTTTGCCTGCTTAATCTGTTTAATAATGAAC ACCTCATCAACCGCCTACGGATCTGTGGGAATCCCTATAACATCTTTAGCTCAAGCAACTAACTTGGATGTTAACA TTGTTTCATCTGAGATTGCATTCCAACTAATACTTCCAACCTTAACAATACCTTTTGTACTGGTAATTCTTACAGG AGGGGGCATTAAAGGATTAAAAGGAGTATTCCTTCTTACCTTACTCTCAGGAATGTCAATGGCAATATCTCAAGTA TTTATATCAAAAACTTTGGGTCCAGAACTTCCTGCAATCCTTGGAAGCATTCTTTCTATGACAATAACAATAGTTT ATGCAAGGTTTTTTGGAAATAAAGAAACTACTGAGCGCCAAAGCAAAAACACAATATCCTTATCAAAAGGAATTAT TGCCTGCTCACCCTACATTTTAATAGTAACTTTTATAGTGCTTGTATCTCCTCTTTTTAACAAAATTCATGAATAC CTAAAAACTTTTCAAAGCACTATTAGCATTTATCCAGAAGCAAATCCCTTACACTTTAAATGGATTATCTCTCCGG GCTTCTTGATTATACTTGCAACAACAATATCCTATTCAATACGGGGAGTTCCAATGTTAAAACAGCTAAAAATATT TACATTAACCTTGAAAAAAATGGCATTATCTTCCTTTATAATCATATGCATTGTTGCAATATCAAGATTAATGACA CATAGTGGAATGATAAGAGATCTTGCTAATGGAATCTCAATAATAACAGGTAAATTTGGACCATTATTTAGCCCAC TAATTGGAGCTATTGGGACATTTTTAACAGGAAGTGATACGGTTTCAAATGTTCTTTTTGGACCTTTACAAACACA AATGGCAGAAAATATTGGAGCAAATCCTTACTGGCTTGCAGCAGCAAATACAACAGGAGCAACTGGAGGGAAAATG ATTTCTCCCCAAAACATCACAATAGCAACAACAACTGCTGGATTAATTGGACAAGAAGGCAAGCTTTTATCAAAAA CAATAATTTATGCTTTATACTACATTTTAGCAACAGGATTGCTAGTTTATTTAGTATAA
t291.nt
CAAAAAGATATAGAAACTATTAAAAATATTTTATCAAACGTATCTTCTGATAGAAGAATTATAGTATTACTAGTTG
CATGGGGATTTGGAAATTTTTTAGAAGGAGTTGCTGGATATGGAACTGCTGTTGCAATTCCTGTATCAATATTAAT
AGCAATGGGATTTGAACCATTTTTTGCCTGCTTAATCTGTTTAATAATGAACACCTCATCAACCGCCTACGGATCT
GTGGGAATCCCTATAACATCTTTAGCTCAAGCAACTAACTTGGATGTTAACATTGTTTCATCTGAGATTGCATTCC
AACTAATACTTCCAACCTTAACAATACCTTTTGTACTGGTAATTCTTACAGGAGGGGGCATTAAAGGATTAAAAGG
AGTATTCCTTCTTACCTTACTCTCAGGAATGTCAATGGCAATATCTCAAGTATTTATATCAAAAACTTTGGGTCCA
GAACTTCCTGCAATCCTTGGAAGCATTCTTTCTATGACAATAACAATAGTTTATGCAAGGTTTTTTGGAAATAAAG
AAACTACTGAGCGCCAAAGCAAAAACACAATATCCTTATCAAAAGGAATTATTGCCTGCTCACCCTACATTTTAAT
AGTAACTTTTATAGTGCTTGTATCTCCTCTTTTTAACAAAATTCATGAATACCTAAAAACTTTTCAAAGCACTATT
AGCATTTATCCAGAAGCAAATCCCTTACACTTTAAATGGATTATCTCTCCGGGCTTCTTGATTATACTTGCAACAA
CAATATCCTATTCAATACGGGGAGTTCCAATGTTAAAACAGCTAAAAATATTTACATTAACCTTGAAAAAAATGGC
ATTATCTTCCTTTATAATCATATGCATTGTTGCAATATCAAGATTAATGACACATAGTGGAATGATAAGAGATCTT
GCTAATGGAATCTCAATAATAACAGGTAAATTTGGACCATTATTTAGCCCACTAATTGGAGCTATTGGGACATTTT
TAACAGGAAGTGATACGGTTTCAAATGTTCTTTTTGGACCTTTACAAACACAAATGGCAGAAAATATTGGAGCAAA
TCCTTACTGGCTTGCAGCAGCAAATACAACAGGAGCAACTGGAGGGAAAATGATTCTCCCCAAAACATCACAATAG
CAACAACAACTGCTGGATTAATTGGACAAG
f296.aa
MPSPIRVFFLVLLFIFIFNPVLIAMLFILFPFILILFSFLGVFRIYFTRDYSYSRSREFEFYKLSFLLMAKLLSIL GTVTGEQLNYVNFIINSLNLSERGKSELYTIFHSAITKNNN-ADKILYTLKLGYFQHKDLFIWLFATLKEINRLSRY KNLEAEKFISYVGVFLELESDGYEAYKDINIKIVNPYSVLGLTYSASDDEVKKAYKSLVIKYHPDKFANDPVRQKD ANDKFIKIQDAYEKICKERNIR t296.aa
IYFTRDYSYSRSREFEFYKLSFLLMAKLLSILGTVTGEQLNYVNFIINSLNLSERGKSELYTIFHSAITKNNNADK ILYTLKLGYFQHKDLFIWLFATLKEINRLSRYKNLEAEKFISYVGVFLELESDGYEAYKDINIKIVNPYSVLGLTY SASDDEVKKAYKSLVIKYHPDKFANDPVRQKDANDKFIKIQDAYEKICKERNIR f296.nt
ATGCCAAGCCCAATTAGAGTGTTTTTTTTAGTGTTGTTGTTTATTTTTATTTTTAATCCCGTTTTAATAGCAATGC TTTTTATTTTATTTCCTTTTATTTTGATATTATTTAGTTTTTTAGGTGTTTTTAGAATATACTTTACAAGGGATTA CTCATATTCTAGATCTAGAGAGTTTGAATTTTATAAACTTTCTTTTTTATTAATGGCTAAATTGCTATCTATTTTA TABLE 1. Nucleotide and Amino Acid Sequences
GGAACTGTAACTGGGGAGCAGCTAAATTATGTCAATTTTATTATCAATTCTTTGAATTTGTCTGAACGTGGTAAAT CAGAATTGTATACCATTTTTCATTCTGCTATTACTAAAAATAATAATGCTGATAAAATTTTATATACCCTTAAGCT TGGTTATTTTCAGCACAAAGATCTTTTTATATGGCTTTTTGCCACTCTTAAAGAAATTAACAGGCTTTCTAGGTAT AAAAATTTAGAAGCTGAAAAATTTATTTCTTATGTTGGTGTTTTTTTAGAACTTGAATCTGATGGTTATGAAGCTT ATAAAGATATTAATATTAAAATTGTAAATCCTTATAGTGTTTTGGGGTTAACATATAGTGCTAGCGATGATGAGGT TAAAAAGGCGTATAAAAGCCTTGTTATAAAATATCATCCTGATAAGTTTGCAAATGATCCTGTAAGACAAAAAGAT GCAAATGATAAATTTATAAAAATTCAAGATGCTTATGAAAAAATTTGCAAGGAAAGAAATATAAGGTAA t296.nt
ATATACTTTACAAGGGATTACTCATATTCTAGATCTAGAGAGTTTGAATTTTATAAACTTTCTTTTTTATTAATGG CTAAATTGCTATCTATTTTAGGAACTGTAACTGGGGAGCAGCTAAATTATGTCAATTTTATTATCAATTCTTTGAA TTTGTCTGAACGTGGTAAATCAGAATTGTATACCATTTTTCATTCTGCTATTACTAAAAATAATAATGCTGATAAA ATTTTATATACCCTTAAGCTTGGTTATTTTCAGCACAAAGATCTTTTTATATGGCTTTTTGCCACTCTTAAAGAAA TTAACAGGCTTTCTAGGTATAAAAATTTAGAAGCTGAAAAATTTATTTCTTATGTTGGTGTTTTTTTAGAACTTGA ATCTGATGGTTATGAAGCTTATAAAGATATTAATATTAAAATTGTAAATCCTTATAGTGTTTTGGGGTTAACATAT AGTGCTAGCGATGATGAGGTTAAAAAGGCGTATAAAAGCCTTGTTATAAAATATCATCCTGATAAGTTTGCAAATG ATCCTGTAAGACAAAAAGATGCAAATGATAAATTTATAAAAATTCAAGATGCTTATGAAAAAATTTGCAAGGAAAG AAATATAAGGTAA f3. aa
MKKKNLSIYMIMLISLLSCNTSDPNELTRKKMQDKNVKILGFLEKIQADNKEIVEKHIEKKEKQMVQAASVAPINV ESNFPYYLQEEIEIKEEELVPNTDEEKKAEKAISDGSLEFAKLVDDENKLKNESAQLESSFNNVYKEILELADLIQ AEVHVAGRINSYIKKRKTTKEKEYKKREIKNKIEKQALIKLFNQLLEKRGDIENLHTQLNSGLSERASAKYFFEKA KETLKAAITERLNNKRKNRPWWARRTHSNLAIQAKNEAEDALNQLSTSSFRILEAMKIKEDVKQLLEEVKSFLDSS KSKIFSSGDRLYDFLETSK t3. aa
NELTRKKMQDKNVKILGFLEKIQADNKEIVEKHIEKKEKQMVQAASVAPINVESNFPYYLQEEIEIKEEELVPNTD EEKKAEKAISDGSLEFAKLVDDENKLKNESAQLESSFNNVYKEILELADLIQAEVHVAGRINSYIKKRKTTKEKEY KKREIKNKIEKQALIKLFNQLLEKRGDIENLHTQLNSGLSERASAKYFFEKAKETLKAAITERLNNKRKNRPWWAR RTHSNLAIQAKNEAEDALNQLSTSSFRILEAMKIKEDVKQLLEEVKSFLDSSKSKIFSSGDRLYDFLETSK f3.nt
ATGAAAAAAAAAAATTTATCAATTTACATGATAATGCTAATAAGTTTATTATCATGTAATACAAGTGACCCCAATG AATTAACTCGTAAAAAAATGCAAGACAAGAACGTGAAAATTTTAGGATTTTTAGAGAAAATTCAAGCAGATAATAA AGAAATTGTTGAAAAACATATAGAAAAAAAAGAAAAACAAATGGTGCAGGCTGCTTCTGTAGCACCTATTAATGTA GAGAGTAATTTCCCATATTATCTTCAAGAAGAAATAGAGATAAAAGAAGAAGAGTTGGTTCCAAATACTGATGAAG AAAAGAAGGCAGAGAAGGCAATTAGCGATGGGAGTCTTGAATTTGCTAAATTAGTTGATGATGAAAATAAACTTAA AAATGAATCTGCGCAATTAGAATCTAGTTTTAATAATGTTTATAAAGAAATCTTAGAACTTGCAGATTTAATACAA GCAGAGGTGCATGTTGCAGGAAGGATAAATAGCTATATAAAAAAAAGAAAGACCACTAAAGAAAAAGAATATAAGA AGAGAGAAATTAAGAATAAGATAGAAAAACAGGCTCTAATTAAGTTGTTCAATCAGTTATTAGAAAAAAGAGGCGA TATTGAAAATCTTCATACTCAATTAAATAGTGGACTTAGCGAGAGAGCATCTGCAAAATACTTTTTTGAGAAAGCC AAAGAAACTTTAAAAGCTGCTATTACTGAAAGATTAAATAACAAACGTAAAAATCGGCCATGGTGGGCAAGAAGAA CACATAGTAATTTAGCAATACAGGCAAAAAATGAGGCAGAGGATGCTTTAAACCAATTAAGTACTTCTTCTTTTAG GATACTTGAAGCAATGAAAATAAAGGAAGATGTAAAACAGCTTCTTGAAGAAGTAAAATCTTTTCTAGATTCTTCA AAGAGCAAAATCTTTTCTAGTGGCGATAGATTATATGATTTTTTAGAGACGAGTAAATAA t3.nt
AATGAATTAACTCGTAAAAAAATGCAAGACAAGAACGTGAAAATTTTAGGATTTTTAGAGAAAATTCAAGCAGATA ATAAAGAAATTGTTGAAAAACATATAGAAAAAAAAGAAAAACAAATGGTGCAGGCTGCTTCTGTAGCACCTATTAA TGTAGAGAGTAATTTCCCATATTATCTTCAAGAAGAAATAGAGATAAAAGAAGAAGAGTTGGTTCCAAATACTGAT TABLE 1. Nucleotide and Amino Acid Sequences
GAAGAAAAGAAGGCAGAGAAGGCAATTAGCGATGGGAGTCTTGAATTTGCTAAATTAGTTGATGATGAAAATAAAC TTAAAAATGAATCTGCGCAATTAGAATCTAGTTTTAATAATGTTTATAAAGAAATCTTAGAACTTGCAGATTTAAT ACAAGCAGAGGTGCATGTTGCAGGAAGGATAAATAGCTATATAAAAAAAAGAAAGACCACTAAAGAAAAAGAATAT AAGAAGAGAGAAATTAAGAATAAGATAGAAAAACAGGCTCTAATTAAGTTGTTCAATCAGTTATTAGAAAAAAGAG GCGATATTGAAAATCTTCATACTCAATTAAATAGTGGACTTAGCGAGAGAGCATCTGCAAAATACTTTTTTGAGAA AGCCAAAGAAACTTTAAAAGCTGCTATTACTGAAAGATTAAATAACAAACGTAAAAATCGGCCATGGTGGGCAAGA AGAACACATAGTAATTTAGCAATACAGGCAAAAAATGAGGCAGAGGATGCTTTAAACCAATTAAGTACTTCTTCTT TTAGGATACTTGAAGCAATGAAAATAAAGGAAGATGTAAAACAGCTTCTTGAAGAAGTAAAATCTTTTCTAGATTC TTCAAAGAGCAAAATCTTTTCTAGTGGCGATAGATTATATGATTTTTTAGAGACGAGTAAATAA f30.aa
MNKKILTLLVLILSISSVLMLSKSITKKSKYKIIRDYFINSNYVLVKIENKDLKFTISKPIYDKKLNNYFFKGQTT SHFLISNNVDIAINTSPYEVKQNMFFPKGLYIYNKKMISKQINNYGEIVIKHNKIILNPKEDEIENCDYGFSGFFV LIKNGKYKKNFKETRHPRTIIGTDKNNKHLFLVTIEGRGVNNSKGASLNEAIDFALSYGMTNAINLDGGGSSTLW KSNNAPYKLNFTANIFGQERPVPFHLGIKLPN t30.aa
LSKSITKKSKYKIIRDYFINSNYVLVKIENKDLKFTISKPIYDKKLNNYFFKGQTTSHFLISNNVDIAINTSPYEV KQNMFFPKGLYIYNKKMISKQINNYGEIVIKHNKIILNPKEDEIENCDYGFSGFFVLIKNGKYKKNFKETRHPRTI IGTDKNNKHLFLVTIEGRGVNNSKGASLNEAIDFALSYGMTNAINLDGGGSSTLWKSNNAPYKLNFTANIFGQER PVPFHLGIKLPN f30.nt
ATGAATAAAAAAATATTAACACTGCTAGTATTGATTTTAAGTATTTCATCAGTACTAATGCTGTCCAAATCAATCA CCAAAAAATCCAAATACAAAATTATTAGGGATTATTTCATAAACAGCAATTATGTTCTGGTGAAAATTGAAAATAA AGATCTAAAATTTACCATATCAAAACCTATTTACGACAAAAAGCTAAATAATTACTTCTTTAAAGGCCAAACAACA AGCCATTTCTTAATTTCTAACAATGTTGACATTGCAATTAACACAAGTCCATACGAAGTTAAACAAAACATGTTTT TCCCAAAAGGACTATACATATATAATAAAAAAATGATTTCAAAACAAATAAATAACTACGGAGAGATTGTAATAAA GCACAACAAAATTATATTAAATCCCAAGGAAGACGAAATAGAAAACTGCGATTATGGATTTAGCGGATTTTTTGTT TTAATCAAAAACGGAAAGTATAAAAAAAATTTTAAAGAAACAAGGCACCCAAGAACAATAATAGGAACTGATAAAA ATAACAAGCATTTATTTCTTGTTACAATAGAAGGAAGGGGTGTCAATAATAGCAAAGGGGCCTCTCTTAATGAAGC TATTGATTTTGCATTAAGCTACGGCATGACTAACGCTATTAATCTAGACGGGGGGGGCTCAAGCACTCTTGTTGTA AAATCAAATAACGCTCCTTACAAATTAAACTTCACAGCAAACATCTTTGGACAGGAAAGACCTGTCCCATTTCATT TAGGAATAAAACTTCCTAATTGA t30.nt
CTGTCCAAATCAATCACCAAAAAATCCAAATACAAAATTATTAGGGATTATTTCATAAACAGCAATTATGTTCTGG TGAAAATTGAAAATAAAGATCTAAAATTTACCATATCAAAACCTATTTACGACAAAAAGCTAAATAATTACTTCTT TAAAGGCCAAACAACAAGCCATTTCTTAATTTCTAACAATGTTGACATTGCAATTAACACAAGTCCATACGAAGTT AAACAAAACATGTTTTTCCCAAAAGGACTATACATATATAATAAAAAAATGATTTCAAAACAAATAAATAACTACG GAGAGATTGTAATAAAGCACAACAAAATTATATTAAATCCCAAGGAAGACGAAATAGAAAACTGCGATTATGGATT TAGCGGATTTTTTGTTTTAATCAAAAACGGAAAGTATAAAAAAAATTTTAAAGAAACAAGGCACCCAAGAACAATA ATAGGAACTGATAAAAATAACAAGCATTTATTTCTTGTTACAATAGAAGGAAGGGGTGTCAATAATAGCAAAGGGG CCTCTCTTAATGAAGCTATTGATTTTGCATTAAGCTACGGCATGACTAACGCTATTAATCTAGACGGGGGGGGCTC AAGCACTCTTGTTGTAAAATCAAATAACGCTCCTTACAAATTAAACTTCACAGCAAACATCTTTGGACAGGAAAGA CCTGTCCCATTTCATTTAGGAATAAAACTTCCTAATTGA f308.aa
MQLLKNKYPFKRALLDLFLVYAIVYLASPFVNVNSEFWNVDENHFYFWISRSFLIIFIIYFFKLTSSYDDFRVEFF IPKFKFIFLWDSVLIFIKTILIAMIVIFLIAFLLEYLLPESVLVYYFQNNAGFNWKISSKKAFFLMTFTSFFTGAF TABLE 1. Nucleotide and Amino Acid Sequences
EELFYRAFVITKFTQMGFPWATAILSSMFFAYGHLYYGILGFLVTFILGIFFAFTYLRYKNVYYVIFIHSFYNII VSSLLLFLN t308.aa
NSEFWNVDENHFYFWISRSFLIIFIIYFFKLTSSYDDFRVEFFIPKFKFIFLWDSVLIFIKTILIAMIVIFLIAFL LEYLLPESVLVYYFQNNAGFNWKISSKKAFFLMTFTSFFTGAFEELFYRAFVITKFTQMGFPWATAILSSMFFAY GHLYYGILGFLVTFILGIFFAFTYLRYKNVYYVIFIHSFYNIIVSSLLLFLN f308.nt
ATGCAATTGTTAAAAAATAAATATCCATTCAAGCGGGCTTTGCTTGATCTTTTTTTGGTCTATGCTATTGTTTATT TGGCATCTCCTTTTGTAAATGTTAATTCAGAATTTTGGAATGTTGATGAAAATCATTTTTATTTTTGGATTTCAAG ATCTTTTTTAATTATTTTTATAATTTATTTTTTTAAACTTACCAGTTCTTATGATGATTTTAGAGTAGAGTTTTTT ATTCCTAAATTTAAATTTATTTTTCTTTGGGATTCTGTTTTAATTTTTATTAAAACAATATTGATTGCAATGATAG TCATTTTTTTAATAGCTTTTTTGCTTGAATATTTGTTGCCAGAATCGGTACTTGTCTATTATTTTCAAAACAATGC TGGATTTAATTGGAAGATTAGCAGTAAAAAAGCATTTTTTTTAATGACTTTTACCTCTTTTTTTACAGGAGCTTTT GAAGAACTTTTTTACAGGGCTTTTGTTATTACTAAGTTTACACAAATGGGATTTCCTGTTGTAGCTACCGCCATTC TTAGTAGTATGTTTTTTGCTTATGGGCATTTATATTATGGAATTTTAGGATTTTTGGTTACATTTATATTAGGGAT ATTTTTTGCTTTTACTTATTTAAGGTATAAAAATGTATATTATGTGATTTTTATACATAGTTTTTATAATATTATT GTTAGCAGCTTGTTGCTTTTTTTGAATTAA t308.nt
AATTCAGAATTTTGGAATGTTGATGAAAATCATTTTTATTTTTGGATTTCAAGATCTTTTTTAATTATTTTTATAA TTTATTTTTTTAAACTTACCAGTTCTTATGATGATTTTAGAGTAGAGTTTTTTATTCCTAAATTTAAATTTATTTT TCTTTGGGATTCTGTTTTAATTTTTATTAAAACAATATTGATTGCAATGATAGTCATTTTTTTAATAGCTTTTTTG CTTGAATATTTGTTGCCAGAATCGGTACTTGTCTATTATTTTCAAAACAATGCTGGATTTAATTGGAAGATTAGCA GTAAAAAAGCATTTTTTTTAATGACTTTTACCTCTTTTTTTACAGGAGCTTTTGAAGAACTTTTTTACAGGGCTTT TGTTATTACTAAGTTTACACAAATGGGATTTCCTGTTGTAGCTACCGCCATTCTTAGTAGTATGTTTTTTGCTTAT GGGCATTTATATTATGGAATTTTAGGATTTTTGGTTACATTTATATTAGGGATATTTTTTGCTTTTACTTATTTAA GGTATAAAAATGTATATTATGTGATTTTTATACATAGTTTTTATAATATTATTGTTAGCAGCTTGTTGCTTTTTTT GAATTAA f31.aa
MKKYLFFILFLISSNNLIVSYPLSFGGGFSYQFTNYTDKTGATKFAPNFTRADHGINLNLFFDANYVLFEMSYKEA FWTHNGRYFSLGLYGTYPMVFKEQVRMLFPLIGFKYAFDLSSNNFNLFFLSMGLAADLFI PDLDGLYIRPLFMLS ISPFSNYKNFSGLTTEIMLGFNIGWRFFN t31 . aa
IVSYPLSFGGGFSYQFTNYTDKTGATKFAPNFTRADHGINLNLFFDANYVLFEMSYKEAFWTHNGRYFSLGLYGT YPMVFKEQVRMLFPLIGFKYAFDLSSNNFNLFFLSMGLAADLFIPDLDGLYIRPLFMLSISPFSNYKNFSGLTTEI MLGFNIGWRFFN f31.nt
ATGAAGAAATATCTTTTTTTTATTTTATTTCTCATCTCTTCTAATAATTTAATTGTTTCTTATCCACTTTCTTTTG GTGGAGGTTTTTCTTATCAATTTACTAATTATACTGATAAAACAGGCGCCACTAAATTTGCTCCAAATTTTACCAG AGCAGATCATGGGATTAATTTGAATTTATTTTTTGATGCAAATTATGTACTTTTTGAAATGTCTTACAAAGAGGCT TTTGTTGTTACTCACAATGGGAGATATTTCTCGCTTGGGCTTTATGGAACATATCCAATGGTTTTCAAAGAGCAGG TTAGAATGCTTTTCCCATTAATTGGGTTTAAATATGCTTTTGATTTAAGCTCTAATAACTTCAATCTCTTTTTTTT AAGCATGGGGCTTGCTGCTGATCTTTTTATTCCCGATCTTGATGGTTTATATATTAGGCCTTTGTTTATGCTTTCT ATTTCTCCATTTTCTAATTATAAAAATTTTTCTGGGTTAACAACTGAGATTATGCTTGGATTTAATATCGGTTGGA GATTTTTCAATTAG TABLE 1. Nucleotide and Amino Acid Sequences
t31.nt
ATTGTTTCTTATCCACTTTCTTTTGGTGGAGGTTTTTCTTATCAATTTACTAATTATACTGATAAAACAGGCGCCA CTAAATTTGCTCCAAATTTTACCAGAGCAGATCATGGGATTAATTTGAATTTATTTTTTGATGCAAATTATGTACT TTTTGAAATGTCTTACAAAGAGGCTTTTGTTGTTACTCACAATGGGAGATATTTCTCGCTTGGGCTTTATGGAACA TATCCAATGGTTTTCAAAGAGCAGGTTAGAATGCTTTTCCCATTAATTGGGTTTAAATATGCTTTTGATTTAAGCT CTAATAACTTCAATCTCTTTTTTTTAAGCATGGGGCTTGCTGCTGATCTTTTTATTCCCGATCTTGATGGTTTATA TATTAGGCCTTTGTTTATGCTTTCTATTTCTCCATTTTCTAATTATAAAAATTTTTCTGGGTTAACAACTGAGATT ATGCTTGGATTTAATATCGGTTGGAGATTTTTCAATTAG
f939.aa
MKQKYENYFKKRLILNLLIFLLLACSSESIFSQLGNLQKIKHEYNILGSSSPRGISLVGETLYIAAMHLFKKENGK IEKIDLSNSYEFINDIVNISGKTYLLAQNKEEELEVCELNGKDWTLKFKKPLKAYKFLKSVGRDGVKEAYILAIDK NNREKIFDLQGSDKTPPQATENDKFYQISNEENLITGNSLKIWQMNNNTYTNIDYQQAKEIMPIIKTSIRGSSEVL VMTGGYNNLDTKFKVYSNTNNYTTPIFIQDEVGEFSSYFAREFNDAILIGSNNGFAEFTKNKEGIFALRAPSKSVE PGAYNGSQLSKTGLNDIIPVSNNTIYILTQGKGLWKLENRKLTKE f939.aa
CSSESIFSQLGNLQKIKHEYNILGSSSPRGISLVGETLYIAAMHLFKKENGKIEKIDLSNSYEFINDIVNISGKTY
LLAQNKEEELEVCELNGKDWTLKFKKPLKAYKFLKSVGRDGVKEAYILAIDKNNREKIFDLQGSDKTPPQATENDK
FYQISNEENLITGNSLKIWQMNNNTYTNIDYQQAKEIMPIIKTSIRGSSEVLVMTGGYNNLDTKFKVYSNTNNYTT
PIFIQDEVGEFSSYFAREFNDAILIGSNNGFAEFTKNKEGIFALRAPSKSVEPGAYNGSQLSKTGLNDIIPVSNNT
IYILTQGKGLWKLENR
KLTKE f939.nt
ATGAAACAAAAATACGAAAACTATTTTAAAAAAAGATTAATTTTAAACCTATTAATATTTTTACTACTAGCATGCT CAAGCGAATCCATATTTTCACAATTAGGAAATCTGCAAAAAATAAAACATGAATACAATATTTTGGGCAGTTCAAG TCCAAGAGGAATTTCTCTAGTAGGAGAAACTCTCTACATTGCAGCCATGCATTTATTTAAAAAAGAAAACGGCAAG ATTGAAAAAATTGATTTGAGCAATTCTTATGAGTTTATAAACGACATTGTAAATATATCTGGAAAAACCTATCTTT TAGCGCAAAACAAAGAAGAAGAATTAGAAGTTTGCGAGCTAAATGGAAAAGATTGGACATTAAAATTTAAAAAACC GCTAAAAGCATATAAATTCTTAAAATCCGTAGGAAGAGATGGCGTAAAAGAAGCATATATTTTAGCTATAGATAAA AATAATCGTGAGAAAATTTTTGATCTACAAGGATCTGACAAAACACCACCACAAGCTACTGAAAATGACAAATTTT ATCAAATATCAAATGAAGAAAACTTAATTACAGGAAATTCACTCAAAATATGGCAAATGAATAACAATACATACAC AAACATAGACTATCAACAGGCCAAAGAAATAATGCCTATCATTAAAACAAGCATTAGGGGCTCTTCTGAAGTTTTA GTAATGACTGGTGGTTACAATAATTTAGATACAAAATTTAAAGTTTACTCAAATACAAATAATTACACAACGCCAA TATTTATTCAAGACGAAGTAGGCGAATTTAGCAGCTACTTTGCAAGAGAATTTAATGATGCGATATTAATCGGAAG TAATAATGGATTTGCAGAATTTACAAAAAATAAAGAAGGAATTTTTGCCCTACGGGCACCCTCAAAATCTGTAGAA CCTGGAGCTTATAACGGATCTCAGCTAAGCAAAACAGGCCTTAATGATATTATTCCTGTATCAAACAACACGATTT ACATATTAACTCAGGGCAAGGGTTTGTGGAAATTGGAAAACAGAAAATTAACTAAAGAATAA t939.nt
TGCTCAAGCGAATCCATATTTTCACAATTAGGAAATCTGCAAAAAATAAAACATGAATACAATATTTTGGGCAGTT CAAGTCCAAGAGGAATTTCTCTAGTAGGAGAAACTCTCTACATTGCAGCCATGCATTTATTTAAAAAAGAAAACGG CAAGATTGAAAAAATTGATTTGAGCAATTCTTATGAGTTTATAAACGACATTGTAAATATATCTGGAAAAACCTAT CTTTTAGCGCAAAACAAAGAAGAAGAATTAGAAGTTTGCGAGCTAAATGGAAAAGATTGGACATTAAAATTTAAAA AACCGCTAAAAGCATATAAATTCTTAAAATCCGTAGGAAGAGATGGCGTAAAAGAAGCATATATTTTAGCTATAGA TAAAAATAATCGTGAGAAAATTTTTGATCTACAAGGATCTGACAAAACACCACCACAAGCTACTGAAAATGACAAA TTTTATCAAATATCAAATGAAGAAAACTTAATTACAGGAAATTCACTCAAAATATGGCAAATGAATAACAATACAT TABLE 1. Nucleotide and Amino Acid Sequences
ACACAAACATAGACTATCAACAGGCCAAAGAAATAATGCCTATCATTAAAACAAGCATTAGGGGCTCTTCTGAAGT TTTAGTAATGACTGGTGGTTACAATAATTTAGATACAAAATTTAAAGTTTACTCAAATACAAATAATTACACAACG CCAATATTTATTCAAGACGAAGTAGGCGAATTTAGCAGCTACTTTGCAAGAGAATTTAATGATGCGATATTAATCG GAAGTAATAATGGATTTGCAGAATTTACAAAAAATAAAGAAGGAATTTTTGCCCTACGGGCACCCTCAAAATCTGT AGAACCTGGAGCTTATAACGGATCTCAGCTAAGCAAAACAGGCCTTAATGATATTATTCCTGTATCAAACAACACG ATTTACATATTAACTCAGGGCAAGGGTTTGTGGAAATTGGAAAACAGAAAATTAACTAAAGAATAA f739.aa
MQSGLKIKLILFFCCFACSCDINYPEIKELDYKINYYFTENRLDYSMSFDFAIKVINSKDVFKLSIENKNTNEFIQ VINNNYSSFFIDSSLGKDILYCKDLRFNFFDKTFEDFTSCVRLFDKGMRVYNRELVISLGMSKYDLDDVHNYVYKS KDMEMLNKLSNSKVFFVKTYKDKLHPVSSWRIDSIDILEIDKAFDNYISFYYVEKNSNLFFKVG t739.aa
CCFACSCDINYPEIKELDYKINYYFTENRLDYSMSFDFAIKVINSKDVFKLSIENKNTNEFIQVINNNYSSFFIDS SLGKDILYCKDLRFNFFDKTFEDFTSCVRLFDKGMRVYNRELVISLGMSKYDLDDVHNYVYKSKDMEMLNKLSNSK VFFVKTYKDKLHPVSSWRIDSIDILEIDKAFDNYISFYYVEKNSNLFFKVG f739.nt
ATGCAGAGCGGATTAAAAATTAAATTAATATTGTTTTTTTGTTGTTTTGCTTGTTCTTGCGACATAAATTATCCGG AGATAAAAGAGCTTGATTATAAGATAAATTATTATTTTACTGAAAATCGCTTAGATTACTCTATGAGTTTTGATTT TGCAATTAAAGTTATAAATTCAAAAGATGTTTTTAAATTATCAATAGAGAATAAGAACACTAATGAGTTTATTCAA GTGATTAATAATAATTATAGCTCTTTTTTTATTGATTCTAGCCTTGGAAAGGATATTCTATATTGTAAGGATTTGA GGTTTAATTTTTTTGATAAAACTTTTGAAGATTTTACCTCATGTGTTCGTCTTTTTGATAAGGGCATGAGAGTATA CAATAGAGAGCTTGTTATTTCTTTGGGTATGTCAAAATATGATTTAGATGATGTTCACAATTATGTATATAAGTCT AAAGATATGGAAATGTTAAACAAGTTAAGCAATTCCAAAGTATTTTTTGTTAAAACTTATAAAGACAAACTACATC CGGTCTCTTCAGTTGTTAGAATTGATTCAATAGATATTCTAGAGATTGATAAAGCATTTGATAATTACATAAGTTT TTATTATGTCGAAAAAAATTCAAATCTTTTTTTTAAAGTTGGCTGA t739.nt
TGTTGTTTTGCTTGTTCTTGCGACATAAATTATCCGGAGATAAAAGAGCTTGATTATAAGATAAATTATTATTTTA CTGAAAATCGCTTAGATTACTCTATGAGTTTTGATTTTGCAATTAAAGTTATAAATTCAAAAGATGTTTTTAAATT ATCAATAGAGAATAAGAACACTAATGAGTTTATTCAAGTGATTAATAATAATTATAGCTCTTTTTTTATTGATTCT AGCCTTGGAAAGGATATTCTATATTGTAAGGATTTGAGGTTTAATTTTTTTGATAAAACTTTTGAAGATTTTACCT CATGTGTTCGTCTTTTTGATAAGGGCATGAGAGTATACAATAGAGAGCTTGTTATTTCTTTGGGTATGTCAAAATA TGATTTAGATGATGTTCACAATTATGTATATAAGTCTAAAGATATGGAAATGTTAAACAAGTTAAGCAATTCCAAA GTATTTTTTGTTAAAACTTATAAAGACAAACTACATCCGGTCTCTTCAGTTGTTAGAATTGATTCAATAGATATTC TAGAGATTGATAAAGCATTTGATAATTACATAAGTTTTTATTATGTCGAAAAAAATTCAAATCTTTTTTTTAAAGT TGGCTGA f742.aa
MNKKHTNFSVLLLLIFLLILSFGGFGYYIYQSKLNDKNREIMLNEVKNSVIDRNYKKAYSVAKLLQDKYPQNEDIA MLTNTLAEIANSSPFESKDLQRDSANQILDKIKGQDNTKTNVNENFDIAFNNRYIKDSTITENYSDRNDDVGIEDE DISEFKKSKIPEKIKPNTNPKEEDQIIQSPNPKLSVNDQKNLFNLEKLKKNLSGKSNSENILNDSQKIENDKQNTN LSKEKNSENILKTPDNSKYSNNNNTTSLKKISSNSQKESELSPPSQTIIGKIYRPYSYLIKKELYEILDDINTGRV TLGKNRLKELIKKGLSNKFQKVNELIENSKNKEASNLLLTLIKKDIEPNLINIPKDPYKKEIFQLDKEDKKPQYLE DLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQ AIKDLNEFLKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNNPNDAQASKTL AQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFXKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPI DLENTKSRQQAIKDLNEFXKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNN PNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFXKNNPNDAQASKTLAQAYENNGDLLK AENAYEKIIKLTNTQEDHYKLGIIRFKLKKYEHSIESFDQTIKLDPKHKKALHNKGIALMMLNKNKKAIESFEKAI TABLE 1. Nucleotide and Amino Acid Sequences
QIDKNYGTAYYQKGIAEEKNGDMQQAFASFKNAYNLDKNPNYALKAGIVSNNLGNFKQSEEYLNFFNANAKKPNEI AIYNLSIAKFENNKLEESLETINKAIDLNPEKSEYLYLKASINLKKENYQNAISLYSLVIEKNPENTSAYINLAKA YEKSGNKSQAISTLEKIINKNNKLALNNLGILYKKEKNYQKAIEIFEKAIINSDIEAKYNLATTLIEINDNTRAKD LLREYTKLKPNNPEALHALGIIEYNENNNDQTLRELIKKFPNYKKNENIKKIIGI t742.aa
KLNDKNREIMLNEVKNSVIDRNYKKAYSVAKLLQDKYPQNEDIAMLTNTLAEIANSSPFESKDLQRDSANQILDKI
KGQD
NTKTNVNENFDIAFNNRYIKDSTITENYSDRNDDVGIEDEDISEFKKSKIPEKIKPNTNPKEEDQIIQSPNPKLSV
NDQKNLFNLEKLKKNLSGKSNSENILNDSQKIENDKQNTNLSKEKNSENILKTPDNSKYSNNNNTTSLKKISSNSQ
KESELSPPSQTIIGKIYRPYSYLIKKELYEILDDINTGRVTLGKNRLKELIKKGLSNKFQKVNELIENSKNKEASN
LLLTLIKKDIEPNLINIPKDPYKKEIFQLDKEDKKPQYLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNNPN
DAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNNPNDAQASKTLAQANKIQHLEDLKS
KVHSIKPIDLENTKSRQQAIKDLNEFLKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKD
LNEFXKJMNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFXKNNPNDAQASKTLAQAN
KIQHLEDLKSKVHSIKPIDLENTKSRQQAIKDLNEFLKNNPNDAQASKTLAQANKIQHLEDLKSKVHSIKPIDLEN
TKSRQQAIKDLNEFXKNNPNDAQASKTLAQAYENNGDLLKAENAYEKIIKLTNTQEDHYKLGIIRFKLKKYEHSIE
SFDQTIKLDPKHKKALHNKGIALMMLNKNKKAIESFEKAIQIDKNYGTAYYQKGIAEEKNGDMQQAFASFKNAYNL
DKNPNYALKAGIVSNNLGNFKQSEEYLNFFNANAKKPNEIAIYNLSIAKFENNKLEESLETINKAIDLNPEKSEYL
YLKASINLKKENYQNAISLYSLVIEKNPENTSAYINLAKAYEKSGNKSQAISTLEKIINKNNKLALNNLGILYKKE
KNYQKAIEIFEKAIINSDIEAKYNLATTLIEINDNTRAKDLLREYTKLKPNNPEALHALGIIEYNENNNDQTLREL
IKKFPNYKKNENIKKIIGI f742.nt
ATGAATAAAAAACATACAAATTTTTCGGTATTATTGCTTTTAATTTTCTTACTTATCTTATCATTTGGGGGCTTTG
GTTACTATATATATCAAAGCAAATTAAATGACAAAAATCGAGAAATAATGCTAAACGAAGTTAAAAATAGCGTAAT
AGATCGAAACTATAAAAAAGCATATTCTGTTGCAAAACTTCTGCAAGACAAATACCCCCAAAATGAAGACATTGCA
ATGCTTACAAATACACTAGCAGAAATTGCCAACAGTAGTCCTTTTGAATCAAAAGACTTGCAAAGAGATTCTGCTA
ATCAAATCTTAGACAAGATCAAAGGTCAAGACAATACAAAAACAAATGTAAACGAAAATTTTGATATAGCATTTAA
TAATAGATACATTAAAGACAGCACAATAACAGAAAACTACTCTGACAGAAACGATGATGTTGGCATTGAAGATGAA
GACATATCTGAATTTAAAAAAAGCAAAATCCCAGAAAAAATAAAACCAAATACAAACCCAAAAGAAGAAGACCAAA
TAATACAATCTCCAAATCCGAAATTAAGTGTTAATGACCAAAAAAATTTATTTAATTTGGAAAAACTAAAAAAAAA
TTTAAGTGGAAAATCAAATAGTGAAAATATTTTAAACGATTCTCAAAAAATAGAAAATGATAAGCAAAACACAAAT
TTATCCAAAGAAAAAAATTCGGAGAATATTTTAAAAACTCCGGACAACAGTAAATATTCAAACAATAACAATACTA
CATCTTTAAAAAAAATTTCTTCAAATTCCCAAAAAGAAAGTGAGCTTTCTCCACCCAGTCAAACAATAATAGGGAA
AATTTATAGGCCATATAGCTACTTGATAAAAAAAGAGCTCTATGAAATATTAGACGATATTAATACCGGAAGAGTC
ACACTTGGAAAAAACAGATTAAAAGAATTAATTAAAAAAGGTCTAAGCAACAAATTTCAAAAAGTAAATGAATTGA
TTGAAAATTCAAAAAATAAAGAAGCTTCAAATTTACTATTAACCTTAATAAAAAAAGATATTGAACCAAATCTCAT
TAATATACCAAAAGATCCTTACAAAAAAGAAATTTTTCAATTAGATAAAGAAGACAAAAAGCCTCAGTACCTAGAG
GACCTTAAATCTAAAGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAAGCCATTAAGG
ATCTAAACGAATTCTTGAAAAACAATCCCAATGACGCTCAGGCCTCTAAAACTTTAGCTCAAGCTAATAAAATACA
ACACCTAGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAA
GCCATTAAGGATCTAAACGAATTCTTGAAAAACAATCCCAATGACGCTCAGGCCTCTAAAACTTTAGCTCAAGCTA
ATAAAATACAACACCTAGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATC
ACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAAACAATCCCAATGACGCCCAGGCCTCTAAAACTTTA
GCTCAAGCTAATAAAATACAACACCTGGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAA
ACACAAAATCACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCAGGCCTCTA
AAACTTTAGCTCAAGCTAATAAAATACAACACCTGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGAT
CTTGAAAACACAAAATCACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCAG
GCCTCTAAAACTTTAGCTCAAGCTAATAAAATACAACACCTAGAGGACCTTAAATCTAAGGTTCATTCAATAAAAC
CCATTGATCTTGAAAACACAAAAT
CACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAAACAATCCCAATGACGCCCAGGCCTCTAAAACTTT
AGCTCAAGCTAATAAAATACAACACCTGGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAA
AACACAAAATCACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCCAGGCCTC TABLE 1. Nucleotide and Amino Acid Sequences
TAAAACTTTAGCTCAAGCTTATGAAAACAATGGAGATTTGCTAAAAGCAGAAAATGCATACGAAAAAATTATCAAA CTCACAAATACCCAAGAAGATCACTATAAACTTGGAATCATTAGATTCAAGCTTAAAAAGTATGAACACTCAATAG AATCATTTGATCAAACAATAAAACTCGACCCAAAACATAAAAAAGCACTTCATAACAAAGGAATAGCTTTAATGAT GCTAAATAAAAACAAAAAAGCAATAGAATCTTTTGAGAAAGCAATACAAATTGATAAAAATTATGGCACCGCCTAC TACCAAAAAGGAATAGCAGAAGAAAAAAATGGCGATATGCAACAAGCATTTGCAAGCTTTAAAAATGCCTACAATC TCGACAAAAACCCCAATTATGCATTAAAAGCAGGAATAGTATCAAATAACTTGGGCAACTTCAAACAAAGTGAAGA GTATTTAAATTTTTTTAATGCCAATGCAAAAAAACCTAACGAAATTGCTATTTACAACCTATCAATAGCAAAATTT GAAAACAATAAACTTGAAGAATCTCTTGAAACAATAAACAAAGCCATAGATTTAAATCCAGAAAAAAGTGAATATT TATATTTAAAAGCATCTATAAATCTTAAAAAAGAAAATTACCAAAATGCTATATCACTTTACAGCTTAGTAATTGA AAAAAACCCTGAAAATACTTCAGCCTATATAAACCTGGCAAAAGCATATGAAAAATCAGGAAATAAAAGTCAAGCA ATCTCAACTCTTGAAAAGATAATAAACAAAAATAATAAATTAGCCTTAAACAATCTTGGGATACTTTACAAAAAAG AAAAAAATTATCAAAAAGCAATTGAAATTTTTGAAAAAGCAATAATCAATTCAGATATTGAAGCAAAATATAATCT TGCAACCACTCTAATTGAAATTAATGATAACACAAGAGCTAAAGACCTTCTAAGAGAATATACAAAATTAAAACCA AACAATCCAGAGGCCTTACATGCACTAGGAATAATAGAATATAATGAAAATAACAATGATCAAACACTAAGAGAAC TTATAAAAAAATTTCCAAATTACAAAAAAAATGAAAATATTAAAAAAATAATAGGAATATAA t742.nt
AAATTAAATGACAAAAATCGAGAAATAATGCTAAACGAAGTTAAAAATAGCGTAATAGATCGAAACTATAAAAAAG
CATATTCTGTTGCAAAACTTCTGCAAGACAAATACCCCCAAAATGAAGACATTGCAATGCTTACAAATACACTAGC
AGAAATTGCCAACAGTAGTCCTTTTGAATCAAAAGACTTGCAAAGAGATTCTGCTAATCAAATCTTAGACAAGATC
AAAGGTCAAGACAATACAAAAACAAATGTAAACGAAAATTTTGATATAGCATTTAATAATAGATACATTAAAGACA
GCACAATAACAGAAAACTACTCTGACAGAAACGATGATGTTGGCATTGAAGATGAAGACATATCTGAATTTAAAAA
AAGCAAAATCCCAGAAAAAATAAAACCAAATACAAACCCAAAAGAAGAAGACCAAATAATACAATCTCCAAATCCG
AAATTAAGTGTTAATGACCAAAAAAATTTATTTAATTTGGAAAAACTAAAAAAAAATTTAAGTGGAAAATCAAATA
GTGAAAATATTTTAAACGATTCTCAAAAAATAGAAAATGATAAGCAAAACACAAATTTATCCAAAGAAAAAAATTC
GGAGAATATTTTAAAAACTCCGGACAACAGTAAATATTCAAACAATAACAATACTACATCTTTAAAAAAAATTTCT
TCAAATTCCCAAAAAGAAAGTGAGCTTTCTCCACCCAGTCAAACAATAATAGGGAAAATTTATAGGCCATATAGCT
ACTTGATAAAAAAAGAGCTCTATGAAATATTAGACGATATTAATACCGGAAGAGTCACACTTGGAAAAAACAGATT
AAAAGAATTAATTAAAAAAGGTCTAAGCAACAAATTTCAAAAAGTAAATGAATTGATTGAAAATTCAAAAAATAAA
GAAGCTTCAAATTTACTATTAACCTTAATAAAAAAAGATATTGAACCAAATCTCATTAATATACCAAAAGATCCTT
ACAAAAAAGAAATTTTTCAATTAGATAAAGAAGACAAAAAGCCTCAGTACCTAGAGGACCTTAAATCTAAAGTTCA
TTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTGAAA
AACAATCCCAATGACGCTCAGGCCTCTAAAACTTTAGCTCAAGCTAATAAAATACAACACCTAGAGGACCTTAAAT
CTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAAGCCATTAAGGATCTAAACGA
ATTCTTGAAAAACAATCCCAATGACGCTCAGGCCTCTAAAACTTTAGCTCAAGCTAATAAAATACAACACCTAGAG
GACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAAGCCATTAAGG
ATCTAAACGAATTCTTAAAAAACAATCCCAATGACGCCCAGGCCTCTAAAACTTTAGCTCAAGCTAATAAAATACA
ACACCTGGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACAA
GCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCAGGCCTCTAAAACTTTAGCTCAAGCTAAT
AAAATACAACACCTGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACG
CCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCAGGCCTCTAAAACTTTAGCTCA
AGCTAATAAAATACAACACCTAGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACA
AAATCACGCCAACAAGCCATTAAGGATCTAAACGAATTCTTAAAAAACAATCCCAATGACGCCCAGGCCTCTAAAA
CTTTAGCTCAAGCTAATAAAATAC
AACACCTGGAGGACCTTAAATCTAAGGTTCATTCAATAAAACCCATTGATCTTGAAAACACAAAATCACGCCAACA
AGCCATTAAGGATCTAAACGAATTCTTAAAAACAATCCCAATGACGCCCAGGCCTCTAAAACTTTAGCTCAAGCTT
ATGAAAACAATGGAGATTTGCTAAAAGCAGAAAATGCATACGAAAAAATTATCAAACTCACAAATACCCAAGAAGA
TCACTATAAACTTGGAATCATTAGATTCAAGCTTAAAAAGTATGAACACTCAATAGAATCATTTGATCAAACAATA
AAACTCGACCCAAAACATAAAAAAGCACTTCATAACAAAGGAATAGCTTTAATGATGCTAAATAAAAACAAAAAAG
CAATAGAATCTTTTGAGAAAGCAATACAAATTGATAAAAATTATGGCACCGCCTACTACCAAAAAGGAATAGCAGA
AGAAAAAAATGGCGATATGCAACAAGCATTTGCAAGCTTTAAAAATGCCTACAATCTCGACAAAAACCCCAATTAT
GCATTAAAAGCAGGAATAGTATCAAATAACTTGGGCAACTTCAAACAAAGTGAAGAGTATTTAAATTTTTTTAATG
CCAATGCAAAAAAACCTAACGAAATTGCTATTTACAACCTATCAATAGCAAAATTTGAAAACAATAAACTTGAAGA
ATCTCTTGAAACAATAAACAAAGCCATAGATTTAAATCCAGAAAAAAGTGAATATTTATATTTAAAAGCATCTATA
AATCTTAAAAAAGAAAATTACCAAAATGCTATATCACTTTACAGCTTAGTAATTGAAAAAAACCCTGAAAATACTT TABLE 1. Nucleotide and Amino Acid Sequences
CAGCCTATATAAACCTGGCAAAAGCATATGAAAAATCAGGAAATAAAAGTCAAGCAATCTCAACTCTTGAAAAGAT AATAAACAAAAATAATAAATTAGCCTTAAACAATCTTGGGATACTTTACAAAAAAGAAAAAAATTATCAAAAAGCA ATTGAAATTTTTGAAAAAGCAATAATCAATTCAGATATTGAAGCAAAATATAATCTTGCAACCACTCTAATTGAAA TTAATGATAACACAAGAGCTAAAGACCTTCTAAGAGAATATACAAAATTAAAACCAAACAATCCAGAGGCCTTACA TGCACTAGGAATAATAGAATATAATGAAAATAACAATGATCAAACACTAAGAGAACTATAAAAAAATTTCCAAATT ACAAAAAAAATGAAAATATTAAAAAAATAATAGGAATATAA f743.aa
MRIYLFLNKNYKIFILFLILILNSKLAYSQRLIRIGKEEMKNKNYIQAIETLSDAIKKYPKVQLGYYFLSIAYREN NQLTEAEGALLDGIAVGGEIDYILYYELGNIMFNRGEGYYPLAIKYYSNSIKSRPNYDSALLNRANAYVQQGKITS KEKEYQKAWDSYTMAIHDYSQFITLRSKTEKKDSILLIISYLRNEKINLEQLDKSLKGRTEHIVYAKEDKNQILKD SFKDNLETNSLIELEKLNWQEELYIDE t743.aa
YSQRLIRIGKEEMKNKNYIQAIETLSDAIKKYPKVQLGYYFLSIAYRENNQLTEAEGALLDGIAVGGEIDYILYYE LGNIMFNRGEGYYPLAIKYYSNSIKSRPNYDSALLNRANAYVQQGKITSKEKEYQKAWDSYTMAIHDYSQFITLRS KTEKKDSILLIISYLRNEKINLEQLDKSLKGRTEHIVYAKEDKNQILKDSFKDNLETNSLIELEKLNWQEELYIDE f743.nt
ATGAGGATTTATTTATTTTTAAATAAAAATTACAAGATTTTTATTTTATTTTTAATTTTAATATTAAATTCAAAAT
TGGC
ATATTCTCAAAGGCTAATTAGAATTGGCAAAGAAGAGATGAAAAACAAAAATTACATTCAAGCAATCGAAACACTA
AGTGATGCTATTAAAAAATATCCAAAAGTACAACTCGGCTATTACTTTTTATCAATAGCATACAGAGAAAATAATC
AACTAACAGAAGCAGAAGGAGCATTGCTCGATGGAATTGCAGTAGGGGGTGAAATCGACTACATACTATATTATGA
ATTAGGCAACATAATGTTTAACAGAGGGGAAGGTTACTATCCTTTAGCAATAAAATATTATTCTAATTCTATTAAA
AGTAGACCTAATTATGACAGTGCGCTACTAAACAGAGCTAATGCCTATGTTCAACAGGGCAAAATAACTTCTAAAG
AAAAAGAATACCAAAAAGCTTGGGACTCTTATACTATGGCTATCCACGACTACTCTCAATTTATTACCCTTAGATC
AAAAACAGAAAAAAAAGACAGCATTTTGCTTATAATAAGCTATTTAAGAAATGAAAAAATTAATCTTGAACAACTT
GACAAAAGTTTGAAGGGGCGAACCGAGCATATTGTATACGCAAAAGAAGATAAAAATCAAATACTTAAAGATAGTT
TTAAAGACAACCTAGAAACAAATTCTTTAATTGAGCTAGAAAAACTTAATTGGCAAGAGGAGTTATACATAGATGA
ATAA t743.nt
TATTCTCAAAGGCTAATTAGAATTGGCAAAGAAGAGATGAAAAACAAAAATTACATTCAAGCAATCGAAACACTAA GTGATGCTATTAAAAAATATCCAAAAGTACAACTCGGCTATTACTTTTTATCAATAGCATACAGAGAAAATAATCA ACTAACAGAAGCAGAAGGAGCATTGCTCGATGGAATTGCAGTAGGGGGTGAAATCGACTACATACTATATTATGAA TTAGGCAACATAATGTTTAACAGAGGGGAAGGTTACTATCCTTTAGCAATAAAATATTATTCTAATTCTATTAAAA GTAGACCTAATTATGACAGTGCGCTACTAAACAGAGCTAATGCCTATGTTCAACAGGGCAAAATAACTTCTAAAGA AAAAGAATACCAAAAAGCTTGGGACTCTTATACTATGGCTATCCACGACTACTCTCAATTTATTACCCTTAGATCA AAAACAGAAAAAAAAGACAGCATTTTGCTTATAATAAGCTATTTAAGAAATGAAAAAATTAATCTTGAACAACTTG ACAAAAGTTTGAAGGGGCGAACCGAGCATATTGTATACGCAAAAGAAGATAAAAATCAAATACTTAAAGATAGTTT TAAAGACAACCTAGAAACAAATTCTTTAATTGAGCTAGAAAAACTTAATTGGCAAGAGGAGTTATACATAGATGAA TAA f748.aa
MKFIINLLLSTIKIITFTVIVCLTILSIFQPIYILKENEISITTRLGKIQRTENLAGLKYKIPLIENVQIFPKIIL RWDGEPQRIPTGGEEKQLIWIDTTARWKIADINKFYTTIKTMSRAYVRIDAAIEPAVRGVIAKYPLLEIIRSSNDP IQRLSNGILTPQETKINGIYKITKGRKIIEKEIIRIANNNTKDIGIEIVDVLIRKVTYDPSLIESVNNRMISERQQ IAEEQRSIGLAEKTEILGSIEKEKLKILSEAKATAAKIKAEGDREAAKIYSNAYGKNIEFYKFWQALESYKAVLKD KRKIFSTDMDFFQYLHKRN TABLE 1. Nucleotide and Amino Acid Sequences t74δ.aa
IFQPIYILKENEISITTRLGKIQRTENLAGLKYKIPLIENVQIFPKIILRWDGEPQRIPTGGEEKQLIWIDTTARW KIADINKFYTTIKTMSRAYVRIDAAIEPAVRGVIAKYPLLEIIRSSNDPIQRLSNGILTPQETKINGIYKITKGRK IIEKEIIRIANNNTKDIGIEIVDVLIRKVTYDPSLIESVNNRMISERQQIAEEQRSIGLAEKTEILGSIEKEKLKI LSEAKATAAKIKAEGDREAAKIYSNAYGKNIEFYKFWQALESYKAVLKDKRKIFSTDMDFFQYLHKRN f748.nt
ATGAAATTTATAATAAATCTTTTATTATCTACTATAAAGATTATAACCTTTACAGTAATAGTTTGCTTGACTATTT TGTCTATTTTCCAGCCAATTTATATTTTGAAAGAAAATGAAATTTCAATAACCACTCGACTTGGAAAAATTCAAAG AACTGAAAATTTAGCTGGACTTAAATATAAAATACCATTAATTGAAAATGTGCAAATATTTCCCAAAATCATTCTT AGATGGGATGGAGAACCTCAAAGAATCCCAACAGGAGGGGAAGAAAAGCAATTAATATGGATTGATACAACTGCTA GATGGAAAATTGCAGACATAAATAAATTTTACACAACAATAAAAACAATGAGTAGAGCTTACGTTAGAATTGATGC AGCAATTGAACCTGCTGTTAGGGGGGTTATTGCAAAATACCCTTTGCTTGAAATTATAAGAAGCTCAAACGATCCT ATTCAACGTTTGTCTAATGGAATACTCACCCCACAAGAAACAAAAATTAACGGTATTTATAAAATAACAAAAGGAC GAAAGATAATCGAAAAAGAAATAATTCGTATAGCAAACAACAATACCAAAGATATTGGAATTGAAATTGTAGACGT ACTAATAAGAAAAGTTACTTATGACCCAAGCCTTATTGAATCTGTAAACAACAGAATGATCTCAGAAAGACAACAA ATCGCAGAAGAACAAAGAAGCATAGGATTAGCTGAAAAAACAGAAATTCTTGGAAGCATAGAAAAAGAAAAACTGA AAATATTAAGTGAAGCAAAAGCCACTGCTGCAAAAATAAAAGCCGAAGGGGATAGAGAAGCCGCAAAAATTTATTC AAATGCATATGGCAAAAATATTGAATTTTACAAATTCTGGCAGGCATTAGAAAGCTATAAAGCAGTATTAAAAGAT AAAAGAAAAATTTTCTCAACAGACATGGATTTCTTTCAATATCTTCACAAAAGAAATTGA t748.nt
ATTTTCCAGCCAATTTATATTTTGAAAGAAAATGAAATTTCAATAACCACTCGACTTGGAAAAATTCAAAGAACTG AAAATTTAGCTGGACTTAAATATAAAATACCATTAATTGAAAATGTGCAAATATTTCCCAAAATCATTCTTAGATG GGATGGAGAACCTCAAAGAATCCCAACAGGAGGGGAAGAAAAGCAATTAATATGGATTGATACAACTGCTAGATGG AAAATTGCAGACATAAATAAATTTTACACAACAATAAAAACAATGAGTAGAGCTTACGTTAGAATTGATGCAGCAA TTGAACCTGCTGTTAGGGGGGTTATTGCAAAATACCCTTTGCTTGAAATTATAAGAAGCTCAAACGATCCTATTCA ACGTTTGTCTAATGGAATACTCACCCCACAAGAAACAAAAATTAACGGTATTTATAAAATAACAAAAGGACGAAAG ATAATCGAAAAAGAAATAATTCGTATAGCAAACAACAATACCAAAGATATTGGAATTGAAATTGTAGACGTACTAA TAAGAAAAGTTACTTATGACCCAAGCCTTATTGAATCTGTAAACAACAGAATGATCTCAGAAAGACAACAAATCGC AGAAGAACAAAGAAGCATAGGATTAGCTGAAAAAACAGAAATTCTTGGAAGCATAGAAAAAGAAAAACTGAAAATA TTAAGTGAAGCAAAAGCCACTGCTGCAAAAATAAAAGCCGAAGGGGATAGAGAAGCCGCAAAAATTTATTCAAATG CATATGGCAAAAATATTGAATTTTACAAATTCTGGCAGGCATTAGAAAGCTATAAAGCAGTATTAAAAGATAAAAG AAAAATTTTCTCAACAGACATGGATTTCTTTCAATATCTTCACAAAAGAAATTGA f764.aa
MSGPKKLAIIALLVISIQGCKESSIIEKQFNYAIIFSDATEYFFEIQTTPFIKNEILFINDKNLEIIKDKLKTTKK ILLTHKSNNEILNNEILKEKIFYLSKIKFSLKKSIDFLLNEKSIDLQKTLLFRDKSLNNEDLEYLEKKGKEKNVNI TLINEKNISYIQTFITSQIKTIILFSLRDNNIILKKILNSPFSKNIKFVLIGNTRKDLKIIKLKYIITLKEPDLIK IAKDVEKDFQYEFNIYKQ f764.aa
EKQFNYAIIFSDATEYFFEIQTTPFIKNEILFINDKNLEIIKDKLKTTKKILLTHKSNNEILNNEILKEKIFYLSK IKFSLKKSIDFLLNEKSIDLQKTLLFRDKSLNNEDLEYLEKKGKEKNVNITLINEKNISYIQTFITSQIKTIILFS LRDNNIILKKILNSPFSKNIKFVLIGNTRKDLKIIKLKYIITLKEPDLIKIAKDVEKDFQYEFNIYKQ f764.nt
ATGTCTGGCCCTAAAAAACTTGCTATAATAGCGCTCTTAGTAATTTCAATACAAGGATGCAAAGAATCTTCTATTA TTGAAAAACAATTTAATTATGCAATAATTTTTTCAGATGCAACTGAATATTTTTTTGAAATTCAAACAACTCCATT CATAAAAAACGAAATACTATTTATAAATGACAAAAATTTAGAAATTATAAAAGACAAGCTTAAAACAACAAAAAAA TABLE 1. Nucleotide and Amino Acid Sequences
ATACTATTAACTCATAAATCAAATAATGAAATTCTAAATAACGAAATTCTAAAAGAGAAAATTTTTTATCTATCAA AAATAAAATTTTCTCTAAAAAAATCTATTGACTTTCTGCTTAACGAAAAATCAATAGATTTGCAAAAAACATTACT ATTTAGAGACAAATCTCTAAATAACGAAGACCTTGAATACTTGGAAAAAAAAGGCAAAGAAAAAAATGTCAATATT ACTCTAATAAACGAAAAAAACATATCCTATATTCAAACATTCATTACTTCTCAAATAAAAACAATAATATTATTCT CTTTAAGAGATAATAATATTATTTTAAAAAAGATACTAAATTCGCCTTTTTCTAAAAATATAAAATTTGTATTAAT TGGCAATACAAGAAAAGACTTAAAAATTATTAAGCTAAAATATATAATCACCCTTAAAGAGCCTGATTTGATAAAA ATAGCAAAAGATGTTGAAAAAGATTTTCAATATGAATTTAACATTTATAAACAATAA t764.nt
GAAAAACAATTTAATTATGCAATAATTTTTTCAGATGCAACTGAATATTTTTTTGAAATTCAAACAACTCCATTCA TAAAAAACGAAATACTATTTATAAATGACAAAAATTTAGAAATTATAAAAGACAAGCTTAAAACAACAAAAAAAAT ACTATTAACTCATAAATCAAATAATGAAATTCTAAATAACGAAATTCTAAAAGAGAAAATTTTTTATCTATCAAAA ATAAAATTTTCTCTAAAAAAATCTATTGACTTTCTGCTTAACGAAAAATCAATAGATTTGCAAAAAACATTACTAT TTAGAGACAAATCTCTAAATAACGAAGACCTTGAATACTTGGAAAAAAAAGGCAAAGAAAAAAATGTCAATATTAC TCTAATAAACGAAAAAAACATATCCTATATTCAAACATTCATTACTTCTCAAATAAAAACAATAATATTATTCTCT TTAAGAGATAATAATATTATTTTAAAAAAGATACTAAATTCGCCTTTTTCTAAAAATATAAAATTTGTATTAATTG GCAATACAAGAAAAGACTTAAAAATTATTAAGCTAAAATATATAATCACCCTTAAAGAGCCTGATTTGATAAAAAT AGCAAAAGATGTTGAAAAAGATTTTCAATATGAATTTAACATTTATAAACAATAA f770.aa
MINFSKSFFYPLPIGKIFVLSGDMGSGKTSFLKGLALNLGISYFTSPTYNIVNVYDFINFKFYHIDLYRVSSLEEF ELVGGLEILMDLDSIIAIEWPQIALSIVPKDRLFSLTFKIVGSGRWELNG t770.aa
KTSFLKGLALNLGISYFTSPTYNIVNVYDFINFKFYHIDLYRVSSLEEFELVGGLEILMDLDSIIAIEWPQIALSI VPKDRLFSLTFKIVGSGRWELNG f770.nt
ATGATAAATTTTTCCAAATCTTTTTTTTATCCTTTGCCAATTGGTAAAATATTTGTTTTAAGTGGTGACATGGGAT CTGGAAAAACTAGTTTTTTAAAGGGACTTGCCCTTAACCTTGGAATTTCTTATTTTACAAGTCCAACTTATAACAT TGTTAATGTTTATGATTTTATAAATTTTAAATTTTATCATATTGATTTATATCGGGTGTCTTCTTTGGAAGAATTT GAGCTTGTTGGGGGATTGGAAATACTTATGGATCTTGACTCGATTATTGCTATTGAATGGCCACAAATTGCTTTGA GCATTGTTCCAAAAGATAGATTATTTTCTTTAACTTTTAAAATAGTAGGTTCAGGCAGGGTTGTAGAACTTAATGG TTAA t770.nt
AAAACTAGTTTTTTAAAGGGACTTGCCCTTAACCTTGGAATTTCTTATTTTACAAGTCCAACTTATAACATTGTTA ATGTTTATGATTTTATAAATTTTAAATTTTATCATATTGATTTATATCGGGTGTCTTCTTTGGAAGAATTTGAGCT TGTTGGGGGATTGGAAATACTTATGGATCTTGACTCGATTATTGCTATTGAATGGCCACAAATTGCTTTGAGCATT GTTCCAAAAGATAGATTATTTTCTTTAACTTTTAAAATAGTAGGTTCAGGCAGGGTTGTAGAACTTAATGGTTAA f790.aa
MNTKATTPLLLLFLIQSLAFSSEIFEFKYIKGSKFRLEGTDNQKIYFNGHYNSSSNTNIQISSEIKDIKENFASIK AFFRILKRENINEPYLLNEEFEEIFSVNKQGEYTIGANQKRPSVRGIPRFPKTPIKINEKWSYLAEEYIEASKIDK SIKDFWKFNVNYEYKGKEEHNGKHYHIILSNYESQYNVKNISFYQKVDQKIYFDNEIGNTYKYSDKYIFEINQNN NQHFKMIGNSLGRIVSIELPNDNLIETEVENYIREKKIKAIEVEKNNKGINLSFDIEFYPNSFQILQKEYKKIDLI AKLLEKFKKNNILIEGHTEQFGLEEEMHELSEKRARAIGNYLIKMKVKDKDQILFKGWGSQKPKYPKSSPLKAKNR RVEITILNN t790.aa TABLE 1. Nucleotide and Amino Acid Sequences
SEIFEFKYIKGSKFRLEGTDNQKIYFNGHYNSSSNTNIQISSEIKDIKENFASIKAFFRILKRENINEPYLLNEEF EEIFSVNKQGEYTIGANQKRPSVRGIPRFPKTPIKINEKWSYLAEEYIEASKIDKSIKDFWKFNVNYEYKGKEEH NGKHYHIILSNYESQYNVKNISFYQKVDQKIYFDNEIGNTYKYSDKYIFEINQNNNQHFKMIGNSLGRIVSIELPN DNLIETEVENYIREKKIKAIEVEKNNKGINLSFDIEFYPNSFQILQKEYKKIDLIAKLLEKFKKNNILIEGHTEQF GLEEEMHELSEKRARAIGNYLIKMKVKDKDQILFKGWGSQKPKYPKSSPLKAKNRRVEITILNN f790.nt
ATGAATACCAAGGCGACTACACCATTGTTGTTATTATTTTTAATTCAAAGCTTAGCTTTTTCTTCTGAAATCTTTG AATTTAAATACATTAAAGGTTCAAAGTTTAGATTAGAAGGCACAGATAATCAAAAAATATATTTCAATGGCCATTA TAATTCAAGCTCTAATACCAATATTCAAATTTCAAGTGAAATAAAAGACATAAAAGAAAACTTTGCAAGCATTAAA GCTTTTTTTAGAATCTTAAAAAGAGAAAATATTAATGAACCTTACCTATTAAATGAAGAGTTTGAAGAAATCTTCA GCGTAAATAAGCAAGGAGAATATACAATAGGAGCAAATCAAAAAAGACCTTCTGTTAGAGGTATTCCAAGATTCCC AAAAACACCAATCAAAATAAATGAAAAATGGTCATATCTTGCAGAAGAATATATAGAAGCGTCAAAAATAGACAAA AGTATAAAAGATTTCGTTGTAAAATTTAATGTTAACTACGAATATAAAGGCAAAGAAGAGCACAATGGCAAGCATT ACCACATAATTCTTTCGAATTATGAATCACAATACAATGTAAAAAACATCTCTTTCTATCAAAAAGTAGACCAAAA AATTTATTTTGATAATGAAATTGGCAATACATATAAATACAGCGATAAATATATATTTGAAATAAATCAGAACAAC AACCAACATTTTAAAATGATTGGAAACTCTCTTGGCAGAATAGTTTCAATTGAGCTTCCAAATGATAATCTTATTG AAACTGAGGTTGAAAATTACATCCGAGAAAAAAAAATAAAAGCTATTGAAGTTGAAAAAAACAATAAAGGTATTAA TTTAAGCTTTGACATTGAATTTTATCCTAACTCATTTCAAATACTACAAAAAGAATATAAAAAAATTGACCTTATA GCTAAACTTCTTGAAAAATTTAAAAAAAATAACATACTAATAGAAGGACATACTGAGCAATTTGGATTGGAAGAAG AGATGCACGAGCTATCTGAAAAAAGAGCTCGTGCAATTGGAAATTATTTAATAAAAATGAAAGTAAAAGACAAAGA CCAAATACTATTTAAAGGATGGGGATCTCAAAAACCAAAATATCCTAAGTCCTCCCCATTAAAGGCTAAAAATAGG CGAGTAGAAATTACAATATTAAATAACTAA t790.nt
TCTGAAATCTTTGAATTTAAATACATTAAAGGTTCAAAGTTTAGATTAGAAGGCACAGATAATCAAAAAATATATT TCAATGGCCATTATAATTCAAGCTCTAATACCAATATTCAAATTTCAAGTGAAATAAAAGACATAAAAGAAAACTT TGCAAGCATTAAAGCTTTTTTTAGAATCTTAAAAAGAGAAAATATTAATGAACCTTACCTATTAAATGAAGAGTTT GAAGAAATCTTCAGCGTAAATAAGCAAGGAGAATATACAATAGGAGCAAATCAAAAAAGACCTTCTGTTAGAGGTA TTCCAAGATTCCCAAAAACACCAATCAAAATAAATGAAAAATGGTCATATCTTGCAGAAGAATATATAGAAGCGTC AAAAATAGACAAAAGTATAAAAGATTTCGTTGTAAAATTTAATGTTAACTACGAATATAAAGGCAAAGAAGAGCAC AATGGCAAGCATTACCACATAATTCTTTCGAATTATGAATCACAATACAATGTAAAAAACATCTCTTTCTATCAAA AAGTAGACCAAAAAATTTATTTTGATAATGAAATTGGCAATACATATAAATACAGCGATAAATATATATTTGAAAT AAATCAGAACAACAACCAACATTTTAAAATGATTGGAAACTCTCTTGGCAGAATAGTTTCAATTGAGCTTCCAAAT GATAATCTTATTGAAACTGAGGTTGAAAATTACATCCGAGAAAAAAAAATAAAAGCTATTGAAGTTGAAAAAAACA ATAAAGGTATTAATTTAAGCTTTGACATTGAATTTTATCCTAACTCATTTCAAATACTACAAAAAGAATATAAAAA AATTGACCTTATAGCTAAACTTCTTGAAAAATTTAAAAAAAATAACATACTAATAGAAGGACATACTGAGCAATTT GGATTGGAAGAAGAGATGCACGAGCTATCTGAAAAAAGAGCTCGTGCAATTGGAAATTATTTAATAAAAATGAAAG TAAAAGACAAAGACCAAATACTATTTAAAGGATGGGGATCTCAAAAACCAAAATATCCTAAGTCCTCCCCATTAAA GGCTAAAAATAGGCGAGTAGAAATTACAATATTAAATAACTAA f792.aa
MKIFIYWWIFFFSVFKVFSIYSLTDEEFFKKYSLFFVHKGFLSKNVNGKITKVQVNGINSRWVYPFYKLVPSRIT SIYEDVYSSSSFLTTSNNLYVSYDYSKNFRKLVGIDKFNSGAYITSSAFSQGDYKRIAIGTAIHGIYLSVNGAISF KNLNRLIPQIYLGAGYYDIISAIEFSKEETNNLYFSSGVYGDIFLISQKSGFIKKISFPFKKQIIRILDLSSKNVE KILVRTYDNHFYSYINGQWVFIGKLSLQDQDFFEKSQRMQLAKNKGSIYLTAYTLRNKKAVDERFKFIKDSGMNAV VIDFKDDNGNLTYSSKLSLPNKLRSVKNFIDVPYILKKAKELGIYVIARCWFKDSKLYYYDNFKHALWNKKTNKP WAHLIKKVDSSGLVKYVQVEHWVDIFSPATWEYNISIAKEIQSFGVDEIQFDYIRFPSDGPVSLAISRMNKYEMQP VDALESFLIMAREQLYVPISVDIYGYNGWFPTNSIGQNISMLSDYVDVISPMFYPSHYTDDFLPSNFYYTKRAYRI YKEGSDRALAFSLDGWIRPYVQAFLLGKERLVDDEIYLEYLKFQLKGIKESFGSGFSLWNASNVYYMIKGSLKEY LDSF TABLE 1. Nucleotide and Amino Acid Sequences t792 . aa
IYSLTDEEFFKKYSLFFVHKGFLSKNVNGKITKVQVNGINSRWVYPFYKLVPSRITSIYEDVYSSSSFLTTSNNLY VSYDYSKNFRKLVGIDKFNSGAYITSSAFSQGDYKRIAIGTAIHGIYLSVNGAISFKNLNRLIPQIYLGAGYYDII SAIEFSKEETNNLYFSSGVYGDIFLISQKSGFIKKISFPFKKQIIRILDLSSKNVEKILVRTYDNHFYSYINGQWV FIGKLSLQDQDFFEKSQRMQLAKNKGSIYLTAYTLRNKKAVDERFKFIKDSGMNAWIDFKDDNGNLTYSSKLSLP NKLRSVKNFIDVPYILKKAKELGIYVIARCWFKDSKLYYYDNFKHALWNKKTNKPWAHLIKKVDSSGLVKYVQVE HWVDIFSPATWEYNISIAKEIQSFGVDEIQFDYIRFPSDGPVSLAISRMNKYEMQPVDALESFLIMAREQLYVPIS VDIYGYNGWFPTNSIGQNISMLSDYVDVISPMFYPSHYTDDFLPSNFYYTKRAYRIYKEGSDRALAFSLDGWIRP YVQAFLLGKERLVDDEIYLEYLKFQLKGIKESFGSGFSLWNASNVYYMIKGSLKEYLDSF f792.nt
ATGAAAATTTTTATCTATTGGGTAGTTATTTTCTTCTTTTCTGTTTTCAAGGTTTTTAGTATATATTCATTAACCG ATGAAGAATTTTTTAAAAAATATAGTTTATTTTTTGTTCATAAAGGATTTTTAAGTAAAAATGTTAATGGGAAAAT AACCAAAGTTCAAGTCAATGGGATAAATTCTAGGTGGGTTTACCCTTTTTATAAGCTTGTTCCTAGTCGAATTACT TCTATTTATGAGGATGTTTATTCTTCAAGTTCATTTTTGACTACAAGTAACAATCTTTATGTTTCTTATGATTATT CAAAAAATTTTAGAAAATTAGTAGGAATTGATAAATTTAATAGCGGTGCATATATTACATCTAGTGCCTTTTCTCA AGGAGATTACAAGCGTATTGCTATTGGAACTGCGATTCATGGTATTTATCTTAGTGTTAATGGAGCTATTAGTTTT AAAAATTTAAATCGTTTGATTCCGCAGATTTATTTAGGTGCAGGATATTACGATATTATTAGTGCTATTGAATTTT CAAAAGAAGAGACAAATAATTTATATTTTTCCTCTGGAGTTTATGGAGATATTTTTTTAATTAGTCAGAAAAGTGG ATTTATTAAAAAAATATCTTTTCCTTTCAAAAAGCAAATAATACGTATTTTAGACTTATCTAGTAAGAATGTAGAA AAAATTTTAGTCAGAACATATGACAATCATTTTTATTCTTATATTAATGGGCAATGGGTATTTATTGGAAAATTAT CTTTGCAGGATCAGGATTTTTTTGAAAAATCACAAAGGATGCAGCTTGCTAAAAATAAAGGGTCTATTTATTTAAC AGCATATACATTGCGTAATAAGAAGGCAGTTGATGAAAGATTTAAATTTATTAAAGATTCAGGTATGAATGCTGTT GTAATTGATTTTAAAGATGATAATGGTAATTTGACTTATTCTAGCAAGCTTTCTTTGCCCAATAAGTTGAGATCTG TTAAAAACTTTATTGATGTTCCTTATATTCTTAAAAAAGCAAAAGAGCTTGGAATTTATGTTATTGCTAGATGTGT TGTATTTAAAGATTCAAAATTGTATTATTATGATAATTTTAAACACGCCCTTTGGAATAAAAAAACCAATAAACCT TGGGCTCATTTGATTAAAAAAGTTGATTCTAGTGGTCTTGTGAAATATGTACAAGTAGAGCATTGGGTAGATATTT TTTCTCCTGCTACTTGGGAATATAATATTTCTATCGCAAAAGAAATTCAATCTTTTGGAGTTGACGAGATACAATT TGATTATATTAGATTTCCATCAGATGGGCCTGTGTCTCTTGCAATCTCAAGAATGAATAAGTATGAGATGCAACCC GTTGATGCACTTGAATCTTTTTTGATTATGGCAAGAGAACAGCTTTATGTTCCTATTTCTGTTGATATTTATGGGT ACAATGGCTGGTTTCCTACTAATAGTATTGGGCAAAATATTTCAATGTTATCAGATTATGTTGACGTCATATCTCC TATGTTTTATCCTTCGCATTATACTGATGATTTTTTGCCAAGCAATTTTTATTACACAAAAAGAGCTTATAGGATT TATAAAGAGGGGAGTGATAGAGCACTTGCTTTTTCTTTAGATGGGGTTGTTATTAGGCCTTATGTTCAAGCTTTTT TATTAGGAAAAGAAAGATTGGTGGATGACGAGATTTATTTGGAGTATTTAAAGTTTCAGCTTAAAGGAATTAAAGA GTCATTTGGTAGTGGCTTTAGCCTTTGGAATGCATCTAATGTTTATTATATGATTAAAGGTAGTTTAAAAGAATAT TTAGATTCTTTTTA t792.nt
ATATATTCATTAACCGATGAAGAATTTTTTAAAAAATATAGTTTATTTTTTGTTCATAAAGGATTTTTAAGTAAAA ATGTTAATGGGAAAATAACCAAAGTTCAAGTCAATGGGATAAATTCTAGGTGGGTTTACCCTTTTTATAAGCTTGT TCCTAGTCGAATTACTTCTATTTATGAGGATGTTTATTCTTCAAGTTCATTTTTGACTACAAGTAACAATCTTTAT GTTTCTTATGATTATTCAAAAAATTTTAGAAAATTAGTAGGAATTGATAAATTTAATAGCGGTGCATATATTACAT CTAGTGCCTTTTCTCAAGGAGATTACAAGCGTATTGCTATTGGAACTGCGATTCATGGTATTTATCTTAGTGTTAA TGGAGCTATTAGTTTTAAAAATTTAAATCGTTTGATTCCGCAGATTTATTTAGGTGCAGGATATTACGATATTATT AGTGCTATTGAATTTTCAAAAGAAGAGACAAATAATTTATATTTTTCCTCTGGAGTTTATGGAGATATTTTTTTAA TTAGTCAGAAAAGTGGATTTATTAAAAAAATATCTTTTCCTTTCAAAAAGCAAATAATACGTATTTTAGACTTATC TAGTAAGAATGTAGAAAAAATTTTAGTCAGAACATATGACAATCATTTTTATTCTTATATTAATGGGCAATGGGTA TTTATTGGAAAATTATCTTTGCAGGATCAGGATTTTTTTGAAAAATCACAAAGGATGCAGCTTGCTAAAAATAAAG GGTCTATTTATTTAACAGCATATACATTGCGTAATAAGAAGGCAGTTGATGAAAGATTTAAATTTATTAAAGATTC AGGTATGAATGCTGTTGTAATTGATTTTAAAGATGATAATGGTAATTTGACTTATTCTAGCAAGCTTTCTTTGCCC AATAAGTTGAGATCTGTTAAAAACTTTATTGATGTTCCTTATATTCTTAAAAAAGCAAAAGAGCTTGGAATTTATG TTATTGCTAGATGTGTTGTATTTAAAGATTCAAAATTGTATTATTATGATAATTTTAAACACGCCCTTTGGAATAA AAAAACCAATAAACCTTGGGCTCATTTGATTAAAAAAGTTGATTCTAGTGGTCTTGTGAAATATGTACAAGTAGAG TABLE 1. Nucleotide and Amino Acid Sequences
CATTGGGTAGATATTTTTTCTCCTGCTACTTGGGAATATAATATTTCTATCGCAAAAGAAATTCAATCTTTTGGAG TTGACGAGATACAATTTGATTATATTAGATTTCCATCAGATGGGCCTGTGTCTCTTGCAATCTCAAGAATGAATAA GTATGAGATGCAACCCGTTGATGCACTTGAATCTTTTTTGATTATGGCAAGAGAACAGCTTTATGTTCCTATTTCT GTTGATATTTATGGGTACAATGGCTGGTTTCCTACTAATAGTATTGGGCAAAATATTTCAATGTTATCAGATTATG TTGACGTCATATCTCCTATGTTTTATCCTTCGCATTATACTGATGATTTTTTGCCAAGCAATTTTTATTACACAAA AAGAGCTTATAGGATTTATAAAGAGGGGAGTGATAGAGCACTTGCTTTTTCTTTAGATGGGGTTGTTATTAGGCCT TATGTTCAAGCTTTTTTATTAGGAAAAGAAAGATTGGTGGATGACGAGATTTATTTGGAGTATTTAAAGTTTCAGC TTAAAGGAATTAAAGAGTCATTTGGTAGTGGCTTTAGCCTTTGGAATGCATCTAATGTTTATTATATGATTAAAGG TAGTTTAAAAGAATATTTAGATTCTTTTTAA f797.aa
MSIKKFILTLIILSLAKNSFSENEINIFENENYIVKENIKTEIKKLKQSFLLASVDVAISQPYIELADLNGEPIKE LEGISYSFINVFSKIGSSAIISFDLSNEASKKYKIIKLEFLSPDKGNFINQLSSLTSGKQQSKKELAKDAYSFGTL RTESLSKTIAEYYKDNNWYYILAAITVENNINKETEKYEIRINPKIYNDFQKKLRLHFKSNQIKKFPIPIIE t797.aa
KNSFSENEINIFENENYIVKENIKTEIKKLKQSFLLASVDVAISQPYIELADLNGEPIKELEGISYSFINVFSKIG SSAIISFDLSNEASKKYKIIKLEFLSPDKGNFINQLSSLTSGKQQSKKELAKDAYSFGTLRTESLSKTIAEYYKDN NWYYILAAITVENNINKETEKYEIRINPKIYNDFQKKLRLHFKSNQIKKFPIPIIE f797.nt
