EP1009771A1 - Peptides which elicit cytotoxic t cellular immunity - Google Patents
Peptides which elicit cytotoxic t cellular immunityInfo
- Publication number
- EP1009771A1 EP1009771A1 EP98946725A EP98946725A EP1009771A1 EP 1009771 A1 EP1009771 A1 EP 1009771A1 EP 98946725 A EP98946725 A EP 98946725A EP 98946725 A EP98946725 A EP 98946725A EP 1009771 A1 EP1009771 A1 EP 1009771A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- peptide
- amino acid
- peptides
- cancer
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 170
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 93
- 231100000433 cytotoxic Toxicity 0.000 title claims abstract description 15
- 230000001472 cytotoxic effect Effects 0.000 title claims abstract description 15
- 230000007969 cellular immunity Effects 0.000 title abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 206010028980 Neoplasm Diseases 0.000 claims description 42
- 150000001413 amino acids Chemical class 0.000 claims description 35
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 26
- 201000011510 cancer Diseases 0.000 claims description 22
- 108700042226 ras Genes Proteins 0.000 claims description 22
- 241000282414 Homo sapiens Species 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- 238000011321 prophylaxis Methods 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 13
- 230000005867 T cell response Effects 0.000 claims description 11
- 238000002255 vaccination Methods 0.000 claims description 11
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 108700020978 Proto-Oncogene Proteins 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 102000052575 Proto-Oncogene Human genes 0.000 claims description 7
- 238000001727 in vivo Methods 0.000 claims description 6
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000006467 substitution reaction Methods 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 5
- 201000001441 melanoma Diseases 0.000 claims description 5
- 230000004936 stimulating effect Effects 0.000 claims description 5
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 206010009944 Colon cancer Diseases 0.000 claims description 3
- 210000003445 biliary tract Anatomy 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims 2
- 201000005202 lung cancer Diseases 0.000 claims 2
- 208000020816 lung neoplasm Diseases 0.000 claims 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims 2
- 201000002528 pancreatic cancer Diseases 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 1
- 102000043276 Oncogene Human genes 0.000 abstract description 13
- 108700020796 Oncogene Proteins 0.000 abstract description 12
- 238000011394 anticancer treatment Methods 0.000 abstract description 6
- 238000009566 cancer vaccine Methods 0.000 abstract description 4
- 229940022399 cancer vaccine Drugs 0.000 abstract description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 45
- 108010014186 ras Proteins Proteins 0.000 description 35
- 102000016914 ras Proteins Human genes 0.000 description 29
- 230000027455 binding Effects 0.000 description 18
- 230000035772 mutation Effects 0.000 description 15
- 210000004881 tumor cell Anatomy 0.000 description 13
- 239000000427 antigen Substances 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 239000012636 effector Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 230000009089 cytolysis Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229960005486 vaccine Drugs 0.000 description 8
- 210000000612 antigen-presenting cell Anatomy 0.000 description 7
- 239000012634 fragment Substances 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 5
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 4
- 101710197836 HLA class I histocompatibility antigen, alpha chain G Proteins 0.000 description 4
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 4
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 108010035452 HLA-A1 Antigen Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 108010004141 HLA-B35 Antigen Proteins 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 108010010995 MART-1 Antigen Proteins 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 229940117681 interleukin-12 Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- VVQIIIAZJXTLRE-QMMMGPOBSA-N (2s)-2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)NCCCC[C@H](N)C(O)=O VVQIIIAZJXTLRE-QMMMGPOBSA-N 0.000 description 1
- JPOKAKNGULMYHZ-UILVTTEASA-N (2s)-6-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-(4-hydroxyp Chemical compound C([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCN=C(N)N)C1=CC=C(O)C=C1 JPOKAKNGULMYHZ-UILVTTEASA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- -1 interleukin-2 (IL-2) Chemical class 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
Definitions
- the present invention represents a further development of anti-cancer treatment or prophylaxis based on using the body's own immune system through an activation and strengthening of the immune response from specific cytotoxic T cells.