ATGAGCATTAAAAAATTTATTTTAACCTTGATAATTCTTTCTCTAGCTAAAAATAGCTTTTCTGAAAACGAAATTA ATATCTTCGAAAACGAAAATTATATTGTAAAAGAAAATATAAAAACAGAAATTAAAAAACTAAAACAAAGTTTTTT ACTTGCATCTGTTGATGTCGCCATTAGCCAACCCTACATAGAATTGGCAGATTTAAATGGAGAACCGATAAAAGAA CTTGAAGGGATTAGTTATTCATTTATAAATGTATTTTCAAAAATTGGATCTTCTGCTATTATTTCATTTGACCTAT CAAACGAAGCTTCCAAGAAATACAAAATCATAAAATTAGAATTTTTAAGTCCAGATAAAGGCAATTTTATTAACCA GCTAAGCAGCCTTACTAGTGGAAAACAGCAATCAAAAAAAGAGCTTGCAAAAGACGCTTACTCATTTGGTACATTA AGAACTGAATCTCTTTCAAAAACAATTGCAGAATATTACAAAGATAACAACTGGTATTATATTTTAGCAGCAATAA CAGTAGAAAATAATATAAATAAAGAAACTGAAAAATACGAAATTAGAATTAACCCTAAAATATATAATGATTTTCA AAAAAAATTGAGATTACATTTTAAAAGCAACCAAATAAAAAAATTTCCAATACCCATTATAGAATAA t797.nt
AAAAATAGCTTTTCTGAAAACGAAATTAATATCTTCGAAAACGAAAATTATATTGTAAAAGAAAATATAAAAACAG AAATTAAAAAACTAAAACAAAGTTTTTTACTTGCATCTGTTGATGTCGCCATTAGCCAACCCTACATAGAATTGGC AGATTTAAATGGAGAACCGATAAAAGAACTTGAAGGGATTAGTTATTCATTTATAAATGTATTTTCAAAAATTGGA TCTTCTGCTATTATTTCATTTGACCTATCAAACGAAGCTTCCAAGAAATACAAAATCATAAAATTAGAATTTTTAA GTCCAGATAAAGGCAATTTTATTAACCAGCTAAGCAGCCTTACTAGTGGAAAACAGCAATCAAAAAAAGAGCTTGC AAAAGACGCTTACTCATTTGGTACATTAAGAACTGAATCTCTTTCAAAAACAATTGCAGAATATTACAAAGATAAC AACTGGTATTATATTTTAGCAGCAATAACAGTAGAAAATAATATAAATAAAGAAACTGAAAAATACGAAATTAGAA TTAACCCTAAAATATATAATGATTTTCAAAAAAAATTGAGATTACATTTTAAAAGCAACCAAATAAAAAAATTTCC AATACCCATTATAGAATAA f799.aa
MKKHIIIGIIFVAILLFFKILLIPRIQNHENNKNNIKMIISYKQDKNRLSLKINIKTKKTTNLGKAKLDIYLDSKL IESNLLYISSKNFTTYANIIYQNESLLSIILKSNGNNNVFYSKRIKPRGKI t799.aa
HENNKNNIKMIISYKQDKNRLSLKINIKTKKTTNLGKAKLDIYLDSKLIESNLLYISSKNFTTYANIIYQNESLLS IILKSNGNNNVFYSKRIKPRGKI TABLE 1. Nucleotide and Amino Acid Sequences f799.nt
ATGAAAAAACATATCATTATTGGGATAATCTTTGTTGCAATTCTTTTATTTTTTAAAATTTTATTAATTCCCAGAA TTCAAAATCACGAAAATAATAAAAATAATATCAAAATGATAATAAGCTACAAGCAAGACAAAAACAGATTATCGCT AAAGATAAACATAAAAACAAAAAAAACTACCAACCTGGGAAAAGCCAAACTAGATATTTATCTAGACAGTAAATTA ATTGAAAGCAATTTGCTTTATATAAGCAGCAAAAACTTTACAACATATGCTAATATAATCTATCAAAATGAAAGTT TATTAAGTATAATATTAAAGAGTAATGGCAATAATAATGTCTTTTATAGTAAAAGAATAAAACCTAGAGGTAAAAT ATGA t799.nt
CACGAAAATAATAAAAATAATATCAAAATGATAATAAGCTACAAGCAAGACAAAAACAGATTATCGCTAAAGATAA ACATAAAAACAAAAAAAACTACCAACCTGGGAAAAGCCAAACTAGATATTTATCTAGACAGTAAATTAATTGAAAG CAATTTGCTTTATATAAGCAGCAAAAACTTTACAACATATGCTAATATAATCTATCAAAATGAAAGTTTATTAAGT ATAATATTAAAGAGTAATGGCAATAATAATGTCTTTTATAGTAAAAGAATAAAACCTAGAGGTAAAATATGA fδOO.aa
MKKHYKALILSLLFAIISCNTKTLNELGEEQFKIPFGTLPGAIMPLNNKFTNSKFDIKTYNGLVYIAEIKTNKLMI FNSYGKLIQTYQNGIFKTNPDLKIKKIDFEGIQAIYPLKDFIIVADKLNNKKSKFNQKENIAYFMRILILNKNSSV EILGQEGLNGMPFPQIYDVNVDENGNIAIISIYSEGYIIYSYNKEFSPLYKIYVNKNLLKTIDNQKKKYNISIDKV FFEVNKKTLYVKTTYYENIGDNENINDLGIKIKDQYIYKMSLKKNKELEVINKIALPKNLLDDKQESFINIIKIQK DKIIASTNMKNLSNNLIWKLDSKGSIKEQIALIEPPNLMFLSESLSKDGILSILYGGKTGVSVYWWNLNALLKL tδOO.aa
KTLNELGEEQFKIPFGTLPGAIMPLNNKFTNSKFDIKTYNGLVYIAEIKTNKLMIFNSYGKLIQTYQNGIFKTNPD LKIKKIDFEGIQAIYPLKDFIIVADKLNNKKSKFNQKENIAYFMRILILNKNSSVEILGQEGLNGMPFPQIYDVNV DENGNIAIISIYSEGYIIYSYNKEFSPLYKIYVNKNLLKTIDNQKKKYNISIDKVFFEVNKKTLYVKTTYYENIGD NENINDLGIKIKDQYIYKMSLKKNKELEVINKIALPKNLLDDKQESFINIIKIQKDKIIASTNMKNLSNNLIWKLD SKGSIKEQIALIEPPNLMFLSESLSKDGILSILYGGKTGVSVYWWNLNALLKL fδOO.nt
ATGAAAAAACACTATAAAGCTCTTATATTAAGCTTGCTTTTTGCAATTATATCATGTAATACTAAAACTTTAAACG AATTAGGAGAAGAACAATTTAAAATACCATTTGGAACACTTCCTGGTGCAATAATGCCTCTGAATAACAAATTTAC AAATTCAAAATTTGACATCAAAACGTATAACGGGCTAGTGTACATTGCAGAAATAAAAACAAATAAATTAATGATT TTCAACTCATACGGAAAACTAATACAAACATATCAAAATGGAATATTTAAAACAAACCCCGATTTAAAAATAAAAA AAATAGATTTTGAAGGAATTCAAGCAATATACCCACTAAAAGATTTTATTATTGTCGCAGACAAACTAAATAATAA AAAATCAAAATTCAACCAAAAAGAGAATATTGCCTACTTCATGAGAATACTAATACTAAACAAAAACTCATCTGTA GAAATTTTGGGTCAAGAAGGTTTAAACGGAATGCCATTTCCACAAATTTATGATGTTAATGTTGATGAAAATGGCA ACATTGCAATAATATCAATATATAGCGAAGGATATATAATATATTCTTACAATAAAGAATTTTCCCCGCTTTATAA AATTTACGTCAACAAAAACCTGTTAAAAACAATAGACAATCAAAAGAAAAAATACAACATTTCAATAGATAAGGTT TTTTTTGAAGTCAACAAAAAAACTCTTTATGTAAAAACTACTTACTATGAAAACATTGGTGACAATGAAAATATAA ACGATCTTGGAATTAAAATTAAAGATCAATATATCTATAAAATGAGTTTGAAAAAAAACAAAGAATTAGAAGTGAT AAATAAAATTGCTCTTCCTAAAAACTTACTAGATGATAAACAAGAAAGCTTTATAAACATTATAAAAATACAAAAA GACAAAATAATAGCATCTACTAATATGAAAAATTTATCTAACAATTTAATATGGAAATTAGACAGCAAGGGCTCAA TTAAAGAACAAATAGCTTTAATTGAGCCTCCAAATTTAATGTTTCTCTCTGAGAGTTTATCTAAAGATGGAATACT TAGTATACTTTATGGCGGAAAAACTGGTGTTAGTGTTTACTGGTGGAATTTAAATGCATTATTAAAATTATAA tδOO.nt
AAAACTTTAAACGAATTAGGAGAAGAACAATTTAAAATACCATTTGGAACACTTCCTGGTGCAATAATGCCTCTGA ATAACAAATTTACAAATTCAAAATTTGACATCAAAACGTATAACGGGCTAGTGTACATTGCAGAAATAAAAACAAA TAAATTAATGATTTTCAACTCATACGGAAAACTAATACAAACATATCAAAATGGAATATTTAAAACAAACCCCGAT TTAAAAATAAAAAAAATAGATTTTGAAGGAATTCAAGCAATATACCCACTAAAAGATTTTATTATTGTCGCAGACA TABLE 1. Nucleotide and Amino Acid Sequences
AACTAAATAATAAAAAATCAAAATTCAACCAAAAAGAGAATATTGCCTACTTCATGAGAATACTAATACTAAACAA AAACTCATCTGTAGAAATTTTGGGTCAAGAAGGTTTAAACGGAATGCCATTTCCACAAATTTATGATGTTAATGTT GATGAAAATGGCAACATTGCAATAATATCAATATATAGCGAAGGATATATAATATATTCTTACAATAAAGAATTTT CCCCGCTTTATAAAATTTACGTCAACAAAAACCTGTTAAAAACAATAGACAATCAAAAGAAAAAATACAACATTTC AATAGATAAGGTTTTTTTTGAAGTCAACAAAAAAACTCTTTATGTAAAAACTACTTACTATGAAAACATTGGTGAC AATGAAAATATAAACGATCTTGGAATTAAAATTAAAGATCAATATATCTATAAAATGAGTTTGAAAAAAAACAAAG AATTAGAAGTGATAAATAAAATTGCTCTTCCTAAAAACTTACTAGATGATAAACAAGAAAGCTTTATAAACATTAT AAAAATACAAAAAGACAAAATAATAGCATCTACTAATATGAAAAATTTATCTAACAATTTAATATGGAAATTAGAC AGCAAGGGCTCAATTAAAGAACAAATAGCTTTAATTGAGCCTCCAAATTTAATGTTTCTCTCTGAGAGTTTATCTA AAGATGGAATACTTAGTATACTTTATGGCGGAAAAACTGGTGTTAGTGTTTACTGGTGGAATTTAAATGCATTATT AAAATTATAA fδlO.aa
MYKLFLFFIIFMFLSCDEKKSSKNLKSVKIGYVNWGGETAATNVLKWFEKMGYNAEIFSVTTSIMYQYLASGKID GTVSSWVPTADKFYYEKLKTKFVDLGANYEG IQGFWPSYVPISSISELKGKGDKFKNKMIGIDAGAGTQIVTEQ ALNYYGLSKEYELVPSSESVMLASLDSSIKRNEWILVPLWKPHWAFSRYDIKFLDDPDLIMGGIESVHTLVRLGLE NDDFDAYYVFDHFYWSDDLILPLMDKNDKEPGKEYRNAVEFVEKNKEIVKTWVPEKYKTLFD tδlO.aa
CDEKKSSKNLKSVKIGYVNWGGETAATNVLKWFEKMGYNAEIFSVTTSIMYQYLASGKIDGTVSSWVPTADKFYY EKLKTKFVDLGANYEGTIQGFWPSYVPISSISELKGKGDKFKNKMIGIDAGAGTQIVTEQALNYYGLSKEYELVP SSESVMLASLDSSIKRNEWILVPLWKPHWAFSRYDIKFLDDPDLIMGGIESVHTLVRLGLENDDFDAYYVFDHFYW SDDLILPLMDKNDKEPGKEYRNAVEFVEKNKEIVKTWVPEKYKTLFD fδ l O . nt
ATGTATAAATTATTTTTATTTTTTATTATTTTTATGTTTTTGTCTTGTGATGAAAAAAAGAGTTCAAAGAATTTAA AATCGGTAAAAATTGGATATGTGAATTGGGGTGGAGAAACGGCAGCTACAAATGTATTAAAGGTTGTTTTTGAGAA AATGGGCTACAATGCAGAAATATTTTCAGTTACTACGTCTATAATGTATCAATACTTAGCATCTGGAAAGATAGAC GGTACGGTGTCTTCTTGGGTTCCTACAGCCGATAAATTTTATTATGAAAAACTGAAAACAAAGTTTGTTGATCTTG GTGCAAATTATGAAGGAACCATTCAAGGTTTTGTGGTGCCAAGCTATGTTCCAATTTCCAGCATTAGTGAGCTTAA GGGTAAAGGTGATAAGTTTAAAAACAAAATGATTGGCATAGATGCTGGTGCGGGAACTCAAATTGTTACAGAACAA GCGCTTAATTATTATGGATTAAGTAAAGAGTATGAGCTAGTTCCTTCAAGTGAGAGTGTTATGCTTGCAAGTTTAG ATTCTTCAATAAAGAGAAACGAATGGATTTTAGTTCCTTTGTGGAAGCCTCATTGGGCTTTTTCTAGGTATGATAT TAAGTTTCTTGATGATCCTGATTTAATTATGGGGGGAATTGAGAGCGTGCATACTCTTGTTAGACTTGGTCTTGAA AATGATGATTTTGATGCATATTATGTTTTTGATCATTTTTATTGGAGCGATGATTTAATATTGCCCTTAATGGATA AAAATGATAAAGAGCCAGGCAAAGAATACCGCAATGCGGTTGAATTTGTTGAAAAGAATAAAGAGATTGTAAAGAC GTGGGTTCCAGAAAAATATAAGACCTTATTTGATTAA tδlO.nt
TGTGATGAAAAAAAGAGTTCAAAGAATTTAAAATCGGTAAAAATTGGATATGTGAATTGGGGTGGAGAAACGGCAG CTACAAATGTATTAAAGGTTGTTTTTGAGAAAATGGGCTACAATGCAGAAATATTTTCAGTTACTACGTCTATAAT GTATCAATACTTAGCATCTGGAAAGATAGACGGTACGGTGTCTTCTTGGGTTCCTACAGCCGATAAATTTTATTAT GAAAAACTGAAAACAAAGTTTGTTGATCTTGGTGCAAATTATGAAGGAACCATTCAAGGTTTTGTGGTGCCAAGCT ATGTTCCAATTTCCAGCATTAGTGAGCTTAAGGGTAAAGGTGATAAGTTTAAAAACAAAATGATTGGCATAGATGC TGGTGCGGGAACTCAAATTGTTACAGAACAAGCGCTTAATTATTATGGATTAAGTAAAGAGTATGAGCTAGTTCCT TCAAGTGAGAGTGTTATGCTTGCAAGTTTAGATTCTTCAATAAAGAGAAACGAATGGATTTTAGTTCCTTTGTGGA AGCCTCATTGGGCTTTTTCTAGGTATGATATTAAGTTTCTTGATGATCCTGATTTAATTATGGGGGGAATTGAGAG CGTGCATACTCTTGTTAGACTTGGTCTTGAAAATGATGATTTTGATGCATATTATGTTTTTGATCATTTTTATTGG AGCGATGATTTAATATTGCCCTTAATGGATAAAAATGATAAAGAGCCAGGCAAAGAATACCGCAATGCGGTTGAAT TTGTTGAAAAGAATAAAGAGATTGTAAAGACGTGGGTTCCAGAAAAATATAAGACCTTATTTGATTAA f814.aa TABLE 1. Nucleotide and Amino Acid Sequences
MLVKRIVGKPITMLILFSLLLMISLYTFSRLKVDLLPGIDIPQISIHTVYPGASPREVEESVSRVLESGLSSVKNL KNIYSVSSKESSTVSLEFYHGTDLDLVLNEIRDALELVKSSLPSKSQTPRIFRYNLKNIPVMEIVINSVRPVSELK RYADEIIKPGLERLDGVAIVTVNGGSKKRVLIEVSQNRLESYGLSLSRISSIIASQNLELSAGNILENNLEYLVEV SGKFKSIEEIGNWIAYKIPDISSGINLSPIEIKLKDIANIKTDFEDLSEYVEYNGLPSISLSVQKRSDSNSIAVS NWMNEIEKLKLSMPKDMKLEIASDSTDFIKASISTWNSAYFGAMLAIFVIFFFLRSFRATIIIGISIPIAIVLT FCLMYFVNISLNIMSLAGLALGIGMWDCSIWIDNIYKYRQKGAKLISSSILGAQEMMLPITSSTFTSICVFGPF LIFKSELGVYGDFFKDFTFTIVISLGVSLLVAIFLVPVLSSHYVGLYTSFQKNIKNAFIRKIDAFFASIYYFLEFL YINLLNIVLNHKLIFGLIVFFSFIGSLLLGLLLDVTTFTRGKENSITINLNFPHKTNLEYAKFYSNRFLEIVKSEA KGYKSIIATLRADRITFNVLFPLKEESRDNLTQSVDYDSIKYKIMNRIGNLYPEFNIEPSISGNALGGGDSIKIKI SANDFEYIKDYGKILVSMLKKEIPELVNPRLSISDFQLQIGVEIDRALVYNYGIDMNTILNELKANINGWAGQYV EKGLNYDIVLKLDRMDVKNLKDLEKIFITNSSGVKIPFSSIATFEKTNKAESIYRENQALTIYLNAGISPDDNLTQ VTAKWDFINNKVPHKEGITLKVEGEYNEFSNIMNQFKIIIMMAIIWFGIMASQFESFLKPFIIIFTIPLTAIGV VLIHFLAGEKLSIFAAIGMLMLVGVWNTGIVLVDYTGLLIKRGFGLREAIIESCRSRLRPILMSSLTΞIIGLIPM AFSSGSGNELLKPIAFTFIGGMTASTFLTLFFIPMLFEIFPTCFKFQI t814.aa
RLKVDLLPGIDIPQISIHTVYPGASPREVEESVSRVLESGLΞSVKNLKNIYSVSSKESSTVSLEFYHGTDLDLVLN EIRDALELVKSSLPSKSQTPRIFRYNLKNIPVMEIVINSVRPVSELKRYADEIIKPGLERLDGVAIVTVNGGSKKR VLIEVSQNRLESYGLSLSRISSIIASQNLELSAGNILENNLEYLVEVSGKFKSIEEIGNWIAYKIPDISSGINLS PIEIKLKDIANIKTDFEDLSEYVEYNGLPSISLSVQKRSDSNSIAVSNWMNEIEKLKLSMPKDMKLEIASDSTDF IKASISTWNSAYFGAMLAIFVIFFFLRSFRATIIIGISIPIAIVLTFCLMYFVNISLNIMSLAGLALGIGMWDC SIWIDNIYKYRQKGAKLISSSILGAQEMMLPITSSTFTSICVFGPFLIFKSELGVYGDFFKDFTFTIVISLGVSL LVAIFLVPVLSSHYVGLYTSFQKNIKNAFIRKIDAFFASIYYFLEFLYINLLNIVLNHKLIFGLIVFFSFIGSLLL GLLLDVTTFTRGKENSITINLNFPHKTNLEYAKFYSNRFLEIVKSEAKGYKSIIATLRADRITFNVLFPLKEESRD NLTQSVDYDSIKYKIMNRIGNLYPEFNIEPSISGNALGGGDSIKIKISANDFEYIKDYGKILVSMLKKEIPELVNP RLSISDFQLQIGVEIDRALVYNYGIDMNTILNELKANINGWAGQYVEKGLNYDIVLKLDRMDVKNLKDLEKIFIT NSSGVKIPFSSIATFEKTNKAESIYRENQALTIYLNAGISPDDNLTQVTAKWDFINNKVPHKEGITLKVEGEYNE FSNIMNQFKIII-VMAIIVVFGIMASQFESFLKPFIIIFTIPLTAIGVVLIHFLAGEKLSIFAAIGMLMLVGVVVNT GIVLVDYTGLLIKRGFGLREAIIESCRSRLRPILMSSLTSIIGLIPMAFSSGSGNELLKPIAFTFIGGMTASTFLT LFFIPMLFEIFPTCFKFQI f814.nt
ATGTTGGTAAAGAGAATAGTTGGCAAACCAATAACAATGTTGATTTTATTTTCATTGTTATTGATGATAAGTTTGT ATACCTTTTCAAGATTAAAAGTAGATCTTTTGCCGGGAATTGACATTCCCCAAATAAGTATTCACACTGTTTATCC TGGCGCTTCTCCTAGAGAAGTTGAAGAGAGTGTTTCTAGAGTCCTTGAGAGTGGCTTGAGTTCGGTAAAGAATTTA AAAAATATATATAGTGTATCTTCCAAAGAAAGCAGCACCGTTTCACTTGAATTTTATCATGGAACCGATTTAGATT TGGTTTTAAATGAAATTCGAGATGCTCTTGAATTGGTAAAATCTTCATTGCCCAGCAAATCACAGACCCCAAGAAT TTTTAGATACAATCTTAAAAACATCCCTGTAATGGAAATTGTTATTAATTCTGTAAGGCCAGTTTCTGAGCTTAAA AGATATGCCGATGAAATCATTAAACCTGGGCTTGAAAGGCTTGATGGAGTTGCAATTGTTACTGTTAATGGTGGAA GTAAAAAGCGTGTTTTAATTGAAGTTTCTCAAAACAGGCTGGAGTCTTATGGGCTTTCTTTGTCAAGAATATCTTC AATTATAGCATCCCAAAATTTGGAACTTTCAGCTGGCAATATATTGGAGAACAACTTGGAATATTTGGTTGAAGTT TCTGGAAAATTTAAATCAATTGAAGAGATAGGTAATGTGGTCATAGCTTATAAGATACCCGACATTTCTTCTGGCA TAAATTTATCTCCTATTGAGATAAAACTCAAAGATATTGCTAATATTAAAACCGATTTTGAAGATTTGTCTGAATA TGTTGAATATAATGGGTTGCCTTCAATTTCTTTGTCGGTTCAAAAACGTAGTGATTCTAATTCTATTGCAGTTTCT AATGTTGTTATGAATGAAATAGAAAAATTGAAATTATCTATGCCTAAAGATATGAAATTGGAGATTGCTTCTGATA GTACTGATTTTATTAAAGCATCCATTTCAACGGTTGTAAATTCAGCCTATTTTGGGGCCATGCTTGCAATATTTGT TATTTTTTTCTTTTTAAGAAGCTTTAGGGCCACAATAATTATTGGAATTTCTATTCCAATAGCAATTGTTTTGACC TTTTGTTTAATGTATTTTGTAAATATTTCTCTTAATATTATGAGTCTTGCGGGTCTTGCACTTGGGATTGGAATGG TTGTTGACTGTTCAATTGTTGTAATAGACAATATATACAAATATAGGCAAAAAGGAGCAAAGCTTATTTCGTCTTC TATTCTCGGAGCTCAGGAGATGATGTTGCCTATTACATCTTCAACTTTTACTTCTATTTGTGTTTTTGGTCCATTT CTTATTTTCAAATCAGAACTTGGGGTATATGGAGATTTTTTCAAAGACTTTACATTTACGATTGTTATTTCCTTGG GTGTTTCTCTTTTAGTTGCAATTTTTTTGGTTCCTGTTTTATCAAGCCACTATGTCGGTTTATACACAAGTTTCCA AAAGAATATTAAGAATGCTTTTATTAGGAAAATCGATGCCTTTTTTGCTAGTATTTATTATTTTTTAGAGTTTTTG TABLE 1. Nucleotide and Amino Acid Sequences
TATATCAATTTATTAAATATAGTTTTAAATCACAAATTGATTTTTGGGTTGATTGTTTTTTTTAGTTTTATTGGCA GCTTGCTTTTAGGATTATTGTTAGATGTGACAACTTTTACTAGAGGGAAAGAGAACTCAATTACTATTAATTTAAA TTTTCCCCACAAAACTAATTTGGAATATGCAAAATTTTATTCTAATAGATTTTTAGAAATTGTAAAAAGTGAGGCT AAAGGATATAAAAGTATTATTGCTACTTTGCGTGCTGATAGAATAACTTTCAACGTATTGTTTCCTCTCAAAGAAG AATCAAGAGATAATTTAACCCAAAGCGTAGATTACGATTCTATTAAATATAAAATTATGAATCGTATTGGTAATCT TTATCCTGAATTTAATATTGAGCCTTCCATTAGTGGCAATGCTTTAGGTGGTGGAGATTCTATTAAAATTAAAATT TCGGCCAATGATTTTGAATATATAAAAGATTATGGAAAAATTTTAGTTTCCATGTTAAAAAAGGAAATTCCCGAAC TTGTAAATCCAAGGCTTAGCATAAGTGATTTTCAGCTTCAAATTGGCGTTGAGATAGACAGAGCGCTAGTTTATAA TTATGGTATTGACATGAATACCATTTTAAATGAGTTGAAGGCCAATATTAATGGTGTTGTTGCTGGGCAATATGTG GAGAAGGGACTTAATTATGATATTGTTCTTAAGCTTGATAGAATGGATGTTAAAAATTTAAAAGATTTAGAAAAAA TATTTATTACAAATTCATCTGGAGTTAAAATTCCTTTTTCATCAATAGCCACCTTTGAAAAAACCAATAAAGCCGA ATCTATTTACAGAGAAAATCAAGCTTTAACCATTTATCTTAATGCGGGTATTTCTCCAGATGATAATTTAACCCAA GTAACCGCAAAAGTTGTAGATTTTATTAATAATAAGGTGCCCCATAAAGAAGGCATAACTCTTAAGGTTGAAGGAG AATATAATGAATTTTCAAATATCATGAATCAGTTTAAAATAATCATTATGATGGCTATTATTGTTGTGTTTGGTAT TATGGCTTCTCAATTTGAATCTTTTTTAAAACCCTTTATTATTATTTTTACAATTCCTTTAACGGCAATAGGGGTT GTGCTTATACATTTTCTTGCAGGAGAAAAGCTTTCTATTTTTGCTGCAATTGGTATGCTTATGCTTGTTGGTGTTG TGGTAAATACAGGAATTGTTCTTGTAGACTATACTGGTTTATTGATCAAGAGGGGATTTGGCCTAAGAGAAGCAAT TATTGAATCTTGTCGTTCAAGGCTTAGGCCAATTTTAATGTCTTCTTTGACCTCAATAATAGGGCTTATTCCAATG GCATTTTCTAGCGGAAGTGGAAATGAACTTCTAAAACCAATTGCATTTACTTTTATTGGCGGAATGACAGCTAGCA CATTTCTTACTTTGTTTTTTATTCCCATGCTTTTTGAAATTTTTCCAACATGTTTCAAGTTTCAAATCTAG t814.nt
AGATTAAAAGTAGATCTTTTGCCGGGAATTGACATTCCCCAAATAAGTATTCACACTGTTTATCCTGGCGCTTCTC CTAGAGAAGTTGAAGAGAGTGTTTCTAGAGTCCTTGAGAGTGGCTTGAGTTCGGTAAAGAATTTAAAAAATATATA TAGTGTATCTTCCAAAGAAAGCAGCACCGTTTCACTTGAATTTTATCATGGAACCGATTTAGATTTGGTTTTAAAT GAAATTCGAGATGCTCTTGAATTGGTAAAATCTTCATTGCCCAGCAAATCACAGACCCCAAGAATTTTTAGATACA ATCTTAAAAACATCCCTGTAATGGAAATTGTTATTAATTCTGTAAGGCCAGTTTCTGAGCTTAAAAGATATGCCGA TGAAATCATTAAACCTGGGCTTGAAAGGCTTGATGGAGTTGCAATTGTTACTGTTAATGGTGGAAGTAAAAAGCGT GTTTTAATTGAAGTTTCTCAAAACAGGCTGGAGTCTTATGGGCTTTCTTTGTCAAGAATATCTTCAATTATAGCAT CCCAAAATTTGGAACTTTCAGCTGGCAATATATTGGAGAACAACTTGGAATATTTGGTTGAAGTTTCTGGAAAATT TAAATCAATTGAAGAGATAGGTAATGTGGTCATAGCTTATAAGATACCCGACATTTCTTCTGGCATAAATTTATCT CCTATTGAGATAAAACTCAAAGATATTGCTAATATTAAAACCGATTTTGAAGATTTGTCTGAATATGTTGAATATA ATGGGTTGCCTTCAATTTCTTTGTCGGTTCAAAAACGTAGTGATTCTAATTCTATTGCAGTTTCTAATGTTGTTAT GAATGAAATAGAAAAATTGAAATTATCTATGCCTAAAGATATGAAATTGGAGATTGCTTCTGATAGTACTGATTTT ATTAAAGCATCCATTTCAACGGTTGTAAATTCAGCCTATTTTGGGGCCATGCTTGCAATATTTGTTATTTTTTTCT TTTTAAGAAGCTTTAGGGCCACAATAATTATTGGAATTTCTATTCCAATAGCAATTGTTTTGACCTTTTGTTTAAT GTATTTTGTAAATATTTCTCTTAATATTATGAGTCTTGCGGGTCTTGCACTTGGGATTGGAATGGTTGTTGACTGT TCAATTGTTGTAATAGACAATATATACAAATATAGGCAAAAAGGAGCAAAGCTTATTTCGTCTTCTATTCTCGGAG CTCAGGAGATGATGTTGCCTATTACATCTTCAACTTTTACTTCTATTTGTGTTTTTGGTCCATTTCTTATTTTCAA ATCAGAACTTGGGGTATATGGAGATTTTTTCAAAGACTTTACATTTACGATTGTTATTTCCTTGGGTGTTTCTCTT TTAGTTGCAATTTTTTTGGTTCCTGTTTTATCAAGCCACTATGTCGGTTTATACACAAGTTTCCAAAAGAATATTA AGAATGCTTTTATTAGGAAAATCGATGCCTTTTTTGCTAGTATTTATTATTTTTTAGAGTTTTTGTATATCAATTT ATTAAATATAGTTTTAAATCACAAATTGATTTTTGGGTTGATTGTTTTTTTTAGTTTTATTGGCAGCTTGCTTTTA GGATTATTGTTAGATGTGACAACTTTTACTAGAGGGAAAGAGAACTCAATTACTATTAATTTAAATTTTCCCCACA AAACTAATTTGGAATATGCAAAATTTTATTCTAATAGATTTTTAGAAATTGTAAAAAGTGAGGCTAAAGGATATAA AAGTATTATTGCTACTTTGCGTGCTGATAGAATAACTTTCAACGTATTGTTTCCTCTCAAAGAAGAATCAAGAGAT AATTTAACCCAAAGCGTAGATTACGATTCTATTAAATATAAAATTATGAATCGTATTGGTAATCTTTATCCTGAAT TTAATATTGAGCCTTCCATTAGTGGCAATGCTTTAGGTGGTGGAGATTCTATTAAAATTAAAATTTCGGCCAATGA TTTTGAATATATAAAAGATTATGGAAAAATTTTAGTTTCCATGTTAAAAAAGGAAATTCCCGAACTTGTAAATCCA AGGCTTAGCATAAGTGATTTTCAGCTTCAAATTGGCGTTGAGATAGACAGAGCGCTAGTTTATAATTATGGTATTG ACATGAATACCATTTTAAATGAGTTGAAGGCCAATATTAATGGTGTTGTTGCTGGGCAATATGTGGAGAAGGGACT TAATTATGATATTGTTCTTAAGCTTGATAGAATGGATGTTAAAAATTTAAAAGATTTAGAAAAAATATTTATTACA AATTCATCTGGAGTTAAAATTCCTTTTTCATCAATAGCCACCTTTGAAAAAACCAATAAAGCCGAATCTATTTACA GAGAAAATCAAGCTTTAACCATTTATCTTAATGCGGGTATTTCTCCAGATGATAATTTAACCCAAGTAACCGCAAA AGTTGTAGATTTTATTAATAATAAGGTGCCCCATAAAGAAGGCATAACTCTTAAGGTTGAAGGAGAATATAATGAA TABLE 1. Nucleotide and Amino Acid Sequences
TTTTCAAATATCATGAATCAGTTTAAAATAATCATTATGATGGCTATTATTGTTGTGTTTGGTATTATGGCTTCTC AATTTGAATCTTTTTTAAAACCCTTTATTATTATTTTTACAATTCCTTTAACGGCAATAGGGGTTGTGCTTATACA TTTTCTTGCAGGAGAAAAGCTTTCTATTTTTGCTGCAATTGGTATGCTTATGCTTGTTGGTGTTGTGGTAAATACA GGAATTGTTCTTGTAGACTATACTGGTTTATTGATCAAGAGGGGATTTGGCCTAAGAGAAGCAATTATTGAATCTT GTCGTTCAAGGCTTAGGCCAATTTTAATGTCTTCTTTGACCTCAATAATAGGGCTTATTCCAATGGCATTTTCTAG CGGAAGTGGAAATGAACTTCTAAAACCAATTGCATTTACTTTTATTGGCGGAATGACAGCTAGCACATTTCTTACT TTGTTTTTTATTCCCATGCTTTTTGAAATTTTTCCAACATGTTTCAAGTTTCAAATCTAG f818.aa
MLKNHSKLIIQLKWMMIYLKKMGNDMTKFYNYRIEIVSNLSLELDVFECIEKIEQELGESIYYSKIGNVYGKGKK GEKHGNGVWPEENFILIIYTSNQSIVERLKDIVDDLNRSYPTEGINLFVLRNS tδlδ.aa
KKMGNDMTKFYNYRIEIVSNLSLELDVFECIEKIEQELGESIYYSKIGNVYGKGKKGEKHGNGVWPEENFILIIYT SNQSIVERLKDIVDDLNRSYPTEGINLFVLRNS fδlδ.nt
ATGTTGAAAAATCATTCAAAATTAATAATTCAACTAAAAGTAGTTATGATGATTTATTTGAAGAAGATGGGGAATG ATATGACTAAATTTTATAATTATAGGATTGAAATAGTTTCTAACTTATCTTTAGAGCTTGATGTTTTTGAATGTAT AGAAAAAATAGAGCAAGAGTTAGGAGAGTCTATATATTATTCTAAGATAGGAAATGTTTATGGAAAAGGTAAGAAG GGAGAAAAGCATGGTAATGGCGTTTGGCCTGAAGAAAATTTTATTTTGATTATTTATACCTCCAATCAGTCTATTG TTGAGCGATTAAAGGATATTGTGGATGATTTGAATCGTTCTTACCCTACAGAAGGGATTAATCTTTTTGTTTTGAG AAATTCTTAA tδlδ.nt
AAGAAGATGGGGAATGATATGACTAAATTTTATAATTATAGGATTGAAATAGTTTCTAACTTATCTTTAGAGCTTG ATGTTTTTGAATGTATAGAAAAAATAGAGCAAGAGTTAGGAGAGTCTATATATTATTCTAAGATAGGAAATGTTTA TGGAAAAGGTAAGAAGGGAGAAAAGCATGGTAATGGCGTTTGGCCTGAAGAAAATTTTATTTTGATTATTTATACC TCCAATCAGTCTATTGTTGAGCGATTAAAGGATATTGTGGATGATTTGAATCGTTCTTACCCTACAGAAGGGATTA ATCTTTTTGTTTTGAGAAATTCTTAA f820.aa
MLNNTYRIKTILTIFLAITLLTIYKYFTLMAFNNSPDNTISLKSNDIAKRGTIYDRNGKPIAFSSKSYSIGTNPQK IENIVSTSETLGAILQINSRILKEKLSSNKGFLYIKRKIKREESDLIKRIQAEGRLSNITLYPDYTRIYPFRNTTS NITGFVGTDNLGLEGIEFSLNSILGKDKTKQQFLNEEPETNNIHLTIDMDIQQGVSKIAKKYFKENNPESLITLVM NSQNGEILSMVQFPQYDANFYSKYPEEIRKNLSSSLTYEPGSINKIFTVAIILESGKLNLEEKFLDNGIYQKQFPS GEKITIKTLNPPYKHIDSTEILIYSSNVGIAYITEKVSNEYFYKKLLDFGFGEKVGVPFPGETKGLLNHYSKWSGR SKATIGFGQEIGVSAVQILQAASILSNNGIMLKPRIIKKISNDKGENIKEFDKEEIRKVISKNSAQKVLKMMREW NKGGIPNLKIKNLDISAKSGTSQAIDRKTGKYSEEDYTSSILAIYPTEQPKYIIYIVYRYPKKIIYGTRIAAPMAK EIIEFIEHQQNTIAYKKIKMPSKIKIPKAETNYKNKTYLPNFINLSKREAIDILKYYKNTMKIKINGDGFVYKQSI SPNTKLEDITELELYLK t820.aa
FNNSPDNTISLKSNDIAKRGTIYDRNGKPIAFSSKSYSIGTNPQKIENIVSTSETLGAILQINSRILKEKLSSNKG FLYIKRKIKREESDLIKRIQAEGRLSNITLYPDYTRIYPFRNTTSNITGFVGTDNLGLEGIEFSLNSILGKDKTKQ QFLNEEPETNNIHLTIDMDIQQGVSKIAKKYFKENNPESLITLVMNSQNGEILSMVQFPQYDANFYSKYPEEIRKN LSSSLTYEPGSINKIFTVAIILESGKLNLEEKFLDNGIYQKQFPSGEKITIKTLNPPYKHIDSTEILIYSSNVGIA YITEKVSNEYFYKKLLDFGFGEKVGVPFPGETKGLLNHYSKWSGRSKATIGFGQEIGVSAVQILQAASILSNNGIM LKPRIIKKISNDKGENIKEFDKEEIRKVISKNSAQKVLKMMREWNKGGIPNLKIKNLDISAKSGTSQAIDRKTGK TABLE 1. Nucleotide and Amino Acid Sequences
YSEEDYTSSILAIYPTEQPKYIIYIVYRYPKKIIYGTRIAAPMAKEIIEFIEHQQNTIAYKKIKMPSKIKIPKAET NYKNKTYLPNFINLSKREAIDILKYYKNTMKIKINGDGFVYKQSIΞPNTKLEDITELELYLK f820.nt
ATGCTTAATAACACTTATCGAATAAAAACAATATTAACAATATTCTTGGCTATAACTTTGTTAACTATTTACAAAT ATTTCACACTAATGGCCTTCAATAACAGCCCAGACAACACAATATCTTTAAAGTCAAATGATATTGCCAAAAGAGG AACAATTTATGATAGAAATGGCAAACCAATAGCATTCTCTTCAAAATCCTACTCAATTGGTACAAATCCTCAAAAA ATAGAAAATATTGTAAGCACATCTGAAACTCTTGGTGCAATACTTCAAATTAATTCAAGAATTTTAAAGGAAAAGC TTTCCTCTAACAAAGGGTTTTTATATATAAAAAGAAAAATAAAAAGAGAAGAATCAGATTTAATAAAAAGAATTCA AGCTGAAGGCAGGCTTTCAAACATCACTTTATATCCTGATTACACAAGAATTTATCCCTTCAGGAATACCACAAGC AATATTACTGGTTTTGTAGGAACAGATAATCTTGGCCTTGAGGGCATTGAATTTTCCCTAAATAGCATATTAGGAA AAGATAAAACCAAGCAACAATTTTTAAATGAGGAGCCAGAAACAAACAACATCCACTTAACAATAGACATGGATAT ACAACAAGGTGTTAGCAAAATAGCTAAAAAATACTTTAAAGAAAATAATCCTGAAAGTTTAATTACCTTGGTAATG AACTCCCAAAATGGAGAAATATTATCCATGGTTCAATTTCCTCAATATGATGCAAACTTTTATTCTAAATATCCTG AAGAAATCCGAAAAAACCTTTCTTCATCTCTAACCTATGAGCCCGGAAGCATTAATAAAATTTTTACAGTTGCAAT AATATTAGAAAGTGGAAAATTAAATTTAGAAGAAAAATTTTTAGACAATGGAATATATCAAAAACAATTTCCATCA GGAGAAAAAATTACAATCAAAACATTAAATCCCCCCTATAAACATATCGACTCTACAGAGATTTTAATTTATTCAT CAAATGTTGGAATAGCTTACATTACTGAAAAAGTTAGCAATGAATACTTTTATAAAAAACTTTTAGATTTTGGCTT TGGGGAAAAAGTTGGAGTTCCATTTCCCGGAGAAACAAAAGGACTGCTAAATCATTATTCAAAATGGTCAGGACGA AGTAAAGCTACAATTGGATTTGGACAAGAAATAGGAGTGTCAGCGGTTCAAATATTACAAGCTGCAAGCATACTAA GCAATAATGGAATAATGCTAAAACCTAGAATAATAAAAAAAATAAGCAACGATAAAGGAGAAAATATTAAAGAATT TGATAAAGAAGAAATAAGAAAAGTAATATCCAAAAATTCAGCACAAAAAGTTTTAAAAATGATGAGAGAAGTTGTA AATAAAGGTGGAATTCCAAATCTTAAAATTAAAAATCTTGACATTTCTGCAAAAAGTGGAACATCTCAAGCTATTG ATAGAAAAACGGGAAAATACTCAGAAGAAGACTATACATCTTCTATATTGGCAATATACCCCACAGAACAACCAAA ATATATTATTTACATTGTATACAGATACCCAAAAAAAATAATATACGGAACAAGAATAGCAGCCCCAATGGCAAAA GAAATAATAGAATTTATTGAGCACCAACAAAATACAATAGCATATAAAAAAATTAAAATGCCATCAAAAATCAAGA TCCCTAAAGCTGAAACTAATTACAAAAACAAAACATACTTACCAAATTTTATCAACCTTTCTAAAAGAGAAGCAAT AGACATACTAAAATACTATAAAAATACTATGAAAATAAAAATAAATGGCGATGGATTTGTTTACAAGCAAAGTATA TCCCCCAATACAAAATTAGAAGATATAACAGAGCTTGAACTGTATTTAAAATAA tδ20.nt
TTCAATAACAGCCCAGACAACACAATATCTTTAAAGTCAAATGATATTGCCAAAAGAGGAACAATTTATGATAGAA ATGGCAAACCAATAGCATTCTCTTCAAAATCCTACTCAATTGGTACAAATCCTCAAAAAATAGAAAATATTGTAAG CACATCTGAAACTCTTGGTGCAATACTTCAAATTAATTCAAGAATTTTAAAGGAAAAGCTTTCCTCTAACAAAGGG TTTTTATATATAAAAAGAAAAATAAAAAGAGAAGAATCAGATTTAATAAAAAGAATTCAAGCTGAAGGCAGGCTTT CAAACATCACTTTATATCCTGATTACACAAGAATTTATCCCTTCAGGAATACCACAAGCAATATTACTGGTTTTGT AGGAACAGATAATCTTGGCCTTGAGGGCATTGAATTTTCCCTAAATAGCATATTAGGAAAAGATAAAACCAAGCAA CAATTTTTAAATGAGGAGCCAGAAACAAACAACATCCACTTAACAATAGACATGGATATACAACAAGGTGTTAGCA AAATAGCTAAAAAATACTTTAAAGAAAATAATCCTGAAAGTTTAATTACCTTGGTAATGAACTCCCAAAATGGAGA AATATTATCCATGGTTCAATTTCCTCAATATGATGCAAACTTTTATTCTAAATATCCTGAAGAAATCCGAAAAAAC CTTTCTTCATCTCTAACCTATGAGCCCGGAAGCATTAATAAAATTTTTACAGTTGCAATAATATTAGAAAGTGGAA AATTAAATTTAGAAGAAAAATTTTTAGACAATGGAATATATCAAAAACAATTTCCATCAGGAGAAAAAATTACAAT CAAAACATTAAATCCCCCCTATAAACATATCGACTCTACAGAGATTTTAATTTATTCATCAAATGTTGGAATAGCT TACATTACTGAAAAAGTTAGCAATGAATACTTTTATAAAAAACTTTTAGATTTTGGCTTTGGGGAAAAAGTTGGAG TTCCATTTCCCGGAGAAACAAAAGGACTGCTAAATCATTATTCAAAATGGTCAGGACGAAGTAAAGCTACAATTGG ATTTGGACAAGAAATAGGAGTGTCAGCGGTTCAAATATTACAAGCTGCAAGCATACTAAGCAATAATGGAATAATG CTAAAACCTAGAATAATAAAAAAAATAAGCAACGATAAAGGAGAAAATATTAAAGAATTTGATAAAGAAGAAATAA GAAAAGTAATATCCAAAAATTCAGCACAAAAAGTTTTAAAAATGATGAGAGAAGTTGTAAATAAAGGTGGAATTCC AAATCTTAAAATTAAAAATCTTGACATTTCTGCAAAAAGTGGAACATCTCAAGCTATTGATAGAAAAACGGGAAAA TACTCAGAAGAAGACTATACATCTTCTATATTGGCAATATACCCCACAGAACAACCAAAATATATTATTTACATTG TATACAGATACCCAAAAAAAATAATATACGGAACAAGAATAGCAGCCCCAATGGCAAAAGAAATAATAGAATTTAT TGAGCACCAACAAAATACAATAGCATATAAAAAAATTAAAATGCCATCAAAAATCAAGATCCCTAAAGCTGAAACT AATTACAAAAACAAAACATACTTACCAAATTTTATCAACCTTTCTAAAAGAGAAGCAATAGACATACTAAAATACT TABLE 1. Nucleotide and Amino Acid Sequences
ATAAAAATACTATGAAAATAAAAATAAATGGCGATGGATTTGTTTACAAGCAAAGTATATCCCCCAATACAAAATT AGAAGATATAACAGAGCTTGAACTGTATTTAAAATAA fδ31.aa
MAKNNLLVFFIAIIFVFVSIIWFYNSLGKDYVKSGGEIVENLEKDLNDYLKENDAKEREKIFLRIRELISKEKEI SSYFISRFYLARAVYFQSQAQYDEAIKDLDIVIKAKGIESEIAFLNKAAVYEKMGLKEDALLVYEDLINSTSLDFL KVRALLSKAILIEEKDKELAVKVYEEIVKFPYENNLYINMANNKILELKQN tδ 31 . aa
YNSLGKDYVKSGGEIVENLEKDLNDYLKENDAKEREKIFLRIRELISKEKEISSYFISRFYLARAVYFQSQAQYDE AIKDLDIVIKAKGIESEIAFLNKAAVYEKMGLKEDALLVYEDLINSTSLDFLKVRALLSKAILIEEKDKELAVKVY EEIVKFPYENNLYINMANNKILELKQN fδ31.nt
ATGGCTAAAAATAATCTTTTAGTTTTCTTTATTGCTATTATTTTTGTGTTTGTGTCTATTATTGTTGTTTTTTATA ATTCTTTAGGCAAGGATTATGTAAAGAGTGGCGGAGAAATAGTAGAAAATCTTGAAAAAGATTTAAATGATTATTT AAAAGAAAATGATGCCAAAGAGAGAGAAAAAATATTTCTTAGGATAAGGGAGCTTATTTCAAAGGAAAAAGAAATT TCATCTTATTTTATTTCAAGGTTCTATTTAGCCAGAGCTGTTTATTTCCAAAGTCAAGCACAGTATGATGAGGCTA TTAAAGATTTAGATATTGTTATTAAGGCAAAAGGTATTGAAAGTGAAATTGCTTTTCTTAATAAAGCTGCAGTTTA TGAAAAAATGGGATTAAAAGAAGATGCTTTGTTAGTTTATGAAGATCTTATCAATAGTACTAGTTTGGATTTTTTA AAGGTAAGAGCTCTTTTGAGTAAGGCAATATTGATTGAGGAAAAAGATAAAGAGCTTGCTGTGAAAGTATACGAAG AGATTGTTAAGTTTCCGTATGAAAATAATTTATATATAAATATGGCAAATAATAAAATTTTAGAACTTAAGCAAAA TTAA t831.nt
TATAATTCTTTAGGCAAGGATTATGTAAAGAGTGGCGGAGAAATAGTAGAAAATCTTGAAAAAGATTTAAATGATT ATTTAAAAGAAAATGATGCCAAAGAGAGAGAAAAAATATTTCTTAGGATAAGGGAGCTTATTTCAAAGGAAAAAGA AATTTCATCTTATTTTATTTCAAGGTTCTATTTAGCCAGAGCTGTTTATTTCCAAAGTCAAGCACAGTATGATGAG GCTATTAAAGATTTAGATATTGTTATTAAGGCAAAAGGTATTGAAAGTGAAATTGCTTTTCTTAATAAAGCTGCAG TTTATGAAAAAATGGGATTAAAAGAAGATGCTTTGTTAGTTTATGAAGATCTTATCAATAGTACTAGTTTGGATTT TTTAAAGGTAAGAGCTCTTTTGAGTAAGGCAATATTGATTGAGGAAAAAGATAAAGAGCTTGCTGTGAAAGTATAC GAAGAGATTGTTAAGTTTCCGTATGAAAATAATTTATATATAAATATGGCAAATAATAAAATTTTAGAACTTAAGC AAAATTAA fδ43.aa
MKAIGNAILLNMPLIFSIGISIGVARMGQGTAALGGLIGYLTFNITENYFIEAFSGLVEAETMSSVGRINFFGVQT LNTGIAGSLAVGLLVGYLHNKFYNMKLPKPFVFFSECHFVPIVIILPFCVFLAIFFCLIWSSFDDLIASLGLFVFR FEYFGSFLYGFLNRLLLPLGLHSILSFPFEFTSLGGVEIVNGDTVRGLKNIFYAQLLDPSLGKFSSGFAKISSGFY LSIMFGLPGAALGVYKGIVHEDKNKVAALLFSGALTAFLTGITEPLEFLFIFTAPLLYFVHAAYSGFALLLANFFN VTIGNSFSTGFLDFFMFGILQGNSKTNWISVLPLGAMFFALYYFTFSWLYRYFDFQIFVTDDPFFEGQEGKLESLG IAHLLIQGLGGFDNITKLDVCSTRLHVDWNTELVDNNLLKEAGVLKIGLVNGKVQLFYGSNVYYIKNAIDTYSPK SLFEASVMVAVDNVKKGFKTYIEMKEDKKLEKQGKSGKTYKLSELEED t843.aa
RMGQGTAALGGLIGYLTFNITENYFIEAFSGLVEAETMSSVGRINFFGVQTLNTGIAGSLAVGLLVGYLHNKFYNM KLPKPFVFFSECHFVPIVIILPFCVFLAIFFCLIWSSFDDLIASLGLFVFRFEYFGSFLYGFLNRLLLPLGLHSIL SFPFEFTSLGGVEIVNGDTVRGLKNIFYAQLLDPSLGKFSSGFAKISSGFYLSIMFGLPGAALGVYKGIVHEDKNK VAALLFSGALTAFLTGITEPLEFLFIFTAPLLYFVHAAYSGFALLLANFFNVTIGNSFSTGFLDFFMFGILQGNSK TNWISVLPLGAMFFALYYFTFSWLYRYFDFQIFVTDDPFFEGQEGKLESLGIAHLLIQGLGGFDNITKLDVCSTRL TABLE 1. Nucleotide and Amino Acid Sequences
HVDVVNTELVDNNLLKEAGVLKIGLVNGKVQLFYGSNVYYIKNAIDTYSPKSLFEASVMVAVDNVKKGFKTYIEMK EDKKLEKQGKSGKTYKLSELEED f843.nt
ATGAAGGCTATAGGCAATGCTATTCTTCTCAATATGCCTTTAATTTTTTCTATTGGAATTTCTATTGGAGTTGCAA GAATGGGGCAGGGAACAGCGGCTTTGGGAGGCCTTATTGGTTATTTAACATTTAATATTACTGAAAATTATTTTAT TGAGGCTTTTTCAGGGCTTGTTGAAGCAGAGACAATGTCTTCTGTTGGGCGTATAAATTTTTTTGGTGTTCAAACT TTAAATACGGGAATTGCAGGTTCTTTAGCGGTAGGCCTTTTAGTTGGATATTTGCATAACAAATTTTATAATATGA AGCTACCCAAACCTTTTGTGTTTTTTTCAGAGTGCCATTTTGTGCCTATAGTAATAATTTTACCCTTTTGTGTTTT TTTGGCTATATTTTTTTGTTTGATTTGGTCAAGTTTTGACGATTTAATTGCATCTTTAGGTTTGTTTGTTTTTAGG TTTGAATATTTTGGCAGTTTTCTTTATGGATTTTTAAATAGGCTTTTATTGCCTTTGGGGTTGCATTCTATTTTAT CTTTTCCTTTTGAGTTTACTTCTTTGGGAGGAGTGGAGATAGTTAATGGCGATACTGTTAGAGGTCTTAAGAATAT ATTTTATGCTCAGCTATTAGACCCATCACTTGGTAAATTTTCATCAGGCTTTGCCAAAATTAGCAGTGGATTTTAT CTATCTATTATGTTTGGACTGCCCGGAGCAGCATTAGGGGTTTACAAGGGTATTGTTCATGAAGATAAAAATAAGG TTGCAGCACTTCTTTTCTCTGGGGCCTTGACAGCTTTTTTAACAGGAATAACTGAGCCTTTAGAATTTTTATTTAT TTTCACAGCGCCTTTGCTTTATTTTGTTCATGCCGCTTATTCGGGGTTTGCATTGTTGCTTGCTAATTTTTTTAAT GTTACGATTGGCAATAGCTTTTCTACTGGATTTTTGGATTTTTTTATGTTTGGGATACTTCAAGGAAATTCTAAGA CAAATTGGATTAGTGTATTACCTTTGGGGGCAATGTTTTTTGCTCTTTATTATTTTACTTTTAGTTGGCTTTATAG ATACTTTGATTTTCAGATATTTGTTACAGACGATCCATTTTTTGAAGGCCAAGAAGGAAAGCTAGAGAGTCTCGGA ATTGCGCATCTTTTAATTCAAGGTCTTGGTGGATTTGATAATATTACAAAGCTTGATGTTTGTTCTACAAGATTGC ATGTAGATGTTGTTAATACTGAGCTTGTTGATAATAATTTGCTTAAAGAGGCTGGAGTTCTTAAAATAGGGCTTGT TAATGGCAAGGTTCAGCTTTTTTATGGATCTAATGTTTATTATATTAAAAATGCCATTGATACCTATTCTCCAAAG AGTCTTTTTGAAGCTAGTGTTATGGTTGCAGTTGATAATGTAAAAAAAGGTTTTAAAACTTATATTGAAATGAAAG AAGACAAAAAACTTGAAAAGCAAGGTAAATCAGGAAAAACCTATAAGCTTAGCGAATTAGAAGAAGATTAG t843.nt
AGAATGGGGCAGGGAACAGCGGCTTTGGGAGGCCTTATTGGTTATTTAACATTTAATATTACTGAAAATTATTTTA TTGAGGCTTTTTCAGGGCTTGTTGAAGCAGAGACAATGTCTTCTGTTGGGCGTATAAATTTTTTTGGTGTTCAAAC TTTAAATACGGGAATTGCAGGTTCTTTAGCGGTAGGCCTTTTAGTTGGATATTTGCATAACAAATTTTATAATATG AAGCTACCCAAACCTTTTGTGTTTTTTTCAGAGTGCCATTTTGTGCCTATAGTAATAATTTTACCCTTTTGTGTTT TTTTGGCTATATTTTTTTGTTTGATTTGGTCAAGTTTTGACGATTTAATTGCATCTTTAGGTTTGTTTGTTTTTAG GTTTGAATATTTTGGCAGTTTTCTTTATGGATTTTTAAATAGGCTTTTATTGCCTTTGGGGTTGCATTCTATTTTA TCTTTTCCTTTTGAGTTTACTTCTTTGGGAGGAGTGGAGATAGTTAATGGCGATACTGTTAGAGGTCTTAAGAATA TATTTTATGCTCAGCTATTAGACCCATCACTTGGTAAATTTTCATCAGGCTTTGCCAAAATTAGCAGTGGATTTTA TCTATCTATTATGTTTGGACTGCCCGGAGCAGCATTAGGGGTTTACAAGGGTATTGTTCATGAAGATAAAAATAAG GTTGCAGCACTTCTTTTCTCTGGGGCCTTGACAGCTTTTTTAACAGGAATAACTGAGCCTTTAGAATTTTTATTTA TTTTCACAGCGCCTTTGCTTTATTTTGTTCATGCCGCTTATTCGGGGTTTGCATTGTTGCTTGCTAATTTTTTTAA TGTTACGATTGGCAATAGCTTTTCTACTGGATTTTTGGATTTTTTTATGTTTGGGATACTTCAAGGAAATTCTAAG ACAAATTGGATTAGTGTATTACCTTTGGGGGCAATGTTTTTTGCTCTTTATTATTTTACTTTTAGTTGGCTTTATA GATACTTTGATTTTCAGATATTTGTTACAGACGATCCATTTTTTGAAGGCCAAGAAGGAAAGCTAGAGAGTCTCGG AATTGCGCATCTTTTAATTCAAGGTCTTGGTGGATTTGATAATATTACAAAGCTTGATGTTTGTTCTACAAGATTG CATGTAGATGTTGTTAATACTGAGCTTGTTGATAATAATTTGCTTAAAGAGGCTGGAGTTCTTAAAATAGGGCTTG TTAATGGCAAGGTTCAGCTTTTTTATGGATCTAATGTTTATTATATTAAAAATGCCATTGATACCTATTCTCCAAA GAGTCTTTTTGAAGCTAGTGTTATGGTTGCAGTTGATAATGTAAAAAAAGGTTTTAAAACTTATATTGAAATGAAA GAAGACAAAAAACTTGAAAAGCAAGGTAAATCAGGAAAAACCTATAAGCTTAGCGAATTAGAAGAAGATTAG f850.aa
MRFKKIFLIIFIISNLKVYSYNYAIQYKNEGIDKYYFEILNDGFGFSLSDFFDDLRSGSLIFTYVSKYNFIINLEA HMLTYRGYKDSPKSLISRTDLIEIGFMYYFPILLLINGKNFGEIDLGIGVKNLLFGDWGGHLMQSIIHLILNQHRP IPSIKSYDSYNYRGFLSFALNYSYMNFLNLENYMDLSYFADYFIKNSIGITLKNENIGFDIKLYSQIQNQIKSLKT YSKTQEAETGIGINYQFYSKNFFITNNLNIKNFSTKENFLSVGGFGIIITPEEYKKISESNNEFNVISNNFYFGFD IMIPLKIRNSLFYKINENINHYFSISTNYYTNYNETNSFTNQLSSGIMYEFLPQKTFNPYLISGLFFAYNQNNKDI KSISRPIRIKNILQVGIENELGFLFKMLKYRNTEYIFKIYSKVNYIPIAYNLDEKKLEKHSINFNYLGIGIWK TABLE 1. Nucleotide and Amino Acid Sequences
tδ50.aa
YSYNYAIQYKNEGIDKYYFEILNDGFGFSLSDFFDDLRSGSLIFTYVSKYNFIINLEAHMLTYRGYKDSPKSLISR TDLIEIGFMYYFPILLLINGKNFGEIDLGIGVKNLLFGDWGGHLMQSIIHLILNQHRPIPSIKSYDSYNYRGFLSF ALNYSYMNFLNLENYMDLSYFADYFIKNSIGITLKNENIGFDIKLYSQIQNQIKSLKTYSKTQEAETGIGINYQFY SKNFFITNNLNIKNFSTKENFLSVGGFGIIITPEEYKKISESNNEFNVISNNFYFGFDIMIPLKIRNSLFYKINEN INHYFSISTNYYTNYNETNSFTNQLSSGIMYEFLPQKTFNPYLISGLFFAYNQNNKDIKSISRPIRIKNILQVGIE NELGFLFKMLKYRNTEYIFKIYSKVNYIPIAYNLDEKKLEKHSINFNYLGIGIWK fδ50.nt
ATGCGGTTTAAAAAAATATTTTTAATAATATTTATAATTTCTAATTTAAAAGTTTATTCTTATAATTATGCAATCC
AATATAAAAATGAAGGTATTGACAAATATTATTTTGAAATACTAAATGATGGATTCGGATTTTCATTAAGCGATTT
TTTTGATGACTTGAGAAGTGGTTCTCTTATTTTTACCTATGTTTCAAAATACAATTTTATAATAAATTTAGAAGCA
CACATGTTAACCTATAGGGGTTATAAAGACTCTCCGAAATCTTTAATTAGTAGAACAGACTTAATTGAAATAGGCT
TCATGTACTATTTTCCAATTTTATTGCTAATTAATGGAAAAAATTTTGGAGAAATAGACTTGGGAATTGGAGTTAA
AAACTTATTATTTGGAGACTGGGGAGGGCATTTAATGCAAAGCATAATTCACCTCATTTTAAATCAACACCGTCCA
ATTCCAAGTATAAAAAGCTACGACAGCTACAATTATAGAGGATTTTTAAGCTTTGCTCTAAATTACTCTTACATGA
ATTTTTTAAATTTAGAAAATTATATGGACTTATCTTATTTTGCAGATTATTTTATTAAAAACAGTATTGGAATTAC
CTTAAAAAATGAAAATATTGGATTTGATATAAAACTTTATTCCCAAATTCAAAATCAAATCAAAAGCCTCAAAACA
TATTCAAAAACACAAGAAGCAGAAACAGGAATTGGAATAAATTATCAATTTTACTCTAAAAATTTTTTCATAACCA
ATAATTTAAACATTAAAAATTTTTCAACCAAAGAAAATTTCTTAAGCGTTGGGGGATTTGGAATAATCATTACACC
TGAAGAATACAAAAAAATATCAGAATCAAATAATGAATTTAATGTTATAAGTAATAATTTTTACTTTGGATTTGAT
ATTATGATCCCATTAAAAATAAGAAATTCATTATTTTATAAAATAAATGAAAACATCAACCATTACTTTTCAATAT
CAACAAATTATTACACTAATTATAATGAAACTAATAGCTTTACAAATCAATTATCATCAGGCATCATGTATGAATT
TTTACCACAAAAAACATTCAATCCTTACCTAATTTCGGGATTATTTTTTGCCTATAATCAAAACAATAAAGATATC
AAAAGCATCTCAAGACCAATAAGAATAAAAAACATTCTTCAAGTTGGAATTGAAAATGAATTAGGATTTTTGTTCA
AAATGCTAAAATACCGCAACACTGAGTATATTTTCAAAATATATTCAAAAGTTAACTATATTCCTATAGCTTATAA
CTTAGATGAAAAAAAATTAGAAAAACATTCTATTAACTTTAATTATTTAGGAATTGGAATAGTCGTTAAATAA t850.nt
TATTCTTATAATTATGCAATCCAATATAAAAATGAAGGTATTGACAAATATTATTTTGAAATACTAAATGATGGAT TCGGATTTTCATTAAGCGATTTTTTTGATGACTTGAGAAGTGGTTCTCTTATTTTTACCTATGTTTCAAAATACAA TTTTATAATAAATTTAGAAGCACACATGTTAACCTATAGGGGTTATAAAGACTCTCCGAAATCTTTAATTAGTAGA ACAGACTTAATTGAAATAGGCTTCATGTACTATTTTCCAATTTTATTGCTAATTAATGGAAAAAATTTTGGAGAAA TAGACTTGGGAATTGGAGTTAAAAACTTATTATTTGGAGACTGGGGAGGGCATTTAATGCAAAGCATAATTCACCT CATTTTAAATCAACACCGTCCAATTCCAAGTATAAAAAGCTACGACAGCTACAATTATAGAGGATTTTTAAGCTTT GCTCTAAATTACTCTTACATGAATTTTTTAAATTTAGAAAATTATATGGACTTATCTTATTTTGCAGATTATTTTA TTAAAAACAGTATTGGAATTACCTTAAAAAATGAAAATATTGGATTTGATATAAAACTTTATTCCCAAATTCAAAA TCAAATCAAAAGCCTCAAAACATATTCAAAAACACAAGAAGCAGAAACAGGAATTGGAATAAATTATCAATTTTAC TCTAAAAATTTTTTCATAACCAATAATTTAAACATTAAAAATTTTTCAACCAAAGAAAATTTCTTAAGCGTTGGGG GATTTGGAATAATCATTACACCTGAAGAATACAAAAAAATATCAGAATCAAATAATGAATTTAATGTTATAAGTAA TAATTTTTACTTTGGATTTGATATTATGATCCCATTAAAAATAAGAAATTCATTATTTTATAAAATAAATGAAAAC ATCAACCATTACTTTTCAATATCAACAAATTATTACACTAATTATAATGAAACTAATAGCTTTACAAATCAATTAT CATCAGGCATCATGTATGAATTTTTACCACAAAAAACATTCAATCCTTACCTAATTTCGGGATTATTTTTTGCCTA TAATCAAAACAATAAAGATATCAAAAGCATCTCAAGACCAATAAGAATAAAAAACATTCTTCAAGTTGGAATTGAA AATGAATTAGGATTTTTGTTCAAAATGCTAAAATACCGCAACACTGAGTATATTTTCAAAATATATTCAAAAGTTA ACTATATTCCTATAGCTTATAACTTAGATGAAAAAAAATTAGAAAAACATTCTATTAACTTTAATTATTTAGGAAT TGGAATAGTCGTTAAATAA f853.aa
MKSFLFWVILGTVGISSFAQNTPVAIINLYKNEIITKTGFDSKVDIFKKTQGRDLTDAEKKQVLQVLIADVLFSQE ASKQGIKISDDEVMQTIRTQFGLVNFTDEQIKQMIEKQGTNWGELLSSMKRSLSSQKLVLKQAQPKFSEIKTPSEK EIVEYYEANKTKFVNPDISRVSHIFFSTKDKKRSDVLDQAKNILSQIRSKKITFEEAVRKYSNDESSKAKNGDLGF TABLE 1. Nucleotide and Amino Acid Sequences
LSRGDQNAQNLLGADFVKEVFNFNKGDISSPIASKEGFHIVKVTEKYAQRFLGLNDKVSPTADLIVKDAIRNNMIN VQQQQI WQVQQDMYGKLNKS ANI QILDSSLK t853 . aa
QNTPVAIINLYKNEIITKTGFDSKVDIFKKTQGRDLTDAEKKQVLQVLIADVLFSQEASKQGIKISDDEVMQTIRT QFGLVNFTDEQIKQMIEKQGTNWGELLSSMKRSLSSQKLVLKQAQPKFSEIKTPSEKEIVEYYEANKTKFVNPDIS RVSHIFFSTKDKKRSDVLDQAKNILSQIRSKKITFEEAVRKYSNDESSKAKNGDLGFLSRGDQNAQNLLGADFVKE VFNFNKGDISSPIASKEGFHIVKVTEKYAQRFLGLNDKVSPTADLIVKDAIRNNMINVQQQQIWQVQQDMYGKLN KSANIQILDSSLK f853.nt
ATGAAGAGTTTTTTATTTTGGGTAATATTGGGAACTGTAGGGATTAGCTCTTTTGCTCAAAATACTCCTGTTGCTA TTATTAATTTATATAAGAATGAAATTATTACTAAAACTGGTTTTGATTCTAAGGTTGATATATTTAAAAAGACCCA AGGTAGAGACTTAACTGATGCTGAGAAAAAGCAAGTTCTGCAAGTTTTAATAGCAGATGTTCTTTTTAGTCAAGAG GCTTCAAAGCAAGGAATTAAAATCTCAGATGATGAGGTTATGCAAACAATTAGAACTCAATTTGGGCTTGTGAATT TTACTGATGAACAAATCAAGCAAATGATAGAAAAACAAGGTACAAATTGGGGCGAGCTTTTGTCTTCAATGAAAAG ATCTCTGTCTTCTCAAAAGCTTGTTTTAAAGCAAGCTCAGCCTAAGTTTTCTGAAATTAAAACTCCTAGTGAGAAA GAAATTGTTGAGTATTATGAGGCTAATAAAACTAAGTTTGTAAATCCCGATATTTCAAGAGTTAGTCATATCTTTT TTTCTACTAAAGATAAAAAAAGATCAGATGTTTTAGATCAAGCAAAAAATATTTTAAGCCAAATAAGATCAAAAAA AATTACTTTTGAAGAAGCTGTAAGAAAATATTCAAATGACGAATCTTCTAAGGCTAAAAATGGTGATCTTGGGTTT TTATCAAGAGGTGATCAAAATGCTCAAAATCTTCTTGGAGCCGATTTTGTGAAAGAGGTTTTTAATTTTAATAAGG GTGATATATCTTCGCCTATTGCTTCAAAGGAAGGGTTTCATATTGTTAAAGTTACAGAAAAATATGCTCAGAGATT TTTAGGTTTGAATGATAAAGTGTCTCCTACTGCAGATTTGATTGTCAAAGATGCAATAAGAAATAACATGATTAAT GTTCAACAACAGCAAATTGTTGTTCAAGTACAGCAAGATATGTATGGTAAGCTTAACAAGTCTGCAAATATACAAA TCTTGGATTCTAGTCTAAAATAA t853.nt
CAAAATACTCCTGTTGCTATTATTAATTTATATAAGAATGAAATTATTACTAAAACTGGTTTTGATTCTAAGGTTG ATATATTTAAAAAGACCCAAGGTAGAGACTTAACTGATGCTGAGAAAAAGCAAGTTCTGCAAGTTTTAATAGCAGA TGTTCTTTTTAGTCAAGAGGCTTCAAAGCAAGGAATTAAAATCTCAGATGATGAGGTTATGCAAACAATTAGAACT CAATTTGGGCTTGTGAATTTTACTGATGAACAAATCAAGCAAATGATAGAAAAACAAGGTACAAATTGGGGCGAGC TTTTGTCTTCAATGAAAAGATCTCTGTCTTCTCAAAAGCTTGTTTTAAAGCAAGCTCAGCCTAAGTTTTCTGAAAT TAAAACTCCTAGTGAGAAAGAAATTGTTGAGTATTATGAGGCTAATAAAACTAAGTTTGTAAATCCCGATATTTCA AGAGTTAGTCATATCTTTTTTTCTACTAAAGATAAAAAAAGATCAGATGTTTTAGATCAAGCAAAAAATATTTTAA GCCAAATAAGATCAAAAAAAATTACTTTTGAAGAAGCTGTAAGAAAATATTCAAATGACGAATCTTCTAAGGCTAA AAATGGTGATCTTGGGTTTTTATCAAGAGGTGATCAAAATGCTCAAAATCTTCTTGGAGCCGATTTTGTGAAAGAG GTTTTTAATTTTAATAAGGGTGATATATCTTCGCCTATTGCTTCAAAGGAAGGGTTTCATATTGTTAAAGTTACAG AAAAATATGCTCAGAGATTTTTAGGTTTGAATGATAAAGTGTCTCCTACTGCAGATTTGATTGTCAAAGATGCAAT AAGAAATAACATGATTAATGTTCAACAACAGCAAATTGTTGTTCAAGTACAGCAAGATATGTATGGTAAGCTTAAC AAGTCTGCAAATATACAAATCTTGGATTCTAGTCTAAAATAA fδ59.aa
MKLPKLYKLILLFLFTTRLFSVKDEKSDNKLELFSNVETKIKKNSKNYDSNSNSKKIKKESILKRDTNSEKNINSN IYIQKSKKINYPNRNLGNNINQKTANDVNFTKTSYVKVYPNYKDDNFQEIKNANKFPAKTEKTHMLIGPILKDNLG IIIKMLKTKGYTLIEYIEDNN t659.aa
VKDEKSDNKLELFSNVETKIKKNSKNYDSNSNSKKIKKESILKRDTNSEKNINSNIYIQKSKKINYPNRNLGNNIN QKTA f859.nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGAAATTACCAAAACTTTACAAATTAATACTACTCTTTCTTTTTACAACAAGATTGTTTTCAGTAAAAGATGAAA AATCAGACAATAAATTGGAATTATTTTCAAACGTAGAAACAAAAATCAAAAAAAATTCTAAAAATTACGACTCAAA TTCAAACAGCAAAAAGATCAAAAAAGAATCAATTTTAAAAAGAGATACAAACAGCGAAAAAAATATAAATTCCAAT ATATACATACAAAAATCAAAAAAAATTAATTACCCCAACAGAAATTTAGGCAATAATATCAATCAAAAAACTGCAA ATGATGTAAATTTTACAAAAACTAGTTATGTTAAAGTTTATCCCAACTATAAAGACGATAACTTTCAAGAAATTAA AAATGCTAATAAATTTCCAGCTAAAACCGAAAAAACTCACATGCTAATCGGCCCAATATTAAAAGATAATCTAGGA ATAATAATTAAAATGCTAAAAACAAAGGGATACACTTTAATAGAATACATAGAGGACAATAATTAA tδ59.nt
GTAAAAGATGAAAAATCAGACAATAAATTGGAATTATTTTCAAACGTAGAAACAAAAATCAAAAAAAATTCTAAAA ATTACGACTCAAATTCAAACAGCAAAAAGATCAAAAAAGAATCAATTTTAAAAAGAGATACAAACAGCGAAAAAAA TATAAATTCCAATATATACATACAAAAATCAAAAAAAATTAATTACCCCAACAGAAATTTAGGCAATAATATCAAT CAAAAAACTGCAAATGATGTAAATTTTACAAAAACTAGTTATGTTAAAGTTTATCCCAACTATAAAGACGATAACT TTCAAGAAATTAAAAATGCTAATAAATTTCCAGCTAAAACCGAAAAAACTCACATGCTAATCGGCCCAATATTAAA AGATAATCTAGGAATAATAATTAAAATGCTAAAAACAAAGGGATACACTTTAATAGAATACATAGAGGACAATAAT TAA fδβl.aa
MKNFKEVIIIFDSGIGGLSYFKYIKSRIGGCQYVYVADNKNFPYGEKSPEYLLEAVLFLIEKLKKIYNIGALVLAC NTISVSVYNKLNFVFPWYTLPDVSSVSDLVLKRVLLIATNTTLESKFVKDQVNIHNDLIVKAAGELVNFVEYGEN YKKYALRCLEALKFEWNTGREIVFLGCTHYLHLKVMIEDFLKIPVYENRELWKNLIRSMNFSEHKGNYYKNDFD FVDDEFYLTENKNLTFYQNFCKKYNLRFKGMIV tδ δ l . aa
RIGGCQYVYVADNKNFPYGEKSPEYLLEAVLFLIEKLKKIYNIGALVLACNTISVSVYNKLNFVFPWYTLPDVSS VSDLVLKRVLLIATNTTLESKFVKDQVNIHNDLIVKAAGELVNFVEYGENYKKYALRCLEALKFEWNTGREIVFL GCTHYLHLKVMIEDFLKIPVYENRELWKNLIRSMNFSEHKGNYYKNDFDFVDDEFYLTENKNLTFYQNFCKKYNL RFKGMIV fδβl.nt
ATGAAAAATTTCAAAGAAGTAATAATTATTTTTGATTCAGGAATAGGAGGGCTTTCTTATTTTAAATATATTAAAA GTAGAATAGGGGGATGCCAATATGTTTATGTTGCCGATAATAAAAATTTCCCTTATGGAGAAAAAAGTCCTGAATA TCTTCTAGAAGCAGTTTTGTTTTTGATTGAGAAGCTTAAAAAAATCTATAATATTGGTGCATTAGTTTTGGCTTGT AATACAATTTCTGTTAGTGTATACAATAAATTAAATTTTGTTTTTCCAGTAGTCTATACTTTGCCAGATGTAAGTT CAGTTTCAGATCTTGTTTTAAAAAGAGTTCTTTTGATTGCAACAAATACTACTCTTGAAAGCAAATTTGTTAAGGA TCAAGTAAATATACATAATGATTTGATTGTAAAAGCTGCTGGAGAGCTTGTTAATTTTGTTGAATATGGAGAGAAT TACAAAAAATATGCTCTTAGATGTTTAGAAGCTTTAAAATTTGAAGTTGTAAATACTGGTAGAGAAATTGTTTTTC TTGGATGCACGCATTATTTGCATCTTAAGGTAATGATAGAAGATTTTTTAAAAATTCCTGTTTATGAGAATCGTGA ATTAGTGGTAAAAAATCTTATTAGATCAATGAATTTTTCTGAACACAAAGGTAATTATTATAAGAATGATTTTGAT TTTGTAGATGATGAGTTTTATTTGACCGAAAATAAAAATTTGACTTTTTATCAAAATTTTTGCAAAAAATATAATC TTCGCTTTAAGGGAATGATAGTTTGA tδβl.nt
AGAATAGGGGGATGCCAATATGTTTATGTTGCCGATAATAAAAATTTCCCTTATGGAGAAAAAAGTCCTGAATATC TTCTAGAAGCAGTTTTGTTTTTGATTGAGAAGCTTAAAAAAATCTATAATATTGGTGCATTAGTTTTGGCTTGTAA TACAATTTCTGTTAGTGTATACAATAAATTAAATTTTGTTTTTCCAGTAGTCTATACTTTGCCAGATGTAAGTTCA GTTTCAGATCTTGTTTTAAAAAGAGTTCTTTTGATTGCAACAAATACTACTCTTGAAAGCAAATTTGTTAAGGATC AAGTAAATATACATAATGATTTGATTGTAAAAGCTGCTGGAGAGCTTGTTAATTTTGTTGAATATGGAGAGAATTA CAAAAAATATGCTCTTAGATGTTTAGAAGCTTTAAAATTTGAAGTTGTAAATACTGGTAGAGAAATTGTTTTTCTT GGATGCACGCATTATTTGCATCTTAAGGTAATGATAGAAGATTTTTTAAAAATTCCTGTTTATGAGAATCGTGAAT TABLE 1. Nucleotide and Amino Acid Sequences
TAGTGGTAAAAAATCTTATTAGATCAATGAATTTTTCTGAACACAAAGGTAATTATTATAAGAATGATTTTGATTT TGTAGATGATGAGTTTTATTTGACCGAAAATAAAAATTTGACTTTTTATCAAAATTTTTGCAAAAAATATAATCTT CGCTTTAAGGGAATGATAGTTTGA f363.aa
MIRLKVLILCLFGIFVLNGFADTNFEFNFGGGVAFPVSPFSSFYNEALEINAKLKQNLPSDLSPIEKEEIVQNFSD LANIAKAGIRYGTYAQFGAKFDDFVSIGFELLFNINLLKAIKRSDGTANENFSFIMAITPRFYTKLDFFVLALAFF TGPKINIATSSADSVLAELGTMGWDIGARLSFSFLILEGYYVWNIKNPKFSDFKFGIGFEFGIV t363.aa
DTNFEFNFGGGVAFPVSPFSSFYNEALEINAKLKQNLPSDLSPIEKEEIVQNFSDLANIAKAGIRYGTYAQFGAKF DDFVSIGFELLFNINLLKAIKRSDGTANENFSFIMAITPRFYTKLDFFVLALAFFTGPKINIATSSADSVLAELGT MGWDIGARLSFSFLILEGYYVWNIKNPKFSDFKFGIGFEFGIV f363.nt
ATGATTAGGCTTAAAGTTTTAATTTTGTGTTTATTTGGGATTTTTGTGTTAAATGGTTTTGCAGATACTAATTTTG
AATTCAATTTTGGTGGTGGGGTTGCTTTTCCTGTTAGTCCCTTTTCAAGCTTTTACAATGAGGCTTTAGAGATTAA
TGCAAAGCTTAAGCAAAATTTGCCTTCAGATTTATCCCCAATAGAAAAAGAAGAGATAGTCCAAAATTTTTCCGAT
TTAGCCAATATTGCTAAAGCTGGAATAAGATATGGAACTTACGCTCAATTTGGCGCTAAATTTGATGATTTTGTTT
CTATTGGATTTGAGCTTTTGTTTAACATTAATCTTCTTAAAGCAATAAAGCGTTCGGATGGAACTGCAAATGAAAA
TTTCTCGTTTATTATGGCAATAACACCAAGATTTTATACAAAATTAGATTTTTTTGTTTTAGCTTTAGCGTTTTTC
ACAGGTCCTAAGATCAATATAGCGACTTCTTCTGCGGATTCTGTTTTAGCAGAACTGGGAACAATGGGCTGGGATA
TTGGTGCTAGACTTTCATTTTCTTTTTTAATTCTTGAAGGGTACTATGTTTGGAATATTAAAAACCCTAAATTTTC
TGATTTCAAGTTTGGAATAGGTTTTGAATTTG
GAATTGTGTAG t363.nt
GATACTAATTTTGAATTCAATTTTGGTGGTGGGGTTGCTTTTCCTGTTAGTCCCTTTTCAAGCTTTTACAATGAGG CTTTAGAGATTAATGCAAAGCTTAAGCAAAATTTGCCTTCAGATTTATCCCCAATAGAAAAAGAAGAGATAGTCCA AAATTTTTCCGATTTAGCCAATATTGCTAAAGCTGGAATAAGATATGGAACTTACGCTCAATTTGGCGCTAAATTT GATGATTTTGTTTCTATTGGATTTGAGCTTTTGTTTAACATTAATCTTCTTAAAGCAATAAAGCGTTCGGATGGAA CTGCAAATGAAAATTTCTCGTTTATTATGGCAATAACACCAAGATTTTATACAAAATTAGATTTTTTTGTTTTAGC TTTAGCGTTTTTCACAGGTCCTAAGATCAATATAGCGACTTCTTCTGCGGATTCTGTTTTAGCAGAACTGGGAACA ATGGGCTGGGATATTGGTGCTAGACTTTCATTTTCTTTTTTAATTCTTGAAGGGTACTATGTTTGGAATATTAAAA ACCCTAAATTTTCTGATTTCAAGTTTGGAATAGGTTTTGAATTTGGAATTGTGTAG f368.aa
MIDLTQEKQEILIKNKFLAKVFGLMSIGLLISAVFAYATSENQTIKAIIFSNSMSFMAMILIQFGLVYAISGALNK ISSNTATALFLLYSALTGVTLSSIFMIYTQGSIVFTFGITAGTFLGMSVYGYTTTTDLTKMGSYLIMGLWGIIIAS LVNMFFRSSGLNFLISILGWIFTGLTAYDVQNISKMDKMLQDDTEIKNRMAWASLKLYLDFINLFLYLLRFLGQ RRND t368 . aa
TSENQTIKAIIFSNSMSFMAMILIQFGLVYAISGALNKISSNTATALFLLYSALTGVTLSSIFMIYTQGSIVFTFG ITAGTFLGMSVYGYTTTTDLTKMGSYLIMGLWGII IASLVNMFFRSSGLNFLISILGWIFTGLTAYDVQNISKMD KMLQDDTEIKNRMAWASLKLYLDFINLFLYLLRFLGQRRND f368 . nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGATCGATTTAACACAAGAAAAACAAGAAATACTAATAAAAAACAAGTTTTTAGCCAAAGTTTTCGGGCTTATGT CAATTGGACTTTTAATCTCAGCAGTATTTGCATATGCAACCTCAGAAAATCAAACAATCAAAGCAATAATATTCTC AAATTCAATGTCATTTATGGCTATGATACTTATACAATTTGGACTTGTATATGCAATAAGTGGTGCTCTTAATAAA ATATCAAGCAATACTGCAACAGCTCTTTTCTTGCTCTACTCAGCACTAACAGGAGTAACATTATCTTCTATATTTA TGATTTACACACAAGGATCAATAGTATTCACATTCGGAATTACTGCTGGAACATTTCTTGGAATGTCTGTTTATGG ATACACTACAACAACAGATCTAACAAAAATGGGAAGCTATTTAATAATGGGCTTATGGGGAATCATTATTGCATCT CTTGTTAATATGTTTTTTAGAAGCTCAGGTCTTAATTTCCTTATATCTATTTTGGGCGTAGTTATATTTACAGGCT TAACAGCTTATGATGTTCAAAATATTTCTAAAATGGACAAAATGCTACAAGACGACACTGAAATAAAAAACAGAAT GGCGGTTGTAGCCTCACTTAAACTTTATTTAGATTTTATAAATTTATTCTTATATCTTCTAAGATTTTTGGGCCAA AGAAGAAACGATTAA t368.nt
ACCTCAGAAAATCAAACAATCAAAGCAATAATATTCTCAAATTCAATGTCATTTATGGCTATGATACTTATACAAT TTGGACTTGTATATGCAATAAGTGGTGCTCTTAATAAAATATCAAGCAATACTGCAACAGCTCTTTTCTTGCTCTA CTCAGCACTAACAGGAGTAACATTATCTTCTATATTTATGATTTACACACAAGGATCAATAGTATTCACATTCGGA ATTACTGCTGGAACATTTCTTGGAATGTCTGTTTATGGATACACTACAACAACAGATCTAACAAAAATGGGAAGCT ATTTAATAATGGGCTTATGGGGAATCATTATTGCATCTCTTGTTAATATGTTTTTTAGAAGCTCAGGTCTTAATTT CCTTATATCTATTTTGGGCGTAGTTATATTTACAGGCTTAACAGCTTATGATGTTCAAAATATTTCTAAAATGGAC AAAATGCTACAAGACGACACTGAAATAAAAAACAGAATGGCGGTTGTAGCCTCACTTAAACTTTATTTAGATTTTA TAAATTTATTCTTATATCTTCTAAGATTTTTGGGCCAAAGAAGAAACGATTAA f371.aa
MKFFFLLQIALILLSNSSLLFGQSPPKEKEDSLLLYKEGKFKEAILNTLΞEIRLNPSNLDARTILIWSLIAIGEYK RAEKEAIIGLGIKKHDIRIIQALGEAYFFQKNYDNALKYFQEYISLDSKGARIIKVYNLIADSFYELKRYNEADFA YEHALRFSPNNQNLLIKLARSRINAKNKILAEEALIKILTISPNNLEAKNLLEELKKSNNKP t371.aa
EDSLLLYKEGKFKEAILNTLEEIRLNPSNLDARTILIWSLIAIGEYKRAEKEAIIGLGIKKHDIRIIQALGEAYFF QKNYDNALKYFQEYISLDSKGARIIKVYNLIADSFYELKRYNEADFAYEHALRFSPNNQNLLIKLARSRINAKNKI LAEEALIKILTISPNNLEAKNLLEELKKSNNKP f371.nt
ATGAAATTTTTTTTTCTATTACAAATAGCTTTAATTCTACTATCCAATTCAAGCTTGTTATTTGGACAATCACCGC CTAAAGAAAAAGAAGACTCTCTTCTTCTATATAAAGAAGGAAAATTTAAAGAAGCTATTTTAAACACGTTAGAAGA AATTCGACTAAATCCTAGTAACTTAGATGCTAGGACAATATTGATATGGAGCTTAATAGCCATAGGAGAATACAAG AGAGCTGAAAAAGAGGCGATTATAGGACTTGGCATTAAAAAACATGACATAAGAATTATTCAAGCACTAGGAGAAG CTTATTTCTTTCAAAAAAATTATGACAATGCATTAAAATACTTTCAAGAATACATTAGCCTTGATTCTAAAGGAGC AAGAATAATAAAAGTTTATAATTTAATTGCAGATTCTTTTTATGAGCTAAAAAGATATAATGAAGCCGATTTTGCA TACGAACATGCATTACGTTTTTCTCCTAATAACCAAAATCTATTAATAAAATTAGCAAGATCAAGAATAAATGCAA AAAATAAAATATTAGCAGAAGAAGCACTAATTAAAATTCTTACAATCTCTCCTAATAATCTAGAGGCAAAAAATTT ACTAGAAGAATTAAAAAAAAGCAACAACAAACCTTGA t371.nt