- the genetic background for the onset of cancer are proto- oncogenes and oncogenes.
- Proto-oncogenes are normal genes of the cell which have the potential of becoming oncogenes. All oncogenes code for and function through a protein.
- Oncogenes arise in nature from proto-oncogenes through point mutations or translocations, thereby resulting in a transformed state of the cell harbouring the mutation. Cancer develops through a multistep process involving several utational events and oncogenes.
- a single base substitution in a proto-oncogene may cause the resulting gene product to differ in one amino acid only.
- T cells recognise an antigen only if the antigen is bound and presented by a MHC molecule. Usually this bonding will take place only after appropriate antigen processing, which comprises a proteolytic fragmentation of the protein, so that the peptide fits into the groove of the MHC molecule.
- appropriate antigen processing which comprises a proteolytic fragmentation of the protein, so that the peptide fits into the groove of the MHC molecule.
- T cells are enabled to also recognise peptides derived from intracellular proteins. T cells can thus theoretically recognise aberrant peptides derived from anywhere in the tumour cell, in the context of MHC molecules on the surface of the tumour cell, and can subsequently be activated to eliminate the tumour cell harbouring the aberrant oncogene .
- the HLA molecules appear as two distinct classes depending on which region of the chromosome codes for them and which T cell subpopulations they interact with and thereby activate primarily.
- the HLA class I molecules are encoded by the HLA A, B and C subloci and they primarily activate CD8+ cytotoxic T cells.
- the HLA class II molecules are encoded by the DR, DP and DQ subloci and primarily activate CD4+ T cells. Normally every individual has six different HLA Class I _ grasp molecules, usually two alleles from each of the three subgroups A, B and C. However in some cases the number of different HLA Class I molecules is reduced due to occurrence of the same HLA allele twice.
- HLA class II molecules While the peptides that are presented by HLA class II molecules are of varying length (12-25 amino acids), the peptides presented by HLA class I molecules must normally be exactly nine amino acid residues long in order to fit into the HLA binding groove. A longer peptide will result in non-binding if it cannot be processed internally by an APC or target cell, such as a cancer cell, before presenting in the HLA groove. Only a very limited number of deviations from this requisition of nine amino acids have been reported, and in those cases the length of the presented peptide has been either eight or ten amino acid residues long.
- a requirement for both HLA class I and II binding is that the peptides must contain a binding motif, which normally is different for different HLA groups and subgroups (alleles) .
- a binding motif is characterised by the requirement for specific ammo acids some positions of the peptide so that a narrow fit with the pockets of the HLA binding groove is achieved. Further, it is necessary to avoid some specific ammo acids at other positions of the peptide since they cause steric hindrance for binding. The result of this, taken together with the peptide length restriction, is that it is quite unlikely that a peptide binding to one type of HLA class I molecules will also bind to another type. Thus, for example, it may very well be that the peptide binding motif for HLA-A1 and HLA-A2 molecules, which both belong to the class I gender, is as different as the motifs for the HLA-A1 and HLA-B1 molecules.
- amino acids are represented by their three or one letter abbreviation as known in the art .
- mice with different H-2 MHC types recognise different sets of peptides from the same protein, [S.S.Zamvil et al, J.Exp.Med, Vol. 168, (1988), 1181-1186], thus a peptide which elicits an immune response in a mouse of one strain, may not stimulate T cells from another, closely related mouse strain.
- T cells from mice, rats and human beings are known to recognise different, non overlapping epitopes of the same protein. The explanation for this is thought to reside in differences between the species in their antigen processing machinery and peptide binding capabilities of their MHC molecules.
- an anticancer treatment or vaccinating agent which will establish a strong cytotoxic T cell response against tumours harbouring mutated ras oncogenes in a quick and reliable manner in order to improve the activity of anti-cancer treatment or prophylaxis based on peptides derived from mutated p21 ras proteins .