GAAGACTCTCTTCTTCTATATAAAGAAGGAAAATTTAAAGAAGCTATTTTAAACACGTTAGAAGAAATTCGACTAA ATCCTAGTAACTTAGATGCTAGGACAATATTGATATGGAGCTTAATAGCCATAGGAGAATACAAGAGAGCTGAAAA AGAGGCGATTATAGGACTTGGCATTAAAAAACATGACATAAGAATTATTCAAGCACTAGGAGAAGCTTATTTCTTT CAAAAAAATTATGACAATGCATTAAAATACTTTCAAGAATACATTAGCCTTGATTCTAAAGGAGCAAGAATAATAA AAGTTTATAATTTAATTGCAGATTCTTTTTATGAGCTAAAAAGATATAATGAAGCCGATTTTGCATACGAACATGC ATTACGTTTTTCTCCTAATAACCAAAATCTATTAATAAAATTAGCAAGATCAAGAATAAATGCAAAAAATAAAATA TTAGCAGAAGAAGCACTAATTAAAATTCTTACAATCTCTCCTAATAATCTAGAGGCAAAAAATTTACTAGAAGAAT TAAAAAAAAGCAACAACAAACCTTGA TABLE 1. Nucleotide and Amino Acid Sequences
f502.aa
MKKANFLSTNFLILLLVCFVNVNLFSKDIFKFKLVDQFFPFYYKNNKGEYEGLIFSILDKWAKDNNADIMVEHIDN LNESEIEDEAIYLGLTYNVKLNDFFYFKSELARSISILFFKNSNKKYKNTHSTFLSNFNIGVIKNTIYEDILRLKN VNTIFLADNSQELVLALKNDKVDYIYGDCKTLHYIANNFLSEDLVIFTGDVFYSIKNRVAISRNAPEIVKNLNLDL FSYLMKMPEELVFSFLDSNAKGSFVDVGLYNDYPPLSFINSQGKLSGILVDLWNLLSRQHIFKPIFKGFSKEDIKK SLIX3KSVGIFGGIISNDSVLENVNYWSKPIYPLNFKFYSKDLSNDAGPINSQFIDFNFNNIQLNKNKDIVNNFID IVNNSYGFIENSITTKYLLKLNGYNGRLKSYDSIFNKNRFLVLAIDNRIYKVIKYILNSIFDDISFESLLQIDKNW LDKEEINSSRINSYKIMNKVKFNIEEKIWLSKNNKLNLAVKNWYPIDYVEANNYKGINQFLLDKIRMFSGLRFNII KVHSSLDLKKLIKSGKIDMLNTNATDSNLDNVFNIKLNSRIPLYIFSNKKRVLPSRSLEKFAILDFLYSKNLASNI KSKLILVSSFNEALLLLYKGKVDGIISDEYTAAAVFEELNIDDVEKIPTFRDLAFDLSLAIYNQDYILKEIIQKW MRSNVDSQMYLNDWKFDIYYKSRSIRFKNFKFLVITFIIFYFTFLGFVIIFMFRLSFEQKRRYSFVMNEKKIAEAA NAAKTIFIANVSHDIRTPINGIMAATELLDTTILTDVQKDYVRMIJ YSSDSLLSLIDDILYLSKIDVNELYVESQE IDLESEMEMVLKAFQSQCAKKNIDLFSYSKSIFNNYIKGDIVKIKQVLINLIGNAFKFTDDGVIVLNYEEVCRTRT DGNRVLVTVEFKVIDTGKGIEKENFSKIFEIFKQEDDSSSRVHEGAGLGLSISRELIRLMGGLGIAVDSKVGEGTT FSFMLPFLLGSELKSKKLSINRFQSVNGDNKVLNVLLSQKSIKIFEHCSILLGCSSNVRYVASFEDAYKVFKKYPS YNFVΥINVNNDNIQEGIRLANNIERLNSDVQIIFLFYYLDNKALKNLKYGYVKKPLMGLGICSILYKKEFNPEMDF EDLOTIDSALRIKEPIJWLIAEDNQVNQKVLKDILWIGINENFIDWDDGVKALKSLKDKKYTISFIDIRMPRYD GFSVAKEIRKFEKAKNLKPCVLVAVTAHALQEYKDKCLASGMNDYISKPIHISSIKTILKKYLQFEVDDIGENENL NQLVKFPNLDVNRALKELNLSYVSYSELCRGLVDFISINIIDLEKAFDEEDLSLIKDISHSISGALSNMRSELYKD FQKIETSKDSISELKKMYSFVKDDLFQLISDIKENILFESEIVSENKLYFKNNDQFLNLLNKLLIGIKTRKPREYK EILESINKYVLDDNIQVLFSDLRRNLRLYRFAESSKILEEIIEMLNNKRY t502.aa
CFVNVNLFSKDIFKFKLVDQFFPFYYKNNKGEYEGLIFSILDKWAKDNNADIMVEHIDNLNESEIEDEAIYLGLTY NVKLNDFFYFKSELARSISILFFKNSNKKYKNTHSTFLSNFNIGVIKNTIYEDILRLKNVNTIFLADNSQELVLAL KNDKVDYIYGDCKTLHYIANNFLSEDLVIFTGDVFYSIKNRVAISRNAPEIVKNLNLDLFSYLMKMPEELVFSFLD SNAKGSFVDVGLYNDYPPLSFINSQGKLSGILVDLWNLLSRQHIFKPIFKGFSKEDIKKSLDGKSVGIFGGIISND SVLENVNYWSKPIYPLNFKFYSKDLSNDAGPINSQFIDFNFNNIQLNKNKDIVNNFIDIVNNSYGFIENSITTKY LLKLNGYNGRLKSYDSIFNKNRFLVLAIDNRIYKVIKYILNSIFDDISFESLLQIDKNWLDKEEINSSRINSYKIM NKVKFNIEEKIWLSKNNKLNLAVKNWYPIDYVEANNYKGINQFLLDKIRMFSGLRFNIIKVHSSLDLKKLIKSGKI DMLNTNATDSNLDNVFNIKLNSRIPLYIFSNKKRVLPSRSLEKFAILDFLYSKNLASNIKSKLILVSSFNEALLLL YKGKVDGIISDEYTAAAVFEELNIDDVEKIPTFRDLAFDLSLAIYNQDYILKEIIQKWMRSNVDSQMYLNDWKFD IYYKSRSIRFKNFKFLVITFIIFYFTFLGFVIIFMFRLSFEQKRRYSFVMNEKKIAEAANAAKTIFIANVSHDIRT PINGIMAATELLDTTILTDVQKDYVRMINYSSDSLLSLIDDILYLSKIDVNELYVESQEIDLESEMEMVLKAFQSQ CAKKNIDLFSYSKSIFNNYIKGDIVKIKQVLINLIGNAFKFTDDGVIVLNYEEVCRTRTDGNRVLVTVEFKVIDTG KGIEKENFSKIFEIFKQEDDSSSRVHEGAGLGLSISRELIRLMGGLGIAVDSKVGEGTTFSFMLPFLLGSELKSKK LSINRFQSVNGDNKVLNVLLSQKSIKIFEHCSILLGCSSNVRYVASFEDAYKVFKKYPSYNFVYINVNNDNIQEGI RLANNIERLNSDVQIIFLFYYLDNKALKNLKYGYVKKPLMGLGICSILYKKEFNPEMDFEDLVPIDSALRIKEPIN VLIAEDNQVNQKVLKDILWIGINENFIDWDDGVKALKSLKDKKYTISFIDIRMPRYDGFSVAKEIRKFEKAKNL KPCVLVAVTAHALQEYKDKCLASGMNDYISKPIHISSIKTILKKYLQFEVDDIGENENLNQLVKFPNLDVNRALKE LNLSYVSYSELCRGLVDFISINIIDLEKAFDEEDLSLIKDISHSISGALSNMRSELYKDFQKIETSKDSISELKKM YSFVKDDLFQLISDIKENILFESEIVSENKLYFKNNDQFLNLLNKLLIGIKTRKPREYKEILESINKYVLDDNIQV LFSDLRRNLRLYRFAESSKILEEIIEMLNNKRY f502.nt
ATGAAAAAAGCAAACTTTTTAAGTACTAATTTTTTAATTTTACTTTTGGTTTGCTTTGTCAACGTCAATTTATTTT CTAAGGATATTTTCAAGTTTAAGCTTGTAGATCAATTTTTTCCTTTTTACTACAAGAATAATAAAGGAGAATATGA AGGACTTATTTTTTCTATTTTAGATAAATGGGCAAAAGATAATAATGCTGATATTATGGTTGAGCATATTGATAAT TTAAATGAAAGTGAAATTGAAGACGAAGCAATATATTTAGGATTAACTTATAATGTAAAATTAAATGATTTTTTTT ATTTTAAAAGTGAGCTTGCTAGGAGTATTTCAATTTTATTTTTTAAAAACTCTAATAAAAAATATAAAAATACCCA TTCAACATTTTTATCCAATTTTAATATAGGAGTTATTAAAAATACAATATATGAAGATATCTTAAGGTTAAAAAAC GTTAACACCATTTTTTTGGCTGATAATTCTCAAGAGTTAGTATTGGCCTTAAAAAACGATAAAGTTGATTATATAT TABLE 1. Nucleotide and Amino Acid Sequences
ATGGTGATTGCAAGACTTTACATTATATTGCAAATAACTTTTTAAGTGAAGATCTTGTGATTTTTACCGGGGATGT
TTTTTATAGTATCAAAAATAGAGTGGCTATTAGTAGAAATGCTCCTGAGATAGTAAAGAATTTGAATTTAGATTTG
TTTTCATATTTAATGAAAATGCCTGAGGAACTTGTTTTTTCTTTTTTAGATAGCAATGCTAAGGGAAGTTTTGTTG
ATGTTGGTTTATATAATGATTATCCTCCTTTAAGTTTTATTAATTCACAGGGAAAATTGTCTGGCATTTTAGTGGA
TTTGTGGAATCTTCTCTCAAGACAACATATCTTTAAACCTATTTTTAAGGGATTTTCCAAAGAGGATATTAAGAAA
TCATTAGATGGAAAATCAGTAGGTATTTTTGGAGGAATTATTAGCAATGATAGTGTGTTGGAAAATGTTAATTATG
TAGTAAGTAAGCCAATATATCCTCTTAATTTTAAATTTTATTCTAAAGACCTAAGCAATGATGCTGGTCCAATAAA
TTCTCAGTTTATTGATTTTAATTTTAATAATATTCAATTAAATAAGAATAAAGATATTGTTAATAACTTTATAGAT
ATTGTTAATAATTCATATGGGTTTATAGAAAATTCAATAACAACAAAATATTTGTTAAAATTAAATGGATATAACG
GTAGATTAAAATCTTACGATTCGATTTTTAATAAAAATAGGTTTTTAGTATTAGCCATTGATAATAGGATTTATAA
GGTTATTAAATATATTCTCAATTCTATATTTGATGATATTTCATTTGAATCTTTGCTTCAAATAGATAAAAATTGG
TTGGATAAAGAAGAGATTAATAGTTCTAGAATAAATAGTTATAAAATTATGAATAAGGTTAAATTTAATATAGAAG
AAAAAATTTGGTTATCAAAAAATAATAAATTAAATCTTGCTGTTAAAAATTGGTATCCAATAGATTATGTTGAGGC
AAATAATTATAAAGGAATAAATCAATTTTTGCTTGATAAGATTAGAATGTTTTCAGGTTTGAGATTTAACATAATT
AAAGTACACAGCAGTTTAGATCTTAAAAAATTAATCAAATCTGGAAAAATCGATATGCTAAATACTAATGCAACCG
ATTCAAATTTAGATAATGTTTTCAACATAAAATTAAATTCTCGAATTCCACTTTATATTTTTTCAAATAAGAAAAG
GGTGCTTCCATCTAGATCTTTAGAAAAGTTTGCTATACTTGATTTTTTATATAGTAAAAATTTGGCTTCTAATATT
AAATCAAAGCTTATTCTGGTAAGCAGTTTTAATGAAGCGTTGCTTCTTCTTTATAAGGGAAAGGTAGATGGGATTA
TTAGCGATGAGTATACAGCTGCTGCTGTTTTTGAGGAATTAAATATTGATGATGTTGAAAAAATTCCTACTTTTAG
AGATTTGGCTTTTGATTTGAGTCTTGCTATTTATAATCAAGATTATATCTTGAAAGAAATTATTCAAAAAGTTGTT
ATGCGTTCAAATGTTGACAGTCAGATGTATTTAAATGATTGGAAATTTGATATTTATTATAAATCCAGAAGTATCA
GGTTTAAAAATTTCAAATTTTTAGTGATAACATTCATTATATTTTATTTTACTTTTTTAGGATTTGTAATTATATT
TATGTTCAGATTATCATTTGAGCAGAAAAGAAGATATTCTTTTGTGATGAATGAAAAAAAGATTGCGGAAGCCGCT
AATGCTGCTAAAACCATTTTTATAGCCAATGTCAGTCATGATATTCGTACCCCTATTAACGGAATAATGGCGGCTA
CTGAGCTTTTGGATACAACTATTCTTACAGATGTTCAAAAAGATTATGTTAGGATGATAAATTATTCATCTGATTC
TTTGCTTTCTTTAATTGATGATATATTGTATTTGTCTAAAATAGATGTCAATGAATTATATGTTGAGAGTCAAGAG
ATTGATTTAGAGAGTGAAATGGAAATGGTTTTAAAAGCTTTTCAATCTCAATGTGCAAAGAAAAATATTGATTTAT
TCTCTTATTCTAAATCTATTTTTAATAATTATATAAAGGGTGATATTGTAAAAATTAAACAAGTTTTAATTAATTT
AATAGGAAATGCTTTTAAGTTTACAGATGATGGTGTTATTGTTTTAAATTATGAAGAAGTATGTAGAACAAGAACT
GATGGTAATAGGGTTTTGGTTACAGTTGAATTTAAGGTAATAGATACAGGCAAAGGGATTGAAAAAGAAAATTTTT
CTAAGATATTTGAAATATTTAAACAAGAGGATGATTCTTCTTCAAGGGTTCATGAAGGTGCAGGATTGGGATTGTC
AATATCTAGAGAGCTTATAAGACTAATGGGTGGTCTTGGTATTGCTGTTGATAGCAAGGTGGGAGAGGGTACAACT
TTTTCATTTATGTTGCCCTTTTTATTGGGTAGTGAGCTTAAAAGTAAAAAATTGTCAATCAATAGATTTCAATCAG
TAAATGGTGACAATAAAGTATTAAATGTGCTTTTAAGTCAAAAATCTATTAAAATTTTTGAGCACTGTTCGATTTT
ATTGGGATGCTCTTCTAATGTGCGCTATGTAGCGTCTTTTGAGGATGCTTATAAAGTCTTCAAGAAATACCCTTCT
TATAATTTTGTTTATATAAATGTAAATAACGATAATATTCAAGAGGGTATTCGACTTGCCAATAATATTGAAAGAC
TAAATTCTGATGTACAAATTATTTTTTTATTTTATTATTTAGATAATAAAGCTCTAAAAAATTTAAAATATGGTTA
TGTTAAAAAGCCTTTAATGGGGCTTGGTATATGCTCTATTCTTTATAAAAAAGAGTTTAACCCAGAAATGGATTTT
GAGGATTTGGTTCCAATAGATAGTGCTTTAAGGATAAAAGAGCCCATTAATGTTTTAATAGCTGAAGATAATCAGG
TAAATCAAAAAGTGTTGAAAGATATTCTTGTTGTTATAGGCATTAATGAAAATTTTATTGATGTTGTAGATGATGG
AGTAAAGGCTTTAAAATCTTTAAAAGATAAAAAATATACTATCTCTTTTATTGATATACGAATGCCAAGATATGAT
GGATTTTCGGTGGCTAAGGAAATTAGAAAATTTGAAAAGGCAAAGAATTTAAAGCCTTGTGTTTTGGTTGCTGTAA
CAGCGCATGCTTTGCAAGAGTATAAAGACAAGTGTCTTGCAAGTGGTATGAATGATTATATCTCAAAACCAATACA
CATAAGTTCAATTAAAACTATATTAAAAAAATACTTACAGTTTGAAGTTGATGATATTGGGGAGAATGAAAATTTG
AATCAACTTGTTAAGTTTCCTAATTTAGATGTTAATAGGGCTTTAAAAGAATTAAATCTTTCATATGTATCATATT
CTGAATTATGTAGAGGGCTTGTTGATTTTATCTCTATTAATATTATTGATTTGGAAAAAGCTTTTGATGAGGAAGA
TTTGTCTTTAATTAAGGATATATCTCATTCAATATCTGGAGCTCTTTCTAATATGCGTAGCGAATTGTATAAAGAT
TTTCAAAAAATTGAAACAAGTAAAGATTCAATTTCTGAGTTGAAAAAAATGTATTCTTTTGTAAAAGATGATTTAT
TTCAACTAATAAGCGACATAAAGGAAAATATTTTGTTTGAGTCTGAGATTGTTAGTGAGAACAAGCTATATTTTAA
AAATAATGATCAATTTTTAAACCTTCTCAACAAACTTTTAATTGGTATTAAGACTAGAAAGCCAAGAGAATACAAA
GAAATTCTTGAGAGCATTAATAAATATGTTTTAGACGATAATATTCAGGTATTATTTAGTGATCTTCGCAGAAATT
TAAGATTATATAGATTTGCTGAGAGCTCTAAGATTCTTGAAGAGATTATTGAAATGCTTAATAATAAGAGATATTA
G t502.nt TABLE 1. Nucleotide and Amino Acid Sequences
TGCTTTGTCAACGTCAATTTATTTTCTAAGGATATTTTCAAGTTTAAGCTTGTAGATCAATTTTTTCCTTTTTACT ACAAGAATAATAAAGGAGAATATGAAGGACTTATTTTTTCTATTTTAGATAAATGGGCAAAAGATAATAATGCTGA TATTATGGTTGAGCATATTGATAATTTAAATGAAAGTGAAATTGAAGACGAAGCAATATATTTAGGATTAACTTAT AATGTAAAATTAAATGATTTTTTTTATTTTAAAAGTGAGCTTGCTAGGAGTATTTCAATTTTATTTTTTAAAAACT CTAATAAAAAATATAAAAATACCCATTCAACATTTTTATCCAATTTTAATATAGGAGTTATTAAAAATACAATATA TGAAGATATCTTAAGGTTAAAAAACGTTAACACCATTTTTTTGGCTGATAATTCTCAAGAGTTAGTATTGGCCTTA AAAAACGATAAAGTTGATTATATATATGGTGATTGCAAGACTTTACATTATATTGCAAATAACTTTTTAAGTGAAG ATCTTGTGATTTTTACCGGGGATGTTTTTTATAGTATCAAAAATAGAGTGGCTATTAGTAGAAATGCTCCTGAGAT AGTAAAGAATTTGAATTTAGATTTGTTTTCATATTTAATGAAAATGCCTGAGGAACTTGTTTTTTCTTTTTTAGAT AGCAATGCTAAGGGAAGTTTTGTTGATGTTGGTTTATATAATGATTATCCTCCTTTAAGTTTTATTAATTCACAGG GAAAATTGTCTGGCATTTTAGTGGATTTGTGGAATCTTCTCTCAAGACAACATATCTTTAAACCTATTTTTAAGGG ATTTTCCAAAGAGGATATTAAGAAATCATTAGATGGAAAATCAGTAGGTATTTTTGGAGGAATTATTAGCAATGAT AGTGTGTTGGAAAATGTTAATTATGTAGTAAGTAAGCCAATATATCCTCTTAATTTTAAATTTTATTCTAAAGACC TAAGCAATGATGCTGGTCCAATAAATTCTCAGTTTATTGATTTTAATTTTAATAATATTCAATTAAATAAGAATAA AGATATTGTTAATAACTTTATAGATATTGTTAATAATTCATATGGGTTTATAGAAAATTCAATAACAACAAAATAT TTGTTAAAATTAAATGGATATAACGGTAGATTAAAATCTTACGATTCGATTTTTAATAAAAATAGGTTTTTAGTAT TAGCCATTGATAATAGGATTTATAAGGTTATTAAATATATTCTCAATTCTATATTTGATGATATTTCATTTGAATC TTTGCTTCAAATAGATAAAAATTGGTTGGATAAAGAAGAGATTAATAGTTCTAGAATAAATAGTTATAAAATTATG AATAAGGTTAAATTTAATATAGAAGAAAAAATTTGGTTATCAAAAAATAATAAATTAAATCTTGCTGTTAAAAATT GGTATCCAATAGATTATGTTGAGGCAAATAATTATAAAGGAATAAATCAATTTTTGCTTGATAAGATTAGAATGTT TTCAGGTTTGAGATTTAACATAATTAAAGTACACAGCAGTTTAGATCTTAAAAAATTAATCAAATCTGGAAAAATC GATATGCTAAATACTAATGCAACCGATTCAAATTTAGATAATGTTTTCAACATAAAATTAAATTCTCGAATTCCAC TTTATATTTTTTCAAATAAGAAAAGGGTGCTTCCATCTAGATCTTTAGAAAAGTTTGCTATACTTGATTTTTTATA TAGTAAAAATTTGGCTTCTAATATTAAATCAAAGCTTATTCTGGTAAGCAGTTTTAATGAAGCGTTGCTTCTTCTT TATAAGGGAAAGGTAGATGGGATTATTAGCGATGAGTATACAGCTGCTGCTGTTTTTGAGGAATTAAATATTGATG ATGTTGAAAAAATTCCTACTTTTAGAGATTTGGCTTTTGATTTGAGTCTTGCTATTTATAATCAAGATTATATCTT GAAAGAAATTATTCAAAAAGTTGTTATGCGTTCAAATGTTGACAGTCAGATGTATTTAAATGATTGGAAATTTGAT ATTTATTATAAATCCAGAAGTATCAGGTTTAAAAATTTCAAATTTTTAGTGATAACATTCATTATATTTTATTTTA CTTTTTTAGGATTTGTAATTATATTTATGTTCAGATTATCATTTGAGCAGAAAAGAAGATATTCTTTTGTGATGAA TGAAAAAAAGATTGCGGAAGCCGCTAATGCTGCTAAAACCATTTTTATAGCCAATGTCAGTCATGATATTCGTACC CCTATTAACGGAATAATGGCGGCTACTGAGCTTTTGGATACAACTATTCTTACAGATGTTCAAAAAGATTATGTTA GGATGATAAATTATTCATCTGATTCTTTGCTTTCTTTAATTGATGATATATTGTATTTGTCTAAAATAGATGTCAA TGAATTATATGTTGAGAGTCAAGAGATTGATTTAGAGAGTGAAATGGAAATGGTTTTAAAAGCTTTTCAATCTCAA TGTGCAAAGAAAAATATTGATTTATTCTCTTATTCTAAATCTATTTTTAATAATTATATAAAGGGTGATATTGTAA AAATTAAACAAGTTTTAATTAATTTAATAGGAAATGCTTTTAAGTTTACAGATGATGGTGTTATTGTTTTAAATTA TGAAGAAGTATGTAGAACAAGAACTGATGGTAATAGGGTTTTGGTTACAGTTGAATTTAAGGTAATAGATACAGGC AAAGGGATTGAAAAAGAAAATTTTTCTAAGATATTTGAAATATTTAAACAAGAGGATGATTCTTCTTCAAGGGTTC ATGAAGGTGCAGGATTGGGATTGTCAATATCTAGAGAGCTTATAAGACTAATGGGTGGTCTTGGTATTGCTGTTGA TAGCAAGGTGGGAGAGGGTACAACTTTTTCATTTATGTTGCCCTTTTTATTGGGTAGTGAGCTTAAAAGTAAAAAA TTGTCAATCAATAGATTTCAATCAGTAAATGGTGACAATAAAGTATTAAATGTGCTTTTAAGTCAAAAATCTATTA AAATTTTTGAGCACTGTTCGATTTTATTGGGATGCTCTTCTAATGTGCGCTATGTAGCGTCTTTTGAGGATGCTTA TAAAGTCTTCAAGAAATACCCTTCTTATAATTTTGTTTATATAAATGTAAATAACGATAATATTCAAGAGGGTATT CGACTTGCCAATAATATTGAAAGACTAAATTCTGATGTACAAATTATTTTTTTATTTTATTATTTAGATAATAAAG CTCTAAAAAATTTAAAATATGGTTATGTTAAAAAGCCTTTAATGGGGCTTGGTATATGCTCTATTCTTTATAAAAA AGAGTTTAACCCAGAAATGGATTTTGAGGATTTGGTTCCAATAGATAGTGCTTTAAGGATAAAAGAGCCCATTAAT GTTTTAATAGCTGAAGATAATCAGGTAAATCAAAAAGTGTTGAAAGATATTCTTGTTGTTATAGGCATTAATGAAA ATTTTATTGATGTTGTAGATGATGGAGTAAAGGCTTTAAAATCTTTAAAAGATAAAAAATATACTATCTCTTTTAT TGATATACGAATGCCAAGATATGATGGATTTTCGGTGGCTAAGGAAATTAGAAAATTTGAAAAGGCAAAGAATTTA AAGCCTTGTGTTTTGGTTGCTGTAACAGCGCATGCTTTGCAAGAGTATAAAGACAAGTGTCTTGCAAGTGGTATGA ATGATTATATCTCAAAACCAATACACATAAGTTCAATTAAAACTATATTAAAAAAATACTTACAGTTTGAAGTTGA TGATATTGGGGAGAATGAAAATTTGAATCAACTTGTTAAGTTTCCTAATTTAGATGTTAATAGGGCTTTAAAAGAA TTAAATCTTTCATATGTATCATATTCTGAATTATGTAGAGGGCTTGTTGATTTTATCTCTATTAATATTATTGATT TGGAAAAAGCTTTTGATGAGGAAGATTTGTCTTTAATTAAGGATATATCTCATTCAATATCTGGAGCTCTTTCTAA TATGCGTAGCGAATTGTATAAAGATTTTCAAAAAATTGAAACAAGTAAAGATTCAATTTCTGAGTTGAAAAAAATG TATTCTTTTGTAAAAGATGATTTATTTCAACTAATAAGCGACATAAAGGAAAATATTTTGTTTGAGTCTGAGATTG TTAGTGAGAACAAGCTATATTTTAAAAATAATGATCAATTTTTAAACCTTCTCAACAAACTTTTAATTGGTATTAA TABLE 1. Nucleotide and Amino Acid Sequences
GACTAGAAAGCCAAGAGAATACAAAGAAATTCTTGAGAGCATTAATAAATATGTTTTAGACGATAATATTCAGGTA TTATTTAGTGATCTTCGCAGAAATTTAAGATTATATAGATTTGCTGAGAGCTCTAAGATTCTTGAAGAGATTATTG AAATGCTTAATAATAAGAGATATTAG f527.aa
MNLLVKIAKFILILFLFTSCNQKQSEIQNLTHLLKSSNKNRLDKFLIIDRWNIYIANKNYEDALEIVNNGIIDDE
SREYYPLYLYLMGNIYDSMGEDFVAFNIYKRWDNFDDYVYENHSMKTRVAKKIVNLNIDSIDKINYYKFILNMGI
DNLNNEEKGNYFYNLALSLEDVQDYDESYFYYKKFLSIPRAHLKIDSRDYFNWTKINYFNNPEFWYRNLGDLIQ
DVKNFVLSGNTSKLLNIRDKNNFFIQSWDQKGGKSNSINTNSFLTTMIRLGGRRKNGIQFAKHLEADSSDDISYLE
SRGWDHIHEWYFVFKRIVYPKDPEINNGWTWIGVYLGKK t527.m
CNQKQSEIQNLTHLLKSSNKNRLDKFLIIDRWNIYIANKNYEDALEIVNNGIIDDESREYYPLYLYLMGNIYDSM GEDFVAFNIYKRWDNFDDYVYENHSMKTRVAKKIVNLNIDSIDKINYYKFILNMGIDNLNNEEKGNYFYNLALSL EDVQDYDESYFYYKKFLSIPRAHLKIDSRDYFNWTKINYFNNPEFWYRNLGDLIQDVKNFVLSGNTSKLLNIRD KNNFFIQSWDQKGGKSNSINTNSFLTTMIRLGGRRKNGIQFAKHLEADSSDDISYLESRGWDHIHEWYFVFKRIVY PKDPEINNGWTWIGVYLGKK f527 . nt
ATGAATCTATTGGTCAAAATTGCTAAATTTATTTTGATTTTGTTTTTATTTACTTCTTGCAACCAAAAGCAAAGCG AGATTCAAAATCTTACACATCTTTTAAAATCTTCTAATAAAAATAGATTAGATAAATTTCTTATTATTGATAGAGT TGTTAACATATATATTGCAAATAAAAATTATGAAGATGCTTTAGAAATTGTAAATAATGGAATTATTGATGATGAA TCTAGAGAATATTATCCTTTGTATCTTTATTTAATGGGCAATATTTATGATTCCATGGGAGAAGATTTTGTAGCTT TTAATATTTACAAGCGTGTTGTTGATAATTTTGATGATTATGTTTATGAAAACCATTCAATGAAAACAAGGGTTGC TAAAAAGATTGTCAATTTAAATATTGATTCAATCGATAAAATCAATTATTACAAATTTATATTAAATATGGGGATT GATAATTTAAATAATGAGGAAAAGGGTAATTATTTTTATAATCTTGCGCTAAGTTTGGAAGATGTTCAAGATTACG ATGAATCTTATTTTTATTATAAAAAATTTCTTTCAATTCCAAGGGCACATTTAAAAATAGATTCTAGAGACTATTT TAATGTTGTTACAAAAATTAATTACTTTAATAATCCAGAGTTTGTTGTTTATAGAAATTTAGGAGATTTAATCCAG GATGTTAAAAATTTTGTTCTTTCTGGTAATACTTCTAAATTGCTTAATATAAGAGATAAGAATAATTTTTTTATTC AAAGCTGGGATCAAAAGGGTGGAAAGAGTAATTCCATTAATACTAATAGCTTTTTAACCACTATGATTAGGCTTGG GGGGAGAAGAAAAAACGGAATACAATTTGCAAAGCATCTTGAGGCAGATTCTAGTGACGATATATCTTATCTTGAG TCAAGGGGCTGGGACCATATTCATGAATGGTATTTTGTTTTTAAAAGAATTGTTTATCCTAAAGATCCAGAAATTA ATAATGGCTGGACTTGGATAGGCGTGTATTTAGGTAAAAAATAA t527.nt
TGCAACCAAAAGCAAAGCGAGATTCAAAATCTTACACATCTTTTAAAATCTTCTAATAAAAATAGATTAGATAAAT TTCTTATTATTGATAGAGTTGTTAACATATATATTGCAAATAAAAATTATGAAGATGCTTTAGAAATTGTAAATAA TGGAATTATTGATGATGAATCTAGAGAATATTATCCTTTGTATCTTTATTTAATGGGCAATATTTATGATTCCATG GGAGAAGATTTTGTAGCTTTTAATATTTACAAGCGTGTTGTTGATAATTTTGATGATTATGTTTATGAAAACCATT CAATGAAAACAAGGGTTGCTAAAAAGATTGTCAATTTAAATATTGATTCAATCGATAAAATCAATTATTACAAATT TATATTAAATATGGGGATTGATAATTTAAATAATGAGGAAAAGGGTAATTATTTTTATAATCTTGCGCTAAGTTTG GAAGATGTTCAAGATTACGATGAATCTTATTTTTATTATAAAAAATTTCTTTCAATTCCAAGGGCACATTTAAAAA TAGATTCTAGAGACTATTTTAATGTTGTTACAAAAATTAATTACTTTAATAATCCAGAGTTTGTTGTTTATAGAAA TTTAGGAGATTTAATCCAGGATGTTAAAAATTTTGTTCTTTCTGGTAATACTTCTAAATTGCTTAATATAAGAGAT AAGAATAATTTTTTTATTCAAAGCTGGGATCAAAAGGGTGGAAAGAGTAATTCCATTAATACTAATAGCTTTTTAA CCACTATGATTAGGCTTGGGGGGAGAAGAAAAAACGGAATACAATTTGCAAAGCATCTTGAGGCAGATTCTAGTGA CGATATATCTTATCTTGAGTCAAGGGGCTGGGACCATATTCATGAATGGTATTTTGTTTTTAAAAGAATTGTTTAT CCTAAAGATCCAGAAATTAATAATGGCTGGACTTGGATAGGCGTGTATTTAGGTAAAAAATAA f541.aa
MNKILLLILLESIVFLSCSGKGSLGSEIPKVSLIIDGTFDDKSFNESALNGVKKVKEEFKIELVLKESSSNSYLSD LEGLKDAGSDLIWLIGYRFSDVAKVAALQNPDMKYAIIDPIYSNDPIPANLVGMTFRAQEGAFLTGYIAAKLSKTG TABLE 1. Nucleotide and Amino Acid Sequences
KIGFLGGIEGEIVDAFRYGYEAGAKYANKDIKISTQYIGSFADLEAGRSVATRMYSDEIDIIHHAAGLGGIGAIEV AKELGSGHYIIGVDEDQAYLAPDNVITSTTKDVGRALNIFTSNHLKTNTFEGGKLINYGLKEGWGFVRNPKMISF ELEKEIDNLSSKIINKEIIVPSNKESYEKFLKEFI t541.aa
CSGKGSLGSEIPKVSLIIDGTFDDKSFNESALNGVKKVKEEFKIELVLKESSSNSYLSDLEGLKDAGSDLIWLIGY
RFSDVAKVAALQNPDMKYAIIDPIYSNDPIPANLVGMTFRAQEGAFLTGYIAAKLSKTGKIGFLGGIEGEIVDAFR
YGYEAGAKYANKDIKISTQYIGSFADLEAGRSVATRMYSDEIDIIHHAAGLGGIGAIEVAKELGSGHYIIGVDEDQ
AYLAPDNVITSTTKDVGRALNIFTSNHLKTNTFEGGKLINYGLKEGWGFVRNPKMISFELEKEIDNLSSKIINKE
IIVPSNKESYEKFLKE
FI f541.nt
ATGAATAAAATATTGTTGTTGATTTTGCTTGAGAGTATTGTTTTTTTATCTTGTAGTGGTAAAGGTAGTCTTGGGA GCGAAATTCCTAAGGTATCTTTAATAATTGATGGAACTTTTGATGATAAATCTTTTAATGAGAGTGCTTTAAATGG CGTAAAAAAAGTTAAAGAAGAATTTAAAATTGAGCTTGTTTTAAAAGAATCCTCATCAAATTCTTATTTATCTGAT CTTGAAGGGCTTAAGGATGCGGGCTCAGATTTAATTTGGCTTATTGGGTATAGATTTAGCGATGTGGCCAAGGTTG CGGCTCTTCAAAATCCCGATATGAAATATGCAATTATTGATCCTATTTATTCTAACGATCCTATTCCTGCAAATTT GGTGGGCATGACCTTTAGAGCTCAAGAGGGTGCATTTTTAACGGGTTATATTGCTGCAAAACTTTCTAAAACAGGT AAAATTGGATTTTTAGGGGGAATAGAAGGCGAGATAGTAGATGCTTTTAGGTATGGGTATGAAGCTGGTGCTAAGT ATGCTAATAAAGATATAAAGATATCTACTCAGTATATTGGTAGTTTTGCTGACCTTGAAGCTGGTAGAAGCGTTGC AACTAGGATGTATTCTGATGAGATAGACATTATTCATCATGCTGCAGGCCTTGGAGGAATTGGGGCTATTGAGGTT GCAAAAGAACTTGGTTCTGGGCATTACATTATTGGAGTTGATGAAGATCAAGCATATCTTGCTCCTGACAATGTAA TAACATCTACAACTAAAGATGTTGGTAGAGCTTTAAATATTTTTACATCTAACCATTTAAAAACTAATACTTTCGA AGGTGGCAAATTAATAAATTATGGCCTTAAAGAAGGAGTTGTGGGGTTTGTAAGAAATCCTAAAATGATTTCCTTT GAACTTGAAAAAGAAATTGACAATCTTTCTAGCAAAATAATCAACAAAGAAATTATTGTTCCATCTAATAAAGAAA GTTATGAGAAGTTTCTTAAAGAATTTATTTAA t541.nt
TGTAGTGGTAAAGGTAGTCTTGGGAGCGAAATTCCTAAGGTATCTTTAATAATTGATGGAACTTTTGATGATAAAT CTTTTAATGAGAGTGCTTTAAATGGCGTAAAAAAAGTTAAAGAAGAATTTAAAATTGAGCTTGTTTTAAAAGAATC CTCATCAAATTCTTATTTATCTGATCTTGAAGGGCTTAAGGATGCGGGCTCAGATTTAATTTGGCTTATTGGGTAT AGATTTAGCGATGTGGCCAAGGTTGCGGCTCTTCAAAATCCCGATATGAAATATGCAATTATTGATCCTATTTATT CTAACGATCCTATTCCTGCAAATTTGGTGGGCATGACCTTTAGAGCTCAAGAGGGTGCATTTTTAACGGGTTATAT TGCTGCAAAACTTTCTAAAACAGGTAAAATTGGATTTTTAGGGGGAATAGAAGGCGAGATAGTAGATGCTTTTAGG TATGGGTATGAAGCTGGTGCTAAGTATGCTAATAAAGATATAAAGATATCTACTCAGTATATTGGTAGTTTTGCTG ACCTTGAAGCTGGTAGAAGCGTTGCAACTAGGATGTATTCTGATGAGATAGACATTATTCATCATGCTGCAGGCCT TGGAGGAATTGGGGCTATTGAGGTTGCAAAAGAACTTGGTTCTGGGCATTACATTATTGGAGTTGATGAAGATCAA GCATATCTTGCTCCTGACAATGTAATAACATCTACAACTAAAGATGTTGGTAGAGCTTTAAATATTTTTACATCTA ACCATTTAAAAACTAATACTTTCGAAGGTGGCAAATTAATAAATTATGGCCTTAAAGAAGGAGTTGTGGGGTTTGT AAGAAATCCTAAAATGATTTCCTTTGAACTTGAAAAAGAAATTGACAATCTTTCTAGCAAAATAATCAACAAAGAA ATTATTGTTCCATCTAATAAAGAAAGTTATGAGAAGTTTCTTAAAGAATTTATTTAA f561.aa
MYKNGFFKNYLSLFLIFLVIACTSKDSSNEYVEEQEAENSSKPDDSKIDEHTIGHVFHAMGWHSKKDRKSLGKNI KVFYFSEEDGHFQTIPSKENAKLIVYFYDNVYAGEAPISISGKEAFIFVGITPDFKKIINSNLHGAKSDLIGTFKD LNIKNSKLEITVDENNSDAKTFLESVNYIIDGVEKISPMLTN t561.aa TABLE 1. Nucleotide and Amino Acid Sequences
CTSKDSSNEYVEEQEAENSSKPDDSKIDEHTIGHVFHAMGWHSKKDRKSLGKNIKVFYFSEEDGHFQTIPSKENA KLIVYFYDNVYAGEAPISISGKEAFIFVGITPDFKKIINSNLHGAKSDLIGTFKDLNIKNSKLEITVDENNSDAKT FLESVNYIIDGVEKISPMLTN f561.nt
ATGTATAAAAATGGTTTTTTTAAAAACTATTTGTCATTGTTTTTAATTTTTTTAGTAATTGCTTGTACTTCAAAAG ATAGCTCAAATGAATATGTTGAGGAGCAAGAAGCGGAGAACTCTTCTAAGCCTGATGATTCTAAAATAGATGAACA TACTATTGGGCACGTTTTTCACGCTATGGGAGTAGTTCATTCAAAAAAGGATCGAAAAAGTTTGGGGAAAAATATA AAGGTTTTTTATTTTTCTGAAGAAGATGGACATTTTCAAACAATACCCTCAAAAGAGAATGCAAAGTTAATAGTTT ATTTTTATGACAATGTTTATGCAGGAGAGGCTCCAATTAGTATCTCTGGAAAAGAAGCCTTTATTTTTGTTGGGAT TACCCCTGACTTTAAAAAGATTATAAATAGCAATTTACATGGCGCTAAAAGTGATCTTATTGGTACTTTTAAAGAT CTTAATATTAAAAATTCAAAATTGGAAATTACAGTTGATGAGAATAATTCAGATGCCAAGACCTTCCTTGAATCTG TTAATTACATTATCGACGGCGTTGAAAAAATTTCACCTATGTTAACGAATTAA t561.nt
TGTACTTCAAAAGATAGCTCAAATGAATATGTTGAGGAGCAAGAAGCGGAGAACTCTTCTAAGCCTGATGATTCTA AAATAGATGAACATACTATTGGGCACGTTTTTCACGCTATGGGAGTAGTTCATTCAAAAAAGGATCGAAAAAGTTT GGGGAAAAATATAAAGGTTTTTTATTTTTCTGAAGAAGATGGACATTTTCAAACAATACCCTCAAAAGAGAATGCA AAGTTAATAGTTTATTTTTATGACAATGTTTATGCAGGAGAGGCTCCAATTAGTATCTCTGGAAAAGAAGCCTTTA TTTTTGTTGGGATTACCCCTGACTTTAAAAAGATTATAAATAGCAATTTACATGGCGCTAAAAGTGATCTTATTGG TACTTTTAAAGATCTTAATATTAAAAATTCAAAATTGGAAATTACAGTTGATGAGAATAATTCAGATGCCAAGACC TTCCTTGAATCTGTTAATTACATTATCGACGGCGTTGAAAAAATTTCACCTATGTTAACGAATTAA f604.aa
MSFNKTKKIGKKIKIVTLLMLAVSLIACNNNSEKEKLAFKVYIGGAPSSLDPHLVDETIGARILEQIFSGLLTLNT KTGKLKPGLAKNWEASKDKKTYQFYLRDNLFWSDGVEITAEGIRKSFLRILNKETGSTNVDMLKSIIKNGQEYFDG KVSDSELGIKAIDSKTLEITLTAPKPYFLELLLHYAFMPVPIHVIEKYKGNWTSPENMVTSGPFKLKKRLPNEKII FEKNERYYNAKEVELDELVYITSDNDLTVYNMYKNNEIDAIFNSIPPDIVNEIKLQKDYYQHKSNAIYLYSFNTKI KPLDDARVREALTLAIDRETLTYKVLNDGTVPTREITPDLKNYNYGKKLALFDPEKSKKLLADAGYPNGKGFPMLT LKYNTNETHKKIAAFIQNQWKKILNINLMLTNENWPVLTNSRNTGNFEIIRVGRIGEYLDPHTYFTIFTRENSQLA SYGYSNLEFDKLIRESDLEKDPIKRKQLLRKAESIIIEKDFPAAPIYIYSGHYLFRNDKWTGWNPNVSEVYYLSEL KPIKNAKHN t604.aa
CNNNSEKEKLAFKVYIGGAPSSLDPHLVDETIGARILEQIFSGLLTLNTKTGKLKPGLAKNWEASKDKKTYQFYLR DNLFWSDGVEITAEGIRKSFLRILNKETGSTNVDMLKSIIKNGQEYFDGKVSDSELGIKAIDSKTLEITLTAPKPY FLELLLHYAFMPVPIHVIEKYKGNWTSPENMVTSGPFKLKKRLPNEKIIFEKNERYYNAKEVELDELVYITSDNDL TVYNMYKNNEIDAIFNSIPPDIVNEIKLQKDYYQHKSNAIYLYSFNTKIKPLDDARVREALTLAIDRETLTYKVLN DGTVPTREITPDLKNYNYGKKLALFDPEKSKKLLADAGYPNGKGFPMLTLKYNTNETHKKIAAFIQNQWKKILNIN LMLTNENWPVLTNSRNTGNFEIIRVGRIGEYLDPHTYFTIFTRENSQLASYGYSNLEFDKLIRESDLEKDPIKRKQ LLRKAESIIIEKDFPAAPIYIYSGHYLFRNDKWTGWNPNVSEVYYLSELKPIKNAKHN f604.nt
ATGAGCTTTAATAAAACTAAAAAAATCGGTAAAAAAATTAAAATAGTAACACTACTTATGCTTGCTGTGTCTTTAA TTGCATGCAATAATAATTCAGAAAAAGAAAAATTAGCATTTAAAGTATACATAGGGGGAGCGCCCTCATCGCTTGA CCCTCATTTGGTAGATGAGACAATAGGAGCAAGAATTTTAGAACAAATATTCTCAGGGCTTTTGACATTAAATACC AAAACAGGAAAGCTAAAGCCCGGACTTGCTAAAAATTGGGAAGCCTCAAAAGATAAAAAAACATATCAATTTTATC TAAGGGACAACCTTTTTTGGAGCGATGGAGTTGAAATTACCGCTGAAGGGATAAGAAAATCTTTTTTAAGAATTTT AAATAAAGAAACAGGATCTACAAATGTTGACATGCTCAAATCAATAATAAAAAATGGACAAGAGTATTTTGACGGG AAAGTATCCGATTCTGAACTTGGAATCAAGGCAATTGATAGTAAAACGCTGGAAATAACACTTACGGCCCCAAAGC CATATTTTCTTGAACTGCTTCTACATTACGCATTCATGCCAGTACCTATTCATGTGATTGAAAAATATAAGGGAAA TABLE 1. Nucleotide and Amino Acid Sequences
TTGGACAAGCCCTGAAAACATGGTTACTAGCGGTCCTTTTAAATTAAAAAAAAGATTACCTAATGAAAAAATTATC TTTGAAAAAAACGAACGTTATTATAATGCAAAAGAAGTAGAACTTGATGAGCTTGTCTACATTACGTCTGACAATG ATCTTACTGTGTACAATATGTACAAAAACAACGAAATTGATGCTATTTTTAACAGCATCCCGCCGGACATTGTAAA TGAAATAAAACTACAAAAAGACTATTACCAACACAAAAGTAATGCAATTTATTTATATTCATTTAATACAAAAATA AAACCCCTTGATGATGCTAGAGTTAGAGAAGCTTTAACCTTAGCTATTGACAGAGAAACTTTAACTTACAAAGTGC TAAATGATGGCACAGTTCCTACAAGAGAAATAACTCCTGATCTTAAAAATTACAATTACGGTAAAAAATTGGCTTT ATTTGATCCTGAAAAATCTAAAAAGCTTTTGGCAGATGCAGGGTATCCTAATGGGAAAGGATTCCCAATGCTAACA CTAAAATATAATACAAACGAAACTCATAAAAAAATTGCTGCATTTATTCAAAACCAATGGAAAAAAATTCTAAATA TCAATCTTATGCTTACCAACGAAAATTGGCCTGTTCTTACCAACAGCAGAAATACTGGCAATTTTGAAATAATAAG AGTTGGACGCATTGGGGAATATTTAGATCCACACACATACTTTACTATATTCACAAGAGAAAATTCACAACTTGCA TCATACGGATATTCAAACCTAGAATTTGACAAACTCATCAGAGAATCAGATCTTGAAAAAGATCCTATAAAAAGAA AACAATTACTCAGAAAAGCAGAATCAATAATAATTGAAAAAGATTTTCCTGCTGCACCAATATACATATATTCTGG GCATTATCTTTTTAGAAACGATAAATGGACTGGATGGAATCCTAATGTATCAGAGGTTTATTATCTTTCTGAATTA AAACCAATTAAAAATGCAAAACATAATTAA t604.nt
TGCAATAATAATTCAGAAAAAGAAAAATTAGCATTTAAAGTATACATAGGGGGAGCGCCCTCATCGCTTGACCCTC ATTTGGTAGATGAGACAATAGGAGCAAGAATTTTAGAACAAATATTCTCAGGGCTTTTGACATTAAATACCAAAAC AGGAAAGCTAAAGCCCGGACTTGCTAAAAATTGGGAAGCCTCAAAAGATAAAAAAACATATCAATTTTATCTAAGG GACAACCTTTTTTGGAGCGATGGAGTTGAAATTACCGCTGAAGGGATAAGAAAATCTTTTTTAAGAATTTTAAATA AAGAAACAGGATCTACAAATGTTGACATGCTCAAATCAATAATAAAAAATGGACAAGAGTATTTTGACGGGAAAGT ATCCGATTCTGAACTTGGAATCAAGGCAATTGATAGTAAAACGCTGGAAATAACACTTACGGCCCCAAAGCCATAT TTTCTTGAACTGCTTCTACATTACGCATTCATGCCAGTACCTATTCATGTGATTGAAAAATATAAGGGAAATTGGA CAAGCCCTGAAAACATGGTTACTAGCGGTCCTTTTAAATTAAAAAAAAGATTACCTAATGAAAAAATTATCTTTGA AAAAAACGAACGTTATTATAATGCAAAAGAAGTAGAACTTGATGAGCTTGTCTACATTACGTCTGACAATGATCTT ACTGTGTACAATATGTACAAAAACAACGAAATTGATGCTATTTTTAACAGCATCCCGCCGGACATTGTAAATGAAA TAAAACTACAAAAAGACTATTACCAACACAAAAGTAATGCAATTTATTTATATTCATTTAATACAAAAATAAAACC CCTTGATGATGCTAGAGTTAGAGAAGCTTTAACCTTAGCTATTGACAGAGAAACTTTAACTTACAAAGTGCTAAAT GATGGCACAGTTCCTACAAGAGAAATAACTCCTGATCTTAAAAATTACAATTACGGTAAAAAATTGGCTTTATTTG ATCCTGAAAAATCTAAAAAGCTTTTGGCAGATGCAGGGTATCCTAATGGGAAAGGATTCCCAATGCTAACACTAAA ATATAATACAAACGAAACTCATAAAAAAATTGCTGCATTTATTCAAAACCAATGGAAAAAAATTCTAAATATCAAT CTTATGCTTACCAACGAAAATTGGCCTGTTCTTACCAACAGCAGAAATACTGGCAATTTTGAAATAATAAGAGTTG GACGCATTGGGGAATATTTAGATCCACACACATACTTTACTATATTCACAAGAGAAAATTCACAACTTGCATCATA CGGATATTCAAACCTAGAATTTGACAAACTCATCAGAGAATCAGATCTTGAAAAAGATCCTATAAAAAGAAAACAA TTACTCAGAAAAGCAGAATCAATAATAATTGAAAAAGATTTTCCTGCTGCACCAATATACATATATTCTGGGCATT ATCTTTTTAGAAACGATAAATGGACTGGATGGAATCCTAATGTATCAGAGGTTTATTATCTTTCTGAATTAAAACC AATTAAAAATGCAAAACATAATTAA f736.aa
MKKVIILIFMLSTSLLYNCKNQDNEKIVSIGGSTTVSPILDEMILRYNKINNNTKVTYDAQGSSVGINGLFNKIYK IAISSRDLTKEEIEQGAKETVFAYDALIFITSPEIKITNITEENLAKILNGEIQNWKQVGGPDAKINFINRDSSSG SYSSIKDLLLNKIFKTHEEAQFRQDGIWKSNGEVIEKTSLTPHSIGYIGLGYAKNSIEKGLNILSVNSTYPTKET INSNKYTIKRNLIIVTNNKYEDKSVTQFIDFMTSSTGQDIVEEQGFLGIKT t736 . aa
CKNQDNEKIVSIGGSTTVSPILDEMILRYNKINNNTKVTYDAQGSSVGINGLFNKIYKIAISSRDLTKEEIEQGAK ETVFAYDALIFITSPEIKITNITEENLAKILNGEIQNWKQVGGPDAKINFINRDSSSGSYSSIKDLLLNKIFKTHE EAQFRQDGIWKSNGEVIEKTSLTPHSIGYIGLGYAKNSIEKGLNILSVNSTYPTKETINSNKYTIKRNLIIVTNN KYEDKSVTQFIDFMTSSTGQDIVEEQGFLGIKT f736 . nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGAAAAAAGTTATTATCTTAATTTTTATGCTATCAACAAGTTTATTATACAACTGTAAAAATCAAGACAATGAAA AAATTGTATCAATTGGAGGATCTACAACTGTAAGCCCAATACTAGACGAAATGATTTTAAGATATAATAAAATAAA CAATAATACTAAAGTAACATACGATGCACAAGGAAGTAGTGTTGGCATAAACGGGCTATTTAACAAAATATATAAA ATAGCAATATCATCAAGAGATTTAACAAAAGAAGAAATTGAACAAGGGGCAAAAGAAACTGTATTTGCTTATGATG CTTTAATTTTCATTACAAGCCCTGAAATAAAAATTACAAATATTACAGAAGAAAATCTAGCTAAAATACTAAATGG AGAAATTCAAAATTGGAAACAAGTGGGAGGTCCTGATGCTAAAATCAACTTTATCAATCGAGACTCTTCTTCTGGT TCTTATTCGTCTATAAAAGACCTACTTCTTAATAAAATATTCAAAACTCACGAAGAAGCTCAATTTAGACAAGACG GAATAGTGGTAAAATCTAATGGAGAGGTAATTGAAAAAACAAGCCTTACTCCCCACTCAATAGGATATATAGGTCT TGGATACGCAAAAAATTCAATAGAAAAGGGTTTGAATATTCTTTCTGTTAACAGCACATATCCTACAAAAGAAACA ATAAATAGCAATAAATACACCATTAAAAGAAATTTAATAATAGTTACAAATAACAAATACGAGGATAAAAGCGTAA CTCAATTTATTGATTTCATGACAAGCTCAACTGGACAAGATATTGTTGAAGAACAAGGCTTTTTAGGGATAAAAAC ATAA t736.nt
TGTAAAAATCAAGACAATGAAAAAATTGTATCAATTGGAGGATCTACAACTGTAAGCCCAATACTAGACGAAATGA TTTTAAGATATAATAAAATAAACAATAATACTAAAGTAACATACGATGCACAAGGAAGTAGTGTTGGCATAAACGG GCTATTTAACAAAATATATAAAATAGCAATATCATCAAGAGATTTAACAAAAGAAGAAATTGAACAAGGGGCAAAA GAAACTGTATTTGCTTATGATGCTTTAATTTTCATTACAAGCCCTGAAATAAAAATTACAAATATTACAGAAGAAA ATCTAGCTAAAATACTAAATGGAGAAATTCAAAATTGGAAACAAGTGGGAGGTCCTGATGCTAAAATCAACTTTAT CAATCGAGACTCTTCTTCTGGTTCTTATTCGTCTATAAAAGACCTACTTCTTAATAAAATATTCAAAACTCACGAA GAAGCTCAATTTAGACAAGACGGAATAGTGGTAAAATCTAATGGAGAGGTAATTGAAAAAACAAGCCTTACTCCCC ACTCAATAGGATATATAGGTCTTGGATACGCAAAAAATTCAATAGAAAAGGGTTTGAATATTCTTTCTGTTAACAG CACATATCCTACAAAAGAAACAATAAATAGCAATAAATACACCATTAAAAGAAATTTAATAATAGTTACAAATAAC AAATACGAGGATAAAAGCGTAACTCAATTTATTGATTTCATGACAAGCTCAACTGGACAAGATATTGTTGAAGAAC AAGGCTTTTTAGGGATAAAAACATAA f752.aa
MNKKLNEVLLKLDQDLIKCVKGSLDLEISGVTYSSKLVLPRFVFFALPGIHFDGHDFIEIAIQKGSNVWCSRDVD FYSPNVTYIKVDDFNIRKFMSNFSNIFYDEPSKKLKVIGVTGTDGKSSVCYYIYLLFKKKGVKVGFISTVFFDDGS GSLIKNPYRQSTPESTEIHSFLSTMVKNEAQYAILESTSHGLDLETARLIDVNYFAWFTNIGHEHLEFHGTIQNY LNVKLGLFRSVSDDAGFGVINLDDLYSSDFKNAVKKSFTYSLKSSKADFFVSFIDEKTDSTRFEFYHKGVKYLANV SLLGSFNVENVMAALILVSQILNIDIQDIVDKLNCIKSLDGRMDSINLGQNFSVIIDYAHTPGAFSKLFPIFKRFA TNRLISVFGSAGERDVEKRFLQGQIADIYSDLIILCDEDPRGENSMCIIKDIAKGIVNKVENKDLFFIADRKQAIE KAISLAKAGDLWALGKGHESSIIYKNREVFWNEQEWKNAILSLEKSEKEK t752.aa
CVKGSLDLEISGVTYSSKLVLPRFVFFALPGIHFDGHDFIEIAIQKGSNVWCSRDVDFYSPNVTYIKVDDFNIRK FMSNFSNIFYDEPSKKLKVIGVTGTDGKSSVCYYIYLLFKKKGVKVGFISTVFFDDGSGSLIKNPYRQSTPESTEI HSFLSTMVKNEAQYAILESTSHGLDLETARLIDVNYFAWFTNIGHEHLEFHGTIQNYLNVKLGLFRSVSDDAGFG VINLDDLYSSDFKNAVKKSFTYSLKSSKADFFVSFIDEKTDSTRFEFYHKGVKYLANVSLLGSFNVENVMAALILV SQILNIDIQDIVDKLNCIKSLDGRMDSINLGQNFSVIIDYAHTPGAFSKLFPIFKRFATNRLISVFGSAGERDVEK RFLQGQIADIYSDLIILCDEDPRGENSMCIIKDIAKGIVNKVENKDLFFIADRKQAIEKAISLAKAGDLWALGKG HESSIIYKNREVFWNEQEWKNAILSLEKSEKEK f752.nt
ATGAATAAAAAACTTAATGAAGTTTTATTAAAGTTAGATCAAGATTTAATAAAATGTGTAAAAGGTTCTCTTGATT TAGAAATATCAGGAGTTACTTATAGTTCTAAATTGGTTTTGCCCAGGTTTGTGTTTTTTGCTCTTCCAGGAATTCA TTTTGATGGGCATGATTTTATTGAAATTGCAATTCAAAAGGGTAGTAATGTTGTTGTGTGTTCACGAGATGTGGAT TTTTACAGTCCTAATGTTACTTATATTAAGGTAGATGACTTTAACATAAGAAAATTTATGTCTAATTTTTCAAATA TTTTTTATGATGAGCCTTCAAAAAAATTAAAAGTTATTGGAGTCACTGGCACTGACGGGAAAAGTTCTGTTTGTTA TTATATATATCTTCTTTTTAAAAAAAAGGGTGTTAAAGTAGGTTTTATATCGACAGTATTTTTTGATGATGGGAGT GGAAGCTTGATTAAAAATCCTTACAGACAATCAACTCCCGAGTCTACGGAAATACATTCATTTTTAAGCACCATGG TABLE 1. Nucleotide and Amino Acid Sequences
TTAAAAATGAAGCTCAATATGCAATTCTTGAATCTACTTCTCATGGGCTTGACCTTGAAACAGCAAGGCTTATTGA TGTTAATTATTTTGCAGTTGTTTTTACCAATATTGGACATGAGCATCTTGAATTTCATGGCACAATTCAAAATTAT TTGAATGTCAAGCTGGGTCTTTTTCGGTCTGTTAGTGATGATGCTGGTTTTGGGGTTATTAATCTTGATGACCTTT ATTCTTCTGATTTTAAGAATGCTGTTAAGAAATCTTTTACTTATAGCTTAAAAAGCAGTAAAGCGGATTTTTTTGT TAGTTTTATTGATGAGAAAACCGATTCTACTAGATTTGAATTTTATCACAAGGGGGTTAAATATCTTGCTAATGTT AGCCTACTGGGGAGTTTTAATGTTGAGAATGTAATGGCTGCTCTTATTTTAGTTTCTCAAATTTTAAATATCGATA TTCAAGATATTGTTGATAAACTTAACTGCATTAAAAGTCTTGATGGGCGTATGGATAGTATTAATTTGGGGCAAAA TTTTTCTGTAATAATTGATTATGCTCATACTCCTGGTGCTTTTTCCAAGCTTTTTCCTATTTTTAAAAGATTTGCT ACCAATAGATTGATTTCTGTTTTTGGCTCTGCAGGAGAAAGAGATGTTGAAAAAAGATTTTTGCAAGGGCAAATCG CAGATATTTATTCTGATTTAATAATACTTTGCGATGAAGATCCAAGAGGCGAGAATAGTATGTGTATAATTAAAGA CATTGCAAAAGGAATTGTAAATAAAGTTGAAAATAAGGATTTATTTTTTATTGCTGATAGAAAGCAGGCTATTGAA AAAGCAATAAGTCTTGCAAAAGCAGGAGATTTGGTTGTTGCTTTGGGCAAAGGTCATGAAAGTTCAATAATTTATA AAAATAGAGAAGTTTTTTGGAATGAACAAGAGGTAGTTAAAAATGCTATTTTAAGTTTAGAAAAATCAGAAAAGGA GAAGTGA t752.nt
TGTGTAAAAGGTTCTCTTGATTTAGAAATATCAGGAGTTACTTATAGTTCTAAATTGGTTTTGCCCAGGTTTGTGT TTTTTGCTCTTCCAGGAATTCATTTTGATGGGCATGATTTTATTGAAATTGCAATTCAAAAGGGTAGTAATGTTGT TGTGTGTTCACGAGATGTGGATTTTTACAGTCCTAATGTTACTTATATTAAGGTAGATGACTTTAACATAAGAAAA TTTATGTCTAATTTTTCAAATATTTTTTATGATGAGCCTTCAAAAAAATTAAAAGTTATTGGAGTCACTGGCACTG ACGGGAAAAGTTCTGTTTGTTATTATATATATCTTCTTTTTAAAAAAAAGGGTGTTAAAGTAGGTTTTATATCGAC AGTATTTTTTGATGATGGGAGTGGAAGCTTGATTAAAAATCCTTACAGACAATCAACTCCCGAGTCTACGGAAATA CATTCATTTTTAAGCACCATGGTTAAAAATGAAGCTCAATATGCAATTCTTGAATCTACTTCTCATGGGCTTGACC TTGAAACAGCAAGGCTTATTGATGTTAATTATTTTGCAGTTGTTTTTACCAATATTGGACATGAGCATCTTGAATT TCATGGCACAATTCAAAATTATTTGAATGTCAAGCTGGGTCTTTTTCGGTCTGTTAGTGATGATGCTGGTTTTGGG GTTATTAATCTTGATGACCTTTATTCTTCTGATTTTAAGAATGCTGTTAAGAAATCTTTTACTTATAGCTTAAAAA GCAGTAAAGCGGATTTTTTTGTTAGTTTTATTGATGAGAAAACCGATTCTACTAGATTTGAATTTTATCACAAGGG GGTTAAATATCTTGCTAATGTTAGCCTACTGGGGAGTTTTAATGTTGAGAATGTAATGGCTGCTCTTATTTTAGTT TCTCAAATTTTAAATATCGATATTCAAGATATTGTTGATAAACTTAACTGCATTAAAAGTCTTGATGGGCGTATGG ATAGTATTAATTTGGGGCAAAATTTTTCTGTAATAATTGATTATGCTCATACTCCTGGTGCTTTTTCCAAGCTTTT TCCTATTTTTAAAAGATTTGCTACCAATAGATTGATTTCTGTTTTTGGCTCTGCAGGAGAAAGAGATGTTGAAAAA AGATTTTTGCAAGGGCAAATCGCAGATATTTATTCTGATTTAATAATACTTTGCGATGAAGATCCAAGAGGCGAGA ATAGTATGTGTATAATTAAAGACATTGCAAAAGGAATTGTAAATAAAGTTGAAAATAAGGATTTATTTTTTATTGC TGATAGAAAGCAGGCTATTGAAAAAGCAATAAGTCTTGCAAAAGCAGGAGATTTGGTTGTTGCTTTGGGCAAAGGT CATGAAAGTTCAATAATTTATAAAAATAGAGAAGTTTTTTGGAATGAACAAGAGGTAGTTAAAAATGCTATTTTAA GTTTAGAAAAATCAGAAAAGGAGAAGTGA f798.aa
MVFRTYKHLELIMLPMLMLSCAFFKKPQSVHQDSNTGKPISDEKLHLISGKISNKKLPIINSNHDVTWIKTKAMTI LGEDGKEIPEFKNKFGYSYIISPVKMDGKYSYYASLLILFETTKNGDDEYEIEDVKFVTAGSTLELKNSLLAVENS QEEGYVTAYPFGILMSDEIKNAFKLTYKNGHWNYMLADLTVKNKLTQETKIYKISLNSKLIIEFLKEVLKENSILK DIAGDLFEDI t798.aa
CAFFKKPQSVHQDSNTGKPISDEKLHLISGKISNKKLPIINSNHDVTWIKTKAMTILGEDGKEIPEFKNKFGYSYI ISPVKMDGKYSYYASLLILFETTKNGDDEYEIEDVKFVTAGSTLELKNSLLAVENSQEEGYVTAYPFGILMSDEIK NAFKLTYKNGHWNYMLADLTVKNKLTQETKIYKISLNSKLIIEFLKEVLKENSILKDIAGDLFEDI f798.nt
ATGGTATTTAGAACATATAAACATTTGGAACTAATAATGCTGCCCATGTTAATGCTGAGTTGCGCTTTTTTTAAGA AACCACAATCTGTACATCAAGACAGCAATACTGGCAAACCAATAAGCGATGAAAAATTACATTTAATATCAGGCAA AATTTCAAATAAAAAATTGCCAATCATAAATAGTAATCATGACGTAACTTGGATAAAAACAAAGGCAATGACAATC TABLE 1. Nucleotide and Amino Acid Sequences
TTAGGCGAAGATGGAAAAGAAATACCAGAATTTAAAAACAAATTTGGATATTCTTATATAATATCTCCTGTAAAAA TGGATGGAAAATATAGTTATTACGCGTCATTATTAATACTTTTTGAAACAACTAAAAATGGAGATGATGAATATGA AATTGAAGATGTTAAATTTGTAACAGCTGGTTCCACCCTAGAACTTAAAAATTCTCTTTTAGCTGTTGAAAATTCA CAAGAAGAAGGATATGTTACTGCATACCCATTTGGAATATTGATGAGTGACGAGATTAAAAATGCTTTTAAATTAA CATATAAAAATGGTCATTGGAATTATATGCTTGCAGATTTAACTGTCAAAAATAAACTTACTCAAGAAACTAAAAT TTATAAAATTTCTCTTAATTCAAAATTAATTATTGAATTTTTAAAAGAAGTGCTAAAAGAAAATTCTATATTAAAA GACATAGCTGGAGATTTATTTGAAGATATATAA t79δ.nt
TGCGCTTTTTTTAAGAAACCACAATCTGTACATCAAGACAGCAATACTGGCAAACCAATAAGCGATGAAAAATTAC ATTTAATATCAGGCAAAATTTCAAATAAAAAATTGCCAATCATAAATAGTAATCATGACGTAACTTGGATAAAAAC AAAGGCAATGACAATCTTAGGCGAAGATGGAAAAGAAATACCAGAATTTAAAAACAAATTTGGATATTCTTATATA ATATCTCCTGTAAAAATGGATGGAAAATATAGTTATTACGCGTCATTATTAATACTTTTTGAAACAACTAAAAATG GAGATGATGAATATGAAATTGAAGATGTTAAATTTGTAACAGCTGGTTCCACCCTAGAACTTAAAAATTCTCTTTT AGCTGTTGAAAATTCACAAGAAGAAGGATATGTTACTGCATACCCATTTGGAATATTGATGAGTGACGAGATTAAA AATGCTTTTAAATTAACATATAAAAATGGTCATTGGAATTATATGCTTGCAGATTTAACTGTCAAAAATAAACTTA CTCAAGAAACTAAAATTTATAAAATTTCTCTTAATTCAAAATTAATTATTGAATTTTTAAAAGAAGTGCTAAAAGA AAATTCTATATTAAAAGACATAGCTGGAGATTTATTTGAAGATATATAA fδ05.aa
MLRKLKDISKIVLVTDGLTPNCQTCGKLIANGDEVYIAEDGLFHSVKSNTIAGSTLTMIQGLKNLIEFGFSLSDAV QASSYNPTRILNIDKKGLICHGYDANLNVLDKDFNLKLTMIESKIIFNNL tδ05.aa
CQTCGKLIANGDEVYIAEDGLFHSVKSNTIAGSTLTMIQGLKNLIEFGFSLSDAVQASSYNPTRILNIDKKGLICH GYDANLNVLDKDFNLKLTMIESKIIFNNL f805.nt
ATGCTTAGAAAGCTTAAAGATATAAGTAAAATAGTCCTTGTAACTGACGGACTTACTCCGAATTGTCAAACTTGTG GAAAACTAATTGCAAACGGAGACGAAGTTTATATTGCAGAAGATGGATTATTCCATAGCGTGAAAAGCAACACAAT AGCTGGATCAACACTCACAATGATACAAGGTCTTAAAAATTTAATAGAATTTGGTTTCAGCTTAAGCGATGCTGTT CAAGCAAGCTCTTACAATCCAACAAGAATTCTCAATATTGATAAAAAGGGCTTAATATGTCATGGATATGATGCAA ACCTCAATGTCCTAGATAAAGATTTTAATCTAAAGTTAACAATGATAGAATCTAAAATAATTTTTAACAATCTCTA A t805.nt
TGTCAAACTTGTGGAAAACTAATTGCAAACGGAGACGAAGTTTATATTGCAGAAGATGGATTATTCCATAGCGTGA AAAGCAACACAATAGCTGGATCAACACTCACAATGATACAAGGTCTTAAAAATTTAATAGAATTTGGTTTCAGCTT AAGCGATGCTGTTCAAGCAAGCTCTTACAATCCAACAAGAATTCTCAATATTGATAAAAAGGGCTTAATATGTCAT GGATATGATGCAAACCTCAATGTCCTAGATAAAGATTTTAATCTAAAGTTAACAATGATAGAATCTAAAATAATTT TTAACAATCTCTAA f635.aa
MKILWLIILVNLFLSCGNESKEKSNLGLRLRELEISGGGSESKIEVYKEFIEKEDKNILKIVNSIDKKARFFNLIG LEFFKLGQYGPAIEYFAKNLEINPNNYLSHFYIGVASYNLAKNLRVKDEVEKYIILAENSFLKSLSIRDDFKDSLF AISNMYVYDLDKQLEAKNYLNKLGDMGEDYFEFLMLRGANYYSLGDLGNAILFYDKASKKASTEEQKEGVSRIMSN LK t635.aa TABLE 1. Nucleotide and Amino Acid Sequences
CGNESKEKSNLGLRLRELEISGGGSESKIEVYKEFIEKEDKNILKIVNSIDKKARFFNLIGLEFFKLGQYGPAIEY FAKNLEINPNNYLSHFYIGVASYNLAKNLRVKDEVEKYIILAENSFLKSLSIRDDFKDSLFAISNMYVYDLDKQLE AKNYLNKLGDMGEDYFEFLMLRGANYYSLGDLGNAILFYDKASKKASTEEQKEGVSRIMSNLK f635.nt
ATGAAAATTTTGTGGTTAATAATTCTTGTTAATTTATTTTTATCTTGTGGCAATGAATCTAAAGAAAAATCAAATC TTGGTCTTAGATTAAGAGAATTGGAAATTTCAGGTGGTGGATCTGAATCTAAGATTGAAGTTTATAAAGAATTTAT TGAAAAAGAAGATAAGAATATTTTAAAGATAGTTAATTCCATTGATAAGAAAGCCAGATTTTTTAATTTAATTGGT CTTGAATTTTTTAAGCTTGGTCAGTACGGACCTGCTATTGAATATTTTGCTAAAAATTTAGAAATCAATCCCAATA ATTATTTATCTCATTTTTATATAGGTGTTGCTTCTTATAATTTAGCTAAAAATTTAAGAGTAAAAGATGAAGTTGA AAAATACATAATTCTTGCTGAAAATTCTTTTTTAAAATCACTTTCAATTAGAGATGATTTTAAAGATTCTCTTTTT GCCATTTCTAATATGTACGTATATGATCTTGATAAACAACTTGAAGCTAAAAATTATTTAAATAAACTTGGTGATA TGGGTGAGGACTATTTTGAGTTTTTAATGTTAAGAGGTGCAAATTATTATTCGCTGGGCGATCTTGGTAATGCTAT ATTGTTTTATGATAAAGCTAGTAAAAAGGCTTCAACTGAAGAGCAAAAAGAAGGTGTTTCTAGGATCATGAGTAAT TTGAAGTAA t635.nt
TGTGGCAATGAATCTAAAGAAAAATCAAATCTTGGTCTTAGATTAAGAGAATTGGAAATTTCAGGTGGTGGATCTG AATCTAAGATTGAAGTTTATAAAGAATTTATTGAAAAAGAAGATAAGAATATTTTAAAGATAGTTAATTCCATTGA TAAGAAAGCCAGATTTTTTAATTTAATTGGTCTTGAATTTTTTAAGCTTGGTCAGTACGGACCTGCTATTGAATAT TTTGCTAAAAATTTAGAAATCAATCCCAATAATTATTTATCTCATTTTTATATAGGTGTTGCTTCTTATAATTTAG CTAAAAATTTAAGAGTAAAAGATGAAGTTGAAAAATACATAATTCTTGCTGAAAATTCTTTTTTAAAATCACTTTC AATTAGAGATGATTTTAAAGATTCTCTTTTTGCCATTTCTAATATGTACGTATATGATCTTGATAAACAACTTGAA GCTAAAAATTATTTAAATAAACTTGGTGATATGGGTGAGGACTATTTTGAGTTTTTAATGTTAAGAGGTGCAAATT ATTATTCGCTGGGCGATCTTGGTAATGCTATATTGTTTTATGATAAAGCTAGTAAAAAGGCTTCAACTGAAGAGCA AAAAGAAGGTGTTTCTAGGATCATGAGTAATTTGAAGTAA f314.aa
IXINNCLIKFFIFLLVFSNSYVAFSKNVNVLIVTAMDSEFDQINKLMSNKEEIVLKEYGLNKKILKGKLSNRNVMVI I CGVGKVNAGVWTSYILSKYNISHVINSGVAGGWSAKYKDIKVGDVWSSEVAYHDVDLTKFGYKVGQLTGGLPQK FNANKNLIKNAIEAIKSKVGGSNAYSGLIVSGDQFIDPTYINKIIGNFKDVIAVEMEGAAIGHVSHMFNIPFIVIR S I SDI VNKEGNEVEYSKF SKI AAFNSAKWQEI LRKLZ t314 . aa
KNVNVLIVTAMDSEFDQINKLMSNKEEIVLKEYGLNKKILKGKLSNRNVMVIICGVGKVNAGVWTSYILSKYNISH VINSGVAGGWSAKYKDIKVGDWVSSEVAYHDVDLTKFGYKVGQLTGGLPQKFNANKNLIKNAIEAIKSKVGGSN AYSGLIVSGDQFIDPTYINKIIGNFKDVIAVEMEGAAIGHVSHMFNIPFIVIRSISDIVNKEGNEVEYSKFSKIAA FNSAKWQEILRKLZ f314 . nt
ATGAATAATTGTTTAATAAAGTTTTTTATTTTTTTATTAGTTTTTTCAAACAGTTATGTTGCTTTTTCTAAAAATG TCAATGTTTTAATAGTAACTGCTATGGACTCTGAGTTTGATCAGATAAATAAGCTTATGTCTAATAAGGAAGAAAT AGTTCTTAAGGAGTATGGTCTTAATAAAAAGATTTTAAAGGGGAAGTTGTCTAATCGCAATGTTATGGTTATTATT TGTGGGGTTGGTAAGGTTAATGCTGGTGTGTGGACTAGCTACATTTTGTCAAAATACAACATAAGTCATGTCATTA ATTCTGGCGTTGCTGGTGGCGTTGTTAGTGCTAAATACAAAGATATTAAAGTGGGAGATGTGGTGGTGTCTTCAGA GGTTGCATATCATGATGTTGATTTGACTAAATTTGGATACAAGGTAGGACAGCTTACAGGAGGATTGCCTCAAAAA TTTAATGCCAATAAAAATTTAATTAAGAATGCCATAGAGGCCATTAAATCAAAGGTTGGAGGTTCTAATGCATATT CAGGATTAATAGTTTCAGGAGATCAGTTTATTGATCCAACTTATATTAACAAAATTATAGGAAACTTTAAAGATGT AATAGCTGTTGAGATGGAAGGTGCAGCAATAGGGCATGTTTCTCATATGTTTAATATACCTTTTATAGTTATTAGG TCAATATCTGACATTGTAAATAAAGAAGGGAATGAGGTTGAATATAGTAAATTTTCTAAAATAGCTGCTTTCAATT CAGCCAAAGTTGTACAAGAAATTTTAAGAAAACTTTAA TABLE 1. Nucleotide and Amino Acid Sequences
t314 .nt
AAAAATGTCAATGTTTTAATAGTAACTGCTATGGACTCTGAGTTTGATCAGATAAATAAGCTTATGTCTAATAAGG AAGAAATAGTTCTTAAGGAGTATGGTCTTAATAAAAAGATTTTAAAGGGGAAGTTGTCTAATCGCAATGTTATGGT TATTATTTGTGGGGTTGGTAAGGTTAATGCTGGTGTGTGGACTAGCTACATTTTGTCAAAATACAACATAAGTCAT GTCATTAATTCTGGCGTTGCTGGTGGCGTTGTTAGTGCTAAATACAAAGATATTAAAGTGGGAGATGTGGTGGTGT CTTCAGAGGTTGCATATCATGATGTTGATTTGACTAAATTTGGATACAAGGTAGGACAGCTTACAGGAGGATTGCC TCAAAAATTTAATGCCAATAAAAATTTAATTAAGAATGCCATAGAGGCCATTAAATCAAAGGTTGGAGGTTCTAAT GCATATTCAGGATTAATAGTTTCAGGAGATCAGTTTATTGATCCAACTTATATTAACAAAATTATAGGAAACTTTA AAGATGTAATAGCTGTTGAGATGGAAGGTGCAGCAATAGGGCATGTTTCTCATATGTTTAATATACCTTTTATAGT TATTAGGTCAATATCTGACATTGTAAATAAAGAAGGGAATGAGGTTGAATATAGTAAATTTTCTAAAATAGCTGCT TTCAATTCAGCCAAAGTTGTACAAGAAATTTTAAGAAAACTTTAA f32.aa
MNTKTLYLISLILLACNKNNKIPLIQKLDLPKSSILGFSNKMGIIIKDYAFLSKSTKKNSELDYDYAILLRKDEW KIEKTLEKTERYGIEGNWILVNYKGTKRYIFSKDINIVNNLIIDHSKZ t32.aa
CNKNNKIPLIQKLDLPKSSILGFSNKMGIIIKDYAFLSKSTKKNSELDYDYAILLRKDEWKIEKTLEKTERYGIE GNWILVNYKGTKRYIFSKDINIVNNLIIDHSKZ f32.nt
ATGAATACAAAAACATTATATTTAATATCCTTAATTCTTTTAGCTTGCAATAAAAATAACAAAATTCCTCTCATTC AAAAATTAGATTTGCCCAAAAGCAGCATTCTTGGCTTTAGCAATAAAATGGGCATAATAATAAAAGATTATGCTTT TCTTAGTAAAAGCACTAAGAAAAATAGCGAATTGGATTATGATTACGCAATTCTACTCAGAAAAGACGAAGTCGTA AAAATTGAAAAAACACTAGAAAAAACAGAGCGCTATGGAATTGAAGGAAATTGGATCCTAGTCAATTACAAGGGAA CTAAAAGATACATCTTTAGCAAAGACATCAATATAGTCAACAATTTAATAATTGATCATTCTAAATAG t32.nt
TGCAATAAAAATAACAAAATTCCTCTCATTCAAAAATTAGATTTGCCCAAAAGCAGCATTCTTGGCTTTAGCAATA AAATGGGCATAATAATAAAAGATTATGCTTTTCTTAGTAAAAGCACTAAGAAAAATAGCGAATTGGATTATGATTA CGCAATTCTACTCAGAAAAGACGAAGTCGTAAAAATTGAAAAAACACTAGAAAAAACAGAGCGCTATGGAATTGAA GGAAATTGGATCCTAGTCAATTACAAGGGAACTAAAAGATACATCTTTAGCAAAGACATCAATATAGTCAACAATT TAATAATTGATCATTCTAAATAG f320.aa
MKSIYALLFLFINLSLLANNISKKDLEVLLKIAQAMNKECKNFIEKNPIQFLKEIKPLVDAEKNNLLTLINKKIPI PENYKIPDLVNIDDFEDLKNLGAKTIKVRKILIEDLIRLIKDAKKFGIEIKIKSAYRTQEYQKFLFDYNVKTYGRK VAETQSAIPGHSQHHMGTAIDFINIDDNLLNTKEGKWLYENSLKYGFSVSYPKGYETDTGYKAEPWHYLYIGPKPC FIQKKYFNNLQHKLLEFWNQNKTNLINLIEKYANZ t320.aa
NNISKKDLEVLLKIAQAMNKECKNFIEKNPIQFLKEIKPLVDAEKNNLLTLINKKIPIPENYKIPDLVNIDDFEDL KNLGAKTIKVRKILIEDLIRLIKDAKKFGIEIKIKSAYRTQEYQKFLFDYNVKTYGRKVAETQSAIPGHSQHHMGT AIDFINIDDNLLNTKEGKWLYENSLKYGFSVSYPKGYETDTGYKAEPWHYLYIGPKPCFIQKKYFNNLQHKLLEFW NQNKTNLINLIEKYANZ f320.nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGAAATCAATTTATGCTTTATTATTTCTATTTATTAATTTATCTTTGTTGGCTAACAACATTTCAAAAAAAGATT TAGAAGTACTGCTAAAGATTGCCCAAGCAATGAATAAGGAATGCAAAAATTTTATTGAAAAAAATCCTATTCAGTT CTTAAAAGAAATAAAACCCTTAGTAGATGCAGAAAAAAATAACCTCTTAACTCTAATAAATAAAAAAATACCAATT CCTGAAAATTATAAAATACCTGATCTGGTAAATATTGATGATTTTGAAGATCTTAAAAATCTTGGAGCAAAGACTA TTAAAGTAAGAAAAATATTAATCGAAGATTTAATTCGACTAATAAAAGATGCAAAAAAATTTGGGATTGAAATTAA AATCAAATCTGCTTACAGAACGCAAGAATATCAAAAATTTTTATTTGATTACAATGTCAAAACTTATGGCAGAAAA GTTGCAGAAACCCAATCAGCAATTCCAGGCCATTCTCAACATCATATGGGAACAGCAATAGATTTTATAAATATAG ATGATAATTTACTAAACACAAAAGAAGGAAAATGGCTTTATGAAAACTCTCTAAAATACGGATTTTCCGTTTCATA CCCAAAAGGATATGAAACGGACACTGGATATAAAGCAGAGCCTTGGCACTACTTATACATAGGACCTAAGCCATGC TTTATTCAGAAAAAATATTTTAATAATTTACAACATAAGCTTCTTGAATTTTGGAACCAGAACAAAACAAATCTTA TTAACCTAATTGAAAAATATGCAAACTAA t320.nt
AACAACATTTCAAAAAAAGATTTAGAAGTACTGCTAAAGATTGCCCAAGCAATGAATAAGGAATGCAAAAATTTTA TTGAAAAAAATCCTATTCAGTTCTTAAAAGAAATAAAACCCTTAGTAGATGCAGAAAAAAATAACCTCTTAACTCT AATAAATAAAAAAATACCAATTCCTGAAAATTATAAAATACCTGATCTGGTAAATATTGATGATTTTGAAGATCTT AAAAATCTTGGAGCAAAGACTATTAAAGTAAGAAAAATATTAATCGAAGATTTAATTCGACTAATAAAAGATGCAA AAAAATTTGGGATTGAAATTAAAATCAAATCTGCTTACAGAACGCAAGAATATCAAAAATTTTTATTTGATTACAA TGTCAAAACTTATGGCAGAAAAGTTGCAGAAACCCAATCAGCAATTCCAGGCCATTCTCAACATCATATGGGAACA GCAATAGATTTTATAAATATAGATGATAATTTACTAAACACAAAAGAAGGAAAATGGCTTTATGAAAACTCTCTAA AATACGGATTTTCCGTTTCATACCCAAAAGGATATGAAACGGACACTGGATATAAAGCAGAGCCTTGGCACTACTT ATACATAGGACCTAAGCCATGCTTTATTCAGAAAAAATATTTTAATAATTTACAACATAAGCTTCTTGAATTTTGG AACCAGAACAAAACAAATCTTATTAACCTAATTGAAAAATATGCAAACTAA f342.aa
MLYLGDNKAMRTKIIIMTIIILLAPISGFSNSKESARGKFGAGIILPLPIALQINIGNFDLDIGLYSGVNNLFSDW KTLFIALDYIFYIYTFPGAANILDFSVGAGGYGTIWFSRFGGSKSGSGPMSIGARLPLALNIAVFRKKFDIFLRIA PGLGMNVWSNGVGFRWEVFAGLGLRFWFTZ t342.aa
LAPISGFSNSKESARGKFGAGIILPLPIALQINIGNFDLDIGLYSGVNNLFSDWKTLFIALDYIFYIYTFPGAANI LDFSVGAGGYGTIWFSRFGGSKSGSGPMSIGARLPLALNIAVFRKKFDIFLRIAPGLGMNVWSNGVGFRWEVFAGL GLRFWFTZ f342.nt
ATGCTATACTTAGGAGATAATAAAGCAATGAGAACAAAAATAATTATTATGACAATTATTATTTTATTAGCCCCAA TCTCAGGATTTTCTAATTCAAAAGAATCTGCAAGGGGTAAATTTGGAGCAGGAATTATACTTCCATTACCAATTGC TCTACAGATTAATATAGGAAACTTTGATCTTGACATTGGTCTTTACAGCGGAGTAAATAATTTGTTTTCAGACTGG AAAACATTATTTATAGCATTAGACTATATTTTCTACATATACACATTCCCGGGAGCTGCTAATATTTTGGATTTTT CAGTTGGCGCAGGGGGATATGGAACAATATGGTTTTCAAGATTTGGAGGCAGTAAGTCAGGCTCAGGACCAATGAG CATTGGAGCAAGATTGCCTTTGGCCTTAAATATTGCAGTATTTAGGAAGAAATTCGACATATTTTTACGAATAGCA CCCGGACTTGGAATGAATGTTTGGAGTAATGGCGTTGGATTTAGATGGGAAGTATTCGCAGGATTGGGACTAAGAT TCTGGTTTACTTAA t342.nt
TTAGCCCCAATCTCAGGATTTTCTAATTCAAAAGAATCTGCAAGGGGTAAATTTGGAGCAGGAATTATACTTCCAT TACCAATTGCTCTACAGATTAATATAGGAAACTTTGATCTTGACATTGGTCTTTACAGCGGAGTAAATAATTTGTT TTCAGACTGGAAAACATTATTTATAGCATTAGACTATATTTTCTACATATACACATTCCCGGGAGCTGCTAATATT TTGGATTTTTCAGTTGGCGCAGGGGGATATGGAACAATATGGTTTTCAAGATTTGGAGGCAGTAAGTCAGGCTCAG GACCAATGAGCATTGGAGCAAGATTGCCTTTGGCCTTAAATATTGCAGTATTTAGGAAGAAATTCGACATATTTTT TABLE 1. Nucleotide and Amino Acid Sequences
ACGAATAGCACCCGGACTTGGAATGAATGTTTGGAGTAATGGCGTTGGATTTAGATGGGAAGTATTCGCAGGATTG GGACTAAGATTCTGGTTTACTTAA f352.aa
MNKTKNRSLTYFIILSCISLFGANNNTISYSSIEIPLEDLSEEFKSSGNKSDQINTSKHLNKNIVSYEDPKKGKDL KLPENIRDKKLPQKRMDENDLKSVIENYENKIKNIEKLLKTKNQKTSENENKKIESIEKKAKKYEILTNKLKNEIV EIKKLLNKKIKPKEDENYEKINIENIEEETDDDFEDNYEYNDEIEEQMRTITLLMKEZ t352.aa
CISLFGANNNTISYSSIEIPLEDLSEEFKΞSGNKSDQINTSKHLNKNIVSYEDPKKGKDLKLPENIRDKKLPQKRM DENDLKSVIENYENKIKNIEKLLKTKNQKTSENENKKIESIEKKAKKYEILTNKLKNEIVEIKKLLNKKIKPKEDE NYEKINIENIEEETDDDFEDNYEYNDEIEEQMRTITLLMKEZ f352.nt
ATGAATAAAACAAAAAATCGAAGCCTTACGTATTTTATAATACTTTCATGTATATCATTATTTGGGGCTAATAATA ATACAATAAGCTACTCTAGCATTGAAATTCCTCTAGAAGACTTAAGTGAAGAATTTAAAAGTTCTGGGAATAAAAG CGATCAAATAAATACCTCAAAACATTTAAACAAAAACATAGTTTCTTATGAAGACCCAAAAAAGGGTAAAGATCTA AAATTGCCAGAAAATATAAGAGACAAAAAACTACCCCAAAAAAGAATGGACGAAAATGATCTAAAATCTGTAATTG A-z^ATTATGAAAATAAAATTAAAAACATAGAAAAGCTTTTAAAAACCAAAAATCAAAAAACATCGGAAAATGAAAA TAAAAAAATAGAATCAATCGAAAAAAAAGCAAAAAAATATGAAATTTTAACCAATAAATTAAAAAACGAAATAGTA GAAATAAAAAAGCTCCTTAACAAAAAAATCAAGCCTAAAGAAGATGAAAATTACGAAAAAATAAATATTGAAAACA TTGAAGAAGAAACTGATGATGATTTTGAAGACAATTATGAATATAATGATGAAATTGAAGAACAAATGAGGACAAT TACCCTTCTAATGAAGGAATAA t352.nt
TGTATATCATTATTTGGGGCTAATAATAATACAATAAGCTACTCTAGCATTGAAATTCCTCTAGAAGACTTAAGTG AAGAATTTAAAAGTTCTGGGAATAAAAGCGATCAAATAAATACCTCAAAACATTTAAACAAAAACATAGTTTCTTA TGAAGACCCAAAAAAGGGTAAAGATCTAAAATTGCCAGAAAATATAAGAGACAAAAAACTACCCCAAAAAAGAATG GACGAAAATGATCTAAAATCTGTAATTGAAAATTATGAAAATAAAATTAAAAACATAGAAAAGCTTTTAAAAACCA AAAATCAAAAAACATCGGAAAATGAAAATAAAAAAATAGAATCAATCGAAAAAAAAGCAAAAAAATATGAAATTTT AACCAATAAATTAAAAAACGAAATAGTAGAAATAAAAAAGCTCCTTAACAAAAAAATCAAGCCTAAAGAAGATGAA AATTACGAAAAAATAAATATTGAAAACATTGAAGAAGAAACTGATGATGATTTTGAAGACAATTATGAATATAATG ATGAAATTGAAGAACAAATGAGGACAATTACCCTTCTAATGAAGGAATAA f301.aa
MQIDGKIYSIISFPVRDSVSTLGVIGILICFDESLDIIENQLYSSLKFGSKNYNFFMLDRNYMPIFSNLNNLQAKS FSTAYSENFLSKVIAYAKKDSSSSQYTFNYERDFYSLNFVKTDDFLTQGLILNVNSIPIMFKSNWVIFVAFLLLSF AIIFYLCNTFVFSLINDFNRIVDYQKSKSDPFSLESPLEVKYSSSIISYISSKLDNLSSKSNESFEKIKFYSEDLN EYLEQIETAISNTESIDSSILVYEQLRDTFSRFEKSIVDILKGFESIADPINDHNKYISEISSNFEESVSFFYSID KNLEIFNKVATINSTDIENIKSKVFDLNIVFENVNKNFADLLSQTNSLQSVNKLLVSISAQTNMLAMNAAIEAAKA GDAGKSFAWAEEIRKLAINSGKYSKTIKDELKTVDSIIAVINSEIDTIYKNFIDIQDNVDNNFSRHEKVDLTLAK HFKEIGEFKERYLSHDTKIRDAKNMYKEIFNNHYFISGKFNNFSQDLKEFKVSKMNLDAVSSLQEYSSLVKSSKDK ILKTKELIQKINDEIKDILFZ t301.aa
CFDESLDIIENQLYSSLKFGSKNYNFFMLDRNYMPIFSNLNNLQAKSFSTAYSENFLSKVIAYAKKDSSSSQYTFN YERDFYSLNFVKTDDFLTQGLILNVNSIPIMFKSNWVIFVAFLLLSFAIIFYLCNTFVFSLINDFNRIVDYQKSKS DPFSLESPLEVKYSSSIISYISSKLDNLSSKSNESFEKIKFYSEDLNEYLEQIETAISNTESIDSSILVYEQLRDT FSRFEKSIVDILKGFESIADPINDHNKYISEISSNFEESVSFFYSIDKNLEIFNKVATINSTDIENIKSKVFDLNI VFENVNKNFADLLSQTNSLQSVNKLLVSISAQTNMLAMNAAIEAAKAGDAGKSFAWAEEIRKLAINSGKYSKTIK TABLE 1. Nucleotide and Amino Acid Sequences
DELKTVDSIIAVINSEIDTIYKNFIDIQDNVDNNFSRHEKVDLTLAKHFKEIGEFKERYLSHDTKIRDAKNMYKEI FNNHYFISGKFNNFSQDLKEFKVSKMNLDAVSSLQEYSSLVKSSKDKILKTKELIQKINDEIKDILFZ f301.nt
ATGCAAATAGATGGGAAAATTTATTCTATAATAAGTTTTCCAGTTAGAGATTCTGTTTCAACATTGGGTGTGATAG GGATTTTAATATGCTTTGATGAGTCGTTAGATATTATTGAAAATCAGTTGTATTCTTCTCTTAAATTTGGTAGTAA AAATTATAATTTTTTTATGCTTGACAGAAATTACATGCCCATTTTTTCAAACCTTAATAATCTTCAGGCCAAATCT TTTTCTACAGCTTATAGTGAGAATTTTTTGAGTAAAGTTATAGCTTATGCTAAAAAAGATTCTTCTAGCTCTCAGT ACACTTTTAATTATGAAAGAGATTTTTATTCTTTAAACTTTGTAAAAACCGATGATTTTTTGACTCAGGGGCTTAT TTTAAATGTCAATTCCATTCCTATTATGTTTAAATCAAATTGGGTTATATTTGTTGCATTTTTATTATTGTCTTTT GCAATTATTTTTTATTTATGCAATACTTTTGTTTTTTCATTAATTAATGATTTTAACAGAATTGTTGACTATCAAA AATCAAAAAGCGATCCTTTTAGTCTTGAATCTCCCTTAGAGGTTAAGTATTCTTCATCTATTATTTCTTATATTAG TTCAAAGCTAGATAATCTGTCTTCTAAGAGTAATGAATCTTTTGAGAAGATAAAATTTTATTCTGAAGATTTGAAT GAATATTTGGAACAAATAGAAACTGCTATATCAAATACTGAGAGTATAGATTCTAGCATTTTAGTTTACGAACAAC TAAGAGATACTTTTTCTAGATTTGAAAAATCAATTGTTGATATTTTAAAAGGCTTTGAATCTATTGCTGATCCGAT TAATGATCACAATAAATATATATCAGAAATCTCTTCAAATTTTGAAGAGAGTGTTAGTTTTTTCTATAGTATAGAT AAAAATTTAGAAATTTTTAATAAGGTTGCTACTATAAATTCTACTGATATTGAAAATATTAAAAGTAAGGTTTTTG ATTTAAATATTGTTTTTGAAAATGTGAATAAAAATTTTGCAGATCTTTTGTCTCAAACAAATAGTTTGCAAAGTGT AAATAAACTTTTAGTTTCAATTTCAGCTCAGACCAATATGCTTGCTATGAATGCAGCAATTGAAGCAGCAAAAGCA GGTGATGCAGGTAAAAGTTTTGCAGTTGTTGCTGAGGAGATTAGAAAGCTTGCTATTAATTCTGGAAAATATTCTA AAACCATTAAAGATGAACTTAAAACGGTCGACAGCATTATTGCAGTAATTAATTCAGAGATTGATACAATTTATAA AAATTTCATAGACATTCAAGATAATGTGGACAACAATTTTTCAAGACACGAGAAAGTAGATCTTACTCTTGCTAAG CATTTTAAAGAAATTGGCGAGTTTAAAGAAAGGTATTTGTCTCACGATACTAAGATCAGAGATGCTAAGAATATGT ATAAAGAAATATTTAATAATCATTATTTTATTAGTGGCAAGTTTAACAACTTTAGTCAAGATTTAAAAGAGTTTAA AGTTTCTAAGATGAATTTAGATGCGGTAAGTTCTCTTCAAGAATATTCATCTTTAGTAAAGTCTTCTAAGGATAAG ATATTAAAGACAAAGGAATTGATTCAAAAGATTAATGATGAGATTAAAGATATTCTTTTTTAG t301.nt
TGCTTTGATGAGTCGTTAGATATTATTGAAAATCAGTTGTATTCTTCTCTTAAATTTGGTAGTAAAAATTATAATT TTTTTATGCTTGACAGAAATTACATGCCCATTTTTTCAAACCTTAATAATCTTCAGGCCAAATCTTTTTCTACAGC TTATAGTGAGAATTTTTTGAGTAAAGTTATAGCTTATGCTAAAAAAGATTCTTCTAGCTCTCAGTACACTTTTAAT TATGAAAGAGATTTTTATTCTTTAAACTTTGTAAAAACCGATGATTTTTTGACTCAGGGGCTTATTTTAAATGTCA ATTCCATTCCTATTATGTTTAAATCAAATTGGGTTATATTTGTTGCATTTTTATTATTGTCTTTTGCAATTATTTT TTATTTATGCAATACTTTTGTTTTTTCATTAATTAATGATTTTAACAGAATTGTTGACTATCAAAAATCAAAAAGC GATCCTTTTAGTCTTGAATCTCCCTTAGAGGTTAAGTATTCTTCATCTATTATTTCTTATATTAGTTCAAAGCTAG ATAATCTGTCTTCTAAGAGTAATGAATCTTTTGAGAAGATAAAATTTTATTCTGAAGATTTGAATGAATATTTGGA ACAAATAGAAACTGCTATATCAAATACTGAGAGTATAGATTCTAGCATTTTAGTTTACGAACAACTAAGAGATACT TTTTCTAGATTTGAAAAATCAATTGTTGATATTTTAAAAGGCTTTGAATCTATTGCTGATCCGATTAATGATCACA ATAAATATATATCAGAAATCTCTTCAAATTTTGAAGAGAGTGTTAGTTTTTTCTATAGTATAGATAAAAATTTAGA AATTTTTAATAAGGTTGCTACTATAAATTCTACTGATATTGAAAATATTAAAAGTAAGGTTTTTGATTTAAATATT GTTTTTGAAAATGTGAATAAAAATTTTGCAGATCTTTTGTCTCAAACAAATAGTTTGCAAAGTGTAAATAAACTTT TAGTTTCAATTTCAGCTCAGACCAATATGCTTGCTATGAATGCAGCAATTGAAGCAGCAAAAGCAGGTGATGCAGG TAAAAGTTTTGCAGTTGTTGCTGAGGAGATTAGAAAGCTTGCTATTAATTCTGGAAAATATTCTAAAACCATTAAA GATGAACTTAAAACGGTCGACAGCATTATTGCAGTAATTAATTCAGAGATTGATACAATTTATAAAAATTTCATAG ACATTCAAGATAATGTGGACAACAATTTTTCAAGACACGAGAAAGTAGATCTTACTCTTGCTAAGCATTTTAAAGA AATTGGCGAGTTTAAAGAAAGGTATTTGTCTCACGATACTAAGATCAGAGATGCTAAGAATATGTATAAAGAAATA TTTAATAATCATTATTTTATTAGTGGCAAGTTTAACAACTTTAGTCAAGATTTAAAAGAGTTTAAAGTTTCTAAGA TGAATTTAGATGCGGTAAGTTCTCTTCAAGAATATTCATCTTTAGTAAAGTCTTCTAAGGATAAGATATTAAAGAC AAAGGAATTGATTCAAAAGATTAATGATGAGATTAAAGATATTCTTTTTTAG f346.aa TABLE 1. Nucleotide and Amino Acid Sequences
MSIDKVPDEAFAEKIVGDGIAILPTSNELLAPCDGKIGKIFKTNHAFSLETKEGVEIFVHFGINTLNLNGKGFTRV AEEGINVKQGEVIIRLDLEYLKEHSESVITPWIANSDEVSSIEYSFGRLENDSEYILSSSTVLTEEIRHKISQTK PVIAGKDLVLRVKKZ t346 . aa
CDGKIGKIFKTNHAFSLETKEGVEIFVHFGINTLNLNGKGFTRVAEEGINVKQGEVIIRLDLEYLKEHSESVITPV VIANSDEVSSIEYSFGRLENDSEYILSSSTVLTEEIRHKISQTKPVIAGKDLVLRVKKZ f346.nt
ATGTCAATTGATAAGGTTCCCGATGAAGCTTTTGCTGAAAAAATAGTTGGCGATGGAATTGCAATTCTTCCAACAA GCAATGAGTTGTTGGCGCCTTGTGATGGGAAAATAGGTAAAATTTTTAAAACCAATCATGCCTTTAGCCTTGAAAC TAAAGAGGGCGTTGAAATTTTTGTCCATTTTGGAATTAATACTCTTAATTTAAATGGTAAGGGTTTTACAAGAGTT GCTGAAGAGGGCATTAATGTTAAACAAGGTGAAGTTATTATTAGGCTTGATCTTGAATATTTAAAAGAGCATTCAG AATCCGTTATTACTCCGGTTGTTATTGCAAATTCTGATGAAGTTTCAAGTATAGAATATTCTTTTGGAAGGCTTGA AAATGATTCTGAATATATTTTATCATCTTCAACTGTCTTGACAGAAGAAATTAGGCATAAAATATCTCAAACAAAG CCTGTTATAGCGGGCAAAGATTTGGTGTTGCGAGTTAAAAAGTAA t346.nt
TGTGATGGGAAAATAGGTAAAATTTTTAAAACCAATCATGCCTTTAGCCTTGAAACTAAAGAGGGCGTTGAAATTT TTGTCCATTTTGGAATTAATACTCTTAATTTAAATGGTAAGGGTTTTACAAGAGTTGCTGAAGAGGGCATTAATGT TAAACAAGGTGAAGTTATTATTAGGCTTGATCTTGAATATTTAAAAGAGCATTCAGAATCCGTTATTACTCCGGTT GTTATTGCAAATTCTGATGAAGTTTCAAGTATAGAATATTCTTTTGGAAGGCTTGAAAATGATTCTGAATATATTT TATCATCTTCAACTGTCTTGACAGAAGAAATTAGGCATAAAATATCTCAAACAAAGCCTGTTATAGCGGGCAAAGA TTTGGTGTTGCGAGTTAAAAAGTAA f373.aa
MNYQRIKNYCKFTSVFLFFLFSCVSNELKLDQSLVKGKLVNGLRYYIYKNQTPKNAVNMGIVFNVGSLNEEDNERG IAHYLEHMAFNGTKDYPGNSIVDVLKKFGMQFGADINAATSFDFTYYRLDLSDGNNKDEIDESINILRNWASQISF MKEEIDLERNIIIEEKKLGETYPGRIYEKMDKFLTSGSLYEFRSPIGLEEQILSFQPEDFKKFYRKWYRPELASVI WGDIDPIEIEEKIKKQFVSWKNPTDKIKEVKVSLDVELKDKFLLLEDLEVGEPSLMFFKKEIINFVKTKDDLLNA IKKSLLAALFENRFSELKTAGVKQFKNVSNKDFFSFKSDNNTIVAKSISLNFNPDHLNEGIQDFFYELERIRKFGF TQGELEKVRSQFYKSLELRKKNINKTNSWAIFQDLIEIAINGSNKFDMNEYCDLSFQYLEKIDLKTINNLVGREFD VKNCAIFYSYHGRAHPVLTLEDIDNLQKIALKRELKPYENSLIEGKFFKKSLDDKDIIRENEFENEISSFVLENGV EVYFKYNDQKKGVIDFSATSWGGLINEDLKLIPVLSFAPGWSGSGYGDYSALQIEKYLSDKAVSLRVGVGAQESY ISGSSDKKDLETLFQLIYFTFKEPKIDDVSLQNAINNIKALIKSNENSSDYHFHKAISKFLNNNDPRFEDTKDSDL QYFTKENILSFYKKRFTYANNFKFVLLETQIFRQZ t373.aa
CVSNELKLDQSLVKGKLVNGLRYYIYKNQTPKNAVNMGIVFNVGSLNEEDNERGIAHYLEHMAFNGTKDYPGNSIV DVLKKFGMQFGADINAATSFDFTYYRLDLSDGNNKDEIDESINILRNWASQISFMKEEIDLERNIIIEEKKLGETY PGRIYEKMDKFLTSGSLYEFRSPIGLEEQILSFQPEDFKKFYRKWYRPELASVIWGDIDPIEIEEKIKKQFVSWK NPTDKIKEVKVSLDVELKDKFLLLEDLEVGEPSLMFFKKEIINFVKTKDDLLNAIKKΞLLAALFENRFSELKTAGV KQFKNVSNKDFFSFKSDNNTIVAKSISLNFNPDHLNEGIQDFFYELERIRKFGFTQGELEKVRSQFYKSLELRKKN INKTNSWAIFQDLIEIAINGSNKFDMNEYCDLSFQYLEKIDLKTINNLVGREFDVKNCAIFYSYHGRAHPVLTLED IDNLQKIALKRELKPYENSLIEGKFFKKSLDDKDIIRENEFENEISSFVLENGVEVYFKYNDQKKGVIDFSATSWG GLINEDLKLIPVLSFAPGWSGSGYGDYSALQIEKYLSDKAVSLRVGVGAQESYISGSSDKKDLETLFQLIYFTFK EPKIDDVSLQNAINNIKALIKSNENSSDYHFHKAISKFLNNNDPRFEDTKDSDLQYFTKENILSFYKKRFTYANNF KFVLLETQIFRQZ f373.nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGAATTATCAAAGAATTAAGAATTATTGTAAATTTACAAGCGTTTTTCTATTTTTTTTGTTTTCCTGTGTTTCTA ATGAGTTAAAGTTAGATCAAAGTTTGGTAAAAGGAAAACTTGTCAATGGGCTAAGGTATTATATTTATAAAAATCA AACCCCAAAGAATGCCGTTAATATGGGAATTGTTTTTAATGTGGGCTCACTTAATGAAGAAGATAATGAGAGGGGA ATAGCGCATTATCTTGAACATATGGCTTTTAATGGTACAAAAGATTATCCAGGGAATTCTATAGTTGATGTTCTTA AAAAATTTGGAATGCAATTTGGTGCTGACATTAATGCTGCTACTAGTTTTGATTTCACTTATTATAGACTTGATTT GTCAGATGGTAATAATAAAGATGAAATTGATGAATCTATAAATATTTTGAGAAACTGGGCTTCTCAAATCAGTTTC ATGAAAGAAGAAATAGATCTAGAGCGAAATATTATTATTGAGGAAAAAAAGCTTGGTGAGACTTATCCTGGAAGAA TTTATGAGAAAATGGATAAGTTTTTGACAAGCGGAAGTCTTTATGAATTTAGAAGTCCTATTGGACTTGAAGAGCA AATTTTATCTTTTCAGCCAGAAGATTTTAAAAAATTTTATAGAAAGTGGTATAGGCCAGAACTTGCAAGTGTTATT GTGGTAGGAGATATTGATCCTATAGAAATTGAAGAGAAGATAAAGAAGCAATTTGTTTCTTGGAAAAATCCAACCG ATAAAATTAAAGAAGTAAAAGTAAGTTTAGACGTAGAGCTTAAGGATAAATTTTTACTTTTAGAAGATTTGGAAGT TGGAGAGCCTAGTTTAATGTTCTTTAAAAAGGAAATTATTAACTTTGTAAAGACCAAAGATGACCTTTTAAATGCT ATTAAAAAGTCTTTATTAGCCGCTCTTTTTGAAAATAGATTTTCTGAATTAAAGACTGCTGGGGTAAAGCAATTTA AAAATGTTTCAAATAAAGATTTTTTCTCATTTAAATCAGATAACAATACCATTGTTGCAAAATCGATTTCTTTAAA CTTTAATCCAGATCATTTGAACGAAGGAATACAAGACTTTTTTTATGAGCTTGAGAGGATAAGAAAATTTGGATTT ACCCAAGGTGAGCTTGAAAAAGTTAGATCTCAATTTTACAAATCTTTAGAATTAAGGAAAAAGAATATAAATAAAA CAAATTCATGGGCTATTTTTCAGGATTTAATAGAAATTGCTATTAATGGTTCTAATAAATTTGATATGAATGAATA TTGCGATCTTTCTTTTCAATATTTGGAAAAGATTGATTTAAAAACAATAAACAATCTTGTAGGAAGAGAGTTTGAT GTAAAAAATTGTGCAATTTTTTATTCTTACCATGGAAGAGCACATCCTGTTTTAACTCTTGAAGATATTGACAATC TTCAAAAGATAGCTTTAAAAAGAGAGTTAAAGCCTTATGAGAATTCTTTAATTGAAGGTAAATTTTTTAAGAAGTC TTTAGATGATAAAGATATTATTAGAGAAAATGAGTTTGAAAATGAAATTTCGTCATTTGTTCTTGAAAATGGGGTT GAAGTTTATTTTAAATATAATGATCAAAAAAAAGGTGTAATTGATTTTAGTGCAACTTCTTGGGGAGGTTTAATTA ATGAAGATTTAAAACTTATTCCTGTTTTATCTTTTGCTCCCGGAGTAGTATCTGGTTCGGGTTATGGTGATTATTC TGCATTACAGATTGAAAAATATTTATCAGATAAAGCTGTTTCTTTAAGAGTTGGGGTTGGAGCTCAAGAATCATAT ATTTCTGGAAGTTCAGATAAAAAAGATCTTGAAACTCTTTTTCAGCTTATATATTTTACTTTTAAGGAACCCAAAA TTGATGATGTTTCTTTGCAAAATGCTATTAATAATATAAAAGCATTAATAAAGAGCAATGAAAATAGTTCTGATTA TCATTTTCATAAAGCCATTAGTAAATTTTTAAACAATAATGATCCTAGATTTGAAGATACAAAAGATAGTGATTTG CAATATTTTACAAAAGAAAATATTTTGTCTTTTTATAAGAAAAGGTTTACTTATGCAAATAATTTTAAGTTTGTCT TGCTGGAGACTCAGATATTCAGACAATAA t373.nt
TGTGTTTCTAATGAGTTAAAGTTAGATCAAAGTTTGGTAAAAGGAAAACTTGTCAATGGGCTAAGGTATTATATTT ATAAAAATCAAACCCCAAAGAATGCCGTTAATATGGGAATTGTTTTTAATGTGGGCTCACTTAATGAAGAAGATAA TGAGAGGGGAATAGCGCATTATCTTGAACATATGGCTTTTAATGGTACAAAAGATTATCCAGGGAATTCTATAGTT GATGTTCTTAAAAAATTTGGAATGCAATTTGGTGCTGACATTAATGCTGCTACTAGTTTTGATTTCACTTATTATA GACTTGATTTGTCAGATGGTAATAATAAAGATGAAATTGATGAATCTATAAATATTTTGAGAAACTGGGCTTCTCA AATCAGTTTCATGAAAGAAGAAATAGATCTAGAGCGAAATATTATTATTGAGGAAAAAAAGCTTGGTGAGACTTAT CCTGGAAGAATTTATGAGAAAATGGATAAGTTTTTGACAAGCGGAAGTCTTTATGAATTTAGAAGTCCTATTGGAC TTGAAGAGCAAATTTTATCTTTTCAGCCAGAAGATTTTAAAAAATTTTATAGAAAGTGGTATAGGCCAGAACTTGC AAGTGTTATTGTGGTAGGAGATATTGATCCTATAGAAATTGAAGAGAAGATAAAGAAGCAATTTGTTTCTTGGAAA AATCCAACCGATAAAATTAAAGAAGTAAAAGTAAGTTTAGACGTAGAGCTTAAGGATAAATTTTTACTTTTAGAAG ATTTGGAAGTTGGAGAGCCTAGTTTAATGTTCTTTAAAAAGGAAATTATTAACTTTGTAAAGACCAAAGATGACCT TTTAAATGCTATTAAAAAGTCTTTATTAGCCGCTCTTTTTGAAAATAGATTTTCTGAATTAAAGACTGCTGGGGTA AAGCAATTTAAAAATGTTTCAAATAAAGATTTTTTCTCATTTAAATCAGATAACAATACCATTGTTGCAAAATCGA TTTCTTTAAACTTTAATCCAGATCATTTGAACGAAGGAATACAAGACTTTTTTTATGAGCTTGAGAGGATAAGAAA ATTTGGATTTACCCAAGGTGAGCTTGAAAAAGTTAGATCTCAATTTTACAAATCTTTAGAATTAAGGAAAAAGAAT ATAAATAAAACAAATTCATGGGCTATTTTTCAGGATTTAATAGAAATTGCTATTAATGGTTCTAATAAATTTGATA TGAATGAATATTGCGATCTTTCTTTTCAATATTTGGAAAAGATTGATTTAAAAACAATAAACAATCTTGTAGGAAG AGAGTTTGATGTAAAAAATTGTGCAATTTTTTATTCTTACCATGGAAGAGCACATCCTGTTTTAACTCTTGAAGAT ATTGACAATCTTCAAAAGATAGCTTTAAAAAGAGAGTTAAAGCCTTATGAGAATTCTTTAATTGAAGGTAAATTTT TTAAGAAGTCTTTAGATGATAAAGATATTATTAGAGAAAATGAGTTTGAAAATGAAATTTCGTCATTTGTTCTTGA AAATGGGGTTGAAGTTTATTTTAAATATAATGATCAAAAAAAAGGTGTAATTGATTTTAGTGCAACTTCTTGGGGA GGTTTAATTAATGAAGATTTAAAACTTATTCCTGTTTTATCTTTTGCTCCCGGAGTAGTATCTGGTTCGGGTTATG GTGATTATTCTGCATTACAGATTGAAAAATATTTATCAGATAAAGCTGTTTCTTTAAGAGTTGGGGTTGGAGCTCA AGAATCATATATTTCTGGAAGTTCAGATAAAAAAGATCTTGAAACTCTTTTTCAGCTTATATATTTTACTTTTAAG TABLE 1. Nucleotide and Amino Acid Sequences
GAACCCAAAATTGATGATGTTTCTTTGCAAAATGCTATTAATAATATAAAAGCATTAATAAAGAGCAATGAAAATA GTTCTGATTATCATTTTCATAAAGCCATTAGTAAATTTTTAAACAATAATGATCCTAGATTTGAAGATACAAAAGA TAGTGATTTGCAATATTTTACAAAAGAAAATATTTTGTCTTTTTATAAGAAAAGGTTTACTTATGCAAATAATTTT AAGTTTGTCTTGCTGGAGACTCAGATATTCAGACAATAA f384.aa
MDWDFEKIIFLLNESTRLALSGCAKLILDFKSDGSIVTQVDKQIEQFLFKEIKKPGNFVLGEETISTYKEEYIKDA LISESTFIIDPIDGTSSFAAGLPSYGISLAYASGGKIIEGAISLPLSGEFFITSKDNVFYAKKNIGSYPLKKDFNK FIFDNSKCYNIHSLLAVSRSIIRLFNLDISSHIHINGSCVYSFAKLFTGSYKAYFSFVGLWDIAACLAIGNKLGMV GEFYCGNKMTLDILDSMYILEPNNHKRWSLKDFFIYSDNKSTIDIIRKDANKKINK t384.aa
CAKLILDFKSDGSIVTQVDKQIEQFLFKEIKKPGNFVLGEETISTYKEEYIKDALISESTFIIDPIDGTSSFAAGL PSYGISLAYASGGKIIEGAISLPLSGEFFITSKDNVFYAKKNIGSYPLKKDFNKFIFDNSKCYNIHSLLAVSRSII RLFNLDISSHIHINGSCVYSFAKLFTGSYKAYFSFVGLWDIAACLAIGNKLGMVGEFYCGNKMTLDILDSMYILEP NNHKRWSLKDFFIYSDNKSTIDIIRKDANKKINKZ f384.nt
ATGGATTGGGATTTTGAAAAAATTATATTTTTATTAAATGAATCAACTAGGCTTGCATTAAGTGGTTGTGCTAAAT TAATTTTAGATTTTAAATCTGATGGGTCTATTGTAACTCAGGTTGATAAGCAAATTGAGCAATTCTTATTCAAAGA GATCAAAAAGCCTGGAAATTTTGTTCTTGGAGAAGAGACAATATCTACTTATAAAGAAGAGTATATCAAAGATGCT TTAATATCAGAGAGTACTTTTATTATTGATCCTATTGATGGAACTTCTTCTTTTGCAGCAGGCCTTCCTTCATATG GAATATCGCTAGCGTATGCTAGTGGCGGCAAAATTATTGAAGGAGCCATTTCTCTTCCTTTAAGCGGAGAGTTTTT TATTACTTCTAAAGATAATGTATTTTATGCTAAAAAAAACATTGGTAGCTATCCTTTAAAAAAGGATTTTAATAAA TTTATTTTTGATAATTCTAAATGTTACAATATTCATAGTTTACTTGCAGTTTCAAGGTCTATTATAAGGTTATTTA ATCTTGATATTTCTTCTCATATTCATATTAATGGTTCTTGTGTATATTCTTTTGCTAAACTTTTTACAGGTTCTTA TAAGGCCTACTTTTCTTTTGTAGGACTTTGGGATATTGCAGCGTGTTTAGCTATTGGTAATAAATTGGGCATGGTT GGCGAATTTTATTGTGGTAATAAAATGACATTAGATATCTTAGATTCAATGTATATTTTAGAGCCTAATAATCATA AAAGATGGTCCTTGAAAGATTTTTTTATTTATTCTGATAATAAATCAACAATAGACATTATAAGAAAAGATGCAAA TAAAAAAATCAATAAGTAA t384.nt
AGTGGTTGTGCTAAATTAATTTTAGATTTTAAATCTGATGGGTCTATTGTAACTCAGGTTGATAAGCAAATTGAGC AATTCTTATTCAAAGAGATCAAAAAGCCTGGAAATTTTGTTCTTGGAGAAGAGACAATATCTACTTATAAAGAAGA GTATATCAAAGATGCTTTAATATCAGAGAGTACTTTTATTATTGATCCTATTGATGGAACTTCTTCTTTTGCAGCA GGCCTTCCTTCATATGGAATATCGCTAGCGTATGCTAGTGGCGGCAAAATTATTGAAGGAGCCATTTCTCTTCCTT TAAGCGGAGAGTTTTTTATTACTTCTAAAGATAATGTATTTTATGCTAAAAAAAACATTGGTAGCTATCCTTTAAA AAAGGATTTTAATAAATTTATTTTTGATAATTCTAAATGTTACAATATTCATAGTTTACTTGCAGTTTCAAGGTCT ATTATAAGGTTATTTAATCTTGATATTTCTTCTCATATTCATATTAATGGTTCTTGTGTATATTCTTTTGCTAAAC TTTTTACAGGTTCTTATAAGGCCTACTTTTCTTTTGTAGGACTTTGGGATATTGCAGCGTGTTTAGCTATTGGTAA TAAATTGGGCATGGTTGGCGAATTTTATTGTGGTAATAAAATGACATTAGATATCTTAGATTCAATGTATATTTTA GAGCCTAATAATCATAAAAGATGGTCCTTGAAAGATTTTTTTATTTATTCTGATAATAAATCAACAATAGACATTA TAAGAAAAGATGCAAATAAAAAAATCAATAAGTAA fδ60.aa
MAFYKLNDNIALAEDLLKYLLSSILNECSQDMDFLENYIEKGLIKKLENVINSNFEVITYTKAIEILENSKKNFEI KPYWGIDLQTDHERYLTEETFKKPWVIDYPKNFKAFYMKANKDNKTVKGMDILVPKIGEIIGGSEREDDLQKLEN RIKELNLNIEHLNWYLDLRRFGSAPHSGFGLGLERLVQYSTGISNIRDSIPFPRTPKNLYFZ tδ 60 . aa TABLE 1. Nucleotide and Amino Acid Sequences
CSQDMDFLENYIEKGLIKKLENVINSNFEVITYTKAIEILENSKKNFEIKPYWGIDLQTDHERYLTEETFKKPVW IDYPKNFKAFYMKANKDNKTVKGMDILVPKIGEIIGGSEREDDLQKLENRIKELNLNIEHLNWYLDLRRFGSAPHS GFGLGLERLVQYSTGISNIRDSIPFPRTPKNLYFZ f860.nt
ATGGCTTTTTATAAGCTTAACGACAATATTGCCCTAGCAGAAGATCTCTTGAAATATCTTTTAAGTTCAATTTTAA ACGAATGCTCACAAGATATGGATTTTTTAGAAAATTACATTGAAAAAGGTTTAATTAAAAAACTAGAAAATGTAAT AAATTCAAATTTTGAGGTTATTACCTATACTAAAGCAATTGAAATTCTTGAAAACTCAAAAAAAAATTTTGAAATA AAACCTTACTGGGGAATAGATTTGCAAACAGATCACGAAAGATACCTAACAGAAGAGACTTTTAAAAAACCGGTAG TGGTCATTGATTATCCAAAAAATTTCAAAGCATTTTACATGAAAGCAAATAAAGACAATAAAACTGTTAAAGGAAT GGACATACTTGTTCCAAAAATTGGAGAGATTATAGGGGGAAGCGAAAGAGAAGATGACCTTCAAAAATTAGAAAAT AGAATAAAAGAATTAAACTTAAACATTGAACATCTAAACTGGTATCTTGATCTAAGAAGATTTGGCTCGGCTCCTC ATTCTGGCTTTGGACTTGGACTTGAAAGATTGGTGCAATACTCAACAGGAATATCTAATATAAGAGATTCAATACC ATTCCCAAGGACTCCTAAAAATCTTTATTTTTAA tδ60.nt
TGCTCACAAGATATGGATTTTTTAGAAAATTACATTGAAAAAGGTTTAATTAAAAAACTAGAAAATGTAATAAATT CAAATTTTGAGGTTATTACCTATACTAAAGCAATTGAAATTCTTGAAAACTCAAAAAAAAATTTTGAAATAAAACC TTACTGGGGAATAGATTTGCAAACAGATCACGAAAGATACCTAACAGAAGAGACTTTTAAAAAACCGGTAGTGGTC ATTGATTATCCAAAAAATTTCAAAGCATTTTACATGAAAGCAAATAAAGACAATAAAACTGTTAAAGGAATGGACA TACTTGTTCCAAAAATTGGAGAGATTATAGGGGGAAGCGAAAGAGAAGATGACCTTCAAAAATTAGAAAATAGAAT AAAAGAATTAAACTTAAACATTGAACATCTAAACTGGTATCTTGATCTAAGAAGATTTGGCTCGGCTCCTCATTCT GGCTTTGGACTTGGACTTGAAAGATTGGTGCAATACTCAACAGGAATATCTAATATAAGAGATTCAATACCATTCC CAAGGACTCCTAAAAATCTTTATTTTTAA f446.aa
MKILRLCLLFLFFACTFDYDEYSSRSDVAKKFPSIQILGIKYYDWYNKEQTVLNSLSFSYFNDYKIYKAENGRFL YHSLDNEISGKFNNLEGSYITKDLDMRDSVEFKIEDKNNYYLLNSNRLLWKNKDKKLQSPPNELVLIRFNDSKING KGFSYFLKSNVFYFDSGVEGIMNZ t446.aa
CTFDYDEYSSRSDVAKKFPSIQILGIKYYDWYNKEQTVLNΞLSFSYFNDYKIYKAENGRFLYHSLDNEISGKFNN LEGSYITKDLDMRDSVEFKIEDKNNYYLLNSNRLLWKNKDKKLQSPPNELVLIRFNDSKINGKGFSYFLKSNVFYF DSGVEGIMNZ f446 . nt
ATGAAAATACTTAGACTTTGTTTGTTGTTTTTGTTTTTTGCTTGTACTTTTGATTATGATGAGTATTCTAGTAGAT CTGATGTGGCCAAAAAGTTTCCTTCAATACAAATATTAGGAATCAAGTATTATGATGTTGTATACAATAAAGAGCA AACCGTTTTAAATTCTTTAAGCTTTAGTTATTTCAATGACTATAAAATTTATAAGGCAGAGAATGGAAGGTTTTTA TATCATTCCCTAGATAATGAAATTTCAGGGAAGTTTAATAATTTGGAAGGTTCTTATATTACAAAGGATTTGGATA TGAGAGATTCTGTAGAATTTAAAATAGAAGATAAAAATAATTATTATTTGCTTAATTCAAATAGGCTTTTATGGAA GAATAAAGACAAGAAGTTGCAATCCCCCCCAAATGAGCTAGTATTAATTAGATTTAATGATAGCAAAATAAACGGA AAAGGATTTTCTTATTTTTTAAAGAGCAATGTTTTTTATTTTGATTCTGGAGTTGAAGGAATCATGAATTGA t446.nt
TGTACTTTTGATTATGATGAGTATTCTAGTAGATCTGATGTGGCCAAAAAGTTTCCTTCAATACAAATATTAGGAA TCAAGTATTATGATGTTGTATACAATAAAGAGCAAACCGTTTTAAATTCTTTAAGCTTTAGTTATTTCAATGACTA TAAAATTTATAAGGCAGAGAATGGAAGGTTTTTATATCATTCCCTAGATAATGAAATTTCAGGGAAGTTTAATAAT TTGGAAGGTTCTTATATTACAAAGGATTTGGATATGAGAGATTCTGTAGAATTTAAAATAGAAGATAAAAATAATT ATTATTTGCTTAATTCAAATAGGCTTTTATGGAAGAATAAAGACAAGAAGTTGCAATCCCCCCCAAATGAGCTAGT TABLE 1. Nucleotide and Amino Acid Sequences
ATTAATTAGATTTAATGATAGCAAAATAAACGGAAAAGGATTTTCTTATTTTTTAAAGAGCAATGTTTTTTATTTT GATTCTGGAGTTGAAGGAATCATGAATTGA f457.aa
MKQKLSWILLFCFLSCRSESRLAENVLIEFFDSIKNFQSSPEIFFNYLNIPSDDDLKAKIRGLKSQAKDDFIFYPL FFNNLRYEIIGRKNISKGFEFEWIKNINFQNGIEKFLAKLNKIEGRSLNIKNLEKKERKKIFDNLINEVIGELDD FDYTEWHFFRWKSSSESYKIELLGDVLNIQSRNKLINDLFLVLSPGIZ t457.aa
CFLSCRSESRLAENVLIEFFDSIKNFQSSPEIFFNYLNIPSDDDLKAKIRGLKSQAKDDFIFYPLFFNNLRYEIIG RKNISKGFEFEWIKNINFQNGIEKFLAKLNKIEGRSLNIKNLEKKERKKIFDNLINEVIGELDDFDYTEWHFFR WKSSSESYKIELLGDVLNIQSRNKLINDLFLVLSPGIZ f457 . nt
ATGAAGCAAAAATTAAGTTGGATTTTATTATTTTGTTTTTTGTCTTGTAGATCTGAATCTAGATTGGCTGAAAATG TTTTAATAGAGTTTTTTGATTCTATTAAAAATTTTCAAAGCAGTCCTGAAATATTTTTTAATTATTTAAATATTCC AAGTGATGATGATCTGAAGGCAAAAATTCGTGGGTTGAAATCTCAGGCAAAGGATGATTTCATTTTTTATCCTTTG TTTTTTAATAATCTAAGATATGAGATAATAGGTAGAAAAAATATTTCTAAGGGCTTTGAATTTGAAGTTGTTATTA AAAATATTAACTTTCAAAACGGTATAGAAAAATTTTTGGCTAAATTAAATAAAATTGAAGGGAGATCTTTAAATAT TAAAAATTTAGAAAAAAAAGAGCGTAAAAAAATATTTGACAATTTAATAAATGAAGTTATTGGAGAGTTGGATGAT TTTGATTACACTGAAGTTGTTCATTTTTTTAGAGTAGTTAAGAGTTCTTCTGAAAGTTATAAAATAGAGCTTTTAG GAGATGTTTTAAATATACAGTCTAGAAATAAGCTTATTAATGATCTTTTTTTGGTTTTATCGCCTGGAATTTAA t457.nt
TGTTTTTTGTCTTGTAGATCTGAATCTAGATTGGCTGAAAATGTTTTAATAGAGTTTTTTGATTCTATTAAAAATT TTCAAAGCAGTCCTGAAATATTTTTTAATTATTTAAATATTCCAAGTGATGATGATCTGAAGGCAAAAATTCGTGG GTTGAAATCTCAGGCAAAGGATGATTTCATTTTTTATCCTTTGTTTTTTAATAATCTAAGATATGAGATAATAGGT AGAAAAAATATTTCTAAGGGCTTTGAATTTGAAGTTGTTATTAAAAATATTAACTTTCAAAACGGTATAGAAAAAT TTTTGGCTAAATTAAATAAAATTGAAGGGAGATCTTTAAATATTAAAAATTTAGAAAAAAAAGAGCGTAAAAAAAT ATTTGACAATTTAATAAATGAAGTTATTGGAGAGTTGGATGATTTTGATTACACTGAAGTTGTTCATTTTTTTAGA GTAGTTAAGAGTTCTTCTGAAAGTTATAAAATAGAGCTTTTAGGAGATGTTTTAAATATACAGTCTAGAAATAAGC TTATTAATGATCTTTTTTTGGTTTTATCGCCTGGAATTTAA f542.aa
MRIVIFIFGILLTSCFSRNGIESSSKKIKISMLVDGVLDDKSFNSSANEALLRLKKDFPENIEEVFSCAISGVYSS YVSDLDNLKRNGSDLIWLVGYMLTDASLLVSSENPKISYGIIDPIYGDDVQIPENLIAWFRVEPRCFFGWLYCSQ KKLFWQNRFYRGNEGZ t542.aa
CFSRNGIESSSKKIKISMLVDGVLDDKSFNSSANEALLRLKKDFPENIEEVFSCAISGVYSSYVSDLDNLKRNGSD LIWLVGYMLTDASLLVSSENPKISYGIIDPIYGDDVQIPENLIAWFRVEPRCFFGWLYCSQKKLFWQNRFYRGNE GZ f 542 . nt
ATGAGAATTGTAATTTTTATATTCGGTATTTTGTTGACTTCTTGCTTTAGTAGAAATGGAATAGAATCTAGTTCAA AAAAAATTAAGATATCCATGTTGGTAGATGGTGTTCTTGACGACAAATCTTTTAATTCTAGTGCTAATGAGGCTTT ATTACGCTTGAAAAAAGATTTTCCAGAAAATATTGAAGAAGTTTTTTCTTGTGCTATTTCTGGAGTTTATTCTAGT TATGTTTCAGATCTTGATAATTTAAAAAGGAATGGCTCAGACTTGATTTGGCTTGTAGGGTACATGCTTACGGACG CATCTTTATTGGTTTCATCGGAGAATCCAAAAATTAGCTATGGAATAATAGATCCCATTTATGGTGATGATGTTCA TABLE 1. Nucleotide and Amino Acid Sequences
GATTCCTGAAAACTTGATTGCTGTTGTTTTCAGAGTAGAGCCAAGGTGCTTTTTTGGCTGGCTATATTGCAGCCAA AAAAAGCTTTTCTGGCAAAATAGGTTTTATAGGGGGAATGAAGGGTAA t542.nt
TGCTTTAGTAGAAATGGAATAGAATCTAGTTCAAAAAAAATTAAGATATCCATGTTGGTAGATGGTGTTCTTGACG ACAAATCTTTTAATTCTAGTGCTAATGAGGCTTTATTACGCTTGAAAAAAGATTTTCCAGAAAATATTGAAGAAGT TTTTTCTTGTGCTATTTCTGGAGTTTATTCTAGTTATGTTTCAGATCTTGATAATTTAAAAAGGAATGGCTCAGAC TTGATTTGGCTTGTAGGGTACATGCTTACGGACGCATCTTTATTGGTTTCATCGGAGAATCCAAAAATTAGCTATG GAATAATAGATCCCATTTATGGTGATGATGTTCAGATTCCTGAAAACTTGATTGCTGTTGTTTTCAGAGTAGAGCC AAGGTGCTTTTTTGGCTGGCTATATTGCAGCCAAAAAAAGCTTTTCTGGCAAAATAGGTTTTATAGGGGGAATGAA GGGTAA f93.aa
MKRILAMHDISSMGRTSLTICIPVISSFNMQVCPFVTAVLSASTAYKKFEIVDLTDHLEKFINIWKEQNEHFDILY TGFLGSEKQQITIEKIIKLIKFEKIVIDPVFADDGEIYPIFDNKIISGFRKIIKYANIITPNITELEMLSKSSKLN NKDDIIKAILNLDTKATVWTSVKRGNLLGNICYNPKNKEYSEFFLEGLEQNFSGTGDLFTSLLIGYLEKFETEQA LEKTTKAIHLIIKESIKENVSKKEGVRIENFLKNTFZ t93.aa
CIPVISSFNMQVCPFVTAVLSASTAYKKFEIVDLTDHLEKFINIWKEQNEHFDILYTGFLGSEKQQITIEKIIKLI KFEKIVIDPVFADDGEIYPIFDNKIISGFRKIIKYANIITPNITELEMLSKSSKLNNKDDIIKAILNLDTKATVW TSVKRGNLLGNICYNPKNKEYSEFFLEGLEQNFSGTGDLFTSLLIGYLEKFETEQALEKTTKAIHLIIKESIKENV SKKEGVRIENFLKNTFZ f93.nt
ATGAAAAGAATTTTAGCAATGCATGATATTTCAAGCATGGGAAGAACATCTCTTACAATATGCATACCAGTAATAT CTTCGTTTAATATGCAAGTTTGTCCTTTTGTGACAGCTGTCCTTTCTGCTTCCACAGCTTATAAAAAATTTGAAAT AGTGGATTTAACCGATCATTTAGAAAAATTTATCAATATATGGAAAGAACAAAATGAGCACTTTGACATACTCTAT ACCGGATTTCTGGGAAGCGAAAAACAACAAATAACAATAGAGAAAATAATTAAATTAATAAAATTTGAAAAAATTG TAATTGATCCTGTGTTTGCTGACGATGGAGAAATTTACCCTATATTTGATAATAAAATAATTAGTGGATTTAGAAA AATCATAAAGTACGCAAACATAATAACACCCAATATCACAGAACTTGAAATGCTAAGCAAAAGCTCAAAACTTAAC AACAAAGATGATATCATAAAAGCAATATTAAATCTTGATACAAAAGCGACGGTAGTTGTTACAAGCGTTAAAAGGG GAAATCTCTTGGGAAACATTTGCTACAATCCTAAAAACAAAGAATACTCGGAGTTTTTTTTAGAAGGATTAGAACA AAATTTCAGTGGAACAGGAGATTTATTTACCAGCTTACTTATAGGATATTTGGAAAAATTTGAAACAGAGCAAGCC TTAGAAAAAACAACAAAGGCTATTCACCTAATAATAAAAGAGTCAATTAAAGAAAATGTTTCAAAAAAAGAAGGGG TCCGAATTGAAAATTTCTTAAAAAATACATTTTGA t93.nt
TGCATACCAGTAATATCTTCGTTTAATATGCAAGTTTGTCCTTTTGTGACAGCTGTCCTTTCTGCTTCCACAGCTT ATAAAAAATTTGAAATAGTGGATTTAACCGATCATTTAGAAAAATTTATCAATATATGGAAAGAACAAAATGAGCA CTTTGACATACTCTATACCGGATTTCTGGGAAGCGAAAAACAACAAATAACAATAGAGAAAATAATTAAATTAATA AAATTTGAAAAAATTGTAATTGATCCTGTGTTTGCTGACGATGGAGAAATTTACCCTATATTTGATAATAAAATAA TTAGTGGATTTAGAAAAATCATAAAGTACGCAAACATAATAACACCCAATATCACAGAACTTGAAATGCTAAGCAA AAGCTCAAAACTTAACAACAAAGATGATATCATAAAAGCAATATTAAATCTTGATACAAAAGCGACGGTAGTTGTT ACAAGCGTTAAAAGGGGAAATCTCTTGGGAAACATTTGCTACAATCCTAAAAACAAAGAATACTCGGAGTTTTTTT TAGAAGGATTAGAACAAAATTTCAGTGGAACAGGAGATTTATTTACCAGCTTACTTATAGGATATTTGGAAAAATT TGAAACAGAGCAAGCCTTAGAAAAAACAACAAAGGCTATTCACCTAATAATAAAAGAGTCAATTAAAGAAAATGTT TCAAAAAAAGAAGGGGTCCGAATTGAAAATTTCTTAAAAAATACATTTTGA fl05.aa TABLE 1. Nucleotide and Amino Acid Sequences
MGLYLKLLRQSINLKSLFPLSVLFFSCNWDTDFSVLEFKVANFNLNDDFSQGLLDΞAYNILNRSFDLIIIKNLKN KNVLDLINNRVLFRAFKNAYFIDQGSGLSVSILSKRKINIKVLSVMQDSCDLKLGLLVDFKFENNHYGIVIYNLSK DFIKSIANLQISEQILYLKAQMDKLMFILDESEFVIFDLLIKNGFFSLINDSNYTSMLANKIDFRVFSNFFARVSL YSFMFVIADYLHSNYWENFPQKIVINZ tl 05 . aa
CNWDTDFSVLEFKVANFNLNDDFSQGLLDSAYNILNRSFDLIIIKNLKNKNVLDLINNRVLFRAFKNAYFIDQGS GLSVSILSKRKINIKVLSVMQDSCDLKLGLLVDFKFENNHYGIVIYNLSKDFIKSIANLQISEQILYLKAQMDKLM FILDESEFVIFDLLIKNGFFSLINDSNYTSMLANKIDFRVFSNFFARVSLYSFMFVIADYLHSNYWENFPQKIVI NZ flOδ . nt
ATGGGCTTGTATTTGAAGTTGTTGAGACAAAGTATCAACTTGAAGAGTTTATTTCCGCTTAGTGTTTTATTTTTTT CCTGTAATGTTGTAGATACAGATTTTAGTGTTTTGGAGTTTAAGGTTGCAAATTTTAATTTAAATGATGATTTTTC TCAAGGGTTACTTGATTCTGCTTATAATATTCTAAATCGAAGTTTTGATTTAATAATTATTAAGAATCTTAAGAAT AAAAATGTTCTTGATTTAATTAATAATAGAGTTTTATTTAGAGCTTTTAAGAATGCTTATTTTATTGATCAAGGTA GTGGCCTTTCTGTTAGCATTCTTTCTAAGCGCAAAATAAATATTAAAGTTTTAAGTGTAATGCAAGATTCTTGCGA TTTAAAATTAGGATTGCTTGTGGATTTTAAATTTGAGAATAATCACTATGGTATTGTTATTTATAATTTAAGCAAG GATTTTATTAAAAGTATTGCCAATTTGCAAATTAGTGAACAAATTTTATATTTAAAAGCCCAAATGGATAAATTGA TGTTTATTTTAGATGAATCTGAATTTGTTATTTTTGATTTATTAATCAAAAATGGATTTTTTAGCTTAATAAATGA TTCAAACTACACTTCAATGTTAGCAAATAAAATTGATTTTAGAGTTTTTTCTAATTTTTTTGCTAGGGTTTCTTTA TATTCATTTATGTTTGTAATTGCAGATTATTTGCATAGCAATTATGTTGTTGAGAATTTTCCTCAAAAAATAGTTA TCAATTGA tl05.nt
TGTAATGTTGTAGATACAGATTTTAGTGTTTTGGAGTTTAAGGTTGCAAATTTTAATTTAAATGATGATTTTTCTC AAGGGTTACTTGATTCTGCTTATAATATTCTAAATCGAAGTTTTGATTTAATAATTATTAAGAATCTTAAGAATAA AAATGTTCTTGATTTAATTAATAATAGAGTTTTATTTAGAGCTTTTAAGAATGCTTATTTTATTGATCAAGGTAGT GGCCTTTCTGTTAGCATTCTTTCTAAGCGCAAAATAAATATTAAAGTTTTAAGTGTAATGCAAGATTCTTGCGATT TAAAATTAGGATTGCTTGTGGATTTTAAATTTGAGAATAATCACTATGGTATTGTTATTTATAATTTAAGCAAGGA TTTTATTAAAAGTATTGCCAATTTGCAAATTAGTGAACAAATTTTATATTTAAAAGCCCAAATGGATAAATTGATG TTTATTTTAGATGAATCTGAATTTGTTATTTTTGATTTATTAATCAAAAATGGATTTTTTAGCTTAATAAATGATT CAAACTACACTTCAATGTTAGCAAATAAAATTGATTTTAGAGTTTTTTCTAATTTTTTTGCTAGGGTTTCTTTATA TTCATTTATGTTTGTAATTGCAGATTATTTGCATAGCAATTATGTTGTTGAGAATTTTCCTCAAAAAATAGTTATC AATTGA fl50.aa
MKTFVIIGLSNLGIHLLEDLSRLDCQIIIIDTSKELIEEYDVISTESFWEQFTKNALKRIIPVDTDAWIDFDDD LGKSALVTHYCNLLGLKEICVKTENRDDAEILKTLGATKIIFPSKDAARRLTPLLVSPNLSTYNIIGYDIIVAETV IPKEYVGKTLFEADLRRECGITVIAVRNLSNSRYEFVDGDYFFLKDDKIVICGKPDSIENFTNNKDLIKDLISGSK EDENLNKDAEKKSRFLGIFNFMKIFQKDRKDNZ tl50.aa
CQIIIIDTSKELIEEYDVISTESFWEQFTKNALKRIIPVDTDAWIDFDDDLGKSALVTHYCNLLGLKEICVKTE NRDDAEILKTLGATKIIFPSKDAARRLTPLLVSPNLSTYNIIGYDI IVAETVIPKEYVGKTLFEADLRRECGITVI AVRNLSNSRYEFVDGDYFFLKDDKIVICGKPDSIENFTNNKDLIKDLISGSKEDENLNKDAEKKSRFLGIFNFMKI FQKDRKDNZ fl50 . nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGAAAACATTTGTTATTATTGGACTTAGTAATTTAGGCATTCACTTACTTGAAGATTTAAGCAGGCTTGATTGTC AAATTATTATTATAGATACATCTAAAGAGCTTATTGAAGAATATGATGTGATATCTACAGAAAGCTTTGTTGTTGA GCAATTCACTAAAAATGCTTTGAAAAGAATAATTCCAGTAGATACAGACGCTGTTGTTATTGATTTTGATGATGAT CTTGGCAAAAGTGCTCTTGTTACTCACTATTGTAATCTTTTAGGTTTGAAAGAAATATGCGTTAAGACAGAAAATA GAGATGATGCTGAAATCTTAAAAACTCTTGGGGCAACAAAAATTATATTTCCAAGTAAAGATGCTGCAAGAAGATT AACTCCATTATTAGTATCTCCAAATCTTTCAACTTATAATATTATTGGGTATGATATTATTGTTGCTGAAACTGTT ATTCCCAAAGAATATGTTGGTAAAACTCTTTTTGAAGCCGATCTTAGAAGAGAATGTGGGATTACAGTTATTGCTG TTAGAAATTTAAGTAATTCTAGGTATGAATTTGTTGATGGCGATTATTTTTTTTTAAAAGATGATAAAATTGTAAT TTGTGGTAAACCAGATAGCATTGAAAATTTTACAAATAATAAAGATTTAATTAAAGATTTAATTTCAGGCTCTAAA GAGGATGAAAATTTAAATAAAGATGCTGAGAAAAAATCTAGATTTTTAGGGATTTTCAATTTTATGAAAATTTTTC AAAAAGATCGTAAGGATAATTAG tl50.nt
TGTCAAATTATTATTATAGATACATCTAAAGAGCTTATTGAAGAATATGATGTGATATCTACAGAAAGCTTTGTTG TTGAGCAATTCACTAAAAATGCTTTGAAAAGAATAATTCCAGTAGATACAGACGCTGTTGTTATTGATTTTGATGA TGATCTTGGCAAAAGTGCTCTTGTTACTCACTATTGTAATCTTTTAGGTTTGAAAGAAATATGCGTTAAGACAGAA AATAGAGATGATGCTGAAATCTTAAAAACTCTTGGGGCAACAAAAATTATATTTCCAAGTAAAGATGCTGCAAGAA GATTAACTCCATTATTAGTATCTCCAAATCTTTCAACTTATAATATTATTGGGTATGATATTATTGTTGCTGAAAC TGTTATTCCCAAAGAATATGTTGGTAAAACTCTTTTTGAAGCCGATCTTAGAAGAGAATGTGGGATTACAGTTATT GCTGTTAGAAATTTAAGTAATTCTAGGTATGAATTTGTTGATGGCGATTATTTTTTTTTAAAAGATGATAAAATTG TAATTTGTGGTAAACCAGATAGCATTGAAAATTTTACAAATAATAAAGATTTAATTAAAGATTTAATTTCAGGCTC TAAAGAGGATGAAAATTTAAATAAAGATGCTGAGAAAAAATCTAGATTTTTAGGGATTTTCAATTTTATGAAAATT TTTCAAAAAGATCGTAAGGATAATTAG f219.aa
MLIARIMNINTLFYGMIIIIFALISCNHKNIQYDKRIKKFLDKNKIEYKIDSENDFIAFKDINNNEKEEVIIRSRL NSYKNSKIREIFGIVKVFDINTPKIKEISDSLMSDSYNNRVFGSWEIIHNAERGINSLVYIVKAEEFANDTFLLDA IDEIASTISIFKKIITTNNENIDNNEENNNTNESNEQPTLKQEKTNSTKESNNELKEDQIEEELQEIKAQZ t219.aa
CNHKNIQYDKRIKKFLDKNKIEYKIDSENDFIAFKDINNNEKEEVIIRSRLNSYKNSKIREIFGIVKVFDINTPKI KEISDSLMSDSYNNRVFGSWEIIHNAERGINSLVYIVKAEEFANDTFLLDAIDEIASTISIFKKIITTNNENIDNN EENNNTNESNEQPTLKQEKTNSTKESNNELKEDQIEEELQEIKAQZ f219.nt
ATGCTAATTGCAAGAATAATGAATATTAATACATTATTCTACGGCATGATCATTATCATTTTTGCACTCATTTCTT GCAATCATAAGAATATACAGTACGACAAGAGAATTAAAAAATTTTTAGATAAAAACAAAATTGAATATAAAATAGA CTCAGAAAATGACTTTATAGCATTTAAAGATATAAACAATAACGAAAAAGAAGAAGTAATCATCAGATCAAGACTA AACTCATATAAAAATTCAAAGATAAGAGAAATATTTGGAATTGTTAAAGTATTTGATATAAACACACCAAAAATAA AAGAAATATCTGACTCGCTTATGAGCGATAGTTATAATAACAGAGTATTTGGATCGTGGGAGATTATTCATAATGC AGAAAGAGGAATCAACTCTTTGGTATATATTGTAAAAGCAGAAGAATTTGCAAATGATACATTTTTGCTTGATGCA ATTGATGAGATTGCCTCAACAATAAGTATTTTCAAAAAAATAATAACAACCAACAACGAAAACATTGATAATAATG AAGAAAATAACAATACAAATGAATCAAATGAACAGCCCACCTTAAAGCAAGAAAAAACAAATTCAACAAAAGAATC TAATAACGAACTTAAAGAAGATCAAATAGAAGAAGAACTTCAAGAAATCAAAGCCCAATAA t219.nt
TGCAATCATAAGAATATACAGTACGACAAGAGAATTAAAAAATTTTTAGATAAAAACAAAATTGAATATAAAATAG ACTCAGAAAATGACTTTATAGCATTTAAAGATATAAACAATAACGAAAAAGAAGAAGTAATCATCAGATCAAGACT AAACTCATATAAAAATTCAAAGATAAGAGAAATATTTGGAATTGTTAAAGTATTTGATATAAACACACCAAAAATA AAAGAAATATCTGACTCGCTTATGAGCGATAGTTATAATAACAGAGTATTTGGATCGTGGGAGATTATTCATAATG CAGAAAGAGGAATCAACTCTTTGGTATATATTGTAAAAGCAGAAGAATTTGCAAATGATACATTTTTGCTTGATGC TABLE 1. Nucleotide and Amino Acid Sequences
AATTGATGAGATTGCCTCAACAATAAGTATTTTCAAAAAAATAATAACAACCAACAACGAAAACATTGATAATAAT GAAGAAAATAACAATACAAATGAATCAAATGAACAGCCCACCTTAAAGCAAGAAAAAACAAATTCAACAAAAGAAT CTAATAACGAACTTAAAGAAGATCAAATAGAAGAAGAACTTCAAGAAATCAAAGCCCAATAA f229.aa
MRVDLLPLVELSLYINLSFCCKDFSIFNRILEELKCHLILLGHPIIKTLYIKHVDFCLSRQDNLKFIFTSLSKYIN LELLEEFTLEIIPGYVDFEKFKLLDEFCITRINLNVQSFSLEFRKIVGIPEISYKKLNILINNIRKFPFDLNIDMT VNMPLQKKSHLKRDLQRIAFIYAZ t229.aa
CKDFSIFNRILEELKCHLILLGHPIIKTLYIKHVDFCLSRQDNLKFIFTSLSKYINLELLEEFTLEIIPGYVDFEK FKLLDEFCITRINLNVQSFSLEFRKIVGIPEISYKKLNILINNIRKFPFDLNIDMTVNMPLQKKSHLKRDLQRIAF IYAZ f229.nt
ATGAGAGTAGATCTTTTACCTCTTGTCGAGTTAAGTCTTTATATTAATTTGTCATTTTGTTGTAAAGATTTTAGCA TTTTTAATAGAATTTTAGAGGAATTAAAATGTCATTTAATCTTGCTGGGTCATCCAATTATAAAAACACTTTACAT TAAGCACGTAGATTTTTGTTTATCTAGGCAAGATAATTTAAAATTTATTTTCACTTCTTTGTCCAAGTATATTAAT TTGGAGTTATTAGAAGAATTTACTTTAGAAATTATTCCGGGTTATGTTGATTTTGAAAAATTCAAACTTTTGGATG AATTTTGTATTACTAGAATTAATCTTAATGTTCAAAGTTTTTCTTTAGAGTTTAGAAAGATTGTGGGGATACCCGA AATTTCTTATAAAAAATTGAATATTTTGATTAACAATATTAGAAAGTTTCCTTTTGATTTGAATATTGACATGACT GTCAATATGCCTTTGCAAAAAAAATCTCATCTCAAGCGAGATTTGCAAAGAATTGCTTTCATATATGCCTGA t229.nt
TGTAAAGATTTTAGCATTTTTAATAGAATTTTAGAGGAATTAAAATGTCATTTAATCTTGCTGGGTCATCCAATTA TAAAAACACTTTACATTAAGCACGTAGATTTTTGTTTATCTAGGCAAGATAATTTAAAATTTATTTTCACTTCTTT GTCCAAGTATATTAATTTGGAGTTATTAGAAGAATTTACTTTAGAAATTATTCCGGGTTATGTTGATTTTGAAAAA TTCAAACTTTTGGATGAATTTTGTATTACTAGAATTAATCTTAATGTTCAAAGTTTTTCTTTAGAGTTTAGAAAGA TTGTGGGGATACCCGAAATTTCTTATAAAAAATTGAATATTTTGATTAACAATATTAGAAAGTTTCCTTTTGATTT GAATATTGACATGACTGTCAATATGCCTTTGCAAAAAAAATCTCATCTCAAGCGAGATTTGCAAAGAATTGCTTTC ATATATGCCTGA f22.aa
MLKTLTKIITISCLIVGCASLPYTPPKQNLNYLMELLPGANLYAHVNLIKNRSIYNSLSPKYKSVLGLISNLYFSY KKENNDFALLIMGNFPKDIFWGIHKNRNTESIGNIFTNPKWKLKNSNIYIIPNKARTSIAITQKDITAKDNNMLTT KYIGEIEKNEMFFWIQDPTLLLPNQIVSSKNLIPFSSGTLSINSLNQEEYIFKSLIKTNNPPILKILSKKLIPTVL TNMTNLTISSHIKTTIKDQNTVEIEFNIQKSSVESLIEKLASNIQT t22.aa
CASLPYTPPKQNLNYLMELLPGANLYAHVNLIKNRSIYNSLSPKYKSVLGLISNLYFSYKKENNDFALLIMGNFPK DIFWGIHKNRNTESIGNIFTNPKWKLKNSNIYIIPNKARTSIAITQKDITAKDNNMLTTKYIGEIEKNEMFFWIQD PTLLLPNQIVSSKNLIPFSSGTLSINSLNQEEYIFKSLIKTNNPPILKILSKKLIPTVLTNMTNLTISSHIKTTIK DQNTVEIEFNIQKSSVESLIEKLASNIQT f22.nt
ATGTTAAAAACATTAACAAAAATAATTACCATTTCATGCCTCATAGTGGGATGCGCAAGCCTGCCTTACACTCCTC CAAAACAAAATCTAAATTACTTAATGGAACTTTTACCTGGCGCAAATTTATACGCCCATGTAAATTTAATTAAAAA CAGGTCTATTTATAACTCTTTAAGCCCTAAATATAAATCAGTTCTTGGGCTTATAAGCAATTTATACTTTAGCTAT AAAAAAGAAAATAACGATTTTGCTCTACTAATAATGGGTAATTTCCCAAAAGATATTTTCTGGGGAATTCATAAAA TABLE 1. Nucleotide and Amino Acid Sequences
ATAGAAATACAGAATCAATAGGCAATATATTTACAAATCCAAAATGGAAACTTAAAAATTCAAATATATACATTAT TCCAAACAAAGCTAGAACTAGCATTGCAATAACCCAAAAAGATATAACCGCAAAAGACAATAATATGCTAACAACA AAATATATTGGGGAAATAGAAAAAAATGAAATGTTTTTTTGGATTCAAGATCCAACATTATTGCTCCCAAACCAAA TAGTAAGCAGCAAAAATTTAATTCCCTTTAGCAGTGGAACTTTGTCTATAAACAGCTTAAATCAAGAAGAATATAT TTTTAAATCCTTAATCAAAACAAATAATCCACCAATACTAAAAATATTGTCAAAAAAGTTAATTCCAACCGTCTTG ACAAACATGACAAACCTCACAATATCAAGCCACATAAAGACCACAATAAAAGACCAAAATACGGTTGAAATAGAAT TTAATATTCAAAAATCTAGTGTTGAAAGCCTTATAGAAAAACTAGCTTCAAATATTCAAACCTAA t22.nt
TGCGCAAGCCTGCCTTACACTCCTCCAAAACAAAATCTAAATTACTTAATGGAACTTTTACCTGGCGCAAATTTAT ACGCCCATGTAAATTTAATTAAAAACAGGTCTATTTATAACTCTTTAAGCCCTAAATATAAATCAGTTCTTGGGCT TATAAGCAATTTATACTTTAGCTATAAAAAAGAAAATAACGATTTTGCTCTACTAATAATGGGTAATTTCCCAAAA GATATTTTCTGGGGAATTCATAAAAATAGAAATACAGAATCAATAGGCAATATATTTACAAATCCAAAATGGAAAC TTAAAAATTCAAATATATACATTATTCCAAACAAAGCTAGAACTAGCATTGCAATAACCCAAAAAGATATAACCGC AAAAGACAATAATATGCTAACAACAAAATATATTGGGGAAATAGAAAAAAATGAAATGTTTTTTTGGATTCAAGAT CCAACATTATTGCTCCCAAACCAAATAGTAAGCAGCAAAAATTTAATTCCCTTTAGCAGTGGAACTTTGTCTATAA ACAGCTTAAATCAAGAAGAATATATTTTTAAATCCTTAATCAAAACAAATAATCCACCAATACTAAAAATATTGTC AAAAAAGTTAATTCCAACCGTCTTGACAAACATGACAAACCTCACAATATCAAGCCACATAAAGACCACAATAAAA GACCAAAATACGGTTGAAATAGAATTTAATATTCAAAAATCTAGTGTTGAAAGCCTTATAGAAAAACTAGCTTCAA ATATTCAAACCTAA f32.aa
MNTKTLYLISLILLACNKNNKIPLIQKLDLPKSSILGFSNKMGIIIKDYAFLSKSTKKNSELDYDYAILLRKDEW KIEKTLEKTERYGIEGNWILVNYKGTKRYIFSKDINIVNNLIIDHSK t32.aa
CNKNNKIPLIQKLDLPKSSILGFSNKMGIIIKDYAFLSKSTKKNSELDYDYAILLRKDEWKIEKTLEKTERYGIE GNWILVNYKGTKRYIFSKDINIVNNLIIDHSK f32.nt
ATGAATACAAAAACATTATATTTAATATCCTTAATTCTTTTAGCTTGCAATAAAAATAACAAAATTCCTCTCATTC AAAAATTAGATTTGCCCAAAAGCAGCATTCTTGGCTTTAGCAATAAAATGGGCATAATAATAAAAGATTATGCTTT TCTTAGTAAAAGCACTAAGAAAAATAGCGAATTGGATTATGATTACGCAATTCTACTCAGAAAAGACGAAGTCGTA AAAATTGAAAAAACACTAGAAAAAACAGAGCGCTATGGAATTGAAGGAAATTGGATCCTAGTCAATTACAAGGGAA CTAAAAGATACATCTTTAGCAAAGACATCAATATAGTCAACAATTTAATAATTGATCATTCTAAATAG t32.nt
TGCAATAAAAATAACAAAATTCCTCTCATTCAAAAATTAGATTTGCCCAAAAGCAGCATTCTTGGCTTTAGCAATA AAATGGGCATAATAATAAAAGATTATGCTTTTCTTAGTAAAAGCACTAAGAAAAATAGCGAATTGGATTATGATTA CGCAATTCTACTCAGAAAAGACGAAGTCGTAAAAATTGAAAAAACACTAGAAAAAACAGAGCGCTATGGAATTGAA GGAAATTGGATCCTAGTCAATTACAAGGGAACTAAAAGATACATCTTTAGCAAAGACATCAATATAGTCAACAATT TAATAATTGATCATTCTAAATAG fl66.aa
MKKLIIIFTLFLSQACNLSTMHKIDTKEDMKILYSEIAELRKKLNLNHLEIDDTLEKVAKEYAIKLGENRTITHTL FGTTPMQRIHKYDQSFNLTREILASGIELNRWNAWLNSPSHKEALINTDTDKIGGYRLKTTDNIDIFWLFGKRK YKN tl δ β . aa TABLE 1. Nucleotide and Amino Acid Sequences
CNLSTMHKIDTKEDMKILYSEIAELRKKLNLNHLEIDDTLEKVAKEYAIKLGENRTITHTLFGTT PMQRIHKYDQSFNLTREILASGIELNRWNAWLNSPSHKEALINTDTDKIGGYRLKTTDNIDIFWLFGKRKYKN fl δ δ . nt
ATGAAAAAATTGATTATAATTTTTACACTGTTTTTATCTCAAGCATGCAATTTAAGTACAATGCATAAAATAGATA CAAAAGAAGATATGAAAATTCTATATTCAGAAATTGCTGAATTGAGAAAAAAATTAAATCTAAACCATCTAGAAAT AGATGATACCCTTGAAAAAGTTGCAAAAGAATATGCCATTAAACTGGGAGAAAATAGAACAATAACTCACACCCTT TTTGGCACAACCCCAATGCAAAGAATACATAAATACGATCAATCCTTTAATTTAACAAGAGAAATACTGGCATCAG GAATTGAACTTAACAGAGTAGTTAATGCATGGCTTAATAGTCCAAGCCACAAAGAAGCTCTTATTAATACAGATAC CGATAAAATAGGTGGCTATAGATTAAAAACGACTGACAATATAGATATATTTGTAGTTCTTTTTGGAAAAAGAAAA TATAAGAATTGA tlδδ.nt
TGCAATTTAAGTACAATGCATAAAATAGATACAAAAGAAGATATGAAAATTCTATATTCAGAAATTGCTGAATTGA GAAAAAAATTAAATCTAAACCATCTAGAAATAGATGATACCCTTGAAAAAGTTGCAAAAGAATATGCCATTAAACT GGGAGAAAATAGAACAATAACTCACACCCTTTTTGGCACAACCCCAATGCAAAGAATACATAAATACGATCAATCC TTTAATTTAACAAGAGAAATACTGGCATCAGGAATTGAACTTAACAGAGTAGTTAATGCATGGCTTAATAGTCCAA GCCACAAAGAAGCTCTTATTAATACAGATACCGATAAAATAGGTGGCTATAGATTAAAAACGACTGACAATATAGA TATATTTGTAGTTCTTTTTGGAAAAAGAAAATATAAGAATTGA f216.aa
MIRVLLGSLAVSFLFSICMVFLNYDNLFSKKVFYFHSSKGFVANLRYLRDEQNLKDNLDLLVKDFLLGSNEGFSFG FLLSDSRFLYSFLKNGVYYVNLSREFYDSFNNGDYNESNESFDVKVNLFAMSLIKTMRFNYPGKIKKIVILVEGCI LKEQS t216.aa
CMVFLNYDNLFSKKVFYFHSSKGFVANLRYLRDEQNLKDNLDLLVKDFLLGSNEGFSFGFLLSDSRFLYSFLKNGV
YYVNLSREFYDSFNNGDYNESNESFDVKVNLFAMSLIKTMRFNYPGKIKKIVILVEGCILKEQS f216.nt
ATGATTAGGGTGCTTTTGGGGTCTTTGGCAGTAAGCTTTTTGTTTTCTATTTGTATGGTTTTTTTAAATTATGATA ATCTTTTTTCAAAAAAGGTTTTTTATTTTCATTCTAGCAAGGGATTTGTTGCTAATTTAAGATATTTAAGAGATGA ACAAAATTTGAAAGATAATTTAGATCTTTTAGTAAAAGATTTTCTTTTAGGAAGCAATGAAGGGTTTTCTTTTGGG TTTTTATTAAGTGATTCAAGATTTTTATATTCTTTTTTAAAGAATGGAGTTTATTATGTAAATCTTTCAAGAGAAT TTTATGATTCTTTTAATAATGGTGATTATAATGAATCTAATGAATCTTTTGATGTTAAGGTCAATCTTTTTGCTAT GTCTTTAATAAAAACAATGCGCTTTAACTATCCTGGTAAGATAAAAAAGATTGTTATTCTTGTTGAAGGGTGTATC TTAAAGGAGCAAAGTTGA t216.nt
TGTATGGTTTTTTTAAATTATGATAATCTTTTTTCAAAAAAGGTTTTTTATTTTCATTCTAGCAAGGGATTTGTTG CTAATTTAAGATATTTAAGAGATGAACAAAATTTGAAAGATAATTTAGATCTTTTAGTAAAAGATTTTCTTTTAGG AAGCAATGAAGGGTTTTCTTTTGGGTTTTTATTAAGTGATTCAAGATTTTTATATTCTTTTTTAAAGAATGGAGTT TATTATGTAAATCTTTCAAGAGAATTTTATGATTCTTTTAATAATGGTGATTATAATGAATCTAATGAATCTTTTG ATGTTAAGGTCAATCTTTTTGCTATGTCTTTAATAAAAACAATGCGCTTTAACTATCCTGGTAAGATAAAAAAGAT TGTTATTCTTGTTGAAGGGTGTATCTTAAAGGAGCAAAGTTGA f328.aa
MAIKYARENNIPFLGICLGLQLAVIEFARNVCGILDADTEENLARDKPLKSPVIHLLPEQKGIKDKGATMRLGGYP VILKKNTIAFKLYGQDRIIERFRHRYEVNNDYIDLFAKNGLIVSGFSSDFKMAKLIEIPENKFFVACQFHPELITR IENPAKLFLGLIKACI TABLE 1. Nucleotide and Amino Acid Sequences
t32δ.aa
CLGLQLAVIEFARNVCGILDADTEENLARDKPLKSPVIHLLPEQKGIKDKGATMRLGGYPVILKKNTIAFKLYGQD
RIIERFRHRYEVNNDYIDLFAKNGLIVSGFSSDFKMAKLIEIPENKFFVACQFHPELITRIENPAKLF
LGLIKACI f328.nt
ATGGCTATTAAATATGCTCGTGAGAATAATATTCCCTTTCTTGGAATTTGTCTTGGTTTGCAGCTTGCTGTAATAG AATTTGCTCGTAATGTTTGTGGAATACTTGATGCTGATACGGAGGAAAATTTAGCAAGAGACAAGCCCTTAAAAAG TCCTGTTATCCATTTACTTCCTGAGCAAAAGGGAATTAAAGATAAGGGCGCTACAATGAGGCTTGGTGGATATCCT GTGATTCTTAAAAAGAATACAATAGCTTTTAAACTTTATGGCCAAGATCGGATAATTGAAAGATTTAGACATAGGT ATGAAGTCAATAATGATTATATAGATTTATTTGCAAAAAATGGGCTTATAGTATCTGGATTTTCAAGTGATTTTAA AATGGCAAAATTAATAGAAATTCCTGAAAATAAATTTTTCGTAGCTTGCCAGTTTCATCCAGAACTTATTACAAGA ATAGAAAATCCAGCCAAGCTTTTTCTAGGATTAATTAAAGCTTGTATTTGA t328.nt
TGTCTTGGTTTGCAGCTTGCTGTAATAGAATTTGCTCGTAATGTTTGTGGAATACTTGATGCTGATACGGAGGAAA ATTTAGCAAGAGACAAGCCCTTAAAAAGTCCTGTTATCCATTTACTTCCTGAGCAAAAGGGAATTAAAGATAAGGG CGCTACAATGAGGCTTGGTGGATATCCTGTGATTCTTAAAAAGAATACAATAGCTTTTAAACTTTATGGCCAAGAT CGGATAATTGAAAGATTTAGACATAGGTATGAAGTCAATAATGATTATATAGATTTATTTGCAAAAAATGGGCTTA TAGTATCTGGATTTTCAAGTGATTTTAAAATGGCAAAATTAATAGAAATTCCTGAAAATAAATTTTTCGTAGCTTG CCAGTTTCATCCAGAACTTATTACAAGAATAGAAAATCCAGCCAAGCTTTTTCTAGGATTAATTAAAGCTTGTATT TGA f352.aa
MNKTKNRSLTYFIILSCISLFGANNNTISYSSIEIPLEDLSEEFKSSGNKSDQINTSKHLNKNIVSYEDPKKGKDL KLPENIRDKKLPQKRMDENDLKSVIENYENKIKNIEKLLKTKNQKTSENENKKIESIEKKAKKYEILTNKLKNEIV EIKKLLNKKIKPKEDENYEKINIENIEEETDDDFEDNYEYNDEIEXTNEDNYPSNEGIINNLKENLNENEKYYAIN EKKIDELEDRINENENTILDLQRELRNFKKKDNSDKNLEEIEENLSSIGRIINDLKRKISANEAINKENQKKIRTD KHKLKELEDKIKENEETILKLQKELNNFKKKEIYQKPLNEETFTPSITSKNDDLEENKKLKKEYLKPIEKKESRDL EENTKSTPKTTMIKTADFQIYPDIYLNNYKFKEKGDQFAFKKENTYYIEIDPTNNLNEALKNHEIISKYKFEKYFI NPILKNKEEFFRNLIEVKNIHELGIMYKNLKPEFKQIKIIK t352.aa
CISLFGANNNTISYSSIEIPLEDLSEEFKSSGNKSDQINTSKHLNKNIVSYEDPKKGKDLKLPENIRDKKLPQKRM DENDLKSVIENYENKIKNIEKLLKTKNQKTSENENKKIESIEKKAKKYEILTNKLKNEIVEIKKLLNKKIKPKEDE NYEKINIENIEEETDDDFEDNYEYNDEIEXTNEDNYPSNEGIINNLKENLNENEKYYAINEKKIDELEDRINENEN TILDLQRELRNFKKKDNSDKNLEEIEENLSSIGRIINDLKRKISANEAINKENQKKIRTDKHKLKELEDKIKENEE TILKLQKELNNFKKKEIYQKPLNEETFTPSITSKNDDLEENKKLKKEYLKPIEKKESRDLEENTKSTPKTTMIKTA DFQIYPDIYLNNYKFKEKGDQFAFKKENTYYIEIDPTNNLNEALKNHEIISKYKFEKYFINPILKNKEEFFRNLIE VKNIHELGIMYKNLKPEFKQIKIIK f352.nt
ATGAATAAAACAAAAAATCGAAGCCTTACGTATTTTATAATACTTTCATGTATATCATTATTTGGGGCTAATAATA ATACAATAAGCTACTCTAGCATTGAAATTCCTCTAGAAGACTTAAGTGAAGAATTTAAAAGTTCTGGGAATAAAAG CGATCAAATAAATACCTCAAAACATTTAAACAAAAACATAGTTTCTTATGAAGACCCAAAAAAGGGTAAAGATCTA AAATTGCCAGAAAATATAAGAGACAAAAAACTACCCCAAAAAAGAATGGACGAAAATGATCTAAAATCTGTAATTG AAAATTATGAAAATAAAATTAAAAACATAGAAAAGCTTTTAAAAACCAAAAATCAAAAAACATCGGAAAATGAAAA TAAAAAAATAGAATCAATCGAAAAAAAAGCAAAAAAATATGAAATTTTAACCAATAAATTAAAAAACGAAATAGTA GAAATAAAAAAGCTCCTTAACAAAAAAATCAAGCCTAAAGAAGATGAAAATTACGAAAAAATAAATATTGAAAACA TABLE 1. Nucleotide and Amino Acid Sequences
TTGAAGAAGAAACTGATGATGATTTTGAAGACAATTATGAATATAATGATGAAATTGAAGAACAAATGAGGACAAT TACCCTTCTAATGAAGGAATAATAAACAATCTAAAAGAAAATCTTAATGAAAACGAAAAATATTATGCTATTAATG AAAAAAAAATCGATGAACTTGAAGACAGAATCAACGAGAATGAAAACACTATTTTAGACTTGCAAAGAGAATTAAG GAATTTTAAAAAAAAAGATAACTCAGATAAAAACTTAGAAGAAATTGAGGAAAATTTATCTTCAATAGGAAGAATA ATTAATGATCTAAAAAGAAAAATCAGCGCAAATGAAGCAATAAACAAAGAAAATCAAAAAAAAATAAGAACTGATA AACACAAACTCAAAGAATTAGAAGATAAAATAAAGGAAAATGAAGAGACTATTTTAAAACTTCAAAAAGAATTAAA CAATTTTAAAAAAAAAGAAATTTATCAAAAACCCTTAAATGAAGAAACTTTCACTCCAAGCATTACAAGTAAAAAT GACGACTTAGAAGAAAATAAGAAATTAAAAAAGGAATATTTAAAGCCCATAGAAAAAAAAGAAAGCCGAGATCTAG AAGAAAATACTAAAAGCACCCCAAAAACAACTATGATAAAAACAGCAGATTTTCAAATCTACCCTGACATATATCT TAATAATTATAAATTTAAAGAAAAGGGAGATCAATTTGCATTTAAAAAAGAAAACACATACTATATTGAAATAGAT CCCACTAACAATTTAAATGAGGCTTTAAAAAATCATGAAATAATCTCAAAATATAAATTTGAAAAATATTTCATTA ACCCTATTCTAAAAAATAAAGAAGAATTTTTTAGAAACTTAATAGAAGTCAAAAATATCCACGAACTAGGAATTAT GTATAAAAATCTAAAGCCTGAATTTAAGCAAATAAAAATAATTAAATAA t352.nt
TGTATATCATTATTTGGGGCTAATAATAATACAATAAGCTACTCTAGCATTGAAATTCCTCTAGAAGACTTAAGTG AAGAATTTAAAAGTTCTGGGAATAAAAGCGATCAAATAAATACCTCAAAACATTTAAACAAAAACATAGTTTCTTA TGAAGACCCAAAAAAGGGTAAAGATCTAAAATTGCCAGAAAATATAAGAGACAAAAAACTACCCCAAAAAAGAATG GACGAAAATGATCTAAAATCTGTAATTGAAAATTATGAAAATAAAATTAAAAACATAGAAAAGCTTTTAAAAACCA AAAATCAAAAAACATCGGAAAATGAAAATAAAAAAATAGAATCAATCGAAAAAAAAGCAAAAAAATATGAAATTTT AACCAATAAATTAAAAAACGAAATAGTAGAAATAAAAAAGCTCCTTAACAAAAAAATCAAGCCTAAAGAAGATGAA AATTACGAAAAAATAAATATTGAAAACATTGAAGAAGAAACTGATGATGATTTTGAAGACAATTATGAATATAATG ATGAAATTGAAGAACAAATGAGGACAATTACCCTTCTAATGAAGGAATAATAAACAATCTAAAAGAAAATCTTAAT GAAAACGAAAAATATTATGCTATTAATGAAAAAAAAATCGATGAACTTGAAGACAGAATCAACGAGAATGAAAACA CTATTTTAGACTTGCAAAGAGAATTAAGGAATTTTAAAAAAAAAGATAACTCAGATAAAAACTTAGAAGAAATTGA GGAAAATTTATCTTCAATAGGAAGAATAATTAATGATCTAAAAAGAAAAATCAGCGCAAATGAAGCAATAAACAAA GAAAATCAAAAAAAAATAAGAACTGATAAACACAAACTCAAAGAATTAGAAGATAAAATAAAGGAAAATGAAGAGA CTATTTTAAAACTTCAAAAAGAATTAAACAATTTTAAAAAAAAAGAAATTTATCAAAAACCCTTAAATGAAGAAAC TTTCACTCCAAGCATTACAAGTAAAAATGACGACTTAGAAGAAAATAAGAAATTAAAAAAGGAATATTTAAAGCCC ATAGAAAAAAAAGAAAGCCGAGATCTAGAAGAAAATACTAAAAGCACCCCAAAAACAACTATGATAAAAACAGCAG ATTTTCAAATCTACCCTGACATATATCTTAATAATTATAAATTTAAAGAAAAGGGAGATCAATTTGCATTTAAAAA AGAAAACACATACTATATTGAAATAGATCCCACTAACAATTTAAATGAGGCTTTAAAAAATCATGAAATAATCTCA AAATATAAATTTGAAAAATATTTCATTAACCCTATTCTAAAAAATAAAGAAGAATTTTTTAGAAACTTAATAGAAG TCAAAAATATCCACGAACTAGGAATTATGTATAAAAATCTAAAGCCTGAATTTAAGCAAATAAAAATAATTAAATA A f867.aa