- a) contains 8-10 amino acids, and encompasses the position 12 and/or 13, or 61 of a p21 ras proto- oncogene protein, and has an amino acid substitution in position 12 or 13 or 61, while the remaining amino acids correspond to the ones found in the same positions of said protein;
- the amino acid in position 12 can be any amino acid except Gly; or if the amino acid in position 12 is Gly, the amino acid in position 13 can be any amino acid except Gly or if the peptide encompasses the position 61, the amino acid in this position can be any amino acid except Gin;
- c) induces specific cytotoxic T cell (CD8+; responses .
- the most preferred peptides according to this invention are the peptides consisting of nine amino acids.
- the following advantages are achieved: it is possible to design a stronger anticancer therapy and vaccination; the direct activation of the cytotoxic CD8+ T cells results in a quicker establishment of the killer cells necessary to kill the tumour cells; a more direct therapy and prophylaxis directed against the specific genetic alterations presented by neoplastic cells is possible.
- a pharmaceutical composition which comprises a peptide of the present invention.
- the pharmaceutical composition can be used to treat a human patient afflicted with a cancer harbouring a ras oncogene with a mutation in position 12, 13 or 61.
- ⁇ pharmaceutical composition should not only encompass a composition usable in treatment of cancer patients, but also compositions useful in connection with prophylaxis, i.e. vaccine compositions.
- the pharmaceutical composition can be used to vaccinate a human being in order to obtain resistance against cancers arising from ras oncogenes with a mutation in position 12, 13 or 61.
- a third aspect of the present invention is the use of the peptides defined above to prepare a pharmaceutical composition for eliciting cytotoxic T cell responses in the treatment or prophylaxis of cancers arising from activated ras oncogenes.
- a further aspect of the present invention is a method for the treatment of a human patient afflicted with cancer which comprises administering at least one peptide of the invention in an amount effective to elicit a cytotoxic (CD8+) T cell response.
- Yet another aspect of the invention is a method for the vaccination of a human being in order to obtain resistance against cancers arising from activated ras oncogenes, which comprises administering at least one peptide of the invention, in an amount effective to elicit a cytotoxic T cell response.
- the peptides of the invention are administered in a pharmaceutical composition or in the methods for the treatment or prophylaxis described above as a mixture of peptides.
- the mixture may either be:
- the peptides in the mixtures may be covalently linked with each other to form larger polypeptides or even cyclic polypeptides .
- amino acids chosen in position 12, 13 or 61 in the above mentioned mixtures would be the most commonly found mutations in a specific cancer. Such mixture or mixtures would then be suitable for the treatment of a patient afflicted with said cancer or for the prophylaxis of a person belonging to a risk group for said cancer.
- Another purpose of the present invention is to design an anti-cancer treatment or prophylaxis specifically adapted to a human individual in need of such treatment or prophylaxis, which comprises administering at least one peptide according to this invention.
- the administration may take place one or several times as suitable to establish and/or maintain the wanted cytotoxic T cell immunity.
- peptides of the present invention are administered together with, either simultaneously or in optional sequence, the peptides disclosed in PCT/NO92/00032.
- the most preferred peptides according to the invention are those which carry the amino acids substitutions most commonly found in human cancers arising from mutated ras oncogenes.
- position 12 of p21 ras proteins the most commonly found mutations are Asp, Val, Arg, Cys, Ala and Ser.
- position 13 the most commonly found mutations are Asp and Val.
- position 61 the most commonly found mutations are Arg, His, Lys and Leu.
- One group of preferred peptides according to this invention are the following peptides, wherein X x represents position 12 in the p21 ras protein and can be any amino acid except Gly :
- the most preferred peptides of the above group are those wherein X is Asp, Val, Arg, Ala, Cys or Ser.
- a further group of peptides of this invention are the following, wherein X x represents position 12 in a p21 ras protein and can be any amino acid except Gly:
- the most preferred peptides o f the above group are those wherein X is Asp , Val , Arg, Ala , Cys or Ser .
- a further group of peptides o f thi s invention are the following, wherein X x represents pos i tion 12 of a p21 ras protein and can be any amino acid except Gly : X ⁇ VGKSALTI , AX j GVGKSALT , GAX j GVGKSAL,
- X x is Asp, Val, Arg, Ala, Cys or Ser.