MNTKGKWGVNGNLVTIEVEGSVSMNEVLFVKTAGRNLKAEVIRIRGNEVDAQVFELTKGISVGDLVEFTDKLLTV ELGPGLLTQVYDGLQNPLPELAIQCGFFLERGVYLRPLNKDKKWNFKKTSKVGDIVIAGDFLGFVIEGTVHHQIMI PFYKRDSYKIVEIVSDGDYSIDEQIAVIEDDSGMRHNITMSFHWPVKVPITNYKERLIPSEPMLTQTRIIDTFFPV AKGGTFCIPGPFGAGKTVLQQVTSRNADVDWI IAACGERAGEWETLKEFPELMDPKTGKSLMDRTCI ICNTSSM PVAAREASVYTAITIGEYYRQMGLDILLLADSTSRWAQAMREMSGRLEEIPGEEAFPAYLESVIASFYERAGIWL NNGDIGSVTVGGSVSPAGGNFEEPVTQATLKWGAFHGLTRERSDARKFPAISPLESWSKYKGVIDQKKTEYARSF LVKGNEINQMMKWGEEGISNDDFLIYLKSELLDSCYLQQNSFDSIDAAVSSERQNYMFDIVYNILKTNFEFSDKL QARDFINELRQNLLDMNLSSFKDHKFNKLEHALGELINFKKVI t867 . aa
GRNLKAEVIRIRGNEVDAQVFELTKGISVGDLVEFTDKLLTVELGPGLLTQVYDGLQNPLPELAIQCGFFLERGVY LRPLNKDKKWNFKKTSKVGDIVIAGDFLGFVIEGTVHHQIMIPFYKRDSYKIVEIVSDGDYSIDEQIAVIEDDSGM RHNITMSFHWPVKVPITNYKERLIPSEPMLTQTRIIDTFFPVAKGGTFCIPGPFGAGKTVLQQVTSRNADVDWII AACGERAGEWETLKEFPELMDPKTGKSLMDRTCIICNTSSMPVAAREASVYTAITIGEYYRQMGLDILLLADSTS RWAQAMREMSGRLEEIPGEEAFPAYLESVIASFYERAGIWLNNGDIGSVTVGGSVSPAGGNFEEPVTQATLKWG AFHGLTRERSDARKFPAISPLESWSKYKGVIDQKKTEYARSFLVKGNEINQMMKWGEEGISNDDFLIYLKSELLD TABLE 1. Nucleotide and Amino Acid Sequences
SCYLQQNSFDSIDAAVSSERQNYMFDIVYNILKTNFEFSDKLQARDFINELRQNLLDMNLSSFKDHKFNKLEHALG ELINFKKVI f867.nt
ATGAATACAAAAGGAAAAGTCGTTGGAGTTAATGGAAACTTAGTTACTATTGAGGTAGAAGGTTCAGTTTCTATGA ATGAAGTTTTATTTGTAAAGACTGCTGGTAGGAATTTAAAAGCAGAAGTAATTCGTATTAGGGGCAATGAAGTTGA TGCACAGGTTTTTGAATTGACAAAAGGGATATCTGTTGGAGACCTAGTTGAATTTACAGACAAACTTTTAACAGTT GAACTCGGACCAGGGCTTTTAACTCAAGTATATGATGGGCTTCAAAATCCTTTGCCTGAATTGGCTATTCAATGTG GATTTTTTTTAGAAAGGGGAGTATATTTAAGGCCCTTGAATAAAGATAAAAAGTGGAATTTTAAAAAAACCTCCAA AGTTGGAGATATCGTTATTGCAGGAGATTTTTTAGGTTTTGTAATTGAGGGAACTGTTCACCATCAAATAATGATT CCATTTTATAAAAGGGATTCTTATAAAATTGTGGAGATTGTAAGTGATGGCGACTATTCGATTGATGAGCAAATTG CTGTAATTGAAGATGATTCTGGTATGAGGCATAATATTACAATGTCTTTTCATTGGCCTGTTAAAGTTCCTATTAC TAATTATAAGGAACGCCTTATTCCTAGTGAACCTATGTTGACTCAAACTAGAATTATAGATACATTTTTCCCAGTT GCCAAAGGTGGAACTTTTTGCATTCCGGGTCCTTTTGGAGCAGGAAAAACGGTTCTTCAGCAGGTTACAAGTCGAA ATGCTGATGTTGATGTAGTGATTATTGCAGCTTGTGGTGAGCGAGCAGGAGAAGTGGTAGAAACTCTTAAAGAATT TCCCGAATTAATGGATCCAAAAACCGGCAAATCTTTAATGGACAGGACTTGTATTATTTGTAATACATCTTCAATG CCAGTTGCAGCTAGAGAAGCTTCTGTTTATACTGCTATTACTATTGGTGAGTATTACAGGCAAATGGGCCTTGATA TTCTTCTTTTGGCAGATTCAACTTCAAGATGGGCTCAAGCAATGAGAGAAATGTCTGGACGCCTTGAGGAAATTCC TGGCGAGGAGGCTTTTCCGGCATATCTTGAGTCTGTTATTGCTTCCTTTTATGAAAGGGCAGGTATTGTAGTTCTT AATAATGGGGATATTGGATCTGTAACAGTTGGTGGCTCTGTAAGTCCTGCTGGTGGTAATTTTGAAGAGCCAGTTA CTCAAGCAACTTTAAAAGTTGTAGGAGCATTTCACGGGCTTACAAGAGAAAGGTCTGATGCTAGGAAATTTCCAGC TATTAGTCCTCTTGAATCTTGGAGTAAATATAAAGGCGTTATTGATCAAAAAAAGACTGAATATGCAAGATCTTTT TTGGTGAAAGGTAATGAAATTAATCAAATGATGAAAGTTGTTGGAGAAGAAGGCATAAGTAACGATGATTTTTTAA TTTATTTAAAATCCGAGCTACTTGATTCGTGCTATTTGCAGCAAAATTCATTTGATTCTATTGATGCTGCTGTTAG TTCAGAGCGTCAAAATTATATGTTTGATATAGTTTATAACATTCTTAAAACTAACTTTGAGTTTTCTGATAAACTT CAAGCAAGAGATTTTATAAATGAGTTAAGGCAAAATCTTTTAGACATGAATCTTTCTTCTTTTAAGGATCATAAGT TTAATAAATTGGAGCATGCTTTGGGTGAATTGATAAATTTTAAAAAGGTAATTTAG t867.nt
GGTAGGAATTTAAAAGCAGAAGTAATTCGTATTAGGGGCAATGAAGTTGATGCACAGGTTTTTGAATTGACAAAAG
GGAT
ATCTGTTGGAGACCTAGTTGAATTTACAGACAAACTTTTAACAGTTGAACTCGGACCAGGGCTTTTAACTCAAGTA
TATGATGGGCTTCAAAATCCTTTGCCTGAATTGGCTATTCAATGTGGATTTTTTTTAGAAAGGGGAGTATATTTAA
GGCCCTTGAATAAAGATAAAAAGTGGAATTTTAAAAAAACCTCCAAAGTTGGAGATATCGTTATTGCAGGAGATTT
TTTAGGTTTTGTAATTGAGGGAACTGTTCACCATCAAATAATGATTCCATTTTATAAAAGGGATTCTTATAAAATT
GTGGAGATTGTAAGTGATGGCGACTATTCGATTGATGAGCAAATTGCTGTAATTGAAGATGATTCTGGTATGAGGC
ATAATATTACAATGTCTTTTCATTGGCCTGTTAAAGTTCCTATTACTAATTATAAGGAACGCCTTATTCCTAGTGA
ACCTATGTTGACTCAAACTAGAATTATAGATACATTTTTCCCAGTTGCCAAAGGTGGAACTTTTTGCATTCCGGGT
CCTTTTGGAGCAGGAAAAACGGTTCTTCAGCAGGTTACAAGTCGAAATGCTGATGTTGATGTAGTGATTATTGCAG
CTTGTGGTGAGCGAGCAGGAGAAGTGGTAGAAACTCTTAAAGAATTTCCCGAATTAATGGATCCAAAAACCGGCAA
ATCTTTAATGGACAGGACTTGTATTATTTGTAATACATCTTCAATGCCAGTTGCAGCTAGAGAAGCTTCTGTTTAT
ACTGCTATTACTATTGGTGAGTATTACAGGCAAATGGGCCTTGATATTCTTCTTTTGGCAGATTCAACTTCAAGAT
GGGCTCAAGCAATGAGAGAAATGTCTGGACGCCTTGAGGAAATTCCTGGCGAGGAGGCTTTTCCGGCATATCTTGA
GTCTGTTATTGCTTCCTTTTATGAAAGGGCAGGTATTGTAGTTCTTAATAATGGGGATATTGGATCTGTAACAGTT
GGTGGCTCTGTAAGTCCTGCTGGTGGTAATTTTGAAGAGCCAGTTACTCAAGCAACTTTAAAAGTTGTAGGAGCAT
TTCACGGGCTTACAAGAGAAAGGTCTGATGCTAGGAAATTTCCAGCTATTAGTCCTCTTGAATCTTGGAGTAAATA
TAAAGGCGTTATTGATCAAAAAAAGACTGAATATGCAAGATCTTTTTTGGTGAAAGGTAATGAAATTAATCAAATG
ATGAAAGTTGTTGGAGAAGAAGGCATAAGTAACGATGATTTTTTAATTTATTTAAAATCCGAGCTACTTGATTCGT
GCTATTTGCAGCAAAATTCATTTGATTCTATTGATGCTGCTGTTAGTTCAGAGCGTCAAAATTATATGTTTGATAT
AGTTTATAACATTCTTAAAACTAACTTTGAGTTTTCTGATAAACTTCAAGCAAGAGATTTTATAAATGAGTTAAGG
CAAAATCTTTTAGACATGAATCTTTCTTCTTTTAAGGATCATAAGTTTAATAAATTGGAGCATGCTTTGGGTGAAT
TGATAAATTTTAAAAAGGTAATTTAG TABLE 1. Nucleotide and Amino Acid Sequences fδδδ.aa
MKRVYSKIESIAGNVITVTAQGIKYGELAIVKAKDTSSLAEVIKLDREKVSLQVYGGTRGVSTSDEIKFLGHSMQV SFSDNLLGRIFDGSGNPRDGGPSLDDNLIEIGGPSANPTKRIVPRNMIRTGLPMIDVFNTLVESQKLPIFSVSGEP YNELLIRIALQAEVDLIILGGMGLKHDDYLTFKDSLEKGGALSRAIFFVHTANDSWESLTVPDISLSVAEKFALK GKKVLVLLTDMTNFADAMKEISITMEQVPSNRGYPGDLYSQLAYRYEKAIDFEGAGSITILAVTTMPGDDVTHPVP DNTGYITEGQYYLKGGRIEPFGSLSRLKQMVNSRTRDDHRTIMDSMIKLYASSKESVEKKAMGFNMTKWDEKLLKY SNMFESKMMDLSVNIPLEEALDLGWSILASCFSPKETGIKTDLIEKYWPKKETY t868.aa
QGIKYGELAIVKAKDTSSLAEVIKLDREKVSLQVYGGTRGVSTSDEIKFLGHSMQVSFSDNLLGRIFDGSGNPRDG GPSLDDNLIEIGGPSANPTKRIVPRNMIRTGLPMIDVFNTLVESQKLPIFSVSGEPYNELLIRIALQAEVDLIILG GMGLKHDDYLTFKDSLEKGGALSRAIFFVHTANDSWESLTVPDISLSVAEKFALKGKKVLVLLTDMTNFADAMKE ISITMEQVPSNRGYPGDLYSQLAYRYEKAIDFEGAGSITILAVTTMPGDDVTHPVPDNTGYITEGQYYLKGGRIEP FGSLSRLKQMVNSRTRDDHRTIMDSMIKLYASSKESVEKKAMGFNMTKWDEKLLKYSNMFESKMMDLSVNIPLEEA LDLGWSILASCFSPKETGIKTDLIEKYWPKKETY f868.nt
ATGAAAAGAGTCTATAGTAAAATAGAGTCTATAGCAGGCAATGTAATAACTGTTACAGCTCAAGGTATTAAGTATG GTGAGCTTGCTATTGTAAAAGCAAAAGATACAAGTTCTCTAGCCGAAGTAATTAAACTTGATCGAGAAAAAGTTTC TCTTCAGGTTTATGGTGGTACAAGAGGTGTTTCCACGTCAGACGAGATAAAGTTTTTAGGGCATTCAATGCAGGTT TCATTTTCTGACAATTTGTTGGGCAGAATTTTTGATGGTTCTGGGAATCCTAGAGATGGGGGCCCTTCTCTTGATG ATAATTTGATTGAAATTGGTGGGCCTTCTGCAAATCCTACAAAACGCATTGTTCCTAGAAATATGATAAGGACAGG GCTTCCAATGATAGATGTTTTTAATACTCTTGTTGAATCTCAAAAATTGCCAATTTTTTCTGTTTCTGGTGAGCCT TATAATGAGCTTCTTATAAGAATTGCACTTCAAGCAGAAGTTGATTTAATAATTCTTGGCGGAATGGGACTTAAGC ATGATGATTATTTAACTTTTAAAGATTCTTTAGAAAAGGGAGGTGCTTTAAGTAGAGCAATTTTTTTTGTTCATAC TGCTAATGATTCTGTTGTTGAATCTTTAACTGTTCCTGATATTTCACTTTCTGTTGCTGAAAAGTTTGCTCTAAAG GGCAAAAAAGTTTTGGTGCTTCTCACAGACATGACAAATTTTGCTGATGCAATGAAAGAAATATCTATTACAATGG AACAAGTGCCTTCTAATAGAGGTTATCCCGGGGATTTGTATTCTCAGCTTGCATATCGTTATGAGAAGGCTATTGA CTTTGAAGGCGCAGGATCAATTACAATACTTGCAGTTACAACAATGCCGGGTGACGATGTTACTCATCCTGTTCCT GACAATACTGGATACATTACAGAAGGTCAATACTATTTAAAAGGTGGCAGAATAGAGCCTTTTGGGTCTCTTTCAA GACTTAAGCAAATGGTAAATAGTAGAACTAGAGACGATCACAGGACTATAATGGATTCAATGATCAAGCTTTATGC ATCTTCAAAAGAGTCTGTAGAAAAAAAGGCTATGGGATTTAATATGACTAAGTGGGATGAAAAATTGCTCAAGTAT AGCAATATGTTTGAAAGTAAGATGATGGATTTGTCTGTTAATATTCCTTTAGAAGAGGCTTTAGATTTAGGTTGGA GCATTCTTGCTAGTTGTTTTAGCCCAAAAGAAACGGGAATAAAAACAGATCTTATTGAAAAATATTGGCCTAAAAA AGAGACTTATTGA t868.nt
CAAGGTATTAAGTATGGTGAGCTTGCTATTGTAAAAGCAAAAGATACAAGTTCTCTAGCCGAAGTAATTAAACTTG ATCGAGAAAAAGTTTCTCTTCAGGTTTATGGTGGTACAAGAGGTGTTTCCACGTCAGACGAGATAAAGTTTTTAGG GCATTCAATGCAGGTTTCATTTTCTGACAATTTGTTGGGCAGAATTTTTGATGGTTCTGGGAATCCTAGAGATGGG GGCCCTTCTCTTGATGATAATTTGATTGAAATTGGTGGGCCTTCTGCAAATCCTACAAAACGCATTGTTCCTAGAA ATATGATAAGGACAGGGCTTCCAATGATAGATGTTTTTAATACTCTTGTTGAATCTCAAAAATTGCCAATTTTTTC TGTTTCTGGTGAGCCTTATAATGAGCTTCTTATAAGAATTGCACTTCAAGCAGAAGTTGATTTAATAATTCTTGGC GGAATGGGACTTAAGCATGATGATTATTTAACTTTTAAAGATTCTTTAGAAAAGGGAGGTGCTTTAAGTAGAGCAA TTTTTTTTGTTCATACTGCTAATGATTCTGTTGTTGAATCTTTAACTGTTCCTGATATTTCACTTTCTGTTGCTGA AAAGTTTGCTCTAAAGGGCAAAAAAGTTTTGGTGCTTCTCACAGACATGACAAATTTTGCTGATGCAATGAAAGAA ATATCTATTACAATGGAACAAGTGCCTTCTAATAGAGGTTATCCCGGGGATTTGTATTCTCAGCTTGCATATCGTT ATGAGAAGGCTATTGACTTTGAAGGCGCAGGATCAATTACAATACTTGCAGTTACAACAATGCCGGGTGACGATGT TACTCATCCTGTTCCTGACAATACTGGATACATTACAGAAGGTCAATACTATTTAAAAGGTGGCAGAATAGAGCCT TTTGGGTCTCTTTCAAGACTTAAGCAAATGGTAAATAGTAGAACTAGAGACGATCACAGGACTATAATGGATTCAA TGATCAAGCTTTATGCATCTTCAAAAGAGTCTGTAGAAAAAAAGGCTATGGGATTTAATATGACTAAGTGGGATGA AAAATTGCTCAAGTATAGCAATATGTTTGAAAGTAAGATGATGGATTTGTCTGTTAATATTCCTTTAGAAGAGGCT TABLE 1. Nucleotide and Amino Acid Sequences
TTAGATTTAGGTTGGAGCATTCTTGCTAGTTGTTTTAGCCCAAAAGAAACGGGAATAAAAACAGATCTTATTGAAA AATATTGGCCTAAAAAAGAGACTTATTGA f872.aa
MRSAVLFFFALPFSISLYSSSNKNFPYWILLEKGRQFLYSKSEFSKSNLTHAINYLQEALLRKGVYPEASYYLSVA YGMSGNAILEKLNLYKSFEDRYYLLDESFEKKILFSLAKMAELENNYVDTIDYLNDILNKFSTKKDYYSYHDYSQG ENSMSNNELNASFYLTSYLKQVRGAFGIDFTFNLYRFKNYNVIDTHQLLSKVYLHLKAYELSITHGLIAAVGILTR MYDYVCYYEPVYQFKNLRSFVQKINKYKAIKNAFESTDFWEIVYNVAAATYAYSNGNYKFRAIDTWKLWDLAPRF SPYIAKSRSQIKNSVYLKKN t872.aa
SNKNFPYWILLEKGRQFLYSKSEFSKSNLTHAINYLQEALLRKGVYPEASYYLSVAYGMSGNAILEKLNLYKSFED RYYLLDESFEKKILFSLAKMAELENNYVDTIDYLNDILNKFSTKKDYYSYHDYSQGENSMSNNELNASFYLTSYLK QVRGAFGIDFTFNLYRFKNYNVIDTHQLLSKVYLHLKAYELSITHGLIAAVGILTRMYDYVCYYEPVYQFKNLRSF VQKINKYKAIKNAFESTDFWEIVYNVAAATYAYSNGNYKFRAIDTWKLWDLAPRFSPYIAKSRSQIKNSVYLKKN fδ72.nt
ATGAGAAGTGCGGTTTTATTTTTTTTTGCTTTGCCTTTTTCTATTTCTTTGTATTCTTCAAGTAATAAAAATTTTC CGTATTGGATTTTACTTGAAAAAGGCAGGCAATTTCTTTATTCTAAATCTGAATTTAGTAAGTCTAATCTTACACA TGCTATTAATTATTTGCAGGAAGCTTTGCTTAGAAAAGGCGTTTATCCTGAGGCTAGTTATTATTTGTCAGTAGCT TATGGTATGTCTGGCAATGCTATTCTTGAAAAATTAAACCTTTATAAGTCTTTTGAAGACAGATATTATTTGCTAG ATGAATCTTTTGAAAAAAAAATACTTTTTTCTTTAGCTAAAATGGCTGAACTTGAGAATAATTATGTTGATACTAT TGATTATTTGAATGACATATTAAATAAGTTTTCAACTAAAAAAGATTATTATAGTTATCATGATTATTCTCAAGGC GAAAACAGTATGTCAAATAATGAACTTAATGCTTCATTTTATTTAACTTCTTATTTAAAACAAGTAAGAGGAGCTT TTGGTATTGATTTTACTTTTAATCTTTACAGATTTAAAAACTACAATGTTATTGATACTCATCAATTATTGTCAAA AGTTTATTTGCACTTAAAAGCTTATGAGCTTTCAATTACTCATGGACTTATAGCTGCAGTAGGAATTTTAACAAGA ATGTATGATTATGTTTGTTATTATGAACCTGTGTATCAGTTTAAAAATTTAAGGTCTTTTGTTCAAAAAATTAATA AGTATAAGGCAATAAAAAATGCTTTTGAATCTACAGATTTTTGGGAAATAGTTTATAATGTTGCTGCTGCTACTTA TGCATATTCTAATGGCAATTATAAATTTAGAGCAATAGATACTTGGAAATTAGTAGTAGATCTTGCGCCAAGGTTT TCTCCTTATATTGCTAAATCAAGAAGTCAAATTAAAAATTCTGTATATTTAAAAAAAAATTAA t872.nt
AGTAATAAAAATTTTCCGTATTGGATTTTACTTGAAAAAGGCAGGCAATTTCTTTATTCTAAATCTGAATTTAGTA AGTCTAATCTTACACATGCTATTAATTATTTGCAGGAAGCTTTGCTTAGAAAAGGCGTTTATCCTGAGGCTAGTTA TTATTTGTCAGTAGCTTATGGTATGTCTGGCAATGCTATTCTTGAAAAATTAAACCTTTATAAGTCTTTTGAAGAC AGATATTATTTGCTAGATGAATCTTTTGAAAAAAAAATACTTTTTTCTTTAGCTAAAATGGCTGAACTTGAGAATA ATTATGTTGATACTATTGATTATTTGAATGACATATTAAATAAGTTTTCAACTAAAAAAGATTATTATAGTTATCA TGATTATTCTCAAGGCGAAAACAGTATGTCAAATAATGAACTTAATGCTTCATTTTATTTAACTTCTTATTTAAAA CAAGTAAGAGGAGCTTTTGGTATTGATTTTACTTTTAATCTTTACAGATTTAAAAACTACAATGTTATTGATACTC ATCAATTATTGTCAAAAGTTTATTTGCACTTAAAAGCTTATGAGCTTTCAATTACTCATGGACTTATAGCTGCAGT AGGAATTTTAACAAGAATGTATGATTATGTTTGTTATTATGAACCTGTGTATCAGTTTAAAAATTTAAGGTCTTTT GTTCAAAAAATTAATAAGTATAAGGCAATAAAAAATGCTTTTGAATCTACAGATTTTTGGGAAATAGTTTATAATG TTGCTGCTGCTACTTATGCATATTCTAATGGCAATTATAAATTTAGAGCAATAGATACTTGGAAATTAGTAGTAGA TCTTGCGCCAAGGTTTTCTCCTTATATTGCTAAATCAAGAAGTCAAATTAAAAATTCTGTATATTTAAAAAAAAAT TAA f874.aa
MLKSNKWLIGAGGVGSSFAYALTIDNSLVHELVIIDVNENKAKGEVMDLNHGQMFLKKNINVLFGTYKDCANADI WITAGLNQKPGETRLDLVDKNSKIFKDIITNWSSGFDGIFWASNPVDIMTYVTMKYSKFPIHKVIGTGTILDT SRLRYFLSDHFNVNTQNIHSYIMGEHXDSSFATWDETKIAMKPLSEYLAEGKITELELDEIHKKWNAAYEVIKLK TABLE 1. Nucleotide and Amino Acid Sequences
GATYYAIGLGIKNIVNAIIGDQNVILPISSYINGQYGGLIKDIYIGAPAIVCKEGVKEVLNFKISPKELDKFNSSA NQLKSYIDKMEF t874.aa
ALTIDNSLVHELVIIDVNENKAKGEVMDLNHGQMFLKKNINVLFGTYKDCANADIWITAGLNQKPGETRLDLVDK NSKIFKDIITNWSSGFDGIFWASNPVDIMTYVTMKYSKFPIHKVIGTGTILDTSRLRYFLSDHFNVNTQNIHSY IMGEHXDSSFATWDETKIAMKPLSEYLAEGKITELELDEIHKKWNAAYEVIKLKGATYYAIGLGIKNIVNAIIGD QNVILPISSYINGQYGGLIKDIYIGAPAIVCKEGVKEVLNFKISPKELDKFNSSANQLKSYIDKMEF f δ 74 . nt
ATGCTTAAGTCTAATAAAGTTGTTCTTATTGGAGCTGGTGGGGTTGGTTCAAGCTTTGCGTATGCTTTAACAATAG ACAATTCACTTGTACATGAACTTGTAATTATTGATGTTAATGAAAATAAAGCAAAAGGGGAGGTCATGGACCTTAA TCATGGCCAAATGTTTTTAAAGAAGAATATTAATGTATTGTTTGGGACTTACAAAGATTGTGCTAATGCAGATATT GTTGTAATTACAGCAGGACTTAATCAAAAGCCTGGTGAGACAAGACTTGATTTGGTTGATAAAAATTCTAAAATTT TTAAAGATATTATAACTAATGTTGTATCTAGCGGTTTTGATGGTATTTTTGTTGTTGCAAGCAATCCTGTAGACAT TATGACTTATGTTACAATGAAATATTCCAAATTTCCTATTCATAAGGTTATTGGTACTGGGACTATTCTTGATACT TCAAGACTTAGATATTTTTTAAGTGATCATTTTAATGTGAACACTCAAAATATACATTCATATATTATGGGTGAGC ACGTGACAGTTCTTTTGCTACGTGGGATGAAACAAAAATAGCAATGAAGCCTTTGTCAGAATATCTTGCTGAAGGC AAAATAACTGAGTTGGAGCTTGATGAAATTCATAAAAAGGTTGTGAATGCTGCTTATGAAGTTATTAAGTTAAAGG GGGCAACCTATTATGCTATTGGACTTGGTATTAAGAATATTGTAAATGCAATAATTGGAGATCAGAATGTTATTCT GCCAATATCTTCTTATATTAATGGCCAGTATGGGGGATTGATTAAAGATATTTATATTGGAGCGCCTGCTATAGTT TGTAAGGAAGGAGTCAAAGAAGTTTTAAACTTTAAGATAAGCCCTAAAGAGCTTGATAAGTTTAATAGTTCTGCTA ATCAGCTTAAAAGCTATATTGATAAAATGGAATTTTAG t674.nt
GCTTTAACAATAGACAATTCACTTGTACATGAACTTGTAATTATTGATGTTAATGAAAATAAAGCAAAAGGGGAGG TCATGGACCTTAATCATGGCCAAATGTTTTTAAAGAAGAATATTAATGTATTGTTTGGGACTTACAAAGATTGTGC TAATGCAGATATTGTTGTAATTACAGCAGGACTTAATCAAAAGCCTGGTGAGACAAGACTTGATTTGGTTGATAAA AATTCTAAAATTTTTAAAGATATTATAACTAATGTTGTATCTAGCGGTTTTGATGGTATTTTTGTTGTTGCAAGCA ATCCTGTAGACATTATGACTTATGTTACAATGAAATATTCCAAATTTCCTATTCATAAGGTTATTGGTACTGGGAC TATTCTTGATACTTCAAGACTTAGATATTTTTTAAGTGATCATTTTAATGTGAACACTCAAAATATACATTCATAT ATTATGGGTGAGCACGTGACAGTTCTTTTGCTACGTGGGATGAAACAAAAATAGCAATGAAGCCTTTGTCAGAATA TCTTGCTGAAGGCAAAATAACTGAGTTGGAGCTTGATGAAATTCATAAAAAGGTTGTGAATGCTGCTTATGAAGTT ATTAAGTTAAAGGGGGCAACCTATTATGCTATTGGACTTGGTATTAAGAATATTGTAAATGCAATAATTGGAGATC AGAATGTTATTCTGCCAATATCTTCTTATATTAATGGCCAGTATGGGGGATTGATTAAAGATATTTATATTGGAGC GCCTGCTATAGTTTGTAAGGAAGGAGTCAAAGAAGTTTTAAACTTTAAGATAAGCCCTAAAGAGCTTGATAAGTTT AATAGTTCTGCTAATCAGCTTAAAAGCTATATTGATAAAATGGAATTTTAG fδδδ.aa
MKKKQLILLLFMPQIIYAKSYFASDVFFNKYQKLNEKPKTGFYIEYYSVDDTEKLYLYKENNLIKYKTIQIIENTK KITCYDTKDTKRKEEIYDNLNNKIQEIEYDSKGKTLETANYVYENENLISKNLKTINQKPKLIYYSKDDNGKLLKI TGSNFQIWNYGINGDIKSTYFDIKKATTKVIKYDDKKRNSNSTIIVNNKIKSKEKNQYLDEEKIVNTFEEENTKII STYKANNLIKEETYKNNELIKVNDFQYNESDMIIFQNTKEKDKDQYTNTKIEYEYNKDNQLKSKKIYENDIIYLKT EYHNDNEYEEEIYYNKKPALRVKHKNGKVTEEKPIGTN t886.aa
SYFASDVFFNKYQKLNEKPKTGFYIEYYSVDDTEKLYLYKENNLIKYKTIQIIENTKKITCYDTKDTKRKEEIYDN LNNKIQEIEYDSKGKTLETANYVYENENLISKNLKTINQKPKLIYYSKDDNGKLLKITGSNFQIWNYGINGDIKST YFDIKKATTKVIKYDDKKRNSNSTIIVKINKIKSKEKNQYLDEEKIVNTFEEENTKIISTYK-ANNLIKEETYKNNEL IKVNDFQYNESDMIIFQNTKEKDKDQYTNTKIEYEYNKDNQLKSKKIYENDIIYLKTEYHNDNEYEEEIYYNKKPA LRVKHKNGKVTEEKPIGTN TABLE 1. Nucleotide and Amino Acid Sequences
fδ86.nt
ATGAAAAAAAAACAATTAATACTTCTTCTATTTATGCCACAAATTATTTATGCAAAAAGCTATTTTGCATCTGATG TATTTTTCAATAAATACCAAAAATTAAATGAAAAACCAAAAACGGGGTTTTATATTGAGTATTATTCTGTTGATGA TACTGAAAAACTCTACCTATACAAAGAAAATAACTTAATAAAATACAAAACAATTCAAATCATAGAAAACACAAAA AAAATTACATGTTATGATACAAAAGATACAAAAAGAAAAGAAGAGATTTACGATAATTTAAATAACAAAATACAAG AAATTGAATATGATAGCAAAGGAAAAACTCTTGAAACAGCAAATTACGTTTATGAAAACGAAAACTTAATATCTAA AAATTTAAAAACAATAAACCAAAAACCAAAATTAATATATTATTCTAAAGACGACAATGGTAAATTACTAAAAATA ACAGGATCAAATTTCCAAATTTGGAACTATGGAATTAATGGCGACATAAAATCTACATATTTTGACATCAAAAAAG CAACAACAAAAGTTATAAAATATGATGATAAAAAAAGAAATTCAAACAGTACAATAATTGTTAATAATAAAATAAA ATCCAAAGAAAAAAACCAATATTTAGATGAAGAAAAAATAGTAAATACCTTTGAAGAAGAGAATACAAAAATCATA TCTACCTACAAGGCAAACAACCTAATTAAAGAAGAAACATATAAAAATAATGAACTTATAAAAGTAAATGATTTTC AATACAACGAATCTGATATGATAATTTTTCAAAACACTAAAGAAAAGGATAAAGACCAATACACCAATACTAAAAT TGAATACGAATATAACAAAGACAATCAATTAAAAAGCAAAAAAATTTATGAGAACGATATAATTTATCTAAAAACT GAATACCACAATGACAATGAATATGAAGAAGAAATATACTACAATAAAAAACCTGCTCTTAGGGTAAAACACAAGA ACGGAAAAGTCACCGAAGAAAAACCAATAGGAACAAATTAA t866.nt
AGCTATTTTGCATCTGATGTATTTTTCAATAAATACCAAAAATTAAATGAAAAACCAAAAACGGGGTTTTATATTG AGTATTATTCTGTTGATGATACTGAAAAACTCTACCTATACAAAGAAAATAACTTAATAAAATACAAAACAATTCA AATCATAGAAAACACAAAAAAAATTACATGTTATGATACAAAAGATACAAAAAGAAAAGAAGAGATTTACGATAAT TTAAATAACAAAATACAAGAAATTGAATATGATAGCAAAGGAAAAACTCTTGAAACAGCAAATTACGTTTATGAAA ACGAAAACTTAATATCTAAAAATTTAAAAACAATAAACCAAAAACCAAAATTAATATATTATTCTAAAGACGACAA TGGTAAATTACTAAAAATAACAGGATCAAATTTCCAAATTTGGAACTATGGAATTAATGGCGACATAAAATCTACA TATTTTGACATCAAAAAAGCAACAACAAAAGTTATAAAATATGATGATAAAAAAAGAAATTCAAACAGTACAATAA TTGTTAATAATAAAATAAAATCCAAAGAAAAAAACCAATATTTAGATGAAGAAAAAATAGTAAATACCTTTGAAGA AGAGAATACAAAAATCATATCTACCTACAAGGCAAACAACCTAATTAAAGAAGAAACATATAAAAATAATGAACTT ATAAAAGTAAATGATTTTCAATACAACGAATCTGATATGATAATTTTTCAAAACACTAAAGAAAAGGATAAAGACC AATACACCAATACTAAAATTGAATACGAATATAACAAAGACAATCAATTAAAAAGCAAAAAAATTTATGAGAACGA TATAATTTATCTAAAAACTGAATACCACAATGACAATGAATATGAAGAAGAAATATACTACAATAAAAAACCTGCT CTTAGGGTAAAACACAAGAACGGAAAAGTCACCGAAGAAAAACCAATAGGAACAAATTAA f88δ.aa
MEKLKLKLAIPLLVFTICKIHSQSNIEYNFSYIINTKKENIDLKKGIEKQLDKIYDKITEHIVNNDDKSIIEDIYI NQDIIKTELEISKLKKEMDKKKLQNIITAKEKHNTKTKIDELKKNIQNINNKQKKFAEYFNNLKKLKVKYKKIEEQ TNISNLNKEFFIREELFFINYIDLKKIENYYLLEISNITPEKIETKKAVFKTSSSVNEIADHITKYSLKEILGREF LKININVKNNSDAKIYINEKFVSKGIYHDNIFDISKLPNKEIEIQITSANFENYSIKRTVKNADSIILDIDLKRTI SKKVSIKSNVQSKVFKKGIFMGETPIEIEKPENQDIILLKSKGYKDKFKLINKEEDQVEIEMIKTNKNRLIDTRDK FYVNLAVFTLSTIGAIFAGTLLNNSEVLYKITGNHFINKRLTAEDVYMAKAEQMTATFLFGVGITLTIGSFISLIT HLVEYIKEANMGE tδδδ.aa
SNIEYNFSYIINTKKENIDLKKGIEKQLDKIYDKITEHIVNNDDKSIIEDIYINQDIIKTELEISKLKKEMDKKKL QNIITAKEKHNTKTKIDELKKNIQNINNKQKKFAEYFNNLKKLKVKYKKIEEQTNISNLNKEFFIREELFFINYID LKKIENYYLLEISNITPEKIETKKAVFKTSSSVNEIADHITKYSLKEILGREFLKININVKNNSDAKIYINEKFVS KGIYHDNIFDISKLPNKEIEIQITSANFENYSIKRTVKNADSIILDIDLKRTISKKVSIKSNVQSKVFKKGIFMGE TPIEIEKPENQDIILLKSKGYKDKFKLINKEEDQVEIEMIKTNKNRLIDTRDKFYVNLAVFTLSTIGAIFAGTLLN NSEVLYKITGNHFINKRLTAEDVYMAKAEQMTATFLFGVGITLTIGSFISLITHLVEYIKEANMGE f88δ.nt TABLE 1. Nucleotide and Amino Acid Sequences
ATGGAAAAGCTTAAACTAAAGCTAGCAATACCATTGCTAGTATTTACAATATGCAAAATACATTCTCAAAGTAATA TTGAATACAATTTTTCCTATATCATTAATACAAAAAAAGAAAATATTGACCTAAAAAAGGGTATTGAAAAACAATT GGACAAAATCTATGATAAAATAACAGAACATATAGTAAACAATGATGACAAGAGCATCATTGAAGACATTTATATA AATCAAGATATAATAAAAACAGAACTTGAAATTAGCAAATTAAAAAAAGAAATGGATAAAAAAAAACTTCAAAACA TAATAACCGCAAAAGAAAAGCATAACACCAAAACCAAAATTGATGAGCTTAAAAAAAATATTCAAAATATTAACAA TAAACAAAAAAAATTTGCAGAATATTTTAACAATTTAAAAAAACTAAAAGTAAAATATAAAAAAATCGAAGAGCAA ACAAATATATCAAATTTAAATAAAGAATTTTTTATAAGAGAAGAATTATTTTTTATTAACTATATTGATCTTAAAA AAATAGAAAATTATTATTTGCTAGAAATTAGCAACATCACTCCTGAGAAAATTGAGACTAAAAAAGCGGTATTTAA AACATCATCTTCTGTTAATGAAATTGCAGATCACATAACAAAATACAGCCTCAAAGAAATATTGGGCAGAGAATTT TTAAAAATCAACATTAACGTCAAAAATAACTCGGATGCAAAAATCTACATAAATGAAAAATTTGTTTCAAAAGGAA TCTATCACGATAATATTTTTGACATTTCTAAACTCCCAAACAAAGAAATTGAAATACAAATCACAAGTGCAAATTT CGAAAACTATTCTATTAAAAGAACGGTAAAAAATGCAGACTCAATAATATTAGATATTGACTTAAAAAGAACAATC TCTAAAAAAGTATCAATTAAAAGCAATGTACAATCTAAAGTTTTTAAAAAAGGAATATTTATGGGAGAAACCCCAA TTGAAATTGAAAAACCAGAAAATCAAGATATCATCTTGCTTAAATCTAAAGGATATAAAGATAAATTCAAGTTAAT AAATAAAGAAGAAGATCAAGTAGAAATAGAAATGATAAAAACTAACAAAAATAGACTTATCGACACAAGAGATAAA TTTTATGTCAATCTGGCCGTCTTTACATTAAGCACAATAGGAGCCATTTTTGCAGGAACATTGCTTAACAATTCAG AAGTACTTTATAAAATAACAGGCAATCACTTTATTAACAAAAGATTAACAGCAGAAGATGTTTATATGGCAAAAGC GGAACAAATGACTGCAACATTTCTATTTGGAGTAGGAATCACTTTAACTATTGGAAGCTTTATCTCATTAATAACT CATTTAGTAGAATATATTAAAGAAGCAAATATGGGAGAATAG t888.nt
AGTAATATTGAATACAATTTTTCCTATATCATTAATACAAAAAAAGAAAATATTGACCTAAAAAAGGGTATTGAAA AACAATTGGACAAAATCTATGATAAAATAACAGAACATATAGTAAACAATGATGACAAGAGCATCATTGAAGACAT TTATATAAATCAAGATATAATAAAAACAGAACTTGAAATTAGCAAATTAAAAAAAGAAATGGATAAAAAAAAACTT CAAAACATAATAACCGCAAAAGAAAAGCATAACACCAAAACCAAAATTGATGAGCTTAAAAAAAATATTCAAAATA TTAACAATAAACAAAAAAAATTTGCAGAATATTTTAACAATTTAAAAAAACTAAAAGTAAAATATAAAAAAATCGA AGAGCAAACAAATATATCAAATTTAAATAAAGAATTTTTTATAAGAGAAGAATTATTTTTTATTAACTATATTGAT CTTAAAAAAATAGAAAATTATTATTTGCTAGAAATTAGCAACATCACTCCTGAGAAAATTGAGACTAAAAAAGCGG TATTTAAAACATCATCTTCTGTTAATGAAATTGCAGATCACATAACAAAATACAGCCTCAAAGAAATATTGGGCAG AGAATTTTTAAAAATCAACATTAACGTCAAAAATAACTCGGATGCAAAAATCTACATAAATGAAAAATTTGTTTCA AAAGGAATCTATCACGATAATATTTTTGACATTTCTAAACTCCCAAACAAAGAAATTGAAATACAAATCACAAGTG CAAATTTCGAAAACTATTCTATTAAAAGAACGGTAAAAAATGCAGACTCAATAATATTAGATATTGACTTAAAAAG AACAATCTCTAAAAAAGTATCAATTAAAAGCAATGTACAATCTAAAGTTTTTAAAAAAGGAATATTTATGGGAGAA ACCCCAATTGAAATTGAAAAACCAGAAAATCAAGATATCATCTTGCTTAAATCTAAAGGATATAAAGATAAATTCA AGTTAATAAATAAAGAAGAAGATCAAGTAGAAATAGAAATGATAAAAACTAACAAAAATAGACTTATCGACACAAG AGATAAATTTTATGTCAATCTGGCCGTCTTTACATTAAGCACAATAGGAGCCATTTTTGCAGGAACATTGCTTAAC AATTCAGAAGTACTTTATAAAATAACAGGCAATCACTTTATTAACAAAAGATTAACAGCAGAAGATGTTTATATGG CAAAAGCGGAACAAATGACTGCAACATTTCTATTTGGAGTAGGAATCACTTTAACTATTGGAAGCTTTATCTCATT AATAACTCATTTAGTAGAATATATTAAAGAAGCAAATATGGGAGAATAG f893.aa
MVRFLGFLYLITTIPLIKSCDAAQFGDYKPLYFENENDLKTANEYINSLGYKTISEYTTKIDILDFPENKEITINE
INKLNNLDLRKSIFLKKLSNLFNIEHKKLLYVENRFKSINFKNLKKELNINADIHSLDYKTKINFISSIIFLIIII
LLIFLDPTNSIFTLIFLLISSLAFMISKEIMYFYPFTVLSYLLFLIISNFNKNYNKIYLKEINFLTLMTKIKHLLF
LFTFTALYFITITTFFTTNIDPTFIAFVAIPTLCIFLIFSWIKTESNFKDTFLFPIEIKEKKIEGKKALKSKIAIH
LLLFTLSLIPFAYSSYMLNSYENINYLYSKKLNYFDYLNPNNIYIMLGYNKDMPNIIGYLSHILYQNELKYNITAK
YGKIPKDIKENYFEIKNDKIEIHPKTVYEVDKSFIDEILKKDLASLFLKNKNPILIYKENKNNINTDKKNYKILFF
FSLPFFVLLFLFKAIRFTILLNIN
EKTYKKYIQG t893.aa
CDAAQFGDYKPLYFENENDLKTANEYINSLGYKTISEYTTKIDILDFPENKEITINEINKLNNLDLRKSIFLKKLS NLFNIEHKKLLYVENRFKSINFKNLKKELNINADIHSLDYKTKINFISSIIFLIIIILLIFLDPTNSIFTLIFLLI TABLE 1. Nucleotide and Amino Acid Sequences
SSLAFMISKEIMYFYPFTVLSYLLFLIISNFNKNYNKIYLKEINFLTLMTKIKHLLFLFTFTALYFITITTFFTTN IDPTFIAFVAIPTLCIFLIFSWIKTESNFKDTFLFPIEIKEKKIEGKKALKSKIAIHLLLFTLSLIPFAYSSYMLN SYENINYLYSKKLNYFDYLNPNNIYIMLGYNKDMPNIIGYLSHILYQNELKYNITAKYGKIPKDIKENYFEIKNDK IEIHPKTVYEVDKSFIDEILKKDLASLFLKNKNPILIYKENKNNINTDKKNYKILFFFSLPFFVLLFLFKAIRFTI LLNINEKTYKKYIQG f893.nt
ATGGTGCGTTTTTTAGGTTTTTTATATTTAATTACAACAATACCACTTATCAAATCCTGTGATGCAGCTCAATTTG GAGACTACAAACCTTTATACTTTGAAAATGAAAATGATCTAAAAACTGCCAATGAATATATAAATTCACTAGGATA CAAAACAATCTCAGAATACACAACAAAAATTGACATTTTAGACTTTCCCGAAAATAAAGAAATCACAATAAATGAG ATAAACAAACTTAACAATCTTGACCTGAGAAAAAGCATATTTTTAAAAAAGCTCTCCAATCTTTTCAACATAGAGC ACAAAAAACTTCTTTATGTTGAAAACAGGTTTAAAAGTATAAATTTTAAAAACCTAAAAAAAGAACTCAATATTAA TGCCGACATACATTCTCTTGACTACAAAACAAAAATTAATTTTATTTCAAGCATAATATTTCTAATCATAATAATT TTATTAATTTTTTTAGACCCAACAAACTCTATATTTACTTTAATTTTTCTATTAATTTCATCTCTTGCTTTTATGA TAAGCAAAGAAATAATGTATTTTTATCCATTTACAGTTCTCTCTTATTTGTTATTTTTAATAATCAGTAATTTTAA CAAAAATTACAATAAAATATATTTAAAAGAAATAAATTTTTTAACACTAATGACAAAAATAAAACACTTACTATTT TTATTTACATTCACAGCTCTATATTTCATTACAATCACAACCTTTTTTACTACAAATATTGATCCCACTTTTATTG CATTTGTCGCAATACCAACCCTTTGCATTTTCTTAATTTTCAGCTGGATAAAAACAGAAAGCAATTTTAAAGACAC TTTCTTATTCCCAATCGAGATTAAAGAGAAAAAAATAGAAGGAAAAAAAGCTTTAAAATCAAAAATAGCAATACAT CTACTACTATTTACACTCTCATTAATTCCTTTCGCTTATTCAAGCTATATGCTAAATTCTTATGAAAACATTAACT ACCTTTACAGTAAAAAATTAAATTACTTTGATTATTTAAATCCTAATAACATTTATATAATGCTGGGATACAACAA AGACATGCCCAATATTATAGGGTACCTATCCCACATTCTTTATCAAAACGAACTAAAATACAATATTACCGCTAAG TATGGAAAAATTCCTAAAGATATAAAAGAAAATTACTTTGAAATCAAAAACGACAAAATAGAAATTCATCCTAAAA CTGTTTACGAAGTAGACAAATCATTTATTGATGAAATTCTTAAAAAAGATCTTGCAAGTCTGTTTTTAAAAAATAA AAATCCAATCCTAATATATAAAGAAAACAAGAATAATATCAACACAGATAAAAAAAATTACAAAATACTTTTCTTT TTCTCTTTGCCCTTCTTTGTATTACTATTCCTATTTAAAGCAATAAGATTTACAATTCTTTTAAACATAAATGAAA AAACCTATAAAAAATATATTCAAGGATAA t893.nt
TGTGATGCAGCTCAATTTGGAGACTACAAACCTTTATACTTTGAAAATGAAAATGATCTAAAAACTGCCAATGAAT ATATAAATTCACTAGGATACAAAACAATCTCAGAATACACAACAAAAATTGACATTTTAGACTTTCCCGAAAATAA AGAAATCACAATAAATGAGATAAACAAACTTAACAATCTTGACCTGAGAAAAAGCATATTTTTAAAAAAGCTCTCC AATCTTTTCAACATAGAGCACAAAAAACTTCTTTATGTTGAAAACAGGTTTAAAAGTATAAATTTTAAAAACCTAA AAAAAGAACTCAATATTAATGCCGACATACATTCTCTTGACTACAAAACAAAAATTAATTTTATTTCAAGCATAAT ATTTCTAATCATAATAATTTTATTAATTTTTTTAGACCCAACAAACTCTATATTTACTTTAATTTTTCTATTAATT TCATCTCTTGCTTTTATGATAAGCAAAGAAATAATGTATTTTTATCCATTTACAGTTCTCTCTTATTTGTTATTTT TAATAATCAGTAATTTTAACAAAAATTACAATAAAATATATTTAAAAGAAATAAATTTTTTAACACTAATGACAAA AATAAAACACTTACTATTTTTATTTACATTCACAGCTCTATATTTCATTACAATCACAACCTTTTTTACTACAAAT ATTGATCCCACTTTTATTGCATTTGTCGCAATACCAACCCTTTGCATTTTCTTAATTTTCAGCTGGATAAAAACAG AAAGCAATTTTAAAGACACTTTCTTATTCCCAATCGAGATTAAAGAGAAAAAAATAGAAGGAAAAAAAGCTTTAAA 'ATCAAAAATAGCAATACATCTACTACTATTTACACTCTCATTAATTCCTTTCGCTTATTCAAGCTATATGCTAAAT TCTTATGAAAACATTAACTACCTTTACAGTAAAAAATTAAATTACTTTGATTATTTAAATCCTAATAACATTTATA TAATGCTGGGATACAACAAAGACATGCCCAATATTATAGGGTACCTATCCCACATTCTTTATCAAAACGAACTAAA ATACAATATTACCGCTAAGTATGGAAAAATTCCTAAAGATATAAAAGAAAATTACTTTGAAATCAAAAACGACAAA ATAGAAATTCATCCTAAAACTGTTTACGAAGTAGACAAATCATTTATTGATGAAATTCTTAAAAAAGATCTTGCAA GTCTGTTTTTAAAAAATAAAAATCCAATCCTAATATATAAAGAAAACAAGAATAATATCAACACAGATAAAAAAAA TTACAAAATACTTTTCTTTTTCTCTTTGCCCTTCTTTGTATTACTATTCCTATTTAAAGCAATAAGATTTACAATT CTTTTAAACATAAATGAAAAAACCTATAAAAAATATATTCAAGGATAA f δ 95 . aa
MIRALLTNDLFLSCLVSGISAQVIKYGIQTVKTRKLKLTPVHLLKKIFLETGGMPSSHSSTVTALSTSIALTEGID TNFIIALAFALITIRDSFGVRYMSGVQAEYLNALSEKLKKEIKIDTTKIKWKGHKKKEVLTGIIIGIVSAYIVCY F TABLE 1. Nucleotide and Amino Acid Sequences
t895 . aa
AQVIKYGIQTVKTRKLKLTPVHLLKKIFLETGGMPSSHSSTVTALSTSIALTEGIDTNFIIALAFALITIRDSFGV RYMSGVQAEYLNALSEKLKKEIKIDTTKIKWKGHKKKEVLTGIIIGIVSAYIVCYF f895.nt
ATGATAAGGGCATTGCTTACCAATGATCTTTTTTTGTCTTGTCTTGTATCAGGAATTTCTGCTCAAGTGATTAAAT ATGGTATCCAAACTGTAAAAACAAGAAAGTTAAAACTAACTCCAGTACATCTTTTAAAAAAAATTTTTCTAGAAAC AGGAGGCATGCCAAGTAGTCATTCATCAACGGTCACCGCTCTTTCAACCTCAATCGCACTAACTGAAGGAATAGAT ACAAATTTTATAATAGCTCTTGCATTTGCCCTTATTACAATAAGAGATTCTTTCGGCGTAAGATATATGTCTGGAG TTCAAGCAGAATATTTAAATGCATTATCAGAAAAATTAAAAAAAGAAATAAAAATTGACACAACAAAAATAAAAGT GGTCAAGGGGCACAAAAAGAAAGAGGTTCTAACGGGCATAATAATAGGAATAGTCTCTGCGTATATTGTGTGCTAT TTTTAG tδ95.nt
GCTCAAGTGATTAAATATGGTATCCAAACTGTAAAAACAAGAAAGTTAAAACTAACTCCAGTACATCTTTTAAAAA AAATTTTTCTAGAAACAGGAGGCATGCCAAGTAGTCATTCATCAACGGTCACCGCTCTTTCAACCTCAATCGCACT AACTGAAGGAATAGATACAAATTTTATAATAGCTCTTGCATTTGCCCTTATTACAATAAGAGATTCTTTCGGCGTA AGATATATGTCTGGAGTTCAAGCAGAATATTTAAATGCATTATCAGAAAAATTAAAAAAAGAAATAAAAATTGACA CAACAAAAATAAAAGTGGTCAAGGGGCACAAAAAGAAAGAGGTTCTAACGGGCATAATAATAGGAATAGTCTCTGC GTATATTGTGTGCTATTTTTAG f605.aa
MYIGAAGKSFSIIIDSAFLSNCFLFIGSFSRSDSLMSLSNSRFEYPYDASCEFSLVNIVKYVCGSKYSPMRPTLII SKLPVFLLLVRTGQFSLVSIRLIFRIFFHWFZ t605.aa
CFLFIGSFSRSDSLMSLSNSRFEYPYDASCEFSLVNIVKYVCGSKYSPMRPTLIISKLPVFLLLVRTGQFSLVSIR LIFRIFFHWFZ f605.nt
ATGTATATTGGTGCAGCAGGAAAATCTTTTTCAATTATTATTGATTCTGCTTTTCTGAGTAATTGTTTTCTTTTTA
TAGGATCTTTTTCAAGATCTGATTCTCTGATGAGTTTGTCAAATTCTAGGTTTGAATATCCGTATGATGCAAGTTG
TGAATTTTCTCTTGTGAATATAGTAAAGTATGTGTGTGGATCTAAATATTCCCCAATGCGTCCAACTCTTATTATT
TCAAAATTGCCAGTATTTCTGCTGTTGGTAAGAACAGGCCAATTTTCGTTGGTAAGCATAAGATTGATATTTAGAA
TTTTTTTCCATTGGTTTTGA t605.nt
TGTTTTCTTTTTATAGGATCTTTTTCAAGATCTGATTCTCTGATGAGTTTGTCAAATTCTAGGTTTGAATATCCGT ATGATGCAAGTTGTGAATTTTCTCTTGTGAATATAGTAAAGTATGTGTGTGGATCTAAATATTCCCCAATGCGTCC AACTCTTATTATTTCAAAATTGCCAGTATTTCTGCTGTTGGTAAGAACAGGCCAATTTTCGTTGGTAAGCATAAGA TTGATATTTAGAATTTTTTTCCATTGGTTTTGA f606.aa
MKLQRSLFLIIFFLTFLCCNNKERKEGVSFKISLGAEPSSLDPQLAEDNVASKMIDTMFRGIVTGDPNTGGNKPGL AKGWDISSDGTVYTFNLREKITWSDGVAITAEGIRKSYLRILNKETGSKYVEMVKSVIKNGQKYFDGQVTDSELGI RAIDEKTLEITLESPKPYFIDMLVHQSFIPVPVHVTEKYGQNWTSPENMVTSGPFKLKERIPNEKYVFEKNNKYYD SNEVELEEITFYTTNDSSTAYKJMYENEELDAIFGSIPPDLIKNLKLRSDYYSSAVNAIYFYAFNTHIKPLDNVKIR KALTLAIDRETLTYKVLDNGTTPTRRATPNFSSYSYAKSLELFNPEIAKTLLAEAGYPNGNGFPILKLKYNTNEAN TABLE 1. Nucleotide and Amino Acid Sequences
KKICEFIQNQWKKNLNIDVELENEEWTTYLNTKANGNYEIARAGWIGDYADPLTFLSIFTQGYTQFSSHNYSNPEY NELIKKSDLELDPIKRQDILRQAEEIIIEKDFPIAPIYIYGNSYLFRNDKWTGWNTNILERFDLSQLKLKNKZ t606.aa
CCNNKERKEGVSFKISLGAEPSSLDPQLAEDNVASKMIDTMFRGIVTGDPNTGGNKPGLAKGWDISSDGTVYTFNL REKITWSDGVAITAEGIRKSYLRILNKETGSKYVEMVKSVIKNGQKYFDGQVTDSELGIRAIDEKTLEITLESPKP YFIDMLVHQSFIPVPVHVTEKYGQNWTSPENMVTSGPFKLKERIPNEKYVFEKNNKYYDSNEVELEEITFYTTNDS STAYKMYENEELDAIFGSIPPDLIKNLKLRSDYYSSAVNAIYFYAFNTHIKPLDNVKIRKALTLAIDRETLTYKVL DNGTTPTRRATPNFSSYSYAKSLELFNPEIAKTLLAEAGYPNGNGFPILKLKYNTNEANKKICEFIQNQWKKNLNI DVELENEEWTTYLNTKANGNYEIARAGWIGDYADPLTFLSIFTQGYTQFSSHNYSNPEYNELIKKSDLELDPIKRQ DILRQAEEIIIEKDFPIAPIYIYGNSYLFRNDKWTGWNTNILERFDLSQLKLKNKZ fβOβ.nt
ATGAAATTACAAAGGTCATTATTTTTAATAATATTTTTTCTAACTTTTCTTTGTTGTAATAACAAGGAAAGAAAAG AAGGAGTATCATTTAAAATAAGCTTGGGAGCAGAGCCAAGCAGTCTTGACCCTCAATTAGCAGAGGATAATGTCGC ATCAAAAATGATTGACACAATGTTTAGAGGGATTGTTACAGGAGATCCTAATACAGGGGGAAATAAACCGGGACTT GCAAAAGGGTGGGATATTTCTTCTGATGGAACAGTTTACACATTTAACCTAAGAGAAAAAATCACTTGGAGTGACG GAGTTGCAATCACTGCAGAAGGAATTAGAAAATCTTATCTTAGAATTTTAAATAAAGAAACTGGCTCAAAGTACGT TGAAATGGTTAAATCGGTAATTAAAAATGGTCAAAAATATTTTGATGGACAAGTGACTGACTCTGAACTTGGAATT AGAGCGATTGATGAAAAAACATTAGAAATAACACTGGAATCACCAAAACCTTATTTTATTGATATGTTAGTACACC AATCATTTATTCCAGTACCAGTTCATGTTACCGAAAAGTATGGACAAAACTGGACAAGCCCCGAAAACATGGTGAC AAGTGGTCCTTTTAAATTAAAAGAAAGAATTCCTAACGAAAAATATGTCTTTGAAAAAAATAACAAATACTACGAC TCAAATGAAGTAGAATTAGAAGAGATTACATTTTACACAACAAATGACAGCTCAACAGCGTATAAAATGTATGAAA ATGAAGAGCTAGATGCAATTTTTGGTTCCATACCCCCAGATCTAATCAAAAATCTAAAATTAAGAAGCGACTATTA CTCATCAGCTGTTAATGCCATATACTTTTACGCGTTCAATACACACATCAAACCACTTGACAACGTTAAAATTAGA AAAGCCTTAACTCTTGCTATTGACAGAGAAACGCTTACATATAAAGTTCTTGACAACGGGACTACCCCTACAAGAA GAGCAACTCCCAACTTTAGTTCATATTCTTATGCAAAAAGTTTAGAATTATTTAATCCTGAAATTGCAAAAACCCT TCTAGCTGAAGCTGGATATCCTAATGGCAATGGATTTCCAATTTTAAAATTAAAATACAATACAAACGAAGCAAAT AAAAAAATTTGTGAATTTATTCAAAACCAATGGAAAAAAAATTTAAATATTGATGTGGAACTTGAAAACGAAGAAT GGACAACATACTTAAACACTAAGGCAAATGGAAATTATGAAATAGCAAGAGCAGGATGGATAGGCGATTATGCTGA TCCTTTGACATTTTTAAGCATATTCACACAAGGATACACACAATTCTCATCTCATAATTACTCAAACCCAGAATAC AACGAACTTATAAAGAAATCCGACCTTGAGCTTGATCCAATAAAAAGACAAGACATTTTAAGACAAGCAGAAGAGA TAATTATTGAAAAAGATTTTCCAATAGCACCAATATACATATATGGGAACAGTTACCTTTTCAGAAATGACAAATG GACAGGGTGGAACACCAATATTTTAGAAAGATTTGATTTATCTCAGCTAAAATTAAAAAATAAATAA tβOβ.nt
TGTTGTAATAACAAGGAAAGAAAAGAAGGAGTATCATTTAAAATAAGCTTGGGAGCAGAGCCAAGCAGTCTTGACC CTCAATTAGCAGAGGATAATGTCGCATCAAAAATGATTGACACAATGTTTAGAGGGATTGTTACAGGAGATCCTAA TACAGGGGGAAATAAACCGGGACTTGCAAAAGGGTGGGATATTTCTTCTGATGGAACAGTTTACACATTTAACCTA AGAGAAAAAATCACTTGGAGTGACGGAGTTGCAATCACTGCAGAAGGAATTAGAAAATCTTATCTTAGAATTTTAA ATAAAGAAACTGGCTCAAAGTACGTTGAAATGGTTAAATCGGTAATTAAAAATGGTCAAAAATATTTTGATGGACA AGTGACTGACTCTGAACTTGGAATTAGAGCGATTGATGAAAAAACATTAGAAATAACACTGGAATCACCAAAACCT TATTTTATTGATATGTTAGTACACCAATCATTTATTCCAGTACCAGTTCATGTTACCGAAAAGTATGGACAAAACT GGACAAGCCCCGAAAACATGGTGACAAGTGGTCCTTTTAAATTAAAAGAAAGAATTCCTAACGAAAAATATGTCTT TGAAAAAAATAACAAATACTACGACTCAAATGAAGTAGAATTAGAAGAGATTACATTTTACACAACAAATGACAGC TCAACAGCGTATAAAATGTATGAAAATGAAGAGCTAGATGCAATTTTTGGTTCCATACCCCCAGATCTAATCAAAA ATCTAAAATTAAGAAGCGACTATTACTCATCAGCTGTTAATGCCATATACTTTTACGCGTTCAATACACACATCAA ACCACTTGACAACGTTAAAATTAGAAAAGCCTTAACTCTTGCTATTGACAGAGAAACGCTTACATATAAAGTTCTT GACAACGGGACTACCCCTACAAGAAGAGCAACTCCCAACTTTAGTTCATATTCTTATGCAAAAAGTTTAGAATTAT TTAATCCTGAAATTGCAAAAACCCTTCTAGCTGAAGCTGGATATCCTAATGGCAATGGATTTCCAATTTTAAAATT AAAATACAATACAAACGAAGCAAATAAAAAAATTTGTGAATTTATTCAAAACCAATGGAAAAAAAATTTAAATATT GATGTGGAACTTGAAAACGAAGAATGGACAACATACTTAAACACTAAGGCAAATGGAAATTATGAAATAGCAAGAG CAGGATGGATAGGCGATTATGCTGATCCTTTGACATTTTTAAGCATATTCACACAAGGATACACACAATTCTCATC TABLE 1. Nucleotide and Amino Acid Sequences
TCATAATTACTCAAACCCAGAATACAACGAACTTATAAAGAAATCCGACCTTGAGCTTGATCCAATAAAAAGACAA GACATTTTAAGACAAGCAGAAGAGATAATTATTGAAAAAGATTTTCCAATAGCACCAATATACATATATGGGAACA GTTACCTTTTCAGAAATGACAAATGGACAGGGTGGAACACCAATATTTTAGAAAGATTTGATTTATCTCAGCTAAA AT AAAAAATAAATAA f679.aa
MFNRSSCVLQNFLFLFLFLSLVSCFAKKEISGNNFIKAHSKEFDLNNLNWLWNFDYTKKNFDKHFNIDPSSYIYVA YLFKKIGFEEKFVEYMKKAIANGDSIASQFAGIKLIEYFNSAKEYFASELIGEKLYKKYENNKFIILGYFKSLYWQ KKNDKALSLLNKLDKMKFSDYQENENILLKAVLYLNLSNVSESKIYFNELFENLPANYLHVRAYDYFIIENKSRYF GANFLNLVRFKYEVANGNFNGAINILNKNGLNDYYDNNIVLSDVYKAFISSGKVSNALTFFSKIKSKYKNYYLGIL NLREKNNLGLLLLKEYLEGLDLNNEINRLDLLNTAFSNLIFTKSARDYFAESLPKFYTEGDKKNSTFIKILEEYIL ESIQLEDYGNLYKLYSNAQKVISNSVLSKLAFINARLIYHKLIKPNVSGEYKSLLHSAVNYDKWSYSSFMSRYLLD QNIDEFFTGGSDIKYEQSDYEIFLEGFLKFNLCNYVRGFISEDFRNGYKFSLDFYRKVYDELLKSENYYDATLVIN YLVNQDESALMENDYKRLYPYLYGSLIEYWAKRRGLEASWFSLIKAESSFEKNAVSKPGAVGLMQVMPSTANDIS KELKYFNYDLKIPKDNIIIGTYYLKKRISTTGSLYKALASYNGGIGNVRKWEKSYGHLSKELFIEAIPFSQTRNYI KKILVYSVFYDALYEKKGIDSVIVKIMGEFPKNZ t679.aa
CFAKKEISGNNFIKAHSKEFDLNNLNWLWNFDYTKKNFDKHFNIDPSSYIYVAYLFKKIGFEEKFVEYMKKAIANG DSIASQFAGIKLIEYFNSAKEYFASELIGEKLYKKYENNKFIILGYFKSLYWQKKNDKALSLLNKLDKMKFSDYQE NENILLKAVLYLNLSNVSESKIYFNELFENLPANYLHVRAYDYFIIENKSRYFGANFLNLVRFKYEVANGNFNGAI NILNKNGLNDYYDNNIVLSDVYKAFISSGKVSNALTFFSKIKSKYKNYYLGILNLREKNNLGLLLLKEYLEGLDLN NEINRLDLLNTAFSNLIFTKSARDYFAESLPKFYTEGDKKNSTFIKILEEYILESIQLEDYGNLYKLYSNAQKVIS NSVLSKLAFINARLIYHKLIKPNVSGEYKSLLHSAVNYDKWSYSSFMSRYLLDQNIDEFFTGGSDIKYEQSDYEIF LEGFLKFNLCNYVRGFISEDFRNGYKFSLDFYRKVYDELLKSENYYDATLVINYLVNQDESALMENDYKRLYPYLY GSLIEYWAKRRGLEASWFSLIKAESSFEKNAVSKPGAVGLMQVMPSTANDISKELKYFNYDLKIPKDNIIIGTYY LKKRISTTGSLYKALASYNGGIGNVRKWEKSYGHLSKELFIEAIPFSQTRNYIKKILVYSVFYDALYEKKGIDSVI VKIMGEFPKNZ f679.nt
ATGTTTAATAGAAGTTCTTGTGTATTACAAAATTTTCTTTTTCTTTTTTTATTTTTAAGTTTAGTTTCTTGCTTTG CAAAAAAAGAAATCTCAGGCAATAATTTTATTAAGGCGCATTCAAAAGAGTTTGATTTAAATAATTTAAATTGGTT ATGGAATTTTGATTATACAAAAAAAAATTTTGATAAGCATTTTAACATAGATCCAAGTTCTTACATATATGTTGCT TATTTATTTAAAAAAATAGGATTTGAAGAGAAATTTGTAGAGTATATGAAAAAGGCCATAGCTAATGGAGATAGCA TTGCATCCCAGTTTGCTGGGATTAAGCTTATTGAATATTTTAACTCAGCAAAAGAGTATTTTGCATCTGAATTGAT TGGAGAGAAGCTTTATAAAAAATACGAAAATAATAAATTTATTATACTGGGGTACTTTAAAAGTCTTTATTGGCAA AAGAAAAACGATAAGGCACTTAGTCTTTTAAATAAGCTTGATAAGATGAAATTTTCTGATTATCAGGAAAATGAAA ATATTTTATTAAAAGCAGTTCTTTACCTTAATCTTTCTAATGTAAGTGAGTCAAAAATTTATTTTAATGAGCTTTT TGAGAACTTACCTGCAAATTATTTACATGTAAGAGCTTATGATTATTTTATTATTGAAAATAAGTCTAGGTATTTT GGTGCAAATTTTTTAAATCTTGTTAGATTTAAGTATGAAGTGGCAAATGGCAATTTTAATGGTGCAATAAATATAT TAAATAAAAATGGTTTAAATGATTATTATGACAATAACATTGTATTAAGTGATGTTTATAAGGCTTTTATTAGTTC TGGCAAAGTTTCAAATGCTTTAACATTTTTTAGTAAAATAAAGAGCAAATATAAAAATTATTATTTAGGTATTCTA AACCTTAGAGAGAAAAATAATTTAGGACTTCTTCTTTTAAAAGAATATCTTGAAGGTTTAGATCTTAACAATGAGA TTAACAGGCTTGATTTGCTTAATACTGCTTTTAGCAATTTAATTTTTACTAAGAGCGCAAGGGATTATTTTGCCGA AAGTTTACCCAAGTTTTATACCGAGGGCGATAAAAAAAATTCTACTTTTATTAAGATTTTAGAAGAGTATATTTTG GAATCAATTCAGCTTGAAGACTATGGCAATCTTTATAAGCTTTATTCTAATGCTCAAAAAGTTATTTCTAATTCTG TTTTGTCTAAGCTTGCTTTTATTAATGCAAGGCTTATATATCATAAATTAATTAAACCTAACGTAAGCGGAGAATA CAAGAGTCTTTTGCATTCTGCTGTTAATTATGATAAATGGTCTTATTCTTCATTTATGAGTAGGTACTTATTAGAT CAAAATATTGATGAATTTTTTACAGGTGGGTCTGATATTAAGTATGAGCAATCCGATTATGAGATTTTTTTGGAAG GGTTTTTAAAATTCAATCTTTGTAATTATGTTAGAGGGTTTATTTCTGAGGATTTTAGGAATGGATATAAATTTTC ACTTGATTTTTATCGAAAAGTATACGATGAACTTTTAAAGAGTGAAAATTATTACGATGCAACTCTTGTGATTAAT TATCTTGTAAATCAAGATGAATCTGCTTTAATGGAGAATGACTATAAAAGACTTTATCCTTATTTGTATGGATCTT TGATAGAATATTGGGCTAAAAGGAGAGGGCTTGAAGCTAGTGTTGTATTTTCTTTAATAAAAGCAGAGAGTAGCTT TABLE 1. Nucleotide and Amino Acid Sequences
TGAAAAAAATGCTGTCTCAAAACCGGGTGCTGTTGGCCTTATGCAGGTTATGCCATCAACAGCAAATGATATTTCT AAAGAACTTAAGTATTTTAACTATGATTTAAAGATTCCAAAAGATAATATAATAATTGGAACATATTATTTAAAAA AAAGAATATCTACAACTGGCAGTCTTTATAAGGCTCTTGCGTCTTATAATGGGGGTATTGGTAATGTTAGAAAGTG GGAGAAAAGTTATGGACATTTGTCAAAAGAGCTTTTTATTGAGGCAATTCCCTTTAGTCAAACTAGGAATTATATT AAAAAAATATTAGTTTATTCGGTATTTTATGATGCTTTGTATGAAAAGAAGGGAATAGATTCAGTAATAGTTAAAA TTATGGGCGAATTCCCCAAAAATTAA t679.nt
TGCTTTGCAAAAAAAGAAATCTCAGGCAATAATTTTATTAAGGCGCATTCAAAAGAGTTTGATTTAAATAATTTAA ATTGGTTATGGAATTTTGATTATACAAAAAAAAATTTTGATAAGCATTTTAACATAGATCCAAGTTCTTACATATA TGTTGCTTATTTATTTAAAAAAATAGGATTTGAAGAGAAATTTGTAGAGTATATGAAAAAGGCCATAGCTAATGGA GATAGCATTGCATCCCAGTTTGCTGGGATTAAGCTTATTGAATATTTTAACTCAGCAAAAGAGTATTTTGCATCTG AATTGATTGGAGAGAAGCTTTATAAAAAATACGAAAATAATAAATTTATTATACTGGGGTACTTTAAAAGTCTTTA TTGGCAAAAGAAAAACGATAAGGCACTTAGTCTTTTAAATAAGCTTGATAAGATGAAATTTTCTGATTATCAGGAA AATGAAAATATTTTATTAAAAGCAGTTCTTTACCTTAATCTTTCTAATGTAAGTGAGTCAAAAATTTATTTTAATG AGCTTTTTGAGAACTTACCTGCAAATTATTTACATGTAAGAGCTTATGATTATTTTATTATTGAAAATAAGTCTAG GTATTTTGGTGCAAATTTTTTAAATCTTGTTAGATTTAAGTATGAAGTGGCAAATGGCAATTTTAATGGTGCAATA AATATATTAAATAAAAATGGTTTAAATGATTATTATGACAATAACATTGTATTAAGTGATGTTTATAAGGCTTTTA TTAGTTCTGGCAAAGTTTCAAATGCTTTAACATTTTTTAGTAAAATAAAGAGCAAATATAAAAATTATTATTTAGG TATTCTAAACCTTAGAGAGAAAAATAATTTAGGACTTCTTCTTTTAAAAGAATATCTTGAAGGTTTAGATCTTAAC AATGAGATTAACAGGCTTGATTTGCTTAATACTGCTTTTAGCAATTTAATTTTTACTAAGAGCGCAAGGGATTATT TTGCCGAAAGTTTACCCAAGTTTTATACCGAGGGCGATAAAAAAAATTCTACTTTTATTAAGATTTTAGAAGAGTA TATTTTGGAATCAATTCAGCTTGAAGACTATGGCAATCTTTATAAGCTTTATTCTAATGCTCAAAAAGTTATTTCT AATTCTGTTTTGTCTAAGCTTGCTTTTATTAATGCAAGGCTTATATATCATAAATTAATTAAACCTAACGTAAGCG GAGAATACAAGAGTCTTTTGCATTCTGCTGTTAATTATGATAAATGGTCTTATTCTTCATTTATGAGTAGGTACTT ATTAGATCAAAATATTGATGAATTTTTTACAGGTGGGTCTGATATTAAGTATGAGCAATCCGATTATGAGATTTTT TTGGAAGGGTTTTTAAAATTCAATCTTTGTAATTATGTTAGAGGGTTTATTTCTGAGGATTTTAGGAATGGATATA AATTTTCACTTGATTTTTATCGAAAAGTATACGATGAACTTTTAAAGAGTGAAAATTATTACGATGCAACTCTTGT GATTAATTATCTTGTAAATCAAGATGAATCTGCTTTAATGGAGAATGACTATAAAAGACTTTATCCTTATTTGTAT GGATCTTTGATAGAATATTGGGCTAAAAGGAGAGGGCTTGAAGCTAGTGTTGTATTTTCTTTAATAAAAGCAGAGA GTAGCTTTGAAAAAAATGCTGTCTCAAAACCGGGTGCTGTTGGCCTTATGCAGGTTATGCCATCAACAGCAAATGA TATTTCTAAAGAACTTAAGTATTTTAACTATGATTTAAAGATTCCAAAAGATAATATAATAATTGGAACATATTAT TTAAAAAAAAGAATATCTACAACTGGCAGTCTTTATAAGGCTCTTGCGTCTTATAATGGGGGTATTGGTAATGTTA GAAAGTGGGAGAAAAGTTATGGACATTTGTCAAAAGAGCTTTTTATTGAGGCAATTCCCTTTAGTCAAACTAGGAA TTATATTAAAAAAATATTAGTTTATTCGGTATTTTATGATGCTTTGTATGAAAAGAAGGGAATAGATTCAGTAATA GTTAAAATTATGGGCGAATTCCCCAAAAATTAA f11-12. nt
TAAAAGGAGA ATATTTTTAT GAGAAAAAGT TTGTTTTTAT ATGCATTATT AATGGGAGGA TTGATGTCTT GTAATCTAGA TTCCAAATTA TCTAGTAACA AAGAACAAAA AAATAACAAT AATGTAAAAG AAGTTTCGGA TAGTGTTCAA GAAGATGGTC TTAATGATTT ATATAATAAT CAAGAAAAGC AAAAAAGCTT TACTAAAAAT TTTGGAGAAC GGAAATATGA GGATTTAATT AATCCTATAG AGCCTATAAT ACCTTCAGAA TCACCAAAGA ATAAGGCTAA TATACCAAAT ATTTCAATTG CGCATACTGA AAAAAAAGAG ACAAAAAAGG AGAATTTAAT CCCTTCTACT AATGAAGAAA AGGAAGCTGA TGCAGCAATT AAATATTTAG AAGAAAATAT TCTTAAAAAC TCTAAATTTT CTGAATTAAT TAGAGAAGTA CGTGTAATTA AAGATGAATA TGCTTTAATA AAAGCTGATT TGTATGATGT AATTGGAAAG ATTAACAATA AAAAAACATC ATTAATGGAG AATCCTAAGA ACAATAGAGA TAAGATAAAT AAATTAACAC AATTGTTGCA AAATAATTTA AAGATAGATA GTGAACTTGA GCAGCTTATA AATATGATTG ATATGGCAGA AAATGAAATA AGCTCTGCGG CTTTCTTTTT TGACAACGCT CAGAAAAGGT TAAAAGAAAG CATTATTAAA AGATTAGAGA GTAAAAATAA TAGATCTTAT GCATTAAAAT TGTCTAGACA GGCTTTAAGT GACGCAAGAA GTGCTTTAAG TAATTTAGAA TCTTTTGCCT CTAAAAGAAT TGAACCAATG GTGAGAAAGG AAGAAATAAA AGAGCTTATT AAACATGCAA AAACTGTTTT AGAAAGTCTC AATAAAAAAT AA TABLE 1. Nucleotide and Amino Acid Sequences
tll-12.nt
TTGTAATCTAGATTCCAAATTATCTAGTAACAAAGAACAAAAAAATAACAATAATGTAAAAGAAGTTTCGGATAGT GTTCAAGAAGATGGTCTTAATGATTTATATAATAATCAAGAAAAGCAAAAAAGCTTTACTAAAAATTTTGGAGAAC GGAAATATGAGGATTTAATTAATCCTATAGAGCCTATAATACCTTCAGAATCACCAAAGAATAAGGCTAATATACC AAATATTTCAATTGCGCATACTGAAAAAAAAGAGACAAAAAAGGAGAATTTAATCCCTTCTACTAATGAAGAAAAG GAAGCTGATGCAGCAATTAAATATTTAGAAGAAAATATTCTTAAAAACTCTAAATTTTCTGAATTAATTAGAGAAG TACGTGTAATTAAAGATGAATATGCTTTAATAAAAGCTGATTTGTATGATGTAATTGGAAAGATTAACAATAAAAA AACATCATTAATGGAGAATCCTAAGAACAATAGAGATAAGATAAATAAATTAACACAATTGTTGCAAAATAATTTA AAGATAGATAGTGAACTTGAGCAGCTTATAAATATGATTGATATGGCAGAAAATGAAATAAGCTCTGCGGCTTTCT TTTTTGACAACGCTCAGAAAAGGTTAAAAGAAAGCATTATTAAAAGATTAGAGAGTAAAAATAATAGATCTTATGC ATTAAAATTGTCTAGACAGGCTTTAAGTGACGCAAGAAGTGCTTTAAGTAATTTAGAATCTTTTGCCTCTAAAAGA ATTGAACCAATGGTGAGAAAGGAAGAAATAAAAGAGCTTATTAAACATGCAAAAACTGTTTTAGAAAGTCTCAATA AAAAA fll-12.aa
KENIFMRKSL FLYALLMGGL MSCNLDSKLS SNKEQKNNNN VKEVSDSVQE DGLNDLYNNQ
EKQKSFTKNF GERKYEDLIN PIEPIIPSES PKNKANIPNI SIAHTEKKET KKENLIPSTN
EEKEADAAIK YLEENILKNS KFSELIREVR VIKDEYALIK ADLYDVIGKI NNKKTSLMEN
PKNNRDKINK LTQLLQNNLK IDSELEQLIN MIDMAENEIS SAAFFFDNAQ KRLKESIIKR
LESKNNRSYA LKLSRQALSD ARSALSNLES FASKRIEPMV RKEEIKELIK HAKTVLESLN KK tll-12.aa
CNLDSKLSSNKEQKNNNNVKEVSDSVQEDGLNDLYNNQEKQKSFTKNFGERKYEDLINPIEPIIPSESPKNKANIP NISIAHTEKKETKKENLIPSTNEEKEADAAIKYLEENILKNSKFSELIREVRVIKDEYALIKADLYDVIGKINNKK TSLMENPKJrNRDKINKLTQLLQNNLKIDSELEQLINMIDMAENEISSAAFFFDNAQKRLKESIIKRLESKNNRSYA LKLSRQALSDARSALSNLESFASKRIEPMVRKEEIKELIKHAKTVLESLNKK fll-4.nt
TAAAGGAGTT TACAAATGAG TAAACTAATA TTGGCAATAT CTATACTGCT AATAATTTCA TGTAAATGGT ATGTAGACAA TACCATTGAT GAAGCAACTG TAGAAAGTAA ATCAGCACTA ACATCTATTG ATCAAGTATT AGATGAGATA AGTGAAGCCA CAGGCCTAAG TTCGGAAAAA ATCACAAAAT TAACTCCGGA AGAGCTAGAA AATTTAGCAA AGGAAGCTCA AGATGACTCT GAAAAATCCA AAAAAGAAAT TGAAGATCAA AAAAATACCA AGGAAAGTAA AAACATAGAA GTAAAGGATA CTCCTCGCTT AATCAAATTG ATAAAGAATT CATCAGAAAA AATTGATTCG GTTTTTCAAA CACTAATTAA TATAGGTTAT AATGCTACCT ATGCAGCCAA AAGTAATTTG AAGAATGGAC TAAAGATGGT GAAATTACTG GATGAGTTGC TAAAAATATC GGTAAGTAGC AATGGTGATA AAAGTACCCA AAAATACAAT GAACTTAAAA CCGTTGTAAA TAAGTTTAAT GCTGAAAATT CGGTAAGCGT TTCTTTTAAA GAACATTCAA ACAGTAAAAT TGAAACTAAA AAATGTATTC AAACTCTTAT GAAAAATGTA GAAACATACT TTGAAGGTGT ATGCAGCGAA CTTAAAAACA AAAATGATGG TGAGTACGAA AAAACATTGA CAACTTTAAG CTAA tll-4.nt
ATGTAAATGGTATGTAGACAATACCATTGATGAAGCAACTGTAGAAAGTAAATCAGCACTAACATCTATTGATCAA GTATTAGATGAGATAAGTGAAGCCACAGGCCTAAGTTCGGAAAAAATCACAAAATTAACTCCGGAAGAGCTAGAAA ATTTAGCAAAGGAAGCTCAAGATGACTCTGAAAAATCCAAAAAAGAAATTGAAGATCAAAAAAATACCAAGGAAAG TAAAAACATAGAAGTAAAGGATACTCCTCGCTTAATCAAATTGATAAAGAATTCATCAGAAAAAATTGATTCGGTT TTTCAAACACTAATTAATATAGGTTATAATGCTACCTATGCAGCCAAAAGTAATTTGAAGAATGGACTAAAGATGG TGAAATTACTGGATGAGTTGCTAAAAATATCGGTAAGTAGCAATGGTGATAAAAGTACCCAAAAATACAATGAACT TAAAACCGTTGTAAATAAGTTTAATGCTGAAAATTCGGTAAGCGTTTCTTTTAAAGAACATTCAAACAGTAAAATT TABLE 1. Nucleotide and Amino Acid Sequences
GAAACTAAAAAATGTATTCAAACTCTTATGAAAAATGTAGAAACATACTTTGAAGGTGTATGCAGCGAACTTAAAA ACAAAAATGATGGTGAGTACGAAAAA fll-4.aa
RSLQMSKLIL AISILLIISC KWYVDNTIDE ATVESKSALT SIDQVLDEIS EATGLSSEKI
TKLTPEELEN LAKEAQDDSE KSKKEIEDQK NTKESKNIEV KDTPRLIKLI KNSSEKIDSV
FQTLINIGYN ATYAAKSNLK NGLKMVKLLD ELLKISVSSN GDKSTQKYNE LKTWNKFNA
ENSVSVSFKE HSNSKIETKK CIQTLMKNVE TYFEGVCSEL KNKNDGEYEK TLTTLS tll-4.aa
CKWYVDNTIDEATVESKSALTSIDQVLDEISEATGLSSEKITKLTPEELENLAKEAQDDSEKSKKEIEDQKNTKES KNIEVKDTPRLIKLIKNSSEKIDSVFQTLINIGYNATYAAKSNLKNGLKMVKLLDELLKISVSSNGDKSTQKYNEL KTWNKFNAENSVSVSFKEHSNSKIETKKCIQTLMKNVETYFEGVCSELKNKNDGEYEK fll2-l.nt
TGAATCTCTA AAGATTTTAG CAGGGGAGAA AATATGAAAA AAAGTTTTTT ATCAATATAC ATGTTAATTT CAATAAGTTT ATTATCATGT GATGTTAGTA GATTAAATCA GAGAAATATT AATGAGCTTA AAATTTTTGT TGAAAAGGCC AAGTATTATT CTATAAAATT AGACGCTATT TATAACGAAT GTACAGGAGC ATATAATGAT ATTATGACTT ATTCGGAAGG TACATTTTCT GATCAAAGTA AGGTTAATCA AGCTATATCT ATATTTAAAA AAGACAATAA AATTGTTAAT AAGTTTAAGG AGCTTGAAAA GATTATAGAA GAATACAAAC CTATGTTTTT AAGTAAATTA ATTGATGATT TTGCGGGATC CGTT tll2-l.nt
ATGTGATGTTAGTAGATTAAATCAGAGAAATATTAATGAGCTTAAAATTTTTGTTGAAAAGGCCAAGTATTATTCT ATAAAATTAGACGCTATTTATAACGAATGTACAGGAGCATATAATGATATTATGACTTATTCGGAAGGTACATTTT CTGATCAAAGTAAGGTTAATCAAGCTATATCTATATTTAAAAAAGACAATAAAATTGTTAATAAGTTTAAGGAGCT TGAAAAGATTATAGAAGAATACAAACCTATGTTTTTAAGTAAATTAATTGATGATTTT fll2-l.aa
ISKDFSRGEN MKKSFLSIYM LISISLLSCD VSRLNQRNIN ELKIFVEKAK YYSIKLDAIY NECTGAYNDI MTYSEGTFSD QSKVNQAISI FKKDNKIVNK FKELEKIIEE YKPMFLSKLI DDFAGSV tll2-l.aa
CDVSRLNQRNINELKIFVEKAKYYSIKLDAIYNECTGAYNDIMTYSEGTFSDQSKVNQAISIFKKDNKIVNKFKEL EKIIEEYKPMFLSKLIDDF fl4-δ.nt
TAAATACAGA GCCATTCAAG GAGAGTATTT ATGAAATACT ATATATGTGT GTGTGTTTTT TTGCTTTTGA ATGCTTGCAA TTCAGATTTT AGCACTAATC AAGAAGATAT TAAATATCCA TCTGATAAAG AGAAATCAAA ATCCAACATG GAAGCAAGCT CTAAAGAAGA AGATCCAAAT AAAAAAATAA AAAATACACT GCTTAATGAT TTAATAAATT TGATAGAAAT AGCTAATGAG CATAAAGAAA AATATGAAAA AAGAATGCAA GAAGAACCTT CAGATCAATA CGGAATATTG GCTTTCCAGG AATTAGACTT GTCCGTTGGA AAAATATCTG AAGACACCCC GCAATCTAAA AAATTTAGAA AAAACACCTA TTCTCCCTTA AGCGCTATTG ATGTCAATAA ATTAAAAGAT CTTTCAGAGA TTATAAGAAA TTCGGGCCAA ATACAAGGTT TATTTAATAT TTTCAACAGA TTCGGAGGCA TTTTTGACGA CTCACTTAAT CACGTATATT CTAAAAAAGA TATCCTAGGG GGACTAGAAA TTTTGGATTT AGATAAACTA AAAAATTCGT TTGAAAAATT ACTATCTATA TABLE 1. Nucleotide and Amino Acid Sequences
AAAGAAACTT TCTCAAAAAT GCTAAATCAA CTTTTATTAG ATTATAAAAA TGATAAAGAT CATATACGAA CAGAGACAAA TAAACTTAAA TCTCATACAA CTGCACTTTT CGAACAACTT GATAAAAAAG AAGACGAAGC ATATGAACCT AAAAATCAGA TATTTTCAAT AAGTAACCTT TAA tl4-8.nt
TTGCAATTCAGATTTTAGCACTAATCAAGAAGATATTAAATATCCATCTGATAAAGAGAAATCAAAATCCAACATG GAAGCAAGCTCTAAAGAAGAAGATCCAAATAAAAAAATAAAAAATACACTGCTTAATGATTTAATAAATTTGATAG AAATAGCTAATGAGCATAAAGAAAAATATGAAAAAAGAATGCAAGAAGAACCTTCAGATCAATACGGAATATTGGC TTTCCAGGAATTAGACTTGTCCGTTGGAAAAATATCTGAAGACACCCCGCAATCTAAAAAATTTAGAAAAAACACC TATTCTCCCTTAAGCGCTATTGATGTCAATAAATTAAAAGATCTTTCAGAGATTATAAGAAATTCGGGCCAAATAC AAGGTTTATTTAATATTTTCAACAGATTCGGAGGCATTTTTGACGACTCACTTAATCACGTATATTCTAAAAAAGA TATCCTAGGGGGACTAGAAATTTTGGATTTAGATAAACTAAAAAATTCGTTTGAAAAATTACTATCTATAAAAGAA ACTTTCTCAAAAATGCTAAATCAACTTTTATTAGATTATAAAAATGATAAAGATCATATACGAACAGAGACAAATA AACTTAAATCTCATACAACTGCACTTTTCGAACAACTTGATAAAAAAGAAGACGAAGCATATGAACCTAAAAATCA G fl4-8.aa
IQSHSRRVFM KYYICVCVFL LLNACNSDFS TNQEDIKYPS DKEKSKSNME ASSKEEDPNK
KIKNTLLNDL INLIEIANEH KEKYEKRMQE EPSDQYGILA FQELDLSVGK ISEDTPQSKK
FRKNTYSPLS AIDVNKLKDL SEIIRNSGQI QGLFNIFNRF ' GGIFDDSLNH VYSKKDILGG
LEILDLDKLK NSFEKLLSIK ETFSKMLNQL LLDYKNDKDH IRTETNKLKS HTTALFEQLD KKEDEAYEPK NQIFSISNL
tl4-8.aa
CNSDFSTNQEDIKYPSDKEKSKSNMEASSKEEDPNKKIKNTLLNDLINLIEIANEHKEKYEKRMQEEPSDQYGILA FQELDLSVGKISEDTPQSKKFRKNTYSPLSAIDVNKLKDLSEIIRNSGQIQGLFNIFNRFGGIFDDSLNHVYSKKD ILGGLEILDLDKLKNSFEKLLSIKETFSKMLNQLLLDYKNDKDHIRTETNKLKSHTTALFEQLDKKEDEAYEPKNQ fl7-6.nt
TAAAGGAGGG TATTTATGAA ATACCACATA ATTACAACTA TATTTGTTTT TCTGTTTTTA GCTTGCAGGC CGGATTTTAA TATCGATCAA AAAGACATTA AATACCCGCC TACTGAAAAA TCAAGGCCCA AAACTGAAAG CTCTAAGCAA AAAGAATCAA AGCCTAAAAC AGAAGAAGAG CTTAAGAAAA AACAACAAGA AGAAGAGCTT AAGAAAAAAC AACAAGAAGA AGAGCTTAAG AAAAAACAAC AAGAAGAAGA GCTTAAGAAA AAACAACAAG AAGAAGAGAA GGAAGAACTA AGAAAACAAC AACTAAAAAA TACGCTATCT AATGATTTAA AAAAGCAAAT AGAATCGGCC TACAATTTTA AAGAAAAATA TGTAAAAAGT ATGGAAAAAG AACCTGAAGA CCATTACGGG ATGACGTCTT TTAGGGGATT GAATTGGGGG CCAGGGACTG AAGATATATC TGACAATACC GAAAGATCTA TAAGATATAG AAGACACACT TATACTGTTT TAAGCCCCCT GGATCCTCAT GAATTAAAGG AATTCGCAAA TATTATTCAA GATATAAATA AACTAGCATC AGTAGCAAGT ATATTTAATT CTTTTAGCGC TATTGGAGGA GCTCTTGACA TAGTAAGTGA TCACCTATAT TTCAAAAAAG ACAATCTAGA CAAACTAGAT ATTGCAGATT TAGAAATACT TAAAAATTCA TTTGAACAAA TATTATATAT AAAAGGAAGT GTTGCAGGAA AAGCAAAAAA ACTTTTATTA GATTATAAAA ATCTAAAAAC AGATATTAAT AAGCTTAAAT CTTATTCAAA TGAACTGGTT AATGGAATTA AGCAACAAGC TCTAGAAGCA GAAAATCTAG AAGAGCTTAT AGTGTCAAAA TATAAACTTT AA tl7-6.nt
TTGCAGGCCGGATTTTAATATCGATCAAAAAGACATTAAATACCCGCCTACTGAAAAATCAAGGCCCAAAACTGAA AGCTCTAAGCAAAAAGAATCAAAGCCTAAAACAGAAGAAGAGCTTAAGAAAAAACAACAAGAAGAAGAGCTTAAGA TABLE 1. Nucleotide and Amino Acid Sequences
AAAAACAACAAGAAGAAGAGCTTAAGAAAAAACAACAAGAAGAAGAGCTTAAGAAAAAACAACAAGAAGAAGAGAA GGAAGAACTAAGAAAACAACAACTAAAAAATACGCTATCTAATGATTTAAAAAAGCAAATAGAATCGGCCTACAAT TTTAAAGAAAAATATGTAAAAAGTATGGAAAAAGAACCTGAAGACCATTACGGGATGACGTCTTTTAGGGGATTGA ATTGGGGGCCAGGGACTGAAGATATATCTGACAATACCGAAAGATCTATAAGATATAGAAGACACACTTATACTGT TTTAAGCCCCCTGGATCCTCATGAATTAAAGGAATTCGCAAATATTATTCAAGATATAAATAAACTAGCATCAGTA GCAAGTATATTTAATTCTTTTAGCGCTATTGGAGGAGCTCTTGACATAGTAAGTGATCACCTATATTTCAAAAAAG ACAATCTAGACAAACTAGATATTGCAGATTTAGAAATACTTAAAAATTCATTTGAACAAATATTATATATAAAAGG AAGTGTTGCAGGAAAAGCAAAAAAACTTTTATTAGATTATAAAAATCTAAAAACAGATATTAATAAGCTTAAATCT TATTCAAATGAACTGGTTAATGGAATTAAGCAACAAGCTCTAGAAGCAGAAAATCTAGAAGAGCTTATAGTGTCAA AATATAAACTT fl7-6.aa
RRVFMKYHII TTIFVFLFLA CRPDFNIDQK DIKYPPTEKS RPKTESSKQK ESKPKTEEEL KKKQQEEELK KKQQEEELKK KQQEEELKKK QQEEEKEELR KQQLKNTLSN DLKKQIESAY NFKEKYVKSM EKEPEDHYGM TSFRGLNWGP GTEDISDNTE RSIRYRRHTY TVLSPLDPHE LKEFANIIQD INKLASVASI FNSFSAIGGA LDIVSDHLYF KKDNLDKLDI ADLEILKNSF EQILYIKGSV AGKAKKLLLD YKNLKTDINK LKSYSNELVN GIKQQALEAE NLEELIVSKY KL tl7-6.aa
CRPDFNIDQKDIKYPPTEKSRPKTESSKQKESKPKTEEELKKKQQEEELKKKQQEEELKKKQQEEELKKKQQEEEK EELRKQQLKNTLSNDLKKQIESAYNFKEKYVKSMEKEPEDHYGMTSFRGLNWGPGTEDISDNTERSIRYRRHTYTV LSPLDPHELKEFANIIQDINKLASVASIFNSFSAIGGALDIVSDHLYFKKDNLDKLDIADLEILKNSFEQILYIKG SVAGKAKKLLLDYKNLKTDINKLKSYSNELVNGIKQQALEAENLEELIVSKYKL fl9-2.nt
TAAAGAAAGA TTAAATCATA TTCAAGGAGA GTATTTATGA AACACTATAT AATTGTGCAT ATATTTGTTT TTCTATTTTT AAATGCTTGT TATCCAGTTG CATCTAATAA AATAGAATTA AAACCTAAAA CAGAAACAAG CTTAAATCAA GAAGAAGTCC CAAATCAAGA AGCAAACTAC AAAGAAGAAA AAGAAGCAAA AGAAGAAGGC ATTAATAAAA AAACAGAAAA CACGCTGCTT AATGATTTAA GAAATTTAAT AGAAACAGCT AAAAAAGATA ATGATAAATA TACACAAAAG TTAAAAGAAG AATCCTCAAG CCAATACGGA ATACTGGCTT TCAAAGATTT GTTCTGGCTA GATGGAACAA ATGAACAATT GTCCGCAAAT ACCGAAAGAT CTAAAGCCTA TAGAAAACGA GCTTATAGCA TCTTAAATAC TATTAATGAC GCTTCCTTAA AGAATTTTTC AGAAATTGTA ATGGCATCAG GACAAACACA GGGCATATTT AATACCCTTA ACTCACTTGG GGGTAATTTT GAAAAGATAG TTAATTGTTT GTATCCCAAA AAAGACAATT TGGAAAAATT AGAGACTTCA GTTTTAAAAA AGCTTAAAGA TTCTTTGGAA AATTTTTTAG AGATAAAAAA AATCGCCTCA GAAATGATGC ACAAGCTCTT ATTAGACTAT CAAAATAATA CAAATCGTAT ACAAACAGAT AAAAATGAAC TTAAGTCTTA TGCAGACACA CTTTTCAATC AAATGACAAA AAAACCCGAA GAAGCACTAA AGCTAAAAAA TACCATATGC TCAATAGAGG ACCTTTAA tl9-2.nt
TTGTTATCCAGTTGCATCTAATAAAATAGAATTAAAACCTAAAACAGAAACAAGCTTAAATCAAGAAGAAGTCCCA AATCAAGAAGCAAACTACAAAGAAGAAAAAGAAGCAAAAGAAGAAGGCATTAATAAAAAAACAGAAAACACGCTGC TTAATGATTTAAGAAATTTAATAGAAACAGCTAAAAAAGATAATGATAAATATACACAAAAGTTAAAAGAAGAATC CTCAAGCCAATACGGAATACTGGCTTTCAAAGATTTGTTCTGGCTAGATGGAACAAATGAACAATTGTCCGCAAAT ACCGAAAGATCTAAAGCCTATAGAAAACGAGCTTATAGCATCTTAAATACTATTAATGACGCTTCCTTAAAGAATT TTTCAGAAATTGTAATGGCATCAGGACAAACACAGGGCATATTTAATACCCTTAACTCACTTGGGGGTAATTTTGA AAAGATAGTTAATTGTTTGTATCCCAAAAAAGACAATTTGGAAAAATTAGAGACTTCAGTTTTAAAAAAGCTTAAA GATTCTTTGGAAAATTTTTTAGAGATAAAAAAAATCGCCTCAGAAATGATGCACAAGCTCTTATTAGACTATCAAA ATAATACAAATCGTATACAAACAGATAAAAATGAACTTAAGTCTTATGCAGACACACTTTTCAATCAAATGACAAA AAAACCCGAAGAAGCACTAAAG TABLE 1. Nucleotide and Amino Acid Sequences
fl9-2.aa
RKIKSYSRRV FMKHYIIVHI FVFLFLNACY PVASNKIELK PKTETSLNQE EVPNQEANYK EEKEAKEEGI NKKTENTLLN DLRNLIETAK KDNDKYTQKL KEESSSQYGI LAFKDLFWLD GTNEQLSANT ERSKAYRKRA YSILNTINDA SLKNFSEIVM ASGQTQGIFN TLNSLGGNFE KIVNCLYPKK DNLEKLETSV LKKLKDSLEN FLEIKKIASE MMHKLLLDYQ NNTNRIQTDK NELKSYADTL FNQMTKKPEE ALKLKNTICS IEDL tl9-2.aa
CYPVASNKIELKPKTETSLNQEEVPNQEANYKEEKEAKEEGINKKTENTLLNDLRNLIETAKKDNDKYTQKLKEES SSQYGILAFKDLFWLDGTNEQLSANTERSKAYRKRAYSILNTINDASLKNFSEIVMASGQTQGIFNTLNSLGGNFE KIVNCLYPKKDNLEKLETSVLKKLKDSLENFLEIKKIASEMMHKLLLDYQNNTNRIQTDKNELKSYADTLFNQMTK KPEEALK fl9-4.nt
TAATCTATAC TAATTGAGGA GAATATTTTT ATGAAAAACA ACATAATTTT ATGCATGTGT GTTTTTTTAC TTTTAAATAG CTGCACCGCT AACCATGAAG CTGAAGCGAA AATAAAAAAA CATGTTGATA AAACAAAAAA CGAATATATT AATGAAATAA AAAATTTAAT AGCAACAACC AAAGAAATCA TCGAAAAACG AAAATTGCTA CAAGCTAAAC CAGTAGATCA AAACCCCGTA GATGATACAA ACAATAAGAA AGTTTTCGAG ATAGATAAAA GAGCTTTCGA TTTTATAAAT AGTTTTTTAA CAGATGATGA ATTTAATAAA TTTGTAACAA TATTTCATAA ACCAACACTA AAATCACCCG GAAAAGTATT AAATAGCATA GCAATTCTAG AGCTAAACAT AGAGCAGGTA ATTAATCACC TAGACTCAAA AAATGAGACC TTAAATAAAG CAAGCTCTTT AGATTTGGAA AAGATCAAAA ATTCCCTTGA ACAGCTGTTC TCTATAAGGA ATTTTTTTTC AACAATCATA AAAAGGGTCT TATTAGATCA TCAAAACAAT GAAAATTCTA TAAAACCAGA TGATTCTAAA TCAGGAACCT ATTTCGATAC GATATACGAT CAGTTTAATG AAAAAAATAA AGAGGTTAGA AATCTGAAAA AAACCATATT ATCACTGCCG AATTAA tl9-4.nt
CTGCACCGCTAACCATGAAGCTGAAGCGAAAATAAAAAAACATGTTGATAAAACAAAAAACGAATATATTAATGAA ATAAAAAATTTAATAGCAACAACCAAAGAAATCATCGAAAAACGAAAATTGCTACAAGCTAAACCAGTAGATCAAA ACCCCGTAGATGATACAAACAATAAGAAAGTTTTCGAGATAGATAAAAGAGCTTTCGATTTTATAAATAGTTTTTT AACAGATGATGAATTTAATAAATTTGTAACAATATTTCATAAACCAACACTAAAATCACCCGGAAAAGTATTAAAT AGCATAGCAATTCTAGAGCTAAACATAGAGCAGGTAATTAATCACCTAGACTCAAAAAATGAGACCTTAAATAAAG CAAGCTCTTTAGATTTGGAAAAGATCAAAAATTCCCTTGAACAGCTGTTCTCTATAAGGAATTTTTTTTCAACAAT CATAAAAAGGGTCTTATTAGATCATCAAAACAATGAAAATTCTATAAAACCAGATGATTCTAAATCAGGAACCTAT TTCGATACGATATACGATCAGTTTAATGAAAAAAATAAAGAGGTTAGAAATCTGAAAAAA fl9-4.aa
SILIEENIFM KNNIILCMCV FLLLNSCTAN HEAEAKIKKH VDKTKNEYIN EIKNLIATTK EIIEKRKLLQ AKPVDQNPVD DTNNKKVFEI DKRAFDFINS FLTDDEFNKF VTIFHKPTLK SPGKVLNSIA ILELNIEQVI NHLDSKNETL NKASSLDLEK IKNSLEQLFS IRNFFSTIIK RVLLDHQNNE NSIKPDDSKS GTYFDTIYDQ FNEKNKEVRN LKKTILSLPN tl9-4.aa
CTANHEAEAKIKKHVDKTKNEYINEIKNLIATTKEIIEKRKLLQAKPVDQNPVDDTNNKKVFEIDKRAFDFINSFL TDDEFNKFVTIFHKPTLKSPGKVLNSIAILELNIEQVINHLDSKNETLNKASSLDLEKIKNSLEQLFSIRNFFSTI IKRVLLDHQNNENSIKPDDSKSGTYFDTIYDQFNEKNKEVRNLKK fl9-6.nt TABLE 1. Nucleotide and Amino Acid Sequences
TAAAGGAGAG TATTAATGAA ATGCCATATA ATTGCAACTA TATTTGTTTT TCTATTTTTA GCTTGCAGTA CAGATTTTAA TACTGATCAA AAAGGCATTA AATACCCGCC TACCGAAAAA TCAAAGCCCA AAACTGAAGA CTCTAAGCAA AAAGAATTAA AGCCTAAAAC AGAAAAAGAA CTAAAGAAAA AACAACAACT AAAAAATAAA CTACTTAATG ATTTAAAAAA TTCAATAGAA ACAGCTAATA AGCATAAAGA AAAGTATAAA AAAAGAATGA AAGAAGAACC CGAAGATCAA TACGGGGTAC AGGCTTTCAA AGGATCGAAT TGGGGGCCGG GGACTGAAGA TGTATCTGCC AACACCGAAA GATCTATAAG ATTTAGAAGA CATACTTATA CTATTTTAAG CACGCTGAGT CTTCATGAAT TAAAGGAATT CTCAAATATT GTTACAAATG AAAATAAACT GGTGCCAGTA GTAGATATGT TTAATTTCTT TAGCTCTATT GGGACAGCTC TTGATATAAC AACCGATAGC TTATATCCCA AAAAGACAAT CTGGACAAAC CAGATCTGTC GGATTTAG tl9-6.nt
TTGCAGTACAGATTTTAATACTGATCAAAAAGGCATTAAATACCCGCCTACCGAAAAATCAAAGCCCAAAACTGAA GACTCTAAGCAAAAAGAATTAAAGCCTAAAACAGAAAAAGAACTAAAGAAAAAACAACAACTAAAAAATAAACTAC TTAATGATTTAAAAAATTCAATAGAAACAGCTAATAAGCATAAAGAAAAGTATAAAAAAAGAATGAAAGAAGAACC CGAAGATCAATACGGGGTACAGGCTTTCAAAGGATCGAATTGGGGGCCGGGGACTGAAGATGTATCTGCCAACACC GAAAGATCTATAAGATTTAGAAGACATACTTATACTATTTTAAGCACGCTGAGTCTTCATGAATTAAAGGAATTCT CAAATATTGTTACAAATGAAAATAAACTGGTGCCAGTAGTAGATATGTTTAATTTCTTTAGCTCTATTGGGACAGC TCTTGATATAACAACCGATAGCTTATATCCCAAAAAGACAATCTGGACAAACCAGATCTGTCGG fl9-6.aa
RRVLMKCHII ATIFVFLFLA CSTDFNTDQK GIKYPPTEKS KPKTEDSKQK ELKPKTEKEL KKKQQLKNKL LNDLKNSIET ANKHKEKYKK RMKEEPEDQY GVQAFKGSNW GPGTEDVSAN TERSIRFRRH TYTILSTLSL HELKEFSNIV TNENKLVPW DMFNFFSSIG TALDITTDSL YPKKTIWTNQ ICRI tl9-6.aa
CSTDFNTDQKGIKYPPTEKSKPKTEDSKQKELKPKTEKELKKKQQLKNKLLNDLKNSIETANKHKEKYKKRMKEEP EDQYGVQAFKGSNWGPGTEDVSANTERSIRFRRHTYTILSTLSLHELKEFSNIVTNENKLVPWDMFNFFSSIGTA LDITTDSLYPKKTIWTNQICR f21-4.nt
TAGGAGACAA TCTTTATGAA TAAAAAAATA AAAATGTTTA TTATTTGTGC TATTTTTATG
CTGATAAGTT CTTGTAAGAA TGATGTAACT AGTAAAGATT TAGAAGGGGC GGTGAAAGAT
TTAGAAAGTT CAGAACAAAA TGTAAAAAAA ACAGAACAAG AGATAAAAAA ACAAGTTGAA
GGATTTTTAG AAATTTTAGA GACAAAAGAT TTAAACACAT TAGATACAAA AGAAATTGAA
AAACAAATTC AAGAATTAAA GAATAAGATA GAAAAATTAG ACTCTAAAAA AACTTCTATT
GAAACATATT CTGGGTATGA AGAAAAAATA AACAAAATAA AAGAAAAATT AAACGGAAAA
GGACTTGAAG ATAAATTAAA TGAACTTTCA GAGAGCTTAA AAAAGAAAAA AGAGGAGAGA
AAAAAAGCTT TACAAGAGGC TAAAAAGAAA TTTGAAGAGT ATAAAAACCA AGCTGAATCT
GCAACTGGAG TAACGCATGG TTCTCAAGTC CAAAGACAAG GTGGTGTTGG ATTACAAGCT
TGGCAGTGTG CTAATAGTTT GGGGTTTAAA AATATGACTA GTGGTAATAA TACTAGCGAT
ATGACCAATG AAGTTATAAC TAATTCGCTT AAAAAGATTG AAGAAGAACT TAAAAATATT
GGAGAAACTG TAGAAGGTAA AAAAGAATAA t21-4.nt
TTGTAAGAATGATGTAACTAGTAAAGATTTAGAAGGGGCGGTGAAAGATTTAGAAAGTTCAGAACAAAATGTAAAA AAAACAGAACAAGAGATAAAAAAACAAGTTGAAGGATTTTTAGAAATTTTAGAGACAAAAGATTTAAACACATTAG ATACAAAAGAAATTGAAAAACAAATTCAAGAATTAAAGAATAAGATAGAAAAATTAGACTCTAAAAAAACTTCTAT TGAAACATATTCTGGGTATGAAGAAAAAATAAACAAAATAAAAGAAAAATTAAACGGAAAAGGACTTGAAGATAAA TABLE 1. Nucleotide and Amino Acid Sequences
TTAAATGAACTTTCAGAGAGCTTAAAAAAGAAAAAAGAGGAGAGAAAAAAAGCTTTACAAGAGGCTAAAAAGAAAT TTGAAGAGTATAAAAACCAAGCTGAATCTGCAACTGGAGTAACGCATGGTTCTCAAGTCCAAAGACAAGGTGGTGT TGGATTACAAGCTTGGCAGTGTGCTAATAGTTTGGGGTTTAAAAATATGACTAGTGGTAATAATACTAGCGATATG ACCAATGAAGTTATAACTAATTCGCTTAAAAAGATTGAAGAAGAACTTAAAAATATTGGAGAAACTGTAGAAGGTA AAAAAGAA f21-4.aa
ETIFMNKKIK MFIICAIFML ISSCKNDVTS KDLEGAVKDL ESSEQNVKKT EQEIKKQVEG
FLEILETKDL NTLDTKEIEK QIQELKNKIE KLDSKKTSIE TYSGYEEKIN KIKEKLNGKG
LEDKLNELSE SLKKKKEERK KALQEAKKKF EEYKNQAESA TGVTHGSQVQ RQGGVGLQAW
QCANSLGFKN MTSGNNTSDM TNEVITNSLK KIEEELKNIG ETVEGKKE t21-4.aa
CKNDVTSKDLEGAVKDLESSEQNVKKTEQEIKKQVEGFLEILETKDLNTLDTKEIEKQIQELKNKIEKLDSKKTSI ETYSGYEEKINKIKEKLNGKGLEDKLNELSESLKKKKEERKKALQEAKKKFEEYKNQAESATGVTHGSQVQRQGGV GLQAWQCANSLGFKNMTSGNNTSDMTNEVITNSLKKIEEELKNIGETVEGKKE f24-l.nt
TAAGCTGGTA ACACTGTAAA GACAGCTGAG GGGGCTTCAA GTGGTACTGA TGCAATTGGA GAAGTTGTGG ATAATGATGC TAAGGTTGCT GATAAGGCGA GTGTGACGGG GATTGCTAAG GGGATAAAGG AGATTGTTGA AGCTGCTAGG GGGAGTGAAA AGCTGAAAGT TGCTGCTGCT AAAGAGGGCA ATGAAAAGGC AGGGAAGTTG TTTGGGAAGG CTGGTGCTAA TGCTCATGGG GACAGTGAGG CTGCTAGCAA GGCGGCTGGT GCTGTTAGTG CTGTTAGTGG GGAGCAGATA TTAAGTGCGA TTGTTAAGGC TGCGGATGCG GCTGAGCAGG ATGGAAAGAA GCCTGCAGAT GCTACAAATC CGATTGCTGC TGCTATTGGG AATAAAGATG AGGATGCGGA TTTTGGTGAT GGGATGAAGA AGGATGATCA GATTGCTGCT GCTATTGCTT TGAGGGGGAT GGCTAAGGAT GGAAAGTTTG CTGTGAAGAA TGATGAGAAA GGGAAGGCTG AGGGGGCTAT TAAGGGAGCT GCTGCAATTG GAGAAGTTGT GGATAATGCT GGTGCTGCGA AGGCTGCTGA TAAGGATAGT GTGAAGGGGA TTGCTAAGGG GATAAAGGAG ATTGTTGAAG CTGCTGGGGG GAGTGAAAAG CTGAAAGCTG CTGCTGCTGA AGGGGAGAAT AATAAAAAGG CAGGGAAGTT GTTTGGGAAA GTTGATGGTG CTGCTGGGGA CAGTGAGGCT GCTAGCAAGG CGGCTGGTGC TGTTAGTGCT GTTAGTGGGG AGCAGATATT AAGTGCGATT GTTAAGGCTG CTGGTGAGGC TGAGCAGGAT GGAGAGAAGC CTGAGGATGC TAAAAATCCG ATTGCTGCTG CTATTGGGAA GGGTAATGGG GATGGTGCGG AGTTTGATCA GGATGAGATG AAGAAGGATG ATCAGATTGC TGCTGCTATT GCTTTGAGGG GGATGGCTAA GGATGGAAAG TTTGCTGTGA AGGGTAATAA TGAGAAAGAG AAGGCTGAGG GGGCTATTAA AGAAGTTAGC GAGTTGTTGG ATAAGCTGGT AACAGCTGTA AAGACAGCTG AGGGGGCTTC AAGTGGTACT GATGCAATTG GAGAAGTTGT GGATAATGNT GCNAAGGNTG CTGATAAGGC GAGTGTGACG GGGATTGCTA AGGGGATAAA GGAGATTGTT GAAGCTGCTN GGGGGAGTGA AAAGCTGAAA GTTGCTGCTG CTANAGNGGN NAATAATAAA GAGGCAGGGA AGTTGTTTGG GAAGGCTGGT GCTGATGCTA ATGGGGACAG TGAGGCTGCT AGCAAGGCGG CTGGTGCTGT TAGTGCTGTT AGTGGGGAGC AGATATTAAG TGCGATTGTT AAGGCTGCGG CTGCTGGTGC GGCTGATCAG GATGGAGAGA AGCCTGGGGA TGCTAAAAAT CCGATTGCTG CTGCTATTGG GAAGGGTAAT GCGGATGATG GTGCGGATTT TGGTGATGGG ATGAAGAAGG ATGATCAGAT TGCTGCTGCT ATTGCTTTGA GGGGGATGGC TAAGGATGGA AAGTTTGCTG TGAAGAAGGA TGAGAAAGGG AAGGCTGAGG GGGCTATTAA GGGAGCTAGC GAGTTGTTGG ATAAGCTGGT AAAAGCTGTA AAGACAGCTG AGGGGGCTTC AAGTGGTACT GCTGCAATTG GAGAAGTTGT GGATAATGCT GCGAAGGCTG CTGATAAGGA TAGTGTGACG GGGATTGCTA AGGGGATAAA GGAGATTGTT GAAGCTGCAG GGGGGAGTGA AAAGCTGAAA GTTGCTGCTG CTAAAGGGGA GAATAATAAA GGGGCAGGGA AGTTGTTTGG GAAGGCTGGT GCTAATGCTC ATGGGGACAG TGAGGCTGCT AGCAAGGCGG CTGGTGCTGT TAGTGCTGTT AGTGGGGAAC AGATATTAAG TGCGATTGTT AAGGCTGCTG GTGAGGCTGC TGGTGATCAG GAGGGAAAGA AGCCTGAGGA GGCTAAAAAT CCGATTGCTG CTGCTATTGG GGATAAAGAT GGGGATGCGG AGTTTAATCA GGATGGGATG AAGAAGGATG ATCAGATTGC TGCTGCTATT TABLE 1. Nucleotide and Amino Acid Sequences
GCTTTGAGGG GGATGGCTAA GGATGGAAAG TTTGCTGTGA AGGATGGTGG TGAGAAAGAG AAGGCTGAGG GGGCTATTAA AGGAGTTAGC GAGTTGTTGG ATAAGCTGGT AAAAGCTGTA AAGACAGCTG AGGGGGCTTC AAGTGGTACT GCTGCAATTG GAGAAGTTGT GGCTGATGCT GCTAAGGTTG CTGATAAGGC GAGTGTGACG GGGATTGCTA AGGGGATAAA GGAGATTGTT GAAGCTGCTG GGGACAGTGA GGCTGCTAGC AAGGCAGCTG GTGCTGTTAG TGCTGTTAGT GGGGAGCAGA TATTAAGTGC GATTGTTAAG GCTGCGGCTG CTGGTGCGGC TGAGCAGGAT GGAGAGAAGC CTGCAGAGGC TAAAAATCCG ATTGCTGCTG CTATTGGGAA GGGTGATGGG GATGCGGATT TTGGTGAGGA TGGGATGAAG AAGGATGATC AGATTGCTGC TGCTATTGCT TTGAGGGGGA TGGCTAAGGA TGGAAAGTTT GCTGTGAAGA ATGATGAGAA AGGGAAGGCT GAGGGGGCTA TTAAGGGAGC TGCTGCAATT GGAGAAGTTG TGGATAATGC TGGTGCTGCG AAGGCTGCTG ATAAGGATAG TGTGAAGGGG ATTGCTAAGG GGATAAAGGA GATTGTTGAA GCTGCTGGGG GGAGTGAAAA GCTGAAAGCT GCTGCTGCTG AAGGGGAGAA TAATAAAAAG GCAGGGAAGT TGTTTGGGAA AGTTGATGGT GCTGCTGGGG ACAGTGAGGC TGCTAGCAAG GCGGCTGGTG CTGTTAGTGC TGTTAGTGGG GAGCAGATAT TAAGTGCGAT TGTTAAGGCT GCGGATGCGG CTGAGCAGGA TGGAAAGAAG CCTGCAGATG CTACAAATCC GATTGCTGCT GCTATTGGGA ATAAAGATGA GGATGCGGAT TTTGGTGATG GGATGAAGAA GGATGATCAG ATTGCTGCTG CTATTGCTTT GAGGGGGATG GCTAAGGATG GAAAGTTTGC TGTGAAGGGT AATAATGAGA AAGGGAAGGC TGAGGGGGCT TCAAGTGGTA CTGATGCAAT TGGAGAAGTT GTGGATAATG ATGCGAAGGC TGCTGATAAG GCGAGTGTGA CGGGGATTGC TAAGGGGATA AAGGAGATTG TTGAAGCTGC TGGGGGGAGT GAAAAGCTGA AAGCTGTTGC TGCTGCTACA AGGGAGAATA ATAAAGAGGC AGGGAAGTTG TTTGGGAAAG TTGATGATGC TCATGCTGGG GACAGTGAGG CTGCTAGCAA GGCGGCTGGT GCTGTTAGTG CTGTTAGTGG GGAGCAGATA TTAAGTGCGA TTGTTACGGC TGCGGCTGCT GGTGAGCAGG ATGGAGAGAA GCCTGCAGAG GCTACAAATC CGATTGCTGC TGCTATTGGG AAGGGTAATG AGGATGGTGC GGATTTTGGT AAGGATGAGA TGAAGAAGGA TGATCAGATT GCTGCTGCTA TTGCTTTGAG GGGGATGGCT AAGGATGGAA AGTTTGCTGT GAAGAGTAAT GATGGTGAGA AAGGGAAGGC TGAGGGGGCT ATTAAGGAAG TTAGCGAGTT GTTGGATAAG CTGGTAAAAG CTGTAAAGAC AGCTGAGGGG GCTTCAAGCG GTACTGATGC AATTGGAGAA GTTGTGGCTA ATGCTGGTGC TGCGAAGGCT GCTGATAAGG CGAGTGTGAC GGGGATTGCT AAGGGGATAA AGGAGATTGT TGAAGCTGCT GGGGGGAGTA AAAAGCTGAA AGCTGCTGCT GCTGAAGGGG AGAATAATAA AAAGGCAGGG AAGTTGTTTG GGAAGGCTGG TGCTGGTGCT GGTGCTAATG GGGACAGTGA GGCTGCTAGC AAGGCGGCTG GTGCTGTTAG TGCTGGTTAG t24-l.nt
TGGTGAGGCTGAGCAGGATGGAGAGAAGCCTGAGGATGCTAAAAATCCGATTGCTGCTGCTATTGGGAAGGGTAAT GGGGATGGTGCGGAGTTTGATCAGGATGAGATGAAGAAGGATGATCAGATTGCTGCTGCTATTGCTTTGAGGGGGA TGGCTAAGGATGGAAAGTTTGCTGTGAAGGGTAATAATGAGAAAGAGAAGGCTGAGGGGGCTATTAAAGAAGTTAG CGAGTTGTTGGATAAGCTGGTAACAGCTGTAAAGACAGCTGAGGGGGCTTCAAGTGGTACTGATGCAATTGGAGAA GTTGTGGATAATGNTGCNAAGGNTGCTGATAAGGCGAGTGTGACGGGGATTGCTAAGGGGATAAAGGAGATTGTTG AAGCTGCTNGGGGGAGTGAAAAGCTGAAAGTTGCTGCTGCTANAGNGGNNAATAATAAAGAGGCAGGGAAGTTGTT TGGGAAGGCTGGTGCTGATGCTAATGGGGACAGTGAGGCTGCTAGCAAG f24-l.aa
AGNTVKTAEG ASSGTDAIGE WDNDAKVAD KASVTGIAKG IKEIVEAARG SEKLKVAAAK EGNEKAGKLF GKAGANAHGD SEAASKAAGA VSAVSGEQIL SAIVKAADAA EQDGKKPADA TNPIAAAIGN KDEDADFGDG MKKDDQIAAA IALRGMAKDG KFAVKNDEKG KAEGAIKGAA AIGEWDNAG AAKAADKDSV KGIAKGIKEI VEAAGGSEKL KAAAAEGENN KKAGKLFGKV DGAAGDSEAA SKAAGAVSAV SGEQILSAIV KAAGEAEQDG EKPEDAKNPI AAAIGKGNGD GAEFDQDEMK KDDQIAAAIA LRGMAKDGKF AVKGNNEKEK AEGAIKEVSE LLDKLVTAVK TAEGASSGTD AIGEWDNXA KXADKASVTG IAKGIKEIVE AAXGSEKLKV AAAXXXNNKE AGKLFGKAGA DANGDSEAAS KAAGAVSAVS GEQILSAIVK AAAAGAADQD GEKPGDAKNP IAAAIGKGNA DDGADFGDGM KKDDQIAAAI ALRGMAKDGK FAVKKDEKGK AEGAIKGASE LLDKLVKAVK TAEGASSGTA AIGEWDNAA KAADKDSVTG IAKGIKEIVE AAGGSEKLKV AAAKGENNKG AGKLFGKAGA NAHGDSEAAS KAAGAVSAVS GEQILSAIVK AAGEAAGDQE TABLE 1. Nucleotide and Amino Acid Sequences
GKKPEEAKNP IAAAIGDKDG DAEFNQDGMK KDDQIAAAIA LRGMAKDGKF AVKDGGEKEK AEGAIKGVSE LLDKLVKAVK TAEGASSGTA AIGEWADAA KVADKASVTG IAKGIKEIVE AAGDSEAASK AAGAVSAVSG EQILSAIVKA AAAGAAEQDG EKPAEAKNPI AAAIGKGDGD ADFGEDGMKK DDQIAAAIAL RGMAKDGKFA VKNDEKGKAE GAIKGAAAIG EWDNAGAAK AADKDSVKGI AKGIKEIVEA AGGSEKLKAA AAEGENNKKA GKLFGKVDGA AGDSEAASKA AGAVSAVSGE QILSAIVKAA DAAEQDGKKP ADATNPIAAA IGNKDEDADF GDGMKKDDQI AAAIALRGMA KDGKFAVKGN NEKGKAEGAS SGTDAIGEW DNDAKAADKA SVTGIAKGIK EIVEAAGGSE KLKAVAAATR ENNKEAGKLF GKVDDAHAGD SEAASKAAGA VSAVSGEQIL SAIVTAAAAG EQDGEKPAEA TNPIAAAIGK GNEDGADFGK DEMKKDDQIA AAIALRGMAK DGKFAVKSND GEKGKAEGAI KEVSELLDKL VKAVKTAEGA SSGTDAIGEV VANAGAAKAA DKASVTGIAK GIKEIVEAAG GSKKLKAAAA EGENNKKAGK LFGKAGAGAG ANGDSEAASK AAGAVSAG t24-l.aa
GEAEQDGEKPEDAKNPIAAAIGKGNGDGAEFDQDEMKKDDQIAAAIALRGMAKDGKFAVKGNNEKEKAEGAIKEVS ELLDKLVTAVKTAEGASSGTDAIGEWDNXAKXADKASVTGIAKGIKEIVEAAXGSEKLKVAAAXXXNNKEAGKLF GKAGADANGDSEAASK f2δ-2.nt
TAAAAAGGAA ATATAAATAT TATGCGATTA TGTTTAATAA AAATTTTTAT TATACCTAAT TTAGTATTTA GTTCTCTTTT TTTATTTGAA AGTTGTTCTG GTTTTCTATC TAAAAAATCT ATAGAACAGT TTGCATTAGC ATTAAAAGAT CATCAAGAAA ATAAAAATAC TACTAATACT TCAGTAGATA AAAATAGTAA GGAAATTGAA TCTCCTAAAG ACGTTACATC ATCAAATAAA AAAACTTATG ATCCAATCTT ACAAGTAGGT TCTAATCAAC ATATGTCAGA TGATCCTGGT GCTAATAATA AAGAATCCCT ACCAAATTCA AGTCCAGCAA TAATACAAAA TGACTCGCAT GCTCAAAATA ATGTAAAGAT GGAAGAAAAT AAATCAGCTA CTCCACAACA TGATCCAATT GAACAAAGTA ATTTTAAAAA TAGCCTTACT ACAACAAGTA AAACTCCTGC TATTCCTTCA GAAGAAGAAA TTAAAGCTAA CTTAGATGAA TTTGCACAAG AAGAGTATGA GCAAACATCT CTTTCAGAAA TTAAAAATGC CACGCAAATT GTTAATCATG CTAATCCTGA AAACAAATTA AACAATACAC TCCTTGAGTT TGAAAAAGAT TATGAAACTT TATCAAACTT GTTATTCTCT AATTTAGACG CATCTCCTTT GAATAGAAAA ATAAAGACTA TTATGCCTAA ATTACAAGAA ATGCGTTCTT TTATGGAGCA AGCAACTAAT TCTTGGGTAT CTGCTAAAGG CATGCTAGAT GAGGCTAAGG ATAAACTAGC AGAATCTATT TATAAAAGAC TATACAATGG CAATTCATAC CGGTTCGGTG GCAGTTTTAA CGGACGTGAT ATGCAACATG CAAAAAATTT AGCATACAGA GCTATAGACT TTGCTTCTGC ATGCATTGAA TATACACAAA AAGCTATTGA TTATCTTCAA CAGGGAAATT CTTGCAAAAA AGAAATAGAA AATATATTCA AGCTTTAA t28-2.nt
AAAAGATCATCAAGAAAATAAAAATACTACTAATACTTCAGTAGATAAAAATAGTAAGGAAATTGAATCTCCTAAA GACGTTACATCATCAAATAAAAAAACTTATGATCCAATCTTACAAGTAGGTTCTAATCAACATATGTCAGATGATC CTGGTGCTAATAATAAAGAATCCCTACCAAATTCAAGTCCAGCAATAATACAAAATGACTCGCATGCTCAAAATAA TGTAAAGATGGAAGAAAATAAATCAGCTACTCCACAACATGATCCAATTGAACAAAGTAATTTTAAAAATAGCCTT ACTACAACAAGTAAAACTCCTGCTATTCCTTCAGAAGAAGAAATTAAAGCTAACTTAGATGAATTTGCACAAGAAG AGTATGAGCAAACATCTCTTTCAGAAATTAAAAATGCCACGCAAATTGTTAATCATGCTAATCCTGAAAACAAATT AAACAATACACTCCTTGAGTTTGAAAAAGATTATGAAACTTTATCAAACTTGTTATTCTCTAATTTAGACGCATCT CCTTTGAATAGAAAAATAAAGACTATTATGCCTAAATTACAAGAAATGCGTTCTTTTATGGAGCAAGCAACTAATT CTTGGGTATCTGCTAAAGGCATGCTAGATGAGGCTAAGGATAAACTAGCAGAATCTATTTATAAAAGACTATACAA TGGCAATTCATACCGGTTCGGTGGCAGTTTTAACGGACGTGATATGCAACATGCAAAAAATTTAGCATACAGAGCT ATAGACTTTGCTTCTGCATGCATTGAATATACACAAAAAGCTATTGATTATCTTCAACAGGGAAATTCTTGCAAAA AAGAAATAGAAAATATATTCAAG f28-2.aa TABLE 1. Nucleotide and Amino Acid Sequences
KGNINIMRLC LIKIFIIPNL VFSSLFLFES CSGFLSKKSI EQFALALKDH QENKNTTNTS VDKNSKEIES PKDVTSSNKK TYDPILQVGS NQHMSDDPGA NNKESLPNSS PAIIQNDSHA QNNVKMEENK SATPQHDPIE QSNFKNSLTT TSKTPAIPSE EEIKANLDEF AQEEYEQTSL SEIKNATQIV NHANPENKLN NTLLEFEKDY ETLSNLLFSN LDASPLNRKI KTIMPKLQEM RSFMEQATNS WVSAKGMLDE AKDKLAESIY KRLYNGNSYR FGGSFNGRDM QHAKNLAYRA IDFASACIEY TQKAIDYLQQ GNSCKKEIEN IFKL t2δ-2.aa
KDHQENKNTTNTSVDKNSKEIESPKDVTSSNKKTYDPILQVGSNQHMSDDPGANNKESLPNSSPAIIQNDSHAQNN VKMEENKSATPQHDPIEQSNFKNSLTTTSKTPAIPSEEEIKANLDEFAQEEYEQTSLSEIKNATQIVNHANPENKL NNTLLEFΞKDYETLSNLLFSNLDASPLNRKIKTIMPKLQEMRSFMEQATNSWVSAKGMLDEAKDKLAESIYKRLYN GNSYRFGGSFNGRDMQHAKNLAYRAIDFASACIEYTQKAIDYLQQGNSCKKEIENIFK f2δ-3.nt
TAGATGAATT TAATTGCTAA ATTATTTATT TTATCCACTT TAGTTTCAAT TCCAAATATC CTCTCTTGTA ACCTATATGA TAATCTTGCA GACAACGCTG AGCAGGTTAC AGACATACTA GACAACAACA AGTCTTTTAA TACTTTAGGA AGCAGCAATG AGAGTAGAAG TCGCAGGCCT AGAAGTACAA ATAATGCTTA TATGAAACAA AACATAGACA AAAATCATTT AGTTGTTGCA GATATGCAAA ATGATAATAG TAGCAGCAGT CTTCCCCAAC AAGTTAATAG TGAATCCAGT AAAGCTAATG AAGATAGTAA TATTATGAAG GAAATTGAAT CTTCTACAGA AGAGTGCGCT AGACTAAGAA AAGATTTAGA AACTATAAAA CAAATACTTG ATAATATAGA AAGCTTGCTT AATACAGCTA ATTCTTATTT AGAGAACGCT AGAAAAGCAC CTAAATCTAA TCAAGATAAT CAAACCTTAT TGCTTAGCCT GCACCAAGCT ATTGCTAAGG TTAAGAGTAG TCATACTTCT TTTATCATTT GTTATAATGA TGCATTTAAT TCCCTGGGAA TAGCTGATAC TGCCTTTAAA GATGCAAAGA GAAAGGCAGT TGAGGCATAA t2δ-3.nt
TTGTAACCTATATGATAATCTTGCAGACAACGCTGAGCAGGTTACAGACATACTAGACAACAACAAGTCTTTTAAT ACTTTAGGAAGCAGCAATGAGAGTAGAAGTCGCAGGCCTAGAAGTACAAATAATGCTTATATGAAACAAAACATAG ACAAAAATCATTTAGTTGTTGCAGATATGCAAAATGATAATAGTAGCAGCAGTCTTCCCCAACAAGTTAATAGTGA ATCCAGTAAAGCTAATGAAGATAGTAATATTATGAAGGAAATTGAATCTTCTACAGAAGAGTGCGCTAGACTAAGA AAAGATTTAGAAACTATAAAACAAATACTTGATAATATAGAAAGCTTGCTTAATACAGCTAATTCTTATTTAGAGA ACGCTAGAAAAGCACCTAAATCTAATCAAGATAATCAAACCTTATTGCTTAGCCTGCACCAAGCTATTGCTAAGGT TAAGAGTAGTCATACTTCTTTTATCATTTGTTATAATGATGCATTTAATTCCCTGGGAATAGCTGATACTGCCTTT AAAGATGCAAAGAGAAAGGCAGTTGAGGCA f2δ-3.aa
MNLIAKLFIL STLVSIPNIL SCNLYDNLAD NAEQVTDILD NNKSFNTLGS SNESRSRRPR STNNAYMKQN IDKNHLWAD MQNDNSSSSL PQQVNSESSK ANEDSNIMKE IESSTEECAR LRKDLETIKQ ILDNIESLLN TANSYLENAR KAPKSNQDNQ TLLLSLHQAI AKVKSSHTSF IICYNDAFNS LGIADTAFKD AKRKAVEA t2δ-3.aa
CNLYDNLADNAEQVTDILDNNKSFNTLGSSNESRSRRPRSTNNAYMKQNIDKNHLWADMQNDNSSSSLPQQVNSE SSKANEDSNIMKEIESSTEECARLRKDLETIKQILDNIESLLNTANSYLENARKAPKSNQDNQTLLLSLHQAIAKV KSSHTSFIICYNDAFNSLGIADTAFKDAKRKAVEA f31-2.nt
TAAAAAAATA AGGAGGTATT AATGAAAAGG AAAAGCAATA TATGTATTTC ACTTCTAGTC ACAATATTAT TTGTGTCTTG CAAGTTTTTT GGAAATAAAA GCGCAAGTAA AGAAAAAGAA TABLE 1. Nucleotide and Amino Acid Sequences
GAAACTTCTT TTTCTGATAC TGCTAGCAAG ATTAGTAAGT CGGGAACAGC TGCTTCTTCA GACAAACAAG AAAAAAATAC AAGTGATGTT ACAGGTGACG CCAAAAAGCA TACTAGTAGC CCTTACATGC TTGCTGATGC CCTTATTGTT AGTGATACTA CTAATAGAGA TAGAGATAAG CAAGAAAATA AAGATAAATT AAATGAAGAA GATAAAAAAA AGCTTAATGC TTTTTTTAGC ACAACTAAAA CATATCAATC TAGCCTAGAT TCCATTTATA ACAAATATAC AGGCTATTAT AATACCATTG ATACCTATGG CAGCTGTGAT ACGTATCGCA TTGAGTGTTT TAGTGTAGGA CCTTCTGAAA AACGTAAACA AGCTCTTGCT GATCTAGAGA AGTTAAAACT AGACGAAAAG TACACTCAGC TTAGCACAAT GTTAAAGAGT GCTGTGCCTA GTTATTACAA AAAAAATTTA GATGATTCTA TTGCACAGTA TAAGGAAGCC ATAAAGCAGG CTATTGAAGC TGAAAGTAAA ATAGAGACAG TAAAAGACTA TGCAACAGCT CAAAGTGCTG CCGATGACGA AAAGAAAAGA AATATAGATA ATTTAAAAAT AGTTAGAGAT GTTCTTCTTA TTATTAAAAA AACTATTGAG AAAGCCAGCC GATCTTATGC TGATGCTTTT GCTATTGCAA CATCTAGCTT ATCTTGTAGC GAATTTAAGC AAGCTGTTAA AGAGTTTAAT GATGCTGCTA AACAATATGC TAATGGAAAT AAAGGAGACA ATGCTGTCAA TGTTATTGTA GGCACTATTT CTAGTATGCC TTATGTCAAA TTTAAAGATG AGTTTGCAAG AGCAAAAATG TTTGCTCGTA ATTATAGAGG AGACGAGGTA GACAAGATGA TAAGAGCTAT CGACAAGCTG TGTGATGTTT ATAAAAAAGT TGCGCTTTAG t31-2.nt
TTGCAAGTTTTTTGGAAATAAAAGCGCAAGTAAAGAAAAAGAAGAAACTTCTTTTTCTGATACTGCTAGCAAGATT AGTAAGTCGGGAACAGCTGCTTCTTCAGACAAACAAGAAAAAAATACAAGTGATGTTACAGGTGACGCCAAAAAGC ATACTAGTAGCCCTTACATGCTTGCTGATGCCCTTATTGTTAGTGATACTACTAATAGAGATAGAGATAAGCAAGA AAATAAAGATAAATTAAATGAAGAAGATAAAAAAAAGCTTAATGCTTTTTTTAGCACAACTAAAACATATCAATCT AGCCTAGATTCCATTTATAACAAATATACAGGCTATTATAATACCATTGATACCTATGGCAGCTGTGATACGTATC GCATTGAGTGTTTTAGTGTAGGACCTTCTGAAAAACGTAAACAAGCTCTTGCTGATCTAGAGAAGTTAAAACTAGA CGAAAAGTACACTCAGCTTAGCACAATGTTAAAGAGTGCTGTGCCTAGTTATTACAAAAAAAATTTAGATGATTCT ATTGCACAGTATAAGGAAGCCATAAAGCAGGCTATTGAAGCTGAAAGTAAAATAGAGACAGTAAAAGACTATGCAA CAGCTCAAAGTGCTGCCGATGACGAAAAGAAAAGAAATATAGATAATTTAAAAATAGTTAGAGATGTTCTTCTTAT TATTAAAAAAACTATTGAGAAAGCCAGCCGATCTTATGCTGATGCTTTTGCTATTGCAACATCTAGCTTATCTTGT AGCGAATTTAAGCAAGCTGTTAAAGAGTTTAATGATGCTGCTAAACAATATGCTAATGGAAATAAAGGAGACAATG CTGTCAATGTTATTGTAGGCACTATTTCTAGTATGCCTTATGTCAAATTTAAAGATGAGTTTGCAAGAGCAAAAAT GTTTGCTCGTAATTATAGAGGAGACGAGGTAGACAAGATGATAAGAGCTATCGACAAG f31-2.aa
KNKEVLMKRK SNICISLLVT ILFVSCKFFG NKSASKEKEE TSFSDTASKI SKSGTAASSD KQEKNTSDVT GDAKKHTSSP YMLADALIVS DTTNRDRDKQ ENKDKLNEED KKKLNAFFST TKTYQSSLDS IYNKYTGYYN TIDTYGSCDT YRIECFSVGP SEKRKQALAD LEKLKLDEKY TQLSTMLKSA VPSYYKKNLD DSIAQYKEAI KQAIEAESKI ΞTVKDYATAQ SAADDEKKRN IDNLKIVRDV LLIIKKTIEK ASRSYADAFA IATSSLSCSE FKQAVKEFND AAKQYANGNK GDNAVNVIVG TISSMPYVKF KDEFARAKMF ARNYRGDEVD KMIRAIDKLC DVYKKVAL t31-2.aa
CKFFGNKSASKEKEETSFSDTASKISKSGTAASSDKQEKNTSDVTGDAKKHTSSPYMLADALIVSDTTNRDRDKQE NKDKLNEEDKKKLNAFFSTTKTYQSSLDSIYNKYTGYYNTIDTYGSCDTYRIECFSVGPSEKRKQALADLEKLKLD EKYTQLSTMLKSAVPSYYKKNLDDSIAQYKEAIKQAIEAESKIETVKDYATAQSAADDEKKRNIDNLKIVRDVLLI IKKTIEKASRSYADAFAIATSSLSCSEFKQAVKEFNDAAKQYANGNKGDNAVNVIVGTISSMPYVKFKDEFARAKM FARNYRGDEVDKMIRAIDK f32-4.nt
TAAGGAAATA TGAGGAATAT TAGCAATTGT ATCAAATATA TTATATTAAC AATGCTTATT GGATTATTAA TTTTTTGTTG TGCAACCTTT GTTTGGTTGA TTGGAATTTT TTATTCAAAT AACTTTAAAG AAGAGCGGAA TTATTCAATA AGCCCAATAG ATAGTGTTAT TATGCGTAAA TGTTATTTTA AAGAATTTAA GTCTGGACTT ATTAAAAGCG TATTCTTTAA GAAATTAGAT TABLE 1. Nucleotide and Amino Acid Sequences
GTAAATGTTA ACTCTAAAAA TTTTAAGGAG CTAAATAAGG TAGATAAACA AAATCTGCTA AATTCTTATC CATCTTATCA TATGGAGTTT GTCGTAGTTG ATAATGGATT TTTAATGAAT TTTAAAAATG TTATTTTTAA TGGTATAGAT GATGCTAAAT TATACGATCA ACGTGATATG GTTTACGGAG GATTTAGATA CTCAAAAGAG GCTTATTTCC AAATTATTGG CAATTATGAT GTTAAATTAA ATAAAATGAA ACAATATACT CCAGCAATTG TAGTAAATGT TTTCAAAATT AACATTAATG ATGCTTTATT TAACTCGTTA TTAAAGCAAA AAACTTTAAA AGTTACTTTG ATTTCCCATA ATAATAAAGA GTATATTTTA CAAACTAATA ATTTCTTATC AAAGTATAAT TTTCAAACAC CAGAAAAGGA GAATAGTTCT TACTAA t32-4.nt
AAATAACTTTAAAGAAGAGCGGAATTATTCAATAAGCCCAATAGATAGTGTTATTATGCGTAAATGTTATTTTAAA GAATTTAAGTCTGGACTTATTAAAAGCGTATTCTTTAAGAAATTAGATGTAAATGTTAACTCTAAAAATTTTAAGG AGCTAAATAAGGTAGATAAACAAAATCTGCTAAATTCTTATCCATCTTATCATATGGAGTTTGTCGTAGTTGATAA TGGATTTTTAATGAATTTTAAAAATGTTATTTTTAATGGTATAGATGATGCTAAATTATACGATCAACGTGATATG GTTTACGGAGGATTTAGATACTCAAAAGAGGCTTATTTCCAAATTATTGGCAATTATGATGTTAAATTAAATAAAA TGAAACAATATACTCCAGCAATTGTAGTAAATGTTTTCAAAATTAACATTAATGATGCTTTATTTAACTCGTTATT AAAGCAAAAAACTTTAAAAGTTACTTTGATTTCCCATAATAATAAAGAGTATATTTTACAAACTAATAATTTCTTA TCAAAGTATAATTTTCAAACACCAGAAAAGGAGAATAGTTCTTAC f32-4.aa
GNMRNISNCI KYIILTMLIG LLIFCCATFV WLIGIFYSNN FKEERNYSIS PIDSVIMRKC YFKEFKSGLI KSVFFKKLDV NVNSKNFKEL NKVDKQNLLN SYPSYHMEFV WDNGFLMNF KNVIFNGIDD AKLYDQRDMV YGGFRYSKEA YFQIIGNYDV KLNKMKQYTP AIWNVFKIN INDALFNSLL KQKTLKVTLI SHNNKEYILQ TNNFLSKYNF QTPEKENSSY t32-4.aa
NNFKEEPJ^SISPIDSVIMRKCYFKEFKSGLIKSVFFKKLDVNVNSKNFKELNKVDKQNLLNSYPSYHMEFVVVDN GFLMNFKNVIFNGIDDAKLYDQRDMVYGGFRYSKEAYFQIIGNYDVKLNKMKQYTPAIWNVFKININDALFNSLL KQKTLKVTLISHNNKEYILQTNNFLSKYNFQTPEKENSSY f4-15.nt
TAAATGAGCA AAAAAGTAAT TTTAATATTA CTAGAAATTT TGATCTTGTC TTGTGATTTA TCTATAAATA AAGAACAAAA AACCAAAGAA AAAACATCTG AAAAGCAAGA ATCTGAAAAA CAAAATATTG AAAAACAAGA GCCTGAAAAA CAGAAACAAA ATGCAGCAAA AATAATCCCT ACGGTATCAA TTCAAACGGT AGAAATAAGG GAATCAAATC AAATTCCAAA AAGCATTGAG AAGTACTACA AGCAAGCTTA TCCGATTCAA ACATTCACTC TTGATTTTAG CATCACAAGA GAAAAGGAAT TTCTAAAACC AGAAGATAAA ATCTTGCCCA CACAGGGGAA AGTGGAGTCT TTGAGCATCT TAATAAATAA AAAATTGTTA GACTTTAAAG CCCCAGAAAA TCCAAAAAGC TCAACTTTAA AAAATTTCAA AGAAATTAAA AATATTGAGA ATTTCTTCCA AAATCAAGAC TTATTATTTG TCTTAACCCT TAAAGATAAA AATAACAACA ACACTATTAA CATCATGCTC AATCCCCCAA ACGACATCCA AAAACCCAAA GATTATATTT TAAAAGACCT TAAAGACACA ATTAAAAAGG GTACTGGTGA GAAATACTTA AATCCTATCT ATAGATTTCA AATAAAAAAC AAAAAAGATT ATCATTCAAT AGATTACAAC AAAGTGACTA TTAGCGAAAA AACAATAGAA TTGGACCTAC TGCCTCACGA ACAAGTCTTT CAAATGAATA AAAATTTCAC TAAAATTTTA GACACAATAA CAGACTTAAA TAATCTAAAA TTAGTAATTC AAAAAGAATT AGTGTAA t4-15.nt
TTGTGATTTATCTATAAATAAAGAACAAAAAACCAAAGAAAAAACATCTGAAAAGCAAGAATCTGAAAAACAAAAT ATTGAAAAACAAGAGCCTGAAAAACAGAAACAAAATGCAGCAAAAATAATCCCTACGGTATCAATTCAAACGGTAG AAATAAGGGAATCAAATCAAATTCCAAAAAGCATTGAGAAGTACTACAAGCAAGCTTATCCGATTCAAACATTCAC TCTTGATTTTAGCATCACAAGAGAAAAGGAATTTCTAAAACCAGAAGATAAAATCTTGCCCACACAGGGGAAAGTG TABLE 1. Nucleotide and Amino Acid Sequences
GAGTCTTTGAGCATCTTAATAAATAAAAAATTGTTAGACTTTAAAGCCCCAGAAAATCCAAAAAGCTCAACTTTAA AAAATTTCAAAGAAATTAAAAATATTGAGAATTTCTTCCAAAATCAAGACTTATTATTTGTCTTAACCCTTAAAGA TAAAAATAACAACAACACTATTAACATCATGCTCAATCCCCCAAACGACATCCAAAAACCCAAAGATTATATTTTA AAAGACCTTAAAGACACAATTAAAAAGGGTACTGGTGAGAAATACTTAAATCCTATCTATAGATTTCAAATAAAAA ACAAAAAAGATTATCATTCAATAGATTACAACAAAGTGACTATTAGCGAAAAAACAATAGAATTGGACCTACTGCC TCACGAACAAGTCTTTCAAATGAATAAAAATTTCACTAAA f4-15.aa
MSKKVILILL EILILSCDLS INKEQKTKEK TSEKQESEKQ NIEKQEPEKQ KQNAAKIIPT VSIQTVEIRE SNQIPKSIEK YYKQAYPIQT FTLDFSITRE KEFLKPEDKI LPTQGKVESL SILINKKLLD FKAPENPKSS TLKNFKEIKN IENFFQNQDL LFVLTLKDKN NNNTINIMLN PPNDIQKPKD YILKDLKDTI KKGTGEKYLN PIYRFQIKNK KDYHSIDYNK VTISEKTIEL DLLPHEQVFQ MNKNFTKILD TITDLNNLKL VIQKELV t4-15.aa
CDLSINKEQKTKEKTSEKQESEKQNIEKQEPEKQKQNAAKIIPTVSIQTVEIRESNQIPKSIEKYYKQAYPIQTFT LDFSITREKEFLKPEDKILPTQGKVESLSILINKKLLDFKAPENPKSSTLKNFKEIKNIENFFQNQDLLFVLTLKD KNNNNTINIMLNPPNDIQKPKDYILKDLKDTIKKGTGEKYLNPIYRFQIKNKKDYHSIDYNKVTISEKTIELDLLP HEQVFQMNKNFTK f4-50.nt
TAGAAGGAGG AAAAAATGAA AATTGGAAAG CTAAATTCAA TAGTTATAGC CTTGTTTTTT AAACTATTGG TCGCATGTAG TATTGGATTA GTAGAAAGAA CAAATGCAGC TCTTGAATCG TCCTCTAAGG ATTTAAAAAA CAAAATTTTA AAAATAAAAA AAGAAGCCAC GGGAAAAGGT GTACTTTTTG AAGCTTTTAC AGGTCTTAAA ACCGGTTCCA AGGTAACAAG TGGTGGACTA GCCTTAAGAG AAGCAAAAGT ACAAGCCATT GTTGAAACAG GAAAGTTCCT TAAGATAATA GAAGAAGAAG CTTTAAAGCT TAAAGAAACT GGAAACAGTG GTCAATTCTT GGCTATGTTT GACTTAATGC TTGAGGTTGT AGAATCGCTA GAAGACGTTG GAATAATAGG CTTAAAAGCC CGTGTTTTAG AGGAATCTAA AAATAATCCT ATAAACACAG CTGAAAGATT GCTTGCGGCT AAAGCTCAAA TAGAAAATCA ACTTAAAGTG GTTAAGGAAA AACAAAATAT TGAAAATGGT GGAGAGAAAA AAAATAATAA AAGCAAAAAA AAGAAATAA t4-50.nt
ATGTAGTATTGGATTAGTAGAAAGAACAAATGCAGCTCTTGAATCGTCCTCTAAGGATTTAAAAAACAAAATTTTA AAAATAAAAAAAGAAGCCACGGGAAAAGGTGTACTTTTTGAAGCTTTTACAGGTCTTAAAACCGGTTCCAAGGTAA CAAGTGGTGGACTAGCCTTAAGAGAAGCAAAAGTACAAGCCATTGTTGAAACAGGAAAGTTCCTTAAGATAATAGA AGAAGAAGCTTTAAAGCTTAAAGAAACTGGAAACAGTGGTCAATTCTTGGCTATGTTTGACTTAATGCTTGAGGTT GTAGAATCGCTAGAAGACGTTGGAATAATAGGCTTAAAAGCCCGTGTTTTAGAGGAATCTAAAAATAATCCTATAA ACACAGCTGAAAGATTGCTTGCGGCTAAAGCTCAAATAGAAAATCAACTTAAAGTGGTTAAGGAAAAACAAAATAT TGAAAATGGTGGAGAGAAAAAAAATAATAAAAGCAAAAAAAAGAAA f4-50.aa
KEEKMKIGKL NSIVIALFFK LLVACSIGLV ERTNAALESS SKDLKNKILK IKKEATGKGV LFEAFTGLKT GSKVTSGGLA LREAKVQAIV ETGKFLKIIE EEALKLKETG NSGQFLAMFD LMLEWESLE DVGIIGLKAR VLEESKNNPI NTAERLLAAK AQIENQLK KEKQNIENGG EKKNNKSKKK K t4-50.aa TABLE 1. Nucleotide and Amino Acid Sequences
CSIGLVERTNAALESSSKDLKNKILKIKKΞATGKGVLFEAFTGLKTGSKVTSGGLALREAKVQAIVETGKFLKI IE EEALKLKETGNSGQFLAMFDLMLEWESLEDVGIIGLKARVLEESKNNPINTAERLLAAKAQIENQLKWKEKQNI ENGGEKKNNKSKKKK f4 - 66 . nt
TAATTTTTAA AATTTAAATA TTTACATAAT AGTAATGTGT GTGGGAGACG TATGAAAAAT ATTTTATTAT TTGTTATTTT ATTATTCTTT TCTTGTAAAG AATTTAATTA TTCTGATCTT AGGAGAAGGC CTTCAAAGGT TTTAAATGCT TCTAATGGTG CATCAAATAA AGAACTTAAA ATTTCTTTTG TAGATTCTTT AAATGATGAT CAAAAAGAAG CTTTGTTTTT TCTTGAACAG GTAGTTCTTG ATAGCAATCC CGACAAGTTT AATCAAATTT TTAATTTAAA TGAAGAGAAG GTAAAAGAAA TGCTTGTTAC TGTTGTTAAG TGTTTAAAGG CCAAAAGAAA GGCTAAAATG GCTCTTGAGA GCTCAAATGT TGCAAATGTT GCCAATGCTA AACAGCAATT GCTACAGGTT GAAAAAACTT ACATAGATAA TTTGCGACAA TCTTTTATGA CTACTAAAAA CATTGAAGAG GCTTGTAATC TTGTAAAAAA TTATGATGCA TCTGCTTCGT TTTAA t4-66.nt
TTGTAAAGAATTTAATTATTCTGATCTTAGGAGAAGGCCTTCAAAGGTTTTAAATGCTTCTAATGGTGCATCAAAT AAAGAACTTAAAATTTCTTTTGTAGATTCTTTAAATGATGATCAAAAAGAAGCTTTGTTTTTTCTTGAACAGGTAG TTCTTGATAGCAATCCCGACAAGTTTAATCAAATTTTTAATTTAAATGAAGAGAAGGTAAAAGAAATGCTTGTTAC TGTTGTTAAGTGTTTAAAGGCCAAAAGAAAGGCTAAAATGGCTCTTGAGAGCTCAAATGTTGCAAATGTTGCCAAT GCTAAACAGCAATTGCTACAGGTTGAAAAAACTTACATAGATAATTTGCGACAATCTTTTATGACTACTAAAAACA TTGAAGAGGCTTGTAATCTTGTAAAAAATTATGATGCATCTGCTTCGTTT f4-66.aa
FLKFKYLHNS NVCGRRMKNI LLFVILLFFS CKEFNYSDLR RRPSKVLNAS NGASNKELKI SFVDSLNDDQ KEALFFLEQV VLDSNPDKFN QIFNLNEEKV KEMLVTWKC LKAKRKAKMA LESSNVANVA NAKQQLLQVE KTYIDNLRQS FMTTKNIEEA CNLVKNYDAS ASF t4-66.aa
CKEFNYSDLRRRPSKVLNASNGASNKELKISFVDSLNDDQKEALFFLEQWLDSNPDKFNQIFNLNEEKVKEMLVT WKCLKAKRKAKMALESSNVANVANAKQQLLQVEKTYIDNLRQSFMTTKNIEEACNLVKNYDASASF f42 -l . nt
TAATTATTAA AATCTAAGGA GAAGAGATTT ATGAACAAAA AATTTTCTAT TTCATTATTA TCTACAATAT TAGCCTTCTT GTTAGTATTA GGTTGTGATT TGTCAAGCAA TAATGCTGAA AACAAAATGG ATGATATTTT TAATTTAGAA AAGAAATACA TGGATAATTC AAATTATAAA TGTTTAAGTA AAAATGAGGC TATAGTTAAA AATTCTAAAA TTAAATTAGG TGTAAATAAT ACTAGAAGTC GTTCTTATTC TTCTAGAGAG ACTAATGTTT CGGATTCCTA TAATAAAACC TATTCATATT GCAAAAGCAA CTGA t42-l.nt
TTGTGATTTGTCAAGCAATAATGCTGAAAACAAAATGGATGATATTTTTAATTTAGAAAAGAAATACATGGATAAT TCAAATTATAAATGTTTAAGTAAAAATGAGGCTATAGTTAAAAATTCTAAAATTAAATTAGGTGTAAATAATACTA GAAGTCGTTCTTATTCTTCTAGAGAGACTAATGTTTCGGATTCCTATAATAAAACCTATTCATATTGCAAAAGCAA C f42-l.aa
LLKSKEKRFM NKKFSISLLS TILAFLLVLG CDLSSNNAEN KMDDIFNLEK KYMDNSNYKC LSKNEAIVKN SKIKLGVNNT RSRSYSSRET NVSDSYNKTY SYCKSN TABLE 1. Nucleotide and Amino Acid Sequences t42-l.aa
CDLSSNNAENKMDDIFNLEKKYMDNSNYKCLSKNEAIVKNSKIKLGVNNTRSRSYSSRETNVSDSYNKTYΞYCKSN f43-3.nt
TGAATATTAA TAATAAAAAA AGGAATAANA ATGAAAATTA TCAACATATT ATTTTGTTTA TTTTTACTAA TGCTAAACAG CTGTAATTCT AATGATACTA ATACTAGCCA AACAAAAAGT AGACAAAAAC GTGATTTAAC CCAAAAAGAA GCAACACAAG AAAAACCAAA ATCTAAAGAA GACCTGCTTA GAGAAAAGCT ATCTGAAGAC CAAAAAACAC ATCTTGACTG GTTAAAAACC GCTTTAACTG GTGCTGGAGA ATTTGATAAA TTTTTAGGAT ATGACGAAGA CAAAATAAAA GGTGCACTTA ATCATATAAA GAGTGAACTT GATAAGTGTA CTGGGGATAA TTCTGAACAA CAAAAAAGCA CCTTCAAAGA GGTGGTTAAG GGGGCTCTTG GTGGCGGTAT AGATAGTTTT GCAACTAGTG CAAGTAGTAC CTGCCAAGCT CAGCAATAA t43-3.nt
CTGTAATTCTAATGATACTAATACTAGCCAAACAAAAAGTAGACAAAAACGTGATTTAACCCAAAAAGAAGCAACA CAAGAAAAACCAAAATCTAAAGAAGACCTGCTTAGAGAAAAGCTATCTGAAGACCAAAAAACACATCTTGACTGGT TAAAAACCGCTTTAACTGGTGCTGGAGAATTTGATAAATTTTTAGGATATGACGAAGACAAAATAAAAGGTGCACT TAATCATATAAAGAGTGAACTTGATAAGTGTACTGGGGATAATTCTGAACAACAAAAAAGCACCTTCAAAGAGGTG GTTAAGGGGGCTCTTGGTGGCGGTATAGATAGTTTTGCAACTAGTGCAAGTAGTACCTGCCAAGCTCAGCAA f43-3.aa
ILIIKKGIXM KIINILFCLF LLMLNSCNSN DTNTSQTKSR QKRDLTQKEA TQEKPKSKED LLREKLSEDQ KTHLDWLKTA LTGAGEFDKF LGYDEDKIKG ALNHIKSELD KCTGDNSEQQ KSTFKEWKG ALGGGIDSFA TSASSTCQAQ Q t43-3.aa
CNSNDTNTSQTKSRQKRDLTQKEATQEKPKSKEDLLREKLSEDQKTHLDWLKTALTGAGEFDKFLGYDEDKIKGAL NHIKSELDKCTGDNSEQQKSTFKEWKGALGGGIDSFATSASSTCQAQQ f45-2 . nt
TAGGAGAGAA TAATTATGAA TAAAAAAACA TTGATTATTT GTGCTGTTTT TGCGCTGATA ATTTCTTGCA AGAATTTTGC AACTGGTAAA GATATAAAAC AAAATTCAGA AGGGAAAATT AAAGGATTTG TAAATAAGAT TTTAGATCCA GTAAAGGATA AAATTGCTTC AAGTGGTACA AAAGTAGATG AAGTAGCAAA AAAATTACAA GAAGAAGAAA AAGAAGAATT AATGCAGGGC GATGATCCTA ATGGCAGTGG AATAAATCCG CCACCAGTAT TGCCGGAAAA TATTCACAAT AATGCATTAG TATTAAAAGC AATAGAACAA AGTGATGGTC AACAAGAAAA AAAAGTAGAA GAAGCTGAAG CTAAAGTTGA AGAAAATAAA GAAAAACAAG AGAATACAGA AGAAAACATT AAAGAAAAAG AAATAATAGA CGAACAAAAC AAACAAGAAT TAGCTAAAGC TAAAGAAGAA GAACAACAAA AAGAACAAAA AAGACATCAA GAAGAGCAAC AAAGAAAAGC TAAAGCAGAA AAAGAAAAAA GAGAAAGAGA AGAGGCAGAA CAACAAAAAC GACAACAAGA AGAGGAAGAA AAAAGGCAAG TTGATAACCA AATTAAAACA CTTATAGCTA AAATAGATGA GATCAATGAA AATATTGATG TTATAAAATG GCAAACGACT GTAGGCCCAC AAGGCGTTAT AGATAGAATT ACTGGGCCTG TGTATGATGA TTTTACCAAT GGCAATAATT CTATACGCGA AACTTGGGAG GGGTTAGAAG AGGAATCAGA AGACGAAGGA TTAGGAAAAT TATTGAAAGA ATTGAGTGAT GCTAGGGACG CGCTAAGAAC TAAATTAAAT GAAGGCAATA AACCATATAC TGGTTACGAA GAGCCTAAGT TAAAAGAAAG TGTAAATGTT AGCGAAATTA AAGAAGATTT AGAAAAATTA AAATCAAAAT TAGAAGAAGT TAAAAAATAT CTTAAAGATA GTTCTAAATT TGAAGAAATT AAAGGATACA TCAGTGACAG TCAGTAA t45-2.nt TABLE 1. Nucleotide and Amino Acid Sequences
TTGCAAGAATTTTGCAACTGGTAAAGATATAAAACAAAATTCAGAAGGGAAAATTAAAGGATTTGTAAATAAGATT TTAGATCCAGTAAAGGATAAAATTGCTTCAAGTGGTACAAAAGTAGATGAAGTAGCAAAAAAATTACAAGAAGAAG AAAAAGAAGAATTAATGCAGGGCGATGATCCTAATGGCAGTGGAATAAATCCGCCACCAGTATTGCCGGAAAATAT TCACAATAATGCATTAGTATTAAAAGCAATAGAACAAAGTGATGGTCAACAAGAAAAAAAAGTAGAAGAAGCTGAA GCTAAAGTTGAAGAAAATAAAGAAAAACAAGAGAATACAGAAGAAAACATTAAAGAAAAAGAAATAATAGACGAAC AAAACAAACAAGAATTAGCTAAAGCTAAAGAAGAAGAACAACAAAAAGAACAAAAAAGACATCAAGAAGAGCAACA AAGAAAAGCTAAAGCAGAAAAAGAAAAAAGAGAAAGAGAAGAGGCAGAACAACAAAAACGACAACAAGAAGAGGAA GAAAAAAGGCAAGTTGATAACCAAATTAAAACACTTATAGCTAAAATAGATGAGATCAATGAAAATATTGATGTTA TAAAATGGCAAACGACTGTAGGCCCACAAGGCGTTATAGATAGAATTACTGGGCCTGTGTATGATGATTTTACCAA TGGCAATAATTCTATACGCGAAACTTGGGAGGGGTTAGAAGAGGAATCAGAAGACGAAGGATTAGGAAAATTATTG AAAGAATTGAGTGATGCTAGGGACGCGCTAAGAACTAAATTAAATGAAGGCAATAAACCATATACTGGTTACGAAG AGCCTAAGTTAAAAGAAAGTGTAAATGTTAGCGAAATTAAAGAAGATTTAGAAAAATTAAAATCAAAATTAGAAGA AGTTAAAAAATATCTTAAAGATAGTTCTAAATTTGAAGAAATTAAAGGATACATCAGTGACAGTCAG f45-2.aa
ERIIMNKKTL IICAVFALII SCKNFATGKD IKQNSEGKIK GFVNKILDPV KDKIASSGTK VDEVAKKLQE EEKEELMQGD DPNGSGINPP PVLPENIHNN ALVLKAIEQS DGQQEKKVEE AEAKVEENKE KQENTEENIK EKEIIDEQNK QELAKAKEEE QQKEQKRHQE EQQRKAKAEK EKREREEAEQ QKRQQEEEEK RQVDNQIKTL IAKIDEINEN IDVIKWQTTV GPQGVIDRIT GPVYDDFTNG NNSIRETWEG LEEESEDEGL GKLLKELSDA RDALRTKLNE GNKPYTGYEE PKLKESVNVS EIKEDLEKLK SKLEEVKKYL KDSSKFEEIK GYISDSQ t45-2.aa
CKNFATGKDIKQNSEGKIKGFVNKILDPVKDKIASSGTKVDEVAKKLQEEEKEELMQGDDPNGSGINPPPVLPENI HNNALVLKAIEQSDGQQEKKVEEAEAKVEENKEKQENTEENIKEKEIIDEQNKQELAKAKEEEQQKEQKRHQEEQQ RKAKAEKEKREREEAEQQKRQQEEEEKRQVDNQIKTLIAKIDEINENIDVIKWQTTVGPQGVIDRITGPVYDDFTN GNNSIRETWEGLEEESEDEGLGKLLKELSDARDALRTKLNEGNKPYTGYEEPKLKESVNVSEIKEDLEKLKSKLEE VKKYLKDSSKFEEIKGYISDSQ f47-2.nt
TGAATATTAA TAATAAAAAA AGGAGTAACA ATGAAAATCA TCAACATATT ATTTTGTATA TCTTTGCTAC TACTAAATAG CTGTAATTCC AATGATAATG ACACTTTAAA AAACAATGCC CAACAAACAA AAAGCAGGAA AAAACGTGAT TTAAGCCAAG AAGAACTGCC ACAACAAGAA AAAATCACTT TAACATCCGA CGAAGAAAAA ATGTTTACTT CATTAATCAA TGTGTTTAAA TACACAATTG AAAAATTAAA CAATGAAATA CAAGGGTGCA TGAATGGAAA CAAAAGTAAA TGTAATGACT TCTTTGATTG GCTTTCTGAA GATATTCAAA AACAAAAAGA ATTAGCTGGT GCTTTTACCA AGGTTTACAA CTTCTTAAAA TCAAAAGCAC AAAATGAAAC TTTTGATACT TATATTAAAG GAGCTATTGA TTGTAAAAAA AACACTCCAC AAGATTGTAA TAAAAATAAT GAAATATGGG GAGGTGGACA ACTTANTAGN GCAATATTTT AG t47-2.nt
CTGTAATTCCAATGATAATGACACTTTAAAAAACAATGCCCAACAAACAAAAAGCAGGAAAAAACGTGATTTAAGC
CAAGAAGAACTGCCACAACAAGAAAAAATCACTTTAACATCCGACGAAGAAAAAATGTTTACTTCATTAATCAATG
TGTTTAAATACACAATTGAAAAATTAAACAATGAAATACAAGGGTGCATGAATGGAAACAAAAGTAAATGTAATGA
CTTCTTTGATTGGCTTTCTGAAGATATT
CAAAAACAAAAAGAATTAGCTGGTGCTTTTACCAAGGTTTACAACTTCTTAAAATCAAAAGCACAAAATGAAACTT
TTGATACTTATATTAAAGGAGCTATTGATTGTAAAAAAAACACTCCACAAGATTGTAATAAAAATAATGAA f47-2.aa
ILIIKKGVTM KIINILFCIS LLLLNSCNSN DNDTLKNNAQ QTKSRKKRDL SQEELPQQEK TABLE 1. Nucleotide and Amino Acid Sequences
ITLTSDEEKM FTSLINVFKY TIEKLNNEIQ GCMNGNKSKC NDFFDWLSED IQKQKELAGA FTKVYNFLKS KAQNETFDTY IKGAIDCKKN TPQDCNKNNE IWGGGQLXXA IF t47-2.aa
CNSNDNDTLKNNAQQTKSRKKRDLSQEELPQQEKITLTSDEEKMFTSLINVFKYTIEKLNNEIQGCMNGNKSKCND FFDWLSEDIQKQKELAGAFTKVYNFLKSKAQNETFDTYIKGAIDCKKNTPQDCNKNNE f49-2.nt
TAAATGTTCA AAACAATCAT TAAACAAAAA AATATGAAAA AAATTTCAAG TGCAATTTTA TTAACAACTT TCTTTGTTTT TATTAATTGT AAAAGCCAAG TTGCTGATAA GGCGAGTGTG ACGGGGATTG CTAAGGGAAT AAAGGAGATT GTTGAAGCTG CTGGGGGGAG TGAAAAGCTG AAAGTTGCTG CTGCTGAAGG GGAGAATAAT GAAAAGGCAG GGAAGTTGTT TGGGAAGGCT GGTGCTGGTA ATGCTGGGGA CAGTGAGGCT GCTAGCAAGG CGGCTGGTGC TGTTAGTGCT GTTAGTGGGG AGCAGATATT AAGTGCGATT GTTAAGGCTG CTGGTGAGGC TGCGCAGGAT GGAGAGAAGC CTGGGGAGGC TAAAAATCCG ATTGCTGCTG CTATTGGGAA GGGTAATGAG GATGGTGCGG AGTTTAAGGA TGAGATGAAG AAGGATGATC AGATTGCTGC TGCTATTGCT TTGAGGGGGA TGGCTAAGGA TGGAAAGTTT GCTGTGAAGA ATGATGAGAA AGGGAAGGCT GAGGGGGCTA TTAAGGGAGC TGGCGAGTTG TTGGATAAGC TGGTAAAAGC TGTAAAGACA GCTGAGGGGG CTTCAAGTGG TACTGCTGCA ATTGGAGAAG TTGTGGCTGA TGATAATGCT GCGAAGGTTG CTGATAAGGC GAGTGTGAAG GGGATTGCTA AGGGGATAAA GGAGATTGTT GAAGCTGCTG GGGGGAGTAA AAAGCTGAAA GTTGCTGCTG CTAAAGAGGG CAATGAAAAG GCAGGGAAGT TGTTTGGGAA AGTTGATGCT GCTCATGCTG GGGACAGTGA GGCTGCTAGC AAGGCGGCTG GTGCTGTTAG TGCTGTTAGT GGGGAGCAGA TATTAAGTGC GATTGTTAAG GCTGCTGGTG CGGCTGCTGG TGATCAGGAG GGAAAGAAGC CTGGGGATGC TAAAAATCCG ATTGCTGCTG CTATTGGGAA GGGTGATGCG GAGAATGGTG CGGAGTTTAA TCATGATGGG ATGAAGAAGG ATGATCAGAT TGCTGCTGCT ATTGCTTTGA GGGGGATGGC TAAGGATGGA AAGTTTGCTG TGAAGAGTGG TGGTGGTGAG AAAGGGAAGG CTGAGGGGGC TATTAAGGGA GCTGCTGAGT TGTTGGATAA GCTGGTAAAA GCTGTAAAGA CAGCTGAGGG GGCTTCAAGT GGTACTGATG CAATTGGAGA AGTTGTGGCT AATGCTGGTG CTGCAAAGGT TGCTGATAAG GCGAGTGTGA CGGGGATTGC TAAGGGGATA AAGGAGATTG TTGAAGCTGC TGGGGGGAGT GAAAAGCTGA AAGTTGCTGC TGCTACAGGG GAGAGTAATA AAGGGGCAGG GAAGTTGTTT GGGAAGGCTG GTGCTGGTGC TAATGCTGGG GACAGTGAGG CTGCTAGCAA GGCGGCTGGT GCTGTTAGTG CTGTTAGTGG GGAGCAGATA TTAAGTGCGA TTGTTAAGGC TGCTGATGCG GCTGATCAGG AGGGAAAGAA GCCTGGGGAT GCTANAAATC CGATTGCTGC TGCTATTGGG AAGGGTNATG NGGAGAATGG TGCGGAGTTT AANNATGANG GATGA t49-2.nt
TTGTAAAAGCCAAGTTGCTGATAAGGCGAGTGTGACGGGGATTGCTAAGGGAATAAAGGAGATTGTTGAAGCTGCT GGGGGGAGTGAAAAGCTGAAAGTTGCTGCTGCTGAAGGGGAGAATAATGAAAAGGCAGGGAAGTTGTTTGGGAAGG CTGGTGCTGGTAATGCTGGGGACAGTGAGGCTGCTAGCAAGGCGGCTGGTGCTGTTAGTGCTGTTAGTGGGGAGCA GATATTAAGTGCGATTGTTAAGGCTGCTGGTGAGGCTGCGCAGGATGGAGAGAAGCCTGGGGAGGCTAAAAATCCG ATTGCTGCTGCTATTGGGAAGGGTAATGAGGATGGTGCGGAGTTTAAGGATGAGATGAAGAAGGATGATCAGATTG CTGCTGCTATTGCTTTGAGGGGGATGGCTAAGGATGGAAAGTTTGCTGTGAAGAATGATGAGAAAGGGAAGGCTGA GGGGGCTATTAAG f49-2.aa
MFKTIIKQKN MKKISSAILL TTFFVFINCK SQVADKASVT GIAKGIKEIV EAAGGSEKLK VAAAEGENNE KAGKLFGKAG AGNAGDSEAA SKAAGAVSAV SGEQILSAIV KAAGEAAQDG EKPGEAKNPI AAAIGKGNED GAEFKDEMKK DDQIAAAIAL RGMAKDGKFA VKNDEKGKAE GAIKGAGELL DKLVKAVKTA EGASSGTAAI GEWADDNAA KVADKASVKG IAKGIKEIVE AAGGSKKLKV AAAKEGNEKA GKLFGKVDAA HAGDSEAASK AAGAVSAVSG EQILSAIVKA AGAAAGDQEG KKPGDAKNPI AAAIGKGDAE NGAEFNHDGM KKDDQIAAAI ALRGMAKDGK TABLE 1. Nucleotide and Amino Acid Sequences
FAVKSGGGEK GKAEGAIKGA AELLDKLVKA VKTAEGASSG TDAIGEWAN AGAAKVADKA SVTGIAKGIK EIVEAAGGSE KLKVAAATGE SNKGAGKLFG KAGAGANAGD SEAASKAAGA VSAVSGEQIL SAIVKAADAA DQEGKKPGDA XNPIAAAIGK GXXENGAEFX XXG t49-2.aa
CKSQVADKASVTGIAKGIKEIVEAAGGSEKLKVAAAEGENNEKAGKLFGKAGAGNAGDSEAASKAAGAVSAVSGEQ ILSAIVKAAGEAAQDGEKPGEAKNPIAAAIGKGNEDGAEFKDEMKKDDQIAAAIALRGMAKDGKFAVKNDEKGKAE GAIK f5-14.nt