- a second group of especially preferred peptides according to this invention are the following wherein X 2 represents position 13 of the p21 ras protein and can be any amino acid except Gly:
- the most preferred peptides of the above group are those wherein X 2 is Asp or Val.
- a further group of peptides of the invention are the following wherein X 2 represents position 13 of the p21 ras protein and can be any amino acid except Gly: X 2 VGKSALT, GX 2 VGKSAL, AGX 2 VGKSA, GAGX 2 VGKS, VGAGX 2 VGK, WGAGX 2 VG, VWGAGX 2 V, LVWGAGX 2
- X 2 is Asp or Val.
- a further group of peptides of the invention are the following wherein X 2 represents position 13 of the p21 ras protein and can be any amino acid except Gly:
- the most preferred peptides of the above group are those wherein X 2 is Asp or Val.
- a third group of preferred peptides according to this invention are the following wherein X 3 represents position
- 61 of the p21 ras protein and can be any amino acid except
- the most preferred peptides of the above group are those wherein X 3 is Arg, Lys, His or Leu.
- a further group of peptides of the invention are the following wherein X 3 represents position 61 of the p21 ras protein and can be any amino acid except Gin: X 3 EEYSAMR, GX 3 EEYSAM, AGX 3 EEYSA, TAGX 3 EEYS, DTAGX 3 EEY, LDTAGX 3 EE, ILDTAGX 3 E, DILDTAGX 3
- the most preferred peptides of the above group are those wherein X 3 is Arg, Lys, His or Leu.
- a further group of peptides of the invention are the following wherein X 3 represents position 61 of the p21 ras protein and can be any amino acid except Gin:
- the most preferred peptides of the above group are those wherein X 3 is Arg, Lys, His or Leu.
- the peptides according to the present invention may be symmetrical or unsymmetrical around each of the positions where the mutations are found in the oncogene proteins.
- the peptides may be administered together, either simultaneously or separately, with compounds such as cytokines and/or growth factors, i.e. interleukin-2 (IL-2), interleukin-12 (IL-12), granulocyte macrophage colony stimulating factor (GM-CSF) or the like in order to strengthen the immune response as known in the art.
- cytokines and/or growth factors i.e. interleukin-2 (IL-2), interleukin-12 (IL-12), granulocyte macrophage colony stimulating factor (GM-CSF) or the like in order to strengthen the immune response as known in the art.
- IL-2 interleukin-2
- IL-12 interleukin-12
- GM-CSF granulocyte macrophage colony stimulating factor
- the peptides according to the present invention can be used in a vaccine or a therapeutical composition either _ ⁇ alone or in combination with other materials, such as for instance in the form of a lipopeptide conjugate which as known in the art can induce high-affinity cytotoxic T cells (K. Deres, Nature, Vol.342, (nov.1989) ) .
- the peptides according to the present invention may be useful to include in either a synthetic peptide or recombinant fragment based vaccine.
- the peptides of the present invention are particularly suited for use in a vaccine capable of safely eliciting cytotoxic CD8+ T cell immunity:
- the peptides are synthetically produced and therefore do not include transforming cancer genes or other sites or materials which might produce deleterious effects
- the peptides may be used alone to induce cytotoxic T cellular immunity
- the peptides may be targeted for cytotoxic T cell responses without the side effects of other unwanted responses.
- the peptides according to the present invention can be included in pharmaceutical compositions alone or together with usual pharmaceutically acceptable additives, adjuvants, diluents, stabilisers, carriers or the like as known in the art .
- the peptides of the invention can be administered in an amount in the range of l g - lg to an average human patient or individual to be vaccinated. It is more preferred to use a smaller dose in the range of lmg - lO g for each administration.
- a person skilled in the art will find other possible mod.es of using the peptides of this invention, and these are meant to be encompassed by the present claim.
- a cancer therapy according to the present invention may be administered both in vivo, ex vivo or in vitro having as the main goal the raising of specific cytotoxic T cell lines or clones against the gene product of the oncogene responsible for the cancer type with which the patient is afflicted.