TAGAAATTCA AAACAAAGGA GAAAACAAAA AGTATGAATA AAAAAATATT GATTATTTTT GCTGTTTTTG CACTTATAAT TTCTTGTAAA AATTATGCAA CTGGTAAAGA TATAAAACAA AATGCAAAAG GGAAAATTAA AGGATTTTTA GATAAGGTTT TAGATCCAGC AAAAGATAAA ATTACTTCAA GTAGTTCAAA AGTAGATGAA TTAGCAAAAA AATTACAAGA AGAAGATGAA GATAATGAAT TAATGCAGGG CGATGATCCT AATAACAGAG CAATAGCACT GTTACCAGTA TTGCCGGAAA ATAGTCATGA CAATCCACCA GTACCAAAAG TAAAAGCAGC AGCACAAAGT GGTGGTCAAC AAGAAGACCA AAAAGCAAAA GAATCTAAAG ATAAAGTTGA GGAAGAAAAA GAAGTTGTAG AGGAGAAAAA AGAAGAACAA GATAGTAAAA AAGAAAAAGT GGAGAAGCAA AGTCAAAAGC AAAAAGAAGA AGAGAGAAAC TCTAAAGAAG AACAACAAAA ACAAGAAGAA GCAAAAGCTA GAGCAGATAG AGAAAGAGAA GAACGACTAA AACAACAAGA ACAAAAAAGA CAACAGGAAG AAGCTAGGGT TAAAGCAGAA AAAGAAAAAC AAGAAAGAGA GGAACAACAA AAACAAGAAG AAGAAAAGAA AGTTAAATAT AAAATTAAAA CACTTACAGA CAAAATAGAT GAAATAAATA AGGATATTGA TGGTATAAAT GGTAAAACAA TTGTAGGAGC AGAAGAAGTT ATAGATAAAA TTACGGGGCC TGTATATGAT GATTTTACTG ATGGGAATAA AGCTATATAC AAAACTTGGG GAGATTTAGA GGATGAAGAA GGCGAAGAAT TAGGAAAATT ATTGAAAGAA TTGAGTGATA CTAGACATAA TTTAAGAACC AAATTAAATG AGGGTAATAA AGCATATATT GTTCTAGAAA AGGAGCCTAA TTTAAAAGAA AATGTAAATG TTAGTGATAT TCAATCAGAT TTAGAAAAAT TAAAATCAGG ATTAGAAGAA GTTAAAAAAT ATTTTGAAAA TGAAGATAAT TTTGAAGAAA TTAAAGGATA CATTGAGGAT AGTAATTCAT ATTGA t5-14.nt
TTGTAAAAATTATGCAACTGGTAAAGATATAAAACAAAATGCAAAAGGGAAAATTAAAGGATTTTTAGATAAGGTT TTAGATCCAGCAAAAGATAAAATTACTTCAAGTAGTTCAAAAGTAGATGAATTAGCAAAAAAATTACAAGAAGAAG ATGAAGATAATGAATTAATGCAGGGCGATGATCCTAATAACAGAGCAATAGCACTGTTACCAGTATTGCCGGAAAA TAGTCATGACAATCCACCAGTACCAAAAGTAAAAGCAGCAGCACAAAGTGGTGGTCAACAAGAAGACCAAAAAGCA 'AAAGAATCTAAAGATAAAGTTGAGGAAGAAAAAGAAGTTGTAGAGGAGAAAAAAGAAGAACAAGATAGTAAAAAAG AAAAAGTGGAGAAGCAAAGTCAAAAGCAAAAAGAAGAAGAGAGAAACTCTAAAGAAGAACAACAAAAACAAGAAGA AGCAAAAGCTAGAGCAGATAGAGAAAGAGAAGAACGACTAAAACAACAAGAACAAAAAAGACAACAGGAAGAAGCT AGGGTTAAAGCAGAAAAAGAAAAACAAGAAAGAGAGGAACAACAAAAACAAGAAGAAGAAAAGAAAGTTAAATATA AAATTAAAACACTTACAGACAAAATAGATGAAATAAATAAGGATATTGATGGTATAAATGGTAAAACAATTGTAGG AGCAGAAGAAGTTATAGATAAAATTACGGGGCCTGTATATGATGATTTTACTGATGGGAATAAAGCTATATACAAA ACTTGGGGAGATTTAGAGGATGAAGAAGGCGAAGAATTAGGAAAATTATTGAAAGAATTGAGTGATACTAGACATA ATTTAAGAACCAAATTAAATGAGGGTAATAAAGCATATATTGTTCTAGAAAAGGAGCCTAATTTAAAAGAAAATGT AAATGTTAGTGATATTCAATCAGATTTAGAAAAATTAAAATCAGGATTAGAAGAAGTTAAAAAATATTTTGAAAAT GAAGATAATTTTGAAGAAATTAAAGGATACATTGAGGATAGTAATTCATAT f5-14.aa
KFKTKEKTKS MNKKILIIFA VFALIISCKN YATGKDIKQN AKGKIKGFLD KVLDPAKDKI TSSSSKVDEL AKKLQEEDED NELMQGDDPN NRAIALLPVL PENSHDNPPV PKVKAAAQSG GQQEDQKAKE SKDKVEEEKE EEKKEEQD SKKEKVEKQS QKQKEEERNS KEEQQKQEEA KARADREREE RLKQQEQKRQ QEEARVKAEK EKQEREEQQK QEEEKKVKYK IKTLTDKIDE INKDIDGING KTIVGAEEVI DKITGPVYDD FTDGNKAIYK TWGDLEDEEG EELGKLLKEL TABLE 1. Nucleotide and Amino Acid Sequences
SDTRHNLRTK LNEGNKAYIV LEKEPNLKEN VNVSDIQSDL EKLKSGLEEV KKYFENEDNF EEIKGYIEDS NSY t5-14.aa
CKNYATGKDIKQNAKGKIKGFLDKVLDPAKDKITSSSSKVDELAKKLQEEDEDNELMQGDDPNNRAIALLPVLPEN SHDNPPVPKVKAAAQSGGQQEDQKAKESKDKVEEEKEWEEKKEEQDSKKEKVEKQSQKQKEEERNSKEEQQKQEE AKARADREREERLKQQEQKRQQEEARVKAEKEKQEREEQQKQEEEKKVKYKIKTLTDKIDEINKDIDGINGKTIVG AEEVIDKITGPVYDDFTDGNKAIYKTWGDLEDEEGEELGKLLKELSDTRHNLRTKLNEGNKAYIVLEKEPNLKENV NVSDIQSDLEKLKSGLEEVKKYFENEDNFEEIKGYIEDSNSY f5-15.nt
TAACTTATGA ATAAGAAAAT GAAAATGTTT ATTATTTGTG CTGTTTTTGC ATTGATGATT TCTTGCAAGA ATTATGCAAG TGGTGAAAAT CTAAAAAATT CAGAACAAAA TCTAGAAAGT TCAGAACAAA ATGTAAAAAA AACAGAACAA GAGATAAAAA AACAAGTTGA AGGATTTTTA GAAATTCTAG AGACAAAAGA TTTATCTAAA TTAGATGAAA AAGATACAAA AGAAATTGAA AAACAAATTC AAGAATTAAA GAATAAAATA GAAAAATTAG ATTCTAAAAA AACTTCTATT GAAACATATT CTGAGTATGA AGAAAAAATA AACAAAATAA AAGAAAAATT GAAAGGAAAA GGACTTGAAG ATAAATTTAA GGAGCTTGAA GAGAGTTTAG CAAAGAAAAA GGGGGAGAGA AAAAAAGCTT TACAAGAGGC CAAACAGAAA TTTGAAGAAT ATAAAAAACA AGTAGATACT TCAACTGGGA AAACTCAAGG CGACAGGTCT AAAAACCGAG GTGGTGTTGG AGTGCAAGCT TGGCAGTGTG CCAATGAATT AGGTTTGGGT GTAAGTTATT CTAATGGCGG CAGTGACAAC AGCAATACTG ATGAATTAGC AAACAAAGTT ATAGATGATT CTCTTAAAAA GATTGAAGAA GAACTTAAGG GAATAGAAGA AGATAAAAAA GAATAA t5-15.nt
TTGCAAGAATTATGCAAGTGGTGAAAATCTAAAAAATTCAGAACAAAATCTAGAAAGTTCAGAACAAAATGTAAAA AAAACAGAACAAGAGATAAAAAAACAAGTTGAAGGATTTTTAGAAATTCTAGAGACAAAAGATTTATCTAAATTAG ATGAAAAAGATACAAAAGAAATTGAAAAACAAATTCAAGAATTAAAGAATAAAATAGAAAAATTAGATTCTAAAAA AACTTCTATTGAAACATATTCTGAGTATGAAGAAAAAATAAACAAAATAAAAGAAAAATTGAAAGGAAAAGGACTT GAAGATAAATTTAAGGAGCTTGAAGAGAGTTTAGCAAAGAAAAAGGGGGAGAGAAAAAAAGCTTTACAAGAGGCCA AACAGAAATTTGAAGAATATAAAAAACAAGTAGATACTTCAACTGGGAAAACTCAAGGCGACAGGTCTAAAAACCG AGGTGGTGTTGGAGTGCAAGCTTGGCAGTGTGCCAATGAATTAGGTTTGGGTGTAAGTTATTCTAATGGCGGCAGT GACAACAGCAATACTGATGAATTAGCAAACAAAGTTATAGATGATTCTCTTAAAAAGATTGAAGAAGAACTTAAGG GAATAGAAGAAGATAAAAAAGAA f5-15.aa
LMNKKMKMFI ICAVFALMIS CKNYASGENL KNSEQNLESS EQNVKKTEQE IKKQVEGFLE ILETKDLSKL DEKDTKEIEK QIQELKNKIE KLDSKKTSIE TYSEYEEKIN KIKEKLKGKG LEDKFKELEE SLAKKKGERK KALQEAKQKF EEYKKQVDTS TGKTQGDRSK NRGGVGVQAW QCANELGLGV SYSNGGSDNS NTDELANKVI DDSLKKIEEE LKGIEEDKKE t5-15.aa
CKNYASGENLKNSEQNLESSEQNVKKTEQEIKKQVEGFLEILETKDLSKLDEKDTKEIEKQIQELKNKIEKLDSKK TSIETYSEYEEKINKIKEKLKGKGLEDKFKELEESLAKKKGERKKALQEAKQKFEEYKKQVDTSTGKTQGDRSKNR GGVGVQAWQCANELGLGVSYSNGGSDNSNTDELANKVIDDSLKKIEEELKGIEEDKKE f51-2.nt
TAATTGTTTG GGGTTGTGGT AAACTTAAGG CTTATGGAGT GGATTATGAA TAAAAAAATG AAAATATTTA TTATTTGTGC TGTATTTGTG CTGATAAGTT CTTGCAAGAT TGATGCAACT GGTAAAGATG CAACTGGTAA AGATGCAACT GGTAAAGATG CAACTGGTAA AGATGCAACT GGTAAAAATG CAGAACAAAA TATAAAAGGG AAAGTTCAAG GATTTTTAGA AAAGATTTTA TABLE 1. Nucleotide and Amino Acid Sequences
GATCCAGTAA AGGATAAAAT TGCTTCAAAT GGTCCAATAG CAGATGAATT GGCAAAAAAA TTACAAGAAG AAGAAAAGGT AAATAACGGG GAAGAAGAAA ATGATAAAGC TGTCTTTTTA GGAGAAGAAT CAAAAGAGGA TGAAGAAGAA AATGAGCAAG CTGTTAATTT AGAAGAAAAA AATGCGGAAG AGGATAAGAA AGTTGTTAAT TTAGAAGAGA AAGAATTAGA AGTTAAAAAA GAGACTGAAG AAGATGAAGA TAAAGAAGAA ATAGAGAAAC AAAAACAAGA AGTGGAAAAA GCACAAGAAA GAAAACAACG ACAAGAAGAA AAGAAACGAA AAAAACAAGA ACAGCAAGAA GAAAAGAAAC GAAAACGACA AGAACAAAGA AAAGAAAGGA GAGCTAAAAA CAAAATTAAA AAACTTGCGG ATAAAATAGA TGAGATAAGT TGGAATATTG ATGGTATAGA AAGTCAAACA AGTGTAAAAC CGAAAGCAGT TATAGATAAA ATTACGGGGC CTGTATATGA TTATTTTACC GATGACAACA AAAAAGCTAT ATATAAAACA TGGGGAGATT TAGAAGATGA AGAAGGCGAA GGATTGGGAA AATTATTGAA AGAATTGAGT GATACTAGAG ATGAGTTAAG AACCAAATTA AATAAAGATA ATAAAAAATA TTATGCCCAT GAAAATGAGC CTCCTCTAAA AGAAAATGTA GATGTCAGCG AAATTAAAGA AGATTTAGAA AAAGTAAAAT CAGGATTAGA AAAGGTTAAA GAATATCTTA AAGACAATTC TAAATTTGAA GAAATTAAAG GATACATCAG TTACAGTCAG TAA t51-2.nt
TTGCAAGATTGATGCAACTGGTAAAGATGCAACTGGTAAAGATGCAACTGGTAAAGATGCAACTGGTAAAGATGCA ACTGGTAAAAATGCAGAACAAAATATAAAAGGGAAAGTTCAAGGATTTTTAGAAAAGATTTTAGATCCAGTAAAGG ATAAAATTGCTTCAAATGGTCCAATAGCAGATGAATTGGCAAAAAAATTACAAGAAGAAGAAAAGGTAAATAACGG GGAAGAAGAAAATGATAAAGCTGTCTTTTTAGGAGAAGAATCAAAAGAGGATGAAGAAGAAAATGAGCAAGCTGTT AATTTAGAAGAAAAAAATGCGGAAGAGGATAAGAAAGTTGTTAATTTAGAAGAGAAAGAATTAGAAGTTAAAAAAG AGACTGAAGAAGATGAAGATAAAGAAGAAATAGAGAAACAAAAACAAGAAGTGGAAAAAGCACAAGAAAGAAAACA ACGACAAGAAGAAAAGAAACGAAAAAAACAAGAACAGCAAGAAGAAAAGAAACGAAAACGACAAGAACAAAGAAAA GAAAGGAGAGCTAAAAACAAAATTAAAAAACTTGCGGATAAAATAGATGAGATAAGTTGGAATATTGATGGTATAG AAAGTCAAACAAGTGTAAAACCGAAAGCAGTTATAGATAAAATTACGGGGCCTGTATATGATTATTTTACCGATGA CAACAAAAAAGCTATATATAAAACATGGGGAGATTTAGAAGATGAAGAAGGCGAAGGATTGGGAAAATTATTGAAA GAATTGAGTGATACTAGAGATGAGTTAAGAACCAAATTAAATAAAGATAATAAAAAATATTATGCCCATGAAAATG AGCCTCCTCTAAAAGAAAATGTAGATGTCAGCGAAATTAAAGAAGATTTAGAAAAAGTAAAATCAGGATTAGAAAA GGTTAAAGAATATCTTAAAGACAATTCTAAATTTGAAGAAATTAAAGGATACATCAGTTACAGTCAG f51-2.aa
LFGVWNLRL MEWIMNKKMK IFIICAVFVL ISSCKIDATG KDATGKDATG KDATGKDATG KNAEQNIKGK VQGFLEKILD PVKDKIASNG PIADELAKKL QEEEKVNNGE EENDKAVFLG EESKEDEEEN EQAVNLEEKN AEEDKKWNL EEKELEVKKE TEEDEDKEEI EKQKQEVEKA QERKQRQEEK KRKKQEQQEE KKRKRQEQRK ERRAKNKIKK LADKIDEISW NIDGIESQTS VKPKAVIDKI TGPVYDYFTD DNKKAIYKTW GDLEDEEGEG LGKLLKELSD TRDELRTKLN KDNKKYYAHE NEPPLKENVD VSEIKEDLEK VKSGLEKVKE YLKDNSKFEE IKGYISYSQ t51-2.aa
CKIDATGKDATGKDATGKDATGKDATGKNAEQNIKGKVQGFLEKILDPVKDKIASNGPIADELAKKLQEEEKVNNG EEENDKAVFLGEESKEDEEENEQAVNLEEKNAEEDKKWNLEEKELEVKKETEEDEDKEEIEKQKQEVEKAQERKQ RQEEKKRKKQEQQEEKKRKRQEQRKERRAKNKIKKLADKIDEISWNIDGIESQTSVKPKAVIDKITGPVYDYFTDD NKKAIYKTWGDLEDEEGEGLGKLLKELSDTRDELRTKLNKDNKKYYAHENEPPLKENVDVSEIKEDLEKVKSGLEK VKEYLKDNSKFEEIKGYISYSQ f6-21.nt
TAGGCAAAAT TTAAATTTAT AAAAACTTGT AAGGATGCTT GTATGAAAAT ATTGATAAAA AAGTTAAAAG TTGTATTATT TCTCAATTTA ATTTTACTTA TTTCTTGTGT TAATGAAAGT AATAGAAACA AATTGGTTTT TAAGCTAAAT ATTGGAAGTG AGCCTGCTAC TTTAGATGCT CAATTAATAA ACGATACGGT TGGATCAGGG ATTGTAAGCC AAATGTTTCT TGGCATTTTA GATGGAGATC CCAGGACTGG AGGATACAGA CCGGGACTTG CTAAAAGTTG GGATATTTCT TABLE 1. Nucleotide and Amino Acid Sequences
GATGACGGAG TAGTTTATAC GTTTCATTTA AGAGATAATC TTGTTTGGAG TGATGGAGTT TCCATTACTG CCGAAGAATA A t6-21.nt
TTGTGTTAATGAAAGTAATAGAAACAAATTGGTTTTTAAGCTAAATATTGGAAGTGAGCCTGCTACTTTAGATGCT CAATTAATAAACGATACGGTTGGATCAGGGATTGTAAGCCAAATGTTTCTTGGCATTTTAGATGGAGATCCCAGGA CTGGAGGATACAGACCGGGACTTGCTAAAAGTTGGGATATTTCTGATGACGGAGTAGTTTATACGTTTCATTTAAG AGATAATCTTGTTTGGAGTGATGGAGTTTCCATTACTGCCGAAGAA f6-21.aa
AKFKFIKTCK DACMKILIKK LKWLFLNLI LLISCVNESN RNKLVFKLNI GSEPATLDAQ LINDTVGSGI VSQMFLGILD GDPRTGGYRP GLAKSWDISD DGWYTFHLR DNLVWSDGVS ITAEE t6-21.aa
CVNESNRNKLVFKLNIGSEPATLDAQLINDTVGSGIVSQMFLGILDGDPRTGGYRPGLAKSWDISDDGWYTFHLR DNLVWSDGVSITAEE f6-27.nt
TAAAGAAAAG CTTGCATAAA AAGTATAACA AATTCTTTAA TAATTAAAAT CAAAAAGAAT
ATAATTATTG CACTAAAATT AAATTTATAC AGTTATATAG AATCACTTAA GGAACAAAAA
ATGAAATACC TTAAAAACAT TTCCTTATTT TTGTTAATTT TAGGTTGCAA ATCCATCCCA AATGGTAATT TCAATCTACA CGATACAAAC CATAAATTAG GAAAACTAAA ATTTCAAGAA GACTCGATAA TAAGCAGAAA TTATGATAAT AAAATATCCA TTGTGGGAGT ATACAACCCT
TTAACAGAAA AAGAAAATTT TAAAGTCAAT ATTTTCATCA AAAAAAAAGG ATTACAAATA
GATCCTGAAA ATATTTTGAT AAATGAAGAA AAAATTAATT ATTCAAAATA TAAAGCAGAA
CTCAAAGTAA AATCTAGCTT TAATAAAAGC ATTATCAGTA TTTCACTAAC TAATTCAAGA
GATCTATTAA CCTACATTTA CGATAAAAGC ACAGGGAAAT ACATTAACAT TGACTTTAAG
GACAATTGGA ACGTATCGCA CAGTATAAAA TTTAATAAGG AGTATATTTT AGCATATATA
ACAGATTTTG ATAAAGAAAT TAAAATATCT AAAAATATTT TGCAAAAACG TATTGATAAT
AGAAAAATTG AAATTGAAAA AACAGAGCTT AAAACAGAAT ATAATGAAAT AGAGGATTAT
TACATCTACA GTATGAAAAT TCCAAAATTA TTTGAAAAAT CAGACGCTCC CTCTGAAACT
TACGAAACAT TTGTTATAGC AAATTATTAC CCCTGTGAAA ATTTAAATAT ACTGTTTTTG
AATTTAAGCT TATACTCTGA TAAATTACGC TTTCTAAACT CTATTTATGA TGAGAATGAT
AGAAAATTAA AAATGGAGCC TCCTGTGAGA GCCTTAAAGA ATTCAAAAAC AATAAAAGAA
ACATTAAATA TAGTATTAAG TCCTCAAAAA ATAATAGAGC TAGCAAAAAA CATTGAAAAA
GATATTACTC TAAAATTAAA ATCTTACGGA GAAAAGGGAG AATTCACATT TGAAATATAT
AAACCACTTC TTTTAAAATT CTTAAAAGAA GTAGATCATT GCATAAAAAA TTTGCAATCA AGTAGGCATA AATTTTAA t6-27.nt
TTGCAAATCCATCCCAAATGGTAATTTCAATCTACACGATACAAACCATAAATTAGGAAAACTAAAATTTCAAGAA GACTCGATAATAAGCAGAAATTATGATAATAAAATATCCATTGTGGGAGTATACAACCCTTTAACAGAAAAAGAAA ATTTTAAAGTCAATATTTTCATCAAAAAAAAAGGATTACAAATAGATCCTGAAAATATTTTGATAAATGAAGAAAA AATTAATTATTCAAAATATAAAGCAGAACTCAAAGTAAAATCTAGCTTTAATAAAAGCATTATCAGTATTTCACTA ACTAATTCAAGAGATCTATTAACCTACATTTACGATAAAAGCACAGGGAAATACATTAACATTGACTTTAAGGACA ATTGGAACGTATCGCACAGTATAAAATTTAATAAGGAGTATATTTTAGCATATATAACAGATTTTGATAAAGAAAT TAAAATATCTAAAAATATTTTGCAAAAACGTATTGATAATAGAAAAATTGAAATTGAAAAAACAGAGCTTAAAACA GAATATAATGAAATAGAGGATTATTACATCTACAGTATGAAAATTCCAAAATTATTTGAAAAATCAGACGCTCCCT CTGAAACTTACGAAACATTTGTTATAGCAAATTATTACCCCTGTGAAAATTTAAATATACTGTTTTTGAATTTAAG CTTATACTCTGATAAATTACGCTTTCTAAACTCTATTTATGATGAGAATGATAGAAAATTAAAAATGGAGCCTCCT TABLE 1. Nucleotide and Amino Acid Sequences
GTGAGAGCCTTAAAGAATTCAAAAACAATAAAAGAAACATTAAATATAGTATTAAGTCCTCAAAAAATAATAGAGC TAGCAAAAAACATTGAAAAAGATATTACTCTAAAATTAAAATCTTACGGAGAAAAGGGAGAATTCACATTTGAAAT ATATAAACCACTTCTTTTAAAATTCTTAAAAGAAGTAGATCATTGCATAAAAAATTTGCAATCAAGTAGGCATAAA TTT f6-27.aa
RKACIKSITN SLIIKIKKNI IIALKLNLYS YIESLKEQKM KYLKNISLFL LILGCKSIPN
GNFNLHDTNH KLGKLKFQED SIISRNYDNK ISIVGVYNPL TEKENFKVNI FIKKKGLQID
PENILINEEK INYSKYKAEL KVKSSFNKSI ISISLTNSRD LLTYIYDKST GKYINIDFKD
NWNVSHSIKF NKEYILAYIT DFDKEIKISK NILQKRIDNR KIEIEKTELK TEYNEIEDYY
IYSMKIPKLF EKSDAPSETY ETFVIANYYP CENLNILFLN LSLYSDKLRF LNSIYDENDR
KLKMEPPVRA LKNSKTIKET LNIVLSPQKI IELAKNIEKD ITLKLKSYGE KGEFTFEIYK
PLLLKFLKEV DHCIKNLQSS RHKF t6-27.aa
CKSIPNGNFNLHDTNHKLGKLKFQEDSIISRNYDNKISIVGVYNPLTEKENFKVNIFIKKKGLQIDPENILINEEK INYSKYKAELKVKSSFNKSIISISLTNSRDLLTYIYDKSTGKYINIDFKDNWNVSHSIKFNKEYILAYITDFDKEI KISKNILQKRIDNRKIEIEKTELKTEYNEIEDYYIYSMKIPKLFEKSDAPSETYETFVIANYYPCENLNILFLNLS LYSDKLRFLNSIYDENDRKLKMEPPVRALKNSKTIKETLNIVLSPQKIIELAKNIEKDITLKLKSYGEKGEFTFEI YKPLLLKFLKEVDHCIKNLQSSRHKF f6-5.nt
TAAATGAAGA AGTTTTTAAT ATCCGTTTAT TTTTTATTGT TTTATGGTTG TTCAACTATA TCTTTGGTAA AAATACCAGA AAAAGATAAA ATAAATTTAA CTGTTTTATC ATCTTTAATG AATTATCCTG ATTTGAAGAT TTCAAATTTT AAAATAAAAG ACTACGAACA TTTGCATTAT TCATCTGATT TTGAAAGCTT GAGTGATACT AAAAATAGTG CTTATATTTA CGTTGATGAA TCTAGTTTCA ATAATAATAT TAATTTTATT AAAGATCTTT TTATTTATAA TAAGAAATTA TATAGAATAC TTATTGCTTA TAGCTTGACC CAAGGTGCAT CTTTTAAGGC AGAAGTTTTA TCTTATCTTG AAAAACAAAA AATTATGAAA AATTTTTCAT TGAAAATAAA TTTTCCAACT GCTAAAAAAT TTATGGATAA TAAGTATTGG ATTGTAATTG CAAAAAACCA TTTAGATTCT CTTGTTAAGA GTAAAAATTA TTTAGTCTTG GCGAATGTAA AGATGGAATA TATACTCAAA AAGTTTTTAA CTTGA t6-5.nt
TTGTTCAACTATATCTTTGGTAAAAATACCAGAAAAAGATAAAATAAATTTAACTGTTTTATCATCTTTAATGAAT TATCCTGATTTGAAGATTTCAAATTTTAAAATAAAAGACTACGAACATTTGCATTATTCATCTGATTTTGAAAGCT TGAGTGATACTAAAAATAGTGCTTATATTTACGTTGATGAATCTAGTTTCAATAATAATATTAATTTTATTAAAGA TCTTTTTATTTATAATAAGAAATTATATAGAATACTTATTGCTTATAGCTTGACCCAAGGTGCATCTTTTAAGGCA GAAGTTTTATCTTATCTTGAAAAACAAAAAATTATGAAAAATTTTTCATTGAAAATAAATTTTCCAACTGCTAAAA AATTTATGGATAATAAGTATTGGATTGTAATTGCAAAAAACCATTTAGATTCTCTTGTTAAGAGTAAAAAT f6-5.aa
MKKFLISVYF LLFYGCSTIS LVKIPEKDKI NLTVLSSLMN YPDLKISNFK IKDYEHLHYS
SDFESLSDTK NSAYIYVDES SFNNNINFIK DLFIYNKKLY RILIAYSLTQ GASFKAEVLS
YLEKQKIMKN FSLKINFPTA KKFMDNKYWI VIAKNHLDSL VKSKNYLVLA NVKMEYILKK FLT t6-5.aa
CSTISLVKIPEKDKINLTVLSSLMNYPDLKISNFKIKDYEHLHYSSDFESLSDTKNSAYIYVDESSFNNNINFIKD LFIYNKKLYRILIAYSLTQGASFKAEVLSYLEKQKIMKNFSLKINFPTAKKFMDNKYWIVIAKNHLDSLVKSKN TABLE 1. Nucleotide and Amino Acid Sequences
f7-30.nt
TAGAGACGAA GTCACAAGCA AAATGTTAAA AGATTTACAA AATCAAGTTC AAGGGGGCAA ATAATGAAAA ATTTAAAGAC AAAAATTAAT TTTTTAGGGA TATTTTGGCT ACTGTTACTA TTTCTTTCTT GCGAATCAAT ACCATCACTT CCCCAAAAAC CAACCCTAAC AAACAAAGAA GATATTGAAA ATTTAATGCT CGATGAAGCA GAACTTTTTA GATACTCAAC CGCACTAAAT GTTTGGCTTT TGACTGTAAA ATCTTATGTG ATCAAATACT ATCCTAATGA CAAATTTCCT GTGTTTGAAA ATTTTGATCC CGTGTTTGGC GATGAAAATG GAACTAAAGA AACAAATATA CTAAAAAATC GAATTACCTA CTACAATCGA TACATAGAAA AAACCGAACC GATTGTATTT GGGTGTTACA AAAAATACAG CAGAAGATAA t7-30.nt
TTGCGAATCAATACCATCACTTCCCCAAAAACCAACCCTAACAAACAAAGAAGATATTGAAAATTTAATGCTCGAT
GAAGCAGAACTTTTTAGATACTCAACCGCACTAAATGTTTGGCTTTTGACTGTAAAATCTTATGTGATCAAATACT
ATCCTAATGACAAATTTCCTGTGTTTGAAAATTTTGATCCCGTGTTTGGCGATGAAAATGGAACTAAAGAAACAAA
TATACTAAAAAATCGAATTACCTACTACAATCGATACATAGAAAAAACCGAACCGATTGTATTTGGGTGTTACAAA
AAATACAGCAGAAGA f7-30.aa
RRSHKQNVKR FTKSSSRGQI MKNLKTKINF LGIFWLLLLF LSCESIPSLP QKPTLTNKED IENLMLDEAE LFRYSTALNV WLLTVKSYVI KYYPNDKFPV FENFDPVFGD ENGTKETNIL KNRITYYNRY IEKTEPIVFG CYKKYSRR t7-30.aa
CESIPSLPQKPTLTNKEDIENLMLDEAELFRYSTALNVWLLTVKSYVIKYYPNDKFPVFENFDPVFGDENGTKETN ILKNRITYYNRYIEKTEPIVFGCYKKYSRR f76-l.nt
TGAATATTAA TAATAAAAAA AGGAGTAACA ATGAAAATTA TCAACATATT ATTTTGTTTG TTTTTACTAA TGCTAAACGG CTGTAATTCT AATGATACAA ATACCAAGCA GACAAAAAGC AGACAAAAGC GTGATTTAAC CCAAAAAGAA GCAACACAAG AAAAACCTAA ATCTAAATCT AAAGAAGACC TGCTTAGAGA AAAGCTATCT GATGATCAAA AAACACAACT TGACTGGTTA AAAACCGCTT TAACTGGTGT TGGAAAATTT GATAAATTCT TAGAAAATGA TGAAGGCAAA ATTAAATCAG CACTTGAACA TATAAAGACT GAACTTGATA AATGTAATGG AAATGATGAA GGAAAAAACA CCTTCAAAAC TACCGTTCAA GGGTTTTTTA GCGGCGGCAA TATAGATAAT TTTGCAGATC AAGCAACTGC TACCTGCAAT TAA t76-l.nt
CTGTAATTCTAATGATACAAATACCAAGCAGACAAAAAGCAGACAAAAGCGTGATTTAACCCAAAAAGAAGCAACA CAAGAAAAACCTAAATCTAAATCTAAAGAAGACCTGCTTAGAGAAAAGCTATCTGATGATCAAAAAACACAACTTG ACTGGTTAAAAACCGCTTTAACTGGTGTTGGAAAATTTGATAAATTCTTAGAAAATGATGAAGGCAAAATTAAATC AGCACTTGAACATATAAAGACTGAACTTGATAAATGTAATGGAAATGATGAAGGAAAAAACACCTTCAAAACTACC GTTCAAGGGTTTTTTAGCGGCGGCAATATAGATAATTTTGCAGATCAAGCAACTGCTACCTGCAAT f76-l.aa
ILIIKKGVTM KIINILFCLF LLMLNGCNSN DTNTKQTKSR QKRDLTQKEA TQEKPKSKSK EDLLREKLSD DQKTQLDWLK TALTGVGKFD KFLENDEGKI KSALEHIKTE LDKCNGNDEG KNTFKTTVQG FFSGGNIDNF ADQATATCN t76-l.aa TABLE 1. Nucleotide and Amino Acid Sequences
CNSNDTNTKQTKSRQKRDLTQKEATQEKPKSKSKEDLLREKLSDDQKTQLDWLKTALTGVGKFDKFLENDEGKIKS ALEHIKTELDKCNGNDEGKNTFKTTVQGFFSGGNIDNFADQATATCN fδ-lO.nt
TAAGTAAGGA GAATATTTAT GAAATATAAT ACGATTATAA GCATATTTGT TTGTTTGTTT TTAACTGCTT GCAATCCAGA TTTTAACACA AATAAGAAAA GAACTCTAAG TAAGGGGATA ATTTCAAATC AAGATGCAGA TTCTGATAAA ATAATAAAAA ATAAATTACT TGATGATTTA ATAAATTTAA TAGAAAAAGC GAATGCAGAT AGAGAAAAAT ATGTAAAAAA AATGGAAGAA GAACCTTCGG ATCAATATGG AATGTTGGCT GTTTTTGGAG GTATGTATTG GGCAGAATCA CCACGGGAAT TAATATCTGA TACAGGTAGT GAGAGATCTA TTAGGTATAG AAGGCGTGTT TATAGTATTT TATTAAATGC TATTGAAACT AATGAATTAA AGAAATTTTC AGAAATTAGA ATACTGTCAA TAAAAGTACT AGAAATATTT AGCCTATTTA ATCTATTTGG AAGTACTCTT GATGATGTGG TTGTTCACTT ATATTCCAAA AAAGATACTC TAGGTAAACT AGATATTTCA AATTTAAAAA GACTTAAAAA TTTGTTTGAA AAATTATTAT CTATAAAAAC AATCGTTTCA AAGATGTCAA AACGTCTTTT ATTGGATTAT CAAAATAATG AAAATTTTAT AAAAACAGAT AACGCCAAGC TTGGATCTTA TGTGGTTGCA CTTTCCAATC AAATTCAAGA AAAATATAAT GAAGCAGAAA GGCTGAAAAG CGAGATAATT TTAATATATA CCCTTTAA t8-10.nt
TTGCAATCCAGATTTTAACACAAATAAGAAAAGAACTCTAAGTAAGGGGATAATTTCAAATCAAGATGCAGATTCT GATAAAATAATAAAAAATAAATTACTTGATGATTTAATAAATTTAATAGAAAAAGCGAATGCAGATAGAGAAAAAT ATGTAAAAAAAATGGAAGAAGAACCTTCGGATCAATATGGAATGTTGGCTGTTTTTGGAGGTATGTATTGGGCAGA ATCACCACGGGAATTAATATCTGATACAGGTAGTGAGAGATCTATTAGGTATAGAAGGCGTGTTTATAGTATTTTA TTAAATGCTATTGAAACTAATGAATTAAAGAAATTTTCAGAAATTAGAATACTGTCAATAAAAGTACTAGAAATAT TTAGCCTATTTAATCTATTTGGAAGTACTCTTGATGATGTGGTTGTTCACTTATATTCCAAAAAAGATACTCTAGG TAAACTAGATATTTCAAATTTAAAAAGACTTAAAAATTTGTTTGAAAAATTATTATCTATAAAAACAATCGTTTCA AAGATGTCAAAACGTCTTTTATTGGATTATCAAAATAATGAAAATTTTATAAAAACAGATAACGCCAAGCTTGGAT CTTATGTGGTTGCACTTTCCAATCAAATTCAAGAAAAATATAATGAAGCAGAAAGGCTGAAA f8-10.aa
VRRIFMKYNT IISIFVCLFL TACNPDFNTN KKRTLSKGII SNQDADSDKI IKNKLLDDLI
NLIEKANADR EKYVKKMEEE PSDQYGMLAV FGGMYWAESP RELISDTGSE RSIRYRRRVY
SILLNAIETN ELKKFSEIRI LSIKVLEIFS LFNLFGSTLD DVWHLYSKK DTLGKLDISN
LKRLKNLFEK LLSIKTIVSK MSKRLLLDYQ NNENFIKTDN AKLGSYWAL SNQIQEKYNE
AERLKSEIIL IYTL t8-10.aa
CNPDFNTNKKRTLSKGIISNQDADSDKIIKNKLLDDLINLIEKANADREKYVKKMEEEPSDQYGMLAVFGGMYWAE SPRELISDTGSERSIRYRRRVYSILLNAIETNELKKFSEIRILSIKVLEIFSLFNLFGSTLDDVWHLYSKKDTLG KLDISNLKRLKNLFEKLLSIKTIVSKMSKRLLLDYQNNENFIKTDNAKLGSYWALSNQIQEKYNEAERLK f8-14.nt
TAATATATAT TCTTGATTAA GGGAAAGGAG AGTATTTTTA TGAAAAAAAA AATGTTTTTA TATACATTGT TAACGATAGG ATTGATGTCT TGTAATCTAA ATTCTAAATT ATCTGGTAAT AAAGAGGAAC AAAAAAATAA CAATGATATA AAAGAAGCTT TAAATGGCGT TCAAGAAAAT GCTATTAATA ATTTATATGG AAATAAAAAA GAAAAAAAAG ATTTTATTAA AAATTCGGAA AAATTGAAAG ACAAGGGTTT AGACGTGACC ACCCTCCCCT TAGAACCTGT AGTGGCGCCC TCCGTAGAAT CTGCGGTGTC TTTAGGAGAA TCTAATAATA GGATTGGTAT ACCAACCATT TCAATTGAGC ATAATCAAAA AAAAGAGATA AAAGAAGAGG ATTTTTTCCC TTCTACTGAG GAAGAAAAGC AAGCGGATAA AGCAATTAAA GATATAGAGA ATCTTATTGG AGAATCTGGA TABLE 1. Nucleotide and Amino Acid Sequences
TTTCCCGAGT TAATTGAGAA TGTGTGCTCA CTTAAACATG AATATACTTT AATAAGAAGT GATTTTTATG ATGTGATAAC TAAGATTCAG AATAAAAAAA TATCACTAAT GAAAAATTCT CATAATAATA GAAATAAAAT AAGGGAACTA GTACAATTGC AAAATAATTT AAAGATAGGA GACGAACTTG ATAAAATTAT GGGTTGCATT GATACTGCAG AACAAGAGAT AAGATCTGCC GCTTTCTTTT TTGATGAAGC TAAGGAAAGC TTAAAAGAAG GTATTATTAA AAGATTGGAA AAAAGTAAAA ATAGGGCAGC ATCACAATTA TCTAAAAAGG CTTTAAATAG AGCAGAGGAT GCTTTAAGGT GCTTAGAAAA TTATTCTTCT AAAAAAGGTG AGGCAATAGG AAGAAGAAGC TTTATAAAAG AAGTTGTTGA ACAGGCAAAA AATGCTTTAA GTAAGTCTTA A tδ-14.nt
TTGTAATCTAAATTCTAAATTATCTGGTAATAAAGAGGAACAAAAAAATAACAATGATATAAAAGAAGCTTTAAAT GGCGTTCAAGAAAATGCTATTAATAATTTATATGGAAATAAAAAAGAAAAAAAAGATTTTATTAAAAATTCGGAAA AATTGAAAGACAAGGGTTTAGACGTGACCACCCTCCCCTTAGAACCTGTAGTGGCGCCCTCCGTAGAATCTGCGGT GTCTTTAGGAGAATCTAATAATAGGATTGGTATACCAACCATTTCAATTGAGCATAATCAAAAAAAAGAGATAAAA GAAGAGGATTTTTTCCCTTCTACTGAGGAAGAAAAGCAAGCGGATAAAGCAATTAAAGATATAGAGAATCTTATTG GAGAATCTGGATTTCCCGAGTTAATTGAGAATGTGTGCTCACTTAAACATGAATATACTTTAATAAGAAGTGATTT TTATGATGTGATAACTAAGATTCAGAATAAAAAAATATCACTAATGAAAAATTCTCATAATAATAGAAATAAAATA AGGGAACTAGTACAATTGCAAAATAATTTAAAGATAGGAGACGAACTTGATAAAATTATGGGTTGCATTGATACTG CAGAACAAGAGATAAGATCTGCCGCTTTCTTTTTTGATGAAGCTAAGGAAAGCTTAAAAGAAGGTATTATTAAAAG ATTGGAAAAAAGTAAAAATAGGGCAGCATCACAATTATCTAAAAAGGCTTTAAATAGAGCAGAGGATGCTTTAAGG TGCTTAGAAAATTATTCTTCTAAAAAAGGTGAGGCAATAGGAAGAAGAAGCTTTATAAAAGAAGTTGTTGAACAGG CAAAAAATGCTTTAAGTAAGTCT fδ-14.aa
YIFLIKGKES IFMKKKMFLY TLLTIGLMSC NLNSKLSGNK EEQKNNNDIK EALNGVQENA INNLYGNKKE KKDFIKNSEK LKDKGLDVTT LPLEPWAPS VESAVSLGES NNRIGIPTIS IEHNQKKEIK EEDFFPSTEE EKQADKAIKD IENLIGESGF PELIENVCSL KHEYTLIRSD FYDVITKIQN KKISLMKNSH NNRNKIRELV QLQNNLKIGD ELDKIMGCID TAEQEIRSAA FFFDEAKESL KEGIIKRLEK SKNRAASQLS KKALNRAEDA LRCLENYSSK KGEAIGRRSF IKEWEQAKN ALSKS t8-14.aa
CNLNSKLSGNKEEQKNNNDIKEALNGVQENAINNLYGNKKEKKDFIKNSEKLKDKGLDVTTLPLEPWAPSVESAV SLGESNNRIGIPTISIEHNQKKEIKEEDFFPSTEEEKQADKAIKDIENLIGESGFPELIENVCSLKHEYTLIRSDF YDVITKIQNKKISLMKNSHNNRNKIRELVQLQNNLKIGDELDKIMGCIDTAEQEIRSAAFFFDEAKESLKEGIIKR LEKSKNRAASQLSKKALNRAEDALRCLENYSSKKGEAIGRRSFIKEWEQAKNALSKS fOlA.nt BB001
TGATTAATTTTTTTTAAGGATTACGTTTTGAAAAGAAACAAAATTTGGAAAACGTTAAAACTGTTTCAAATAACTT TACTGTTCTCATGCTCTTTTTATTCTAAATCAAACAACACAGAAGCGATAAGTGAATTACAATCAAGCCCTATTAA ACTTGGAAAAATTAAAGTTTTACAAAAAACAGAAAAGATTGTAAGCACCCAAAATCTTCAAAACTTACAACAAAGC CAGTTCTTTAAAAATGAAAAAGAAAAAATAATTAAAAAAATTGCACAAGAATTTGATGAGAATGAAAAATTGATTA ATAAAATAGGTCCAAATATCGAAATGTTTGCTCAAACAATAAACACGGATATTCAAAAAATCGAACCTAATGATCA ATTTGGAATAAATAAAACTTTATTCACAGAAAAAAAAGACAATAATATTGACTTTATGTTAAAAGACAATCGACTT AGAAGATTATTTTACTCATCTTTAAATTATGATGAAAATAAAATCAAAAAATTAGCCACAATACTCGCGCAAACAT CAAGCTCAAACGACTACCATTACACACTTATTGGTTTAATTTTTTGGACAGGATTTAAAATCCAAGAAGCATTTGA AAGCGCTGTTAATATTTTAACTAAAGACGAGCAAAAGCGCCTAATTTTTAATTTTAGAACAAAAACAGTAAAAGAG ATTCAGGAAAATTTTGAAAAACTAATGCAAGAGAGAAATTCATGGATAAAAATCGTCGATAACATTATTGGCGAAT ATGACAAAAATACGGGAGGATGCAAAGCTGATGGAAAAATTCTCGGAGAAGTAATAAGGGTTGGATACGAGCATGA ACTCGACTCAAATAAAAGTATGCAAATTTTAAACAATATTGAAACACCGCTAAAAACCTGTTGTGACCACATACAC TACTAA TABLE 1. Nucleotide and Amino Acid Sequences tOlA.nt BB001
TGCTCTTTTTATTCTAAATCAAACAACACAGAAGCGATAAGTGAATTACAATCAAGCCCTATTAAACTTGGAAAAA TTAAAGTTTTACAAAAAACAGAAAAGATTGTAAGCACCCAAAATCTTCAAAACTTACAACAAAGCCAGTTCTTTAA AAATGAAAAAGAAAAAATAATTAAAAAAATTGCACAAGAATTTGATGAGAATGAAAAATTGATTAATAAAATAGGT CCAAATATCGAAATGTTTGCTCAAACAATAAACACGGATATTCAAAAAATCGAACCTAATGATCAATTTGGAATAA ATAAAACTTTATTCACAGAAAAAAAAGACAATAATATTGACTTTATGTTAAAAGACAATCGACTTAGAAGATTATT TTACTCATCTTTAAATTATGATGAAAATAAAATCAAAAAATTAGCCACAATACTCGCGCAAACATCAAGCTCAAAC GACTACCATTACACACTTATTGGTTTAATTTTTTGGACAGGATTTAAAATCCAAGAAGCATTTGAAAGCGCTGTTA ATATTTTAACTAAAGACGAGCAAAAGCGCCTAATTTTTAATTTTAGAACAAAAACAGTAAAAGAGATTCAGGAAAA TTTTGAAAAACTAATGCAAGAGAGAAATTCATGGATAAAAATCGTCGATAACATTATTGGCGAATATGACAAAAAT ACGGGAGGATGCAAAGCTGATGGAAAAATTCTCGGAGAAGTAATAAGGGTTGGATACGAGCATGAACTCGACTCAA ATAAAAGTATGCAAATTTTAAACAATATTGAAACACCGCTAAAAACCTGTTGTGACCACATACACTAC fOlA.aa BB001
LIFFKDYVLKRNKIWKTLKLFQITLLFSCSFYSKSNNTEAISELQSSPIKLGKIKVLQKTEKIVSTQNLQNLQQSQ FFKNEKEKIIKKIAQEFDENEKLINKIGPNIEMFAQTINTDIQKIEPNDQFGINKTLFTEKKDNNIDFMLKDNRLR RLFYSSLNYDENKIKKLATILAQTSSSNDYHYTLIGLIFWTGFKIQEAFESAVNILTKDEQKRLIFNFRTKTVKEI QENFEKLMQERNSWIKIVDNIIGEYDKNTGGCKADGKILGEVIRVGYEHELDSNKSMQILNNIETPLKTCCDHIHY tOlA.aa BB001
CSFYSKSNNTEAISELQSSPIKLGKIKVLQKTEKIVSTQNLQNLQQSQFFKNEKEKIIKKIAQEFDENEKLINKIG PNIEMFAQTINTDIQKIEPNDQFGINKTLFTEKKDNNIDFMLKDNRLRRLFYSSLNYDENKIKKLATILAQTSSSN DYHYTLIGLIFWTGFKIQEAFESAVNILTKDEQKRLIFNFRTKTVKEIQENFEKLMQERNSWIKIVDNIIGEYDKN TGGCKADGKILGEVIRVGYEHELDSNKSMQILNNIETPLKTCCDHIHY f02A.nt BB002
TAATTAATACTGGTTTTAATTTATAAGGAGAGTATTTTGAAAAAAGCCAAACTAAATATAATCAAGATTAATATTA
TTACAATGATATTAACTTTAATTTGCATCTCATGTGCACCTTTTAACAAAATCAATCCCAAGGCAAATGAAAACAC
CAAGCTTAAAAAAAACACCAGACTGAAAAAACCCGCCAATCCAGGGGAAAACATCCAAAATTTTAAAGATAAATCT
GGAGACCTTGGCGCTTCTGATGAAAAATTTATGGGAACTACCGCTTCAGAGCTAAAAGCAATTGGTAAGGAGCTAG
AAGATCGAAAAAATCAATACGATATACAAATAGCCAAAATTACTAATGAAGAATCTAACCTATTAGATACTTATAT
TCGGGCTTATGAACTAGCTAACGAAAATGAAAAAATGCTTTTAAAAAGATTTCTTCTTTCATCTTTAGATTATAAA
AAAGAAAACATAGAGACATTAAAAGAAATTCTTGAAAAACTCATAAATAATTACGAAAACGACCCCAAAATTGCTG
CAAATTTCCTTTATCGCATAGCGCTGGATATTCAATTAAAACTGGAAAAGCACTTAAAATCAATAAATGAAAAACT
GGACACTCTAAGCAAAGAAAATTCAAAAGAAGATTTAGAGGCGTTGCTAGAACAAGTAAAATCTGCCTTACAGCTA
CAAGAAAAGTTTAAAAAAACCCTAAACAAAACTCTTGAAGATTACCGTAAAAATACTAACAACATTCAAGAAAATA
AAGTACTAGCAGAACACTTTAATAAATATTACAAAGACTCTGATTCTTTACAATCTGCCTTTTATTAA t02A.nt BB002
TGTGCACCTTTTAACAAAATCAATCCCAAGGCAAATGAAAACACCAAGCTTAAAAAAAACACCAGACTGAAAAAAC CCGCCAATCCAGGGGAAAACATCCAAAATTTTAAAGATAAATCTGGAGACCTTGGCGCTTCTGATGAAAAATTTAT GGGAACTACCGCTTCAGAGCTAAAAGCAATTGGTAAGGAGCTAGAAGATCGAAAAAATCAATACGATATACAAATA GCCAAAATTACTAATGAAGAATCTAACCTATTAGATACTTATATTCGGGCTTATGAACTAGCTAACGAAAATGAAA AAATGCTTTTAAAAAGATTTCTTCTTTCATCTTTAGATTATAAAAAAGAAAACATAGAGACATTAAAAGAAATTCT TGAAAAACTCATAAATAATTACGAAAACGACCCCAAAATTGCTGCAAATTTCCTTTATCGCATAGCGCTGGATATT CAATTAAAACTGGAAAAGCACTTAAAATCAATAAATGAAAAACTGGACACTCTAAGCAAAGAAAATTCAAAAGAAG ATTTAGAGGCGTTGCTAGAACAAGTAAAATCTGCCTTACAGCTACAAGAAAAGTTTAAAAAAACCCTAAACAAAAC TCTTGAAGATTACCGTAAAAATACTAACAACATTCAAGAAAATAAAGTACTAGCAGAACACTTTAATAAATATTAC AAAGACTCTGATTCTTTACAATCTGCCTTTTAT f02A.aa BB002 TABLE 1. Nucleotide and Amino Acid Sequences
LILVLIYKESILKKAKLNIIKINIITMILTLICISCAPFNKINPKANENTKLKKNTRLKKPANPGENIQNFKDKSG DLGASDEKFMGTTASELKAIGKELEDRKNQYDIQIAKITNEESNLLDTYIRAYELANENEKMLLKRFLLSSLDYKK ENIETLKEILEKLINNYENDPKIAANFLYRIALDIQLKLEKHLKSINEKLDTLSKENSKEDLEALLEQVKSALQLQ EKFKKTLNKTLEDYRKNTNNIQENKVLAEHFNKYYKDSDSLQSAFY t02A.aa BB002
CAPFNKINPKANENTKLKKNTRLKKPANPGENIQNFKDKSGDLGASDEKFMGTTASELKAIGKELEDRKNQYDIQI AKITNEESNLLDTYIRAYELANENEKMLLKRFLLSSLDYKKENIETLKEILEKLINNYENDPKIAANFLYRIALDI QLKLEKHLKSINEKLDTLSKENSKEDLEALLEQVKSALQLQEKFKKTLNKTLEDYRKNTNNIQENKVLAEHFNKYY KDSDSLQSAFY f03A.nt BB006
TGATTTAATGTAAATTTTAATTACCGCCTAAAAAAGGCTTTAAATGGTATAAAGGAAGAAGATCTAATGGTATTTA GAACATATAAACATTTGGAACTAATAATGCTGCCCATGTTAATGCTGAGTTGCGCTTTTTTTAAGAAACCACAATC TGTACATCAAGACAGCAATACTGGCAAACCAATAAGCGATGAAAAATTACATTTAATATCAGGCAAAATTTCAAAT AAAAAATTGCCAATCATAAATAGTAATCATGACGTAACTTGGATAAAAACAAAGGCAATGACAATCTTAGGCGAAG ATGGAAAAGAAATACCAGAATTTAAAAACAAATTTGGATATTCTTATATAATATCTCCTGTAAAAATGGATGGAAA ATATAGTTATTACGCGTCATTATTAATACTTTTTGAAACAACTAAAAATGGAGATGATGAATATGAAATTGAAGAT GTTAAATTTGTAACAGCTGGTTCCACCCTAGAACTTAAAAATTCTCTTTTAGCTGTTGAAAATTCACAAGAAGAAG GATATGTTACTGCATACCCATTTGGAATATTGATGAGTGACGAGATTAAAAATGCTTTTAAATTAACATATAAAAA TGGTCATTGGAATTATATGCTTGCAGATTTAACTGTCAAAAATAAACTTACTCAAGAAACTAAAATTTATAAAATT TCTCTTAATTCAAAATTAATTATTGAATTTTTAAAAGAAGTGCTAAAAGAAAATTCTATATTAAAAGACATAGCTG GAGATTTATTTGAAGATATATAA t03A.nt BB006
TGCGCTTTTTTTAAGAAACCACAATCTGTACATCAAGACAGCAATACTGGCAAACCAATAAGCGATGAAAAATTAC ATTTAATATCAGGCAAAATTTCAAATAAAAAATTGCCAATCATAAATAGTAATCATGACGTAACTTGGATAAAAAC AAAGGCAATGACAATCTTAGGCGAAGATGGAAAAGAAATACCAGAATTTAAAAACAAATTTGGATATTCTTATATA ATATCTCCTGTAAAAATGGATGGAAAATATAGTTATTACGCGTCATTATTAATACTTTTTGAAACAACTAAAAATG GAGATGATGAATATGAAATTGAAGATGTTAAATTTGTAACAGCTGGTTCCACCCTAGAACTTAAAAATTCTCTTTT AGCTGTTGAAAATTCACAAGAAGAAGGATATGTTACTGCATACCCATTTGGAATATTGATGAGTGACGAGATTAAA AATGCTTTTAAATTAACATATAAAAATGGTCATTGGAATTATATGCTTGCAGATTTAACTGTCAAAAATAAACTTA CTCAAGAAACTAAAATTTATAAAATTTCTCTTAATTCAAAATTAATTATTGAATTTTTAAAAGAAGTGCTAAAAGA AAATTCTATATTAAAAGACATAGCTGGAGATTTATTTGAAGATATA f03A.aa BB006
FNVNFNYRLKKALNGIKEEDLMVFRTYKHLELIMLPMLMLSCAFFKKPQSVHQDSNTGKPISDEKLHLISGKISNK KLPIINSNHDVTWIKTKAMTILGEDGKEIPEFKNKFGYSYIISPVKMDGKYSYYASLLILFETTKNGDDEYEIEDV KFVTAGSTLELKNSLLAVENSQEEGYVTAYPFGILMSDEIKNAFKLTYKNGHWNYMLADLTVKNKLTQETKIYKIS LNSKLIIEFLKEVLKENSILKDIAGDLFEDI t03A.aa BB006
CAFFKKPQSVHQDSNTGKPISDEKLHLISGKISNKKLPIINSNHDVTWIKTKAMTILGEDGKEIPEFKNKFGYSYI ISPVKMDGKYSYYASLLILFETTKNGDDEYEIEDVKFVTAGSTLELKNSLLAVENSQEEGYVTAYPFGILMSDEIK NAFKLTYKNGHWNYMLADLTVKNKLTQETKIYKISLNSKLIIEFLKEVLKENSILKDIAGDLFEDI f04A.nt BB011
TAATTACCAAAGATAAGTAAACTTGCAAATAAAACTACACGTATTGAAAGTAGATTTGAAATTTCCATTATATTTA TATATAATGGCACTAAATATCTGAAAATGAAGGAGAAGCGGGTGGGCAATAAAATTTTTTATATTTCAGTGGTTTT AATTTTAATAGTTGGTTGCGACTGGGGAACTATTAAAGATAAAAGTACAGAAATTTCCAAGCTATTAAGAACGGAC TABLE 1. Nucleotide and Amino Acid Sequences
AAAGATAAGACTAAAAATCAAGATAGAATAGAATTGGGTGAAGATAATTTTGTATCTAAAAATAATATGTCTACTA CTGATACGGGCATTACTAGTTTAGGAAGTCTAAACAACTTGGATTTAATTAATCGTTCACAGCGGGTCAGTGAACC ACCTATAATCTCAAATGAGAAAGCCATAGCTACTCAAGCAAAAGTAGATTTAATGAACAACATTAATGTTACTATA ATAAACCCAAAACCAGCTCAAAATTTGGGAAATTCTTTAAACAATACTACTACTGAAGATAGTGTGAAGTTTTTAT CAATTGAAAACCAAGAGTGGCTTATTAGTAAAAAGATTTTGCCCAGTAAGTTGGAAAATTTAGAAAGCTTTCTAAA AACACAACACGAAAAAGAAGCTTTTAAGACGGCTAAAACTATACAAAGTCTCATTAGTAATTCCAATATGGGTAAA GAAATTATTAAGTTTAAGGAAGAATATTACAAACTTTATAATTTGTTTGAAGGCATACAACAAAAATTCCATAGTC AAAGGAATTCATTTATAAAAGATACTAAATTTGGGGAAAATAGACAAAAAAATGCAGTTATATTTAAATCCTTTTC ATCTATAGAGAAAGAAATTAGAGATTTGAATTATAAGTTGNGTGAAATCCAAAGTAATTTTCAAATTGCAGATGTT AGCTGGAATAATGCAAACTCTCTTTTAAAAGAATCTATAGAAAAATTAATTCAGGCAATTGAAAAAAGGTATGACA ATGAGAGTAGAAAGCAAGGTCAAATTGGTGGACCTGCTAATAGATGGGATAAAAATCAAGCTGACAATTTTGCTAA GGATGCAAAGTATAAGGCAGAACATTCAGCAAATGATTTGGAAAATGCAGCCAACTATTTTAGATATAGTTGTTCA AATGAAAAAGAAGCTAAAAAGCTATTAGAAGAAATTAAAAAAAGATTTGTACGAATTGGTATTAGCCTATAA t04A.nt BB011
TGCGACTGGGGAACTATTAAAGATAAAAGTACAGAAATTTCCAAGCTATTAAGAACGGACAAAGATAAGACTAAAA ATCAAGATAGAATAGAATTGGGTGAAGATAATTTTGTATCTAAAAATAATATGTCTACTACTGATACGGGCATTAC TAGTTTAGGAAGTCTAAACAACTTGGATTTAATTAATCGTTCACAGCGGGTCAGTGAACCACCTATAATCTCAAAT GAGAAAGCCATAGCTACTCAAGCAAAAGTAGATTTAATGAACAACATTAATGTTACTATAATAAACCCAAAACCAG CTCAAAATTTGGGAAATTCTTTAAACAATACTACTACTGAAGATAGTGTGAAGTTTTTATCAATTGAAAACCAAGA GTGGCTTATTAGTAAAAAGATTTTGCCCAGTAAGTTGGAAAATTTAGAAAGCTTTCTAAAAACACAACACGAAAAA GAAGCTTTTAAGACGGCTAAAACTATACAAAGTCTCATTAGTAATTCCAATATGGGTAAAGAAATTATTAAGTTTA AGGAAGAATATTACAAACTTTATAATTTGTTTGAAGGCATACAACAAAAATTCCATAGTCAAAGGAATTCATTTAT AAAAGATACTAAATTTGGGGAAAATAGACAAAAAAATGCAGTTATATTTAAATCCTTTTCATCTATAGAGAAAGAA ATTAGAGATTTGAATTATAAGTTGNGTGAAATCCAAAGTAATTTTCAAATTGCAGATGTTAGCTGGAATAATGCAA ACTCTCTTTTAAAAGAATCTATAGAAAAATTAATTCAGGCAATTGAAAAAAGGTATGACAATGAGAGTAGAAAGCA AGGTCAAATTGGTGGACCTGCTAATAGATGGGATAAAAATCAAGCTGACAATTTTGCTAAGGATGCAAAGTATAAG GCAGAACATTCAGCAAATGATTTGGAAAATGCAGCCAACTATTTTAGATATAGTTGTTCAAATGAAAAAGAAGCTA AAAAGCTATTAGAAGAAATTAAAAAAAGATTTGTACGAATTGGTATTAGCCTA f04A.aa BB011
LPKISKLANKTTRIESRFEISIIFIYNGTKYLKMKEKRVGNKIFYISWLILIVGCDWGTIKDKSTEISKLLRTDK DKTKNQDRIELGEDNFVSKNNMSTTDTGITSLGSLNNLDLINRSQRVSEPPIISNEKAIATQAKVDLMNNINVTII NPKPAQNLGNSLNNTTTEDSVKFLSIENQEWLISKKILPSKLENLESFLKTQHEKEAFKTAKTIQSLISNSNMGKE IIKFKEEYYKLYNLFEGIQQKFHSQRNSFIKDTKFGENRQKNAVIFKSFSSIEKEIRDLNYKLXEIQSNFQIADVS WNNANSLLKESIEKLIQAIEKRYDNESRKQGQIGGPANRWDKNQADNFAKDAKYKAEHSANDLENAANYFRYSCSN EKEAKKLLEEIKKRFVRIGISL t04A.aa BB011
CDWGTIKDKSTEISKLLRTDKDKTKNQDRIELGEDNFVSKNNMSTTDTGITSLGSLNNLDLINRSQRVSEPPIISN EKAIATQAKVDLMNNINVTIINPKPAQNLGNSLNNTTTEDSVKFLSIENQEWLISKKILPSKLENLESFLKTQHEK EAFKTAKTIQSLISNSNMGKEIIKFKEEYYKLYNLFEGIQQKFHSQRNSFIKDTKFGENRQKNAVIFKSFSSIEKE IRDLNYKLXEIQSNFQIADVSWNNANSLLKESIEKLIQAIEKRYDNESRKQGQIGGPANRWDKNQADNFAKDAKYK AEHSANDLENAANYFRYSCSNEKEAKKLLEEIKKRFVRIGISL f05A.nt BB009
TAAATAAATTGTAGGATAAAAATGAAACAAAAATACGAAAACTATTTTAAAAAAAGATTAATTTTAAACCTATTAA TATTTTTACTACTAGCATGCTCAAGCGAATCCATATTTTCACAATTAGGAAATCTGCAAAAAATAAAACATGAATA CAATATTTTGGGCAGTTCAAGTCCAAGAGGAATTTCTCTAGTAGGAGAAACTCTCTACATTGCAGCCATGCATTTA TTTAAAAAAGAAAACGGCAAGATTGAAAAAATTGATTTGAGCAATTCTTATGAGTTTATAAACGACATTGTAAATA TATCTGGAAAAACCTATCTTTTAGCGCAAAACAAAGAAGAAGAATTAGAAGTTTGCGAGCTAAATGGAAAAGATTG GACATTAAAATTTAAAAAACCGCTAAAAGCATATAAATTCTTAAAATCCGTAGAAGAGATGGCGTAA TABLE 1. Nucleotide and Amino Acid Sequences
t05A.nt BB009
TGCTCAAGCGAATCCATATTTTCACAATTAGGAAATCTGCAAAAAATAAAACATGAATACAATATTTTGGGCAGTT CAAGTCCAAGAGGAATTTCTCTAGTAGGAGAAACTCTCTACATTGCAGCCATGCATTTATTTAAAAAAGAAAACGG CAAGATTGAAAAAATTGATTTGAGCAATTCTTATGAGTTTATAAACGACATTGTAAATATATCTGGAAAAACCTAT CTTTTAGCGCAAAACAAAGAAGAAGAATTAGAAGTTTGCGAGCTAAATGGAAAAGATTGGACATTAAAATTTAAAA AACCGCTAAAAGCATATAAATTCTTAAAATCCGTAGAAGAGATGGCG f05A.aa BB009
INCRIKMKQKYENYFKKRLILNLLIFLLLACSSESIFSQLGNLQKIKHEYNILGSSSPRGISLVGETLYIAAMHLF KKENGKIEKIDLSNSYEFINDIVNISGKTYLLAQNKEEELEVCELNGKDWTLKFKKPLKAYKFLKSVEEMA t05A.aa BB009
CSSESIFSQLGNLQKIKHEYNILGSSSPRGISLVGETLYIAAMHLFKKENGKIEKIDLSNSYEFINDIVNISGKTY LLAQNKEEELEVCELNGKDWTLKFKKPLKAYKFLKSVEEMA fOβA.nt BB014
TAAGGAGCATATATGAGGATTTTGGTTGGCGTTTGTATAATAGCATTGGCTTTATTGGGTTGTTATTTGCCTGATA ATCAGGAACAAGCTGTTCAAACTTTTTTTGAGAATTCGGAAAGTAGTGATATGGGTTCCGATGAGATTGTTACTGA AGGCATATTTTCTAGTTTAAAATTATATGCGTCTGAACATCGTTTATTGGTTGAGATAAAAAAGACTTTAATTAGT TTAAAAGATCCTAATTATCNNGNTGTAGTACNCCCAGTGAGTGACTATAATGAGGAGTATTTTAATAAATTCTTTC TAGATTTAGGGTCTGAGCAATCTAAAGACCTGATTAAGTTGTTTATTATGGTAAAAAATGAGCAGAACAATAATAA ATTTATGCGTATAGTTCGTTGGCTGTATTCATGTATAGAGGAGTTATATTCTCTAGATATTAAGTATTCTGGCGAG GGGAGCCATGAGTATAATCGTAATATGCCTAGACCCACTGCTTATGAACAATATTTAAAAGTGAAGAGGTATGATT ATAATAGCCCAGTTTCTATTTTACCTACATAA t06A.nt BB014
TGTTATTTGCCTGATAATCAGGAACAAGCTGTTCAAACTTTTTTTGAGAATTCGGAAAGTAGTGATATGGGTTCCG ATGAGATTGTTACTGAAGGCATATTTTCTAGTTTAAAATTATATGCGTCTGAACATCGTTTATTGGTTGAGATAAA AAAGACTTTAATTAGTTTAAAAGATCCTAATTATCNNGNTGTAGTACNCCCAGTGAGTGACTATAATGAGGAGTAT TTTAATAAATTCTTTCTAGATTTAGGGTCTGAGCAATCTAAAGACCTGATTAAGTTGTTTATTATGGTAAAAAATG AGCAGAACAATAATAAATTTATGCGTATAGTTCGTTGGCTGTATTCATGTATAGAGGAGTTATATTCTCTAGATAT TAAGTATTCTGGCGAGGGGAGCCATGAGTATAATCGTAATATGCCTAGACCCACTGCTTATGAACAATATTTAAAA GTGAAGAGGTATGATTATAAT f06A.aa BB014
GAYMRILVGVCIIALALLGCYLPDNQEQAVQTFFENSESSDMGSDEIVTEGIFSSLKLYASEHRLLVEIKKTLISL KDPNYXXWXPVSDYNEEYFNKFFLDLGSEQSKDLIKLFIMVKNEQNNNKFMRIVRWLYSCIEELYSLDIKYSGEG SHEYNRNMPRPTAYEQYLKVKRYDYNSPVSILPT t06A.aa BB014
CYLPDNQEQAVQTFFENSESSDMGSDEIVTEGIFSSLKLYASEHRLLVEIKKTLISLKDPNYXXWXPVSDYNEEY FNKFFLDLGSEQSKDLIKLFI--VKNEQNNNKFMRIVRWLYSCIEELYSLDIKYSGEGSHEYNRNMPRPTAYEQYLK VKRYDYN f07A.nt BB023
TAAAGTATTTTATTTTTTTTATTATCCACTGTTCTTTTTGCTCAAGAGACTGATGGATTAGCAGAGGGTTCTAAAA GGGCAGAGCCTGGAGAATTAGTTTTAGATTTTGCCGAGCTTGCAAGAGATCCAAGTTCAACTAGACTTGATCTTAC TABLE 1. Nucleotide and Amino Acid Sequences
AAATTATGTTGATTATGTATATTCGGGCGCTTCTGGTATTGTTAAGCCGGAAGATATGGTTGTAGATCTTGGGATA AATAATTGGAGCGTTTTACTTACTCCTTCTGCAAGGTTGCAGGCTTACGTTAAAAATTCAGTTGTTGCGCCCGCTG TTGTTAAGAGTGAGTCAAAAAGGTACGCAGGTGATACTATTTTAGGGGTAAGAGTTTTGTTTCCAAGCTATTCTCA ATCATCTGCTATGATTATGCCACCATTTAAAATTCCTTTTTATTCAGGGGAAAGTGGCAATCAATTTTTAGGCAAA GGTCTTATTGATAACATTAAAACCATGAAAGAAATTAAGGTATCTGTTTATAGTTTAGGGTATGAGATAGATCTTG AGGTTTTATTTGAAGATATGAATGNCATGGAATATGCTTNNTCTATGGGTACTTTAAAGTTTAAAGGGTGGGCTGA TTTAATTTGGTCAAATCCTAACTATATTCCTAATATATCATCCAGAATTATTAAAGACGATGTTCCAAATTATCCT CTTGCTTCAAGTAAAATGAGATTTAAGGCTTTTAGAGTTTCAAAGTCACACAGTTCAAAAGAGCAAAATTTCATCT TTTATGTTAAAGATTTAAGAGTTCTTTATGATAAGTTGAGTGTTTCAATAGATTCTGATATTGACAGTGAGTCTGT ATTTAAAGTTTATGAGACTAGCGGAACTGAATCCCTTCGTAAATTAAAGGCACACGNAACNTTTAAAAGNGTTTTA AAGCTTAGAGAAAAAATTTCTATGCCTGAAGGCTCTTTCCAAAACTTTGTAGAAAAGATTGAGAGTGAAAAACCTG AAGAATCATCTCCGAAAAATTAG t07A.nt BB023
GAGGGTTCTAAAAGGGCAGAGCCTGGAGAATTAGTTTTAGATTTTGCCGAGCTTGCAAGAGATCCAAGTTCAACTA GACTTGATCTTACAAATTATGTTGATTATGTATATTCGGGCGCTTCTGGTATTGTTAAGCCGGAAGATATGGTTGT AGATCTTGGGATAAATAATTGGAGCGTTTTACTTACTCCTTCTGCAAGGTTGCAGGCTTACGTTAAAAATTCAGTT GTTGCGCCCGCTGTTGTTAAGAGTGAGTCAAAAAGGTACGCAGGTGATACTATTTTAGGGGTAAGAGTTTTGTTTC CAAGCTATTCTCAATCATCTGCTATGATTATGCCACCATTTAAAATTCCTTTTTATTCAGGGGAAAGTGGCAATCA ATTTTTAGGCAAAGGTCTTATTGATAACATTAAAACCATGAAAGAAATTAAGGTATCTGTTTATAGTTTAGGGTAT GAGATAGATCTTGAGGTTTTATTTGAAGATATGAATGNCATGGAATATGCTTNNTCTATGGGTACTTTAAAGTTTA AAGGGTGGGCTGATTTAATTTGGTCAAATCCTAACTATATTCCTAATATATCATCCAGAATTATTAAAGACGATGT TCCAAATTATCCTCTTGCTTCAAGTAAAATGAGATTTAAGGCTTTTAGAGTTTCAAAGTCACACAGTTCAAAAGAG CAAAATTTCATCTTTTATGTTAAAGATTTAAGAGTTCTTTATGATAAGTTGAGTGTTTCAATAGATTCTGATATTG ACAGTGAGTCTGTATTTAAAGTTTATGAGACTAGCGGAACTGAATCCCTTCGTAAATTAAAGGCACACGNAACNTT TAAAAGNGTTTTAAAGCTTAGAGAAAAAATTTCTATGCCTGAAGGCTCTTTCCAAAACTTTGTAGAAAAGATTGAG AGTGAAAAACCTGAAGAATCATCTCCGAAAAAT f07A.aa BB023
SILFFLLSTVLFAQETDGLAEGSKRAEPGELVLDFAELARDPSSTRLDLTNYVDYVYSGASGIVKPEDMWDLGIN NWSVLLTPSARLQAYVKNSWAPAWKSESKRYAGDTILGVRVLFPSYSQSSAMIMPPFKIPFYSGESGNQFLGKG LIDNIKTMKEIKVSVYSLGYEIDLEVLFEDMNXMEYAXSMGTLKFKGWADLIWSNPNYIPNISSRIIKDDVPNYPL ASSKMRFKAFRVSKSHSSKEQNFIFYVKDLRVLYDKLSVSIDSDIDSESVFKVYETSGTESLRKLKAHXTFKXVLK LREKISMPEGSFQNFVEKIESEKPEESSPKN t07A.aa BB023
EGSKRAEPGELVLDFAELAPDPSSTRLDLTNYΛ^YVYSGASGIVKPEDMVVDLGINNWSVLLTPSARLQAYVKNSV VAPAWKSESKRYAGDTILGVRVLFPSYSQSSAMIMPPFKIPFYSGESGNQFLGKGLIDNIKTMKEIKVSVYSLGY EIDLEVLFEDMNXMEYAXSMGTLKFKGWADLIWSNPNYIPNISSRIIKDDVPNYPLASSKMRFKAFRVSKSHSSKE QNFIFYVKDLRVLYDKLSVSIDSDIDSESVFKVYETSGTESLRKLKAHXTFKXVLKLREKISMPEGSFQNFVEKIE SEKPEESSPKN fOδA.nt BB024
TGAATATTAATAATAAAAAAAGGAGTAACAATGAAAATCATCAACATATTATTTTGTTTATTTTTACTAATGCTAA ACGGCTGTAATTCTAATGATAATGACACTTTAAAAAACAATGCCCAACAAACAAAAAGACGGGGAAAGCGTGATTT AACCCAAAAAGAAACAACACAAGAAAAACCAAAATCTAAAGAAGAACTACTTAGAGAAAAGCTATCTGACGATCAA AAAACACATCTTGACTGGTTAAAACCCGCTTTAACTGGTGCTGGAGAATTTGACAAATTCTTAGAAAATGATGATG ATAAAATAAAATCAGCACTTGATCATATAAAAACTCAACTTGATAGTTGTAATGGTGATCAAGCAGAACAACAAAA AACCACTTTCAAAACTGTGGTTACAGAATTCTTTAAAAATGGTGATATAGATAATTTTGCAACTGGAGCGGTTAGT AACTGCAATAATGGTGGCTAA tOδA.nt BB024 TABLE 1. Nucleotide and Amino Acid Sequences
TGTAATTCTAATGATAATGACACTTTAAAAAACAATGCCCAACAAACAAAAAGACGGGGAAAGCGTGATTTAACCC AAAAAGAAACAACACAAGAAAAACCAAAATCTAAAGAAGAACTACTTAGAGAAAAGCTATCTGACGATCAAAAAAC ACATCTTGACTGGTTAAAACCCGCTTTAACTGGTGCTGGAGAATTTGACAAATTCTTAGAAAATGATGATGATAAA ATAAAATCAGCACTTGATCATATAAAAACTCAACTTGATAGTTGTAATGGTGATCAAGCAGAACAACAAAAAACCA CTTTCAAAACTGTGGTTACAGAATTCTTTAAAAATGGTGATATAGATAATTTTGCAACTGGAGCGGTTAGTAACTG CAATAATGGTGGC fOδA.aa BB024
ILIIKKGVTMKIINILFCLFLLMLNGCNSNDNDTLKNNAQQTKRRGKRDLTQKETTQEKPKSKEELLREKLSDDQK THLDWLKPALTGAGEFDKFLENDDDKIKSALDHIKTQLDSCNGDQAEQQKTTFKTWTEFFKNGDIDNFATGAVSN CNNGG tOδA.aa BB024
CNSNDNDTLKNNAQQTKRRGKRDL51TQKETTQEKPKSKEELLREKLSDDQKTHLDWLKPALTGAGEFDKFLENDD DKIKSALDHIKTQLDSCNGDQAEQQKTTFKTWTEFFKNGDIDNFATGAVSNCNNGG f09A.nt BB025
TGAATATTAATAATAAAAAAAGGAATAATAATGAAAATTATCAACATATTATTTTGTTTATTTTTACTAATGCTAA ACGGCTGTAATTCTAATGATACTAATAATAGCCAAACAAAAAGTAGACAAAAACGTGATTTAACCCAAAAAGAAGC AACACAAGAAAAACCTAAATCTAAAGAAGAACTTCTTAGAGAAAAGCTAAATGATAATCAAAAAACACACCTTGAC TGGTTAAAAGAAGCTCTGGGCAATGATGGAGAATTTAATAAATTTTTAGGATATGATGAAAGCAAAATAAAATCTG CACTTGATCATATAAAGAGTGAACTTGACAGTTGTACTGGAGATAAGGTTGAAAATAAAAATACCTTCAAGCAGGT CGTTCAGGAGGCCCTTAAAGGGGGCATAGACGGCTTTGAAAATACTGCAAGTAGTACGTGCAAAAATTCATAA t09A.nt BB025
TGTAATTCTAATGATACTAATAATAGCCAAACAAAAAGTAGACAAAAACGTGATTTAACCCAAAAAGAAGCAACAC AAGAAAAACCTAAATCTAAAGAAGAACTTCTTAGAGAAAAGCTAAATGATAATCAAAAAACACACCTTGACTGGTT AAAAGAAGCTCTGGGCAATGATGGAGAATTTAATAAATTTTTAGGATATGATGAAAGCAAAATAAAATCTGCACTT GATCATATAAAGAGTGAACTTGACAGTTGTACTGGAGATAAGGTTGAAAATAAAAATACCTTCAAGCAGGTCGTTC AGGAGGCCCTTAAAGGGGGCATAGACGGCTTTGAAAATACTGCAAGTAGTACGTGCAAAAATTCA f09A.aa BB025
ILIIKKGIIMKIINILFCLFLLMLNGCNSNDTNNSQTKSRQKRDLTQKEATQEKPKSKEELLREKLNDNQKTHLDW LKEALGNDGEFNKFLGYDESKIKSALDHIKSELDSCTGDKVENKNTFKQWQEALKGGIDGFENTASSTCKNS t09A.aa BB025
CNSNDTNNSQTKSRQKRDLTQKEA51TQEKPKSKEELLREKLNDNQKTHLDWLKEALGNDGEFNKFLGYDESKIKS
ALDHIKSELDSCTGDKVENKNTFKQWQEALKGGIDGFENTASSTCKNS
1 TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases. fδlO.aa gil26δ8024 (AEOOl 125) glycine betaine, L-proline ABC transporter, 1527 4.20E-207 f810.aa gil984805 glycine betaine-binding protein precursor [Bacillus subtilis] 179 6.80E-21 f810.aa gil 1850605 ProX [Streptococcus mutans] 181 2.30E-18 f814.aa pirlD70117l acriflavine resistance protein (acrB) homolog - Lyme disease 5105 01 D70117 fδl4.aa gi!268δ027 (AEOOl 125) acriflavine resistance protein (acrB) [Borrelia 5111 0 f814.aa gi!2983346 (AE000707) cation efflux (AcrB/AcrD/AcrF family) [Aquifex aeolicus] 325 4.80E-119 f814.aa gi!2313726 (AE000574) acriflavine resistance protein (acrB) [Helicobacter 327 4.50E-111 f814.aa gi!306δ7δ6 (AF059041) RND pump protein [Helicobacter pylori] 297 1.70E-110 fδl4.aa gnllPIDIel l similar to acriflavin resistance protein [Bacillus subtilis] 257 8.90E-100 82651 f814.aa gil 1573914 acriflavine resistance protein (acrB) [Haemophilus influenzae] 2941 2.10E-97 f814.aa gnllPIDIe25 mexF [Pseudomonas aeruginosa] 300 2.00E-88 6815 f814.aa gnllPIDIdlO cation efflux system protein CzcA [Synechocystis sp.] 198 1.30E-87 19295 fδl4.aa gnllPIDIe28 membrane-bound cation-proton-antiporter [Ralstonia eutropha] 283 2.20E-87
5274 f814.aa gi!43δδ54 envD homologue; ORFB [Pseudomonas aeruginosa] >pirlS39630IS39630 290 6.50E-δ7 f814.aa gnllPIDIdlO CzcA [Alcaligenes sp.] >pirlJC4700IJC4700 cadmium, zinc, 275 δ.20E-δ7 11721 f814.aa gi!2314107 (A/vE0υu0u06o0u5o) ) ccaatuioonn eefiflnuuxx ssyysstteemm pprrootieeiinn ( IcCzZcCAA); [ |Hi-teelιiιccoobpaac< ter 266 2.30E-δ6 f814.aa pirlA33δ30l c caattiioonn e efffflluuxx s svyssttee.mm m meemmhbrraannee n prrootteeiinn c _ zcA A - A * l'cal 'i'genes 275 3.10E-δό A33δ30 f814.aa gnllPIDIdlO envD gene product homolog [Escherichia coli] >gill788814 283 δ.30E-δό 17073 fδlδ.aa gil2688032 (AEOOl 125) B. burgdorferi predicted coding region BB0139 [Borrelia 664 3.00E-δ7 fδ2.aa gil268δ729 (AEOOl 177) B. burgdorferi predicted coding region BB0776 [Borrelia 991 2.20E-132 f820.aa gi!26δδ029 (AEOOl 125) penicillin-binding protein (ρbp-1) [Borrelia 3171 f820.aa gi!5δ0936 SpoVD [Bacillus subtilis] >gnllPIDIe 1185107 penicillin-binding 149 3.00E-49 fδ20.aa gill50283 penicillin-binding protein 2 [Neisseria meningitidis] 154 6.90E-43 fδ20.aa gnllPIDIel2 (AL022602) penicillin binding protein 2 [Mycobacterium 182 4.20E-42
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 2. Closest matching sequences between the polypeptides of the present invention and sequences in GenBank and Derwent databases.
TABLE 3. Conservative Amino Acid Substitutions.
TABLE 4. Residues Comprising Epito-Bearing Fragments
TABLE 4. Residues Comprising Epito-Bearing Fragments
TABLE 4. Residues Comprising Epito-Bearing Fragments
TABLE 4. Residues Comprising Epito-Bearing Fragments
TABLE 4. Residues Comprising Epito-Bearing Fragments
TABLE 4. Residues Comprising Epito-Bearing Fragments
Applicant's or agent's file PB370PCT2 International application No. Unassigned reference number
INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13*is;
A. The indications made below relate to the microorganism referred to in the description on page 8 , Hne 8
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet j
Name of depositary institution
American Type Culture Collection
Address of depositary institution (including postal code and country)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America
Date of deposit August 8, 1998 Accession Number 202012
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is conunued on an additional sheet Q
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (If the indications are not for aU designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")
For receiving Office use only ' For International Bureau use only application I I This sheet was received by the International Bureau on'
Authorized officer Authorized officer
Fαm PCTRO/134 (July 1992)

Claims

What Is Claimed Is:
1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of:
(a) a nucleotide sequence encoding any one of the amino acid sequences of the polypeptides shown in Table 1; or
(b) a nucleotide sequence complementary to any one of the nucleotide sequences in (a).
(c) a nucleotide sequence at least 95% identical to any one of the nucleotide sequences shown in Table 1 ; or,
(d) a nucleotide sequence at least 95% identical to a nucleotide sequence complementary to any one of the nucleotide sequences shown in Table 1.
2. An isolated nucleic acid molecule of claim 1 comprising a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a) or (b) of claim 1.
3. An isolated nucleic acid molecule of claim 1 comprising a polynucleotide which encodes an epitope-bearing portion of a polypeptide in (a) of claim 1.
4. The isolated nucleic acid molecule of claim 3, wherein said epitope-bearing portion of a polypeptide comprises an amino acid sequence listed in Table 4.
5. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector.
6. A recombinant vector produced by the method of claim 5.
7. A host cell comprising the vector of claim 6.
δ. A method of producing a polypeptide comprising:
(a) growing the host cell of claim 7 such that the protein is expressed by the cell; and
(b) recovering the expressed polypeptide.
9. An isolated polypeptide comprising a polypeptide selected from the group consisting of: (a) a polypeptide consisting of one of the complete amino acid sequences of Table 1 ;
(b) a polypeptide consisting of one the complete amino acid sequences of Table 1 except the N-terminal residue;
(c) a fragment of the polypeptide of (a) having biological activity; and
(d) a fragment of the polypeptide of (a) which binds to an antibody specific for the polypeptide of (a).
10. An isolated antibody specific for the polypeptide of claim 9.
11. A polypeptide produced according to the method of claim δ.
12. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of an amino acid sequence of any one of the polypeptides in Table 1.
13. An isolated polypeptide antigen comprising an amino acid sequence of an R. burgdorferi epitope shown in Table 4.
14. An isolated nucleic acid molecule comprising a polynucleotide with a nucleotide sequence encoding a polypeptide of claim 9.
15. A hybridoma which produces an antibody of claim 10.
16. A vaccine, comprising:
(1) one or more R. burgdorferi polypeptides selected from the group consisting of a polypeptide of claim 9; and
(2) a pharmaceutically acceptable diluent, carrier, or excipient; wherein said polypeptide is present, in an amount effective to elicit protective antibodies in an animal to a member of the Borrelia genus.
17. A method of preventing or attenuating an infection caused by a member of the Borrelia genus in an animal, comprising administering to said animal a polypeptide of claim 9, wherein said polypeptide is administered in an amount effective to prevent or attenuate said infection.
lδ. A method of detecting Borrelia nucleic acids in a biological sample comprising:
(a) contacting the sample with one or more nucleic acids of claim 1, under conditions such that hybridization occurs, and
(b) detecting hybridization of said nucleic acids to the one or more Borrelia nucleic acid sequences present in the biological sample.
19. A method of detecting Borrelia nucleic acids in a biological sample obtained from an animal, comprising:
(a) amplifying one or more Borrelia nucleic acid sequences in said sample using polymerase chain reaction, and
(b) detecting said amplified Borrelia nucleic acid.
20. A kit for detecting Borrelia antibodies in a biological sample obtained from an animal, comprising
(a) a polypeptide of claim 9 attached to a solid support; and
(b) detecting means.
21. A method of detecting Borrelia antibodies in a biological sample obtained from an animal, comprising
(a) contacting the sample with a polypeptide of claim 9; and
(b) detecting antibody-antigen complexes.
EP98931370A 1997-06-20 1998-06-18 Lyme disease vaccines Withdrawn EP1009859A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US5035997P 1997-06-20 1997-06-20
US50359P 1997-06-20
US5334497P 1997-07-22 1997-07-22
US5337797P 1997-07-22 1997-07-22
US53344P 1997-07-22
US53377P 1997-07-22
US5748397P 1997-09-03 1997-09-03
US57483P 1997-09-03
PCT/US1998/012718 WO1998059071A1 (en) 1997-06-20 1998-06-18 Lyme disease vaccines

Publications (1)

Publication Number Publication Date
EP1009859A1 true EP1009859A1 (en) 2000-06-21

Family

ID=27489331

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98931389A Withdrawn EP1012157A1 (en) 1997-06-20 1998-06-18 $i(BORRELIA BURGDORFERI) POLYNUCLEOTIDES AND SEQUENCES
EP98931370A Withdrawn EP1009859A1 (en) 1997-06-20 1998-06-18 Lyme disease vaccines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP98931389A Withdrawn EP1012157A1 (en) 1997-06-20 1998-06-18 $i(BORRELIA BURGDORFERI) POLYNUCLEOTIDES AND SEQUENCES

Country Status (4)

Country Link
EP (2) EP1012157A1 (en)
AU (2) AU8151898A (en)
CA (2) CA2294568A1 (en)
WO (2) WO1998059071A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2303409A1 (en) * 1997-09-10 1999-03-18 Yale University Class i-type lysyl-trna synthetase
GB9808423D0 (en) * 1998-04-22 1998-06-17 Glaxo Group Ltd Bacterial polypeptide family
DK2182064T3 (en) 1998-09-30 2012-12-17 Agensys Inc Gene expressed in prostate cancer
FR2798386B1 (en) * 1999-09-10 2003-04-25 Didier Raoult SINGLE-STRANDED OLIGONUCLEOTIDES, PROBES, PRIMERS AND METHOD FOR DETECTION OF SPIROCHETS
JPWO2002006491A1 (en) * 2000-07-18 2004-01-08 株式会社先端科学技術インキュベーションセンター Isopentenyl diphosphate isomerase
WO2002014546A1 (en) * 2000-08-16 2002-02-21 Markus Fritzsche Use of microbial dna sequences for the identification of human diseases
CN1210298C (en) 2001-07-13 2005-07-13 一泰医药研究(深圳)有限公司 Sequence number1 bioactive peptide
AU2003253805A1 (en) * 2002-07-02 2004-01-23 Arizona Board Of Regents A high resolution typing system for pathogenic borrelia
WO2006102342A2 (en) 2005-03-18 2006-09-28 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
AU2007295927A1 (en) * 2006-09-15 2008-03-20 Intercell Ag Borrelia antigens
EP2078092A2 (en) 2006-09-28 2009-07-15 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US9297803B2 (en) * 2006-11-01 2016-03-29 Immport Therapeutics, Inc. Compositions and methods for immunodominant antigens
EP2191266A4 (en) * 2007-09-07 2011-08-03 Univ California Borrelia diagnostics and screening methods
BRPI1011919A2 (en) 2009-06-29 2017-09-26 Childrens Medical Center Streptococcus pneumoniae vaccines and compositions
WO2012100234A1 (en) 2011-01-20 2012-07-26 Genocea Biosciences, Inc. Vaccines and compositions against streptococcus pneumoniae
US9816991B2 (en) 2012-02-01 2017-11-14 Biopeptides Corporation Diagnostic peptides for lyme disease
FR3009683A1 (en) * 2013-08-14 2015-02-20 Univ Strasbourg VACCINES AGAINST LYME DISEASE
US11061028B2 (en) 2014-09-24 2021-07-13 Defined Diagnostics, Llc Compositions and methods for the diagnosis of lyme disease
EP3135295A1 (en) * 2015-08-28 2017-03-01 Latvian Biomedical Research and Study Centre Coupling of borrelial protein bb0689 to virus-like particles for generation of lyme disease vaccine
EP3535412B1 (en) 2016-11-03 2021-07-07 University Of Leicester Phage-based detection of borreliosis and means therfor.
EP3643796A1 (en) 2018-10-25 2020-04-29 TBD-diagnostics GmbH Diagnosis of lyme disease
US20210325393A1 (en) * 2020-04-13 2021-10-21 Id-Fish Technology, Inc. Detection of lyme disease
WO2024050512A2 (en) * 2022-09-02 2024-03-07 The Medical College Of Wisconsin, Inc. Use of immunogenic t cell epitopes for lyme disease vaccination and diagnosis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK590288D0 (en) * 1988-10-24 1988-10-24 Symbicom Ab CHEMICAL COMPOUNDS
CA2025178A1 (en) * 1989-10-02 1991-04-03 William G. Weisburg Nucleic acid probes for the detection of lyme disease spirochetes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9859071A1 *

Also Published As

Publication number Publication date
AU8151898A (en) 1999-01-04
WO1998058943A1 (en) 1998-12-30
WO1998059071A1 (en) 1998-12-30
CA2294568A1 (en) 1998-12-30
CA2304925A1 (en) 1998-12-30
AU8153498A (en) 1999-01-04
EP1012157A1 (en) 2000-06-28

Similar Documents

Publication Publication Date Title
US6607728B2 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
WO1998059071A1 (en) Lyme disease vaccines
US6913907B2 (en) Enterococcus faecalis polynucleotides encoding EF059
EP1770164B1 (en) Streptococcus pneumoniae antigens and vaccines
WO1998042740A9 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
US6277381B1 (en) Compounds and methods for the diagnosis and treatment of Ehrlichia infection
US6902893B1 (en) Lyme disease vaccines
US6821754B2 (en) Staphylococcus aureus genes and polypeptides
WO2000012678A2 (en) Staphylococcus aureus genes and polypeptides
US20020086984A1 (en) Compounds and methods for the diagnosis and treatment of Ehrlichia infection
US20020068343A1 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
US6887663B1 (en) Streptococcus pneumoniae SP036 polynucleotides
US6673356B1 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
AU8938601A (en) Lyme disease polynucleotides
WO1999002700A1 (en) HISTIDINE KINASE TWO-COMPONENT IN $i(CANDIDA ALBICANS)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 12Q 1/68 B

Ipc: 7A 61K 39/02 B

Ipc: 7C 07K 16/12 B

Ipc: 7C 12N 15/63 B

Ipc: 7C 12N 15/31 B

Ipc: 7C 07K 14/20 A

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050322