- the peptides according to this invention may be produced by conventional processes as known in the art, and this is elucidated in the description of the synthesis below.
- the peptide used must correspond to the processed p21 ras oncogene protein fragment as presented by a HLA Class I molecule on the cancer cell or on professional antigen presenting cells, 2.
- the peptides used must be bound to a HLA Class I molecule in an immunogenic form, and
- Cytotoxic T-cells capable of recognising and responding to the HLA Class I/peptide complex must be present in the circulation of the human being.
- the peptides according to the present invention give rise to specific cytotoxic T cell immune responses in vitro. HLA Class I molecules capable of binding the peptides were determined. It has been established that the synthetic peptides according to this invention correspond to the processed oncogene protein fragments. This is exemplified with synthetic p21 ras peptide fragments having a utatipn in position 12. The specificity of cytotoxic T cells induced in vivo by ras peptide vaccination was determined with the peptides of the invention. This is a clear indication that the cancer patient's T cells had been activated by the identical peptide fragments in vivo.
- FIG. 1 shows that a CD8 + cytotoxic T cell clone (CTL 69-30) which was obtained from peripheral blood from a pancreatic carcinoma patient after 12Val mutant ras peptide vaccination, can recognize and kill different tumor cell lines expressing 12Val mutated p21 ras.
- the cytotoxic T cell clone was obtained after cloning of T-cell blasts present in peripheral blood mononuclear cells (PBMC) from a pancreatic carcinoma patient after position 12 Val mutant ras peptide vaccination.
- the peptide vaccination protocol included several infusions of large amounts of peptide- loaded autologous professional antigen-presenting cells (APC) .
- APC autologous professional antigen-presenting cells
- T cells Cloning of T cells was performed by plating responding T cell blasts at 5 blasts per well onto Terasaki plates. Each well contained 2 x 10 4 autologous, irradiated (30 Gy) PBMC as feeder cells, and the cells were propagated with the 12Val peptide at 25 mM and 5 U/ml recombinant interleukin-2 (rlL- 2) (Amersham, Aylesbury, UK) in a total volume of 20 L .
- rlL-2 interleukin-2
- T cell clones were transferred onto flat- bottomed 96-well plates (Costar, Cambridge, MA) with 1 mg/ml phytohemagglutinin (PHA, Wellcome, Dartford, UK) , 5 U/ml rIL-2 and allogeneic irradiated (30 Gy) PBMC (2 x 10 5 ) per well as feeder cells.
- PHA phytohemagglutinin
- rIL-2 phytohemagglutinin-2
- allogeneic irradiated (30 Gy) PBMC (2 x 10 5 ) per well as feeder cells.
- PBMC x 10 5
- T cell clone 69-30 was selected for further characterisation.
- CTL 69-30 exhibits lysis of autologous tumour cell targets, which indicates that it is directed against a tumour derived antigen, such as mutant ras.
- T cells were added at different effector to target ratios and the plates were incubated for 4 hours at 37°C and then harvested before counting in a liquid scintillation counter (Packard Topcount) .
- Data represent percent specific lysis of 3 H- thymidine labelled target cells in a 4h assay at different effector/target ratios. Values are expressed as the mean of triplicate cultures ⁇ SD.
- T cell clone 69-30 demonstrated lysis of the bladder carcinoma cell line T24 (12Val + , HLA- Al + , B35 + ) and the melanoma cell line FMEX (12Val + , HLA-A2 + , B35 + ) , but not of the colon carcinoma cell line SW 480 (12Val + , HLA-A2 + , B8 + ) .
- FIG. 2 further demonstrates the HLA class I restriction of T cell clone 69-30 by blocking experiments.
- the results show that the cytolytic effect of T cell clone 69-30 on autologous pancreatic carcinoma cells (CPE) could be blocked by a panreactive HLA class I mAb (W6/32), but remained unaltered in the presence of monoclonal antibodies directed against HLA class II DR, DQ and DP antigens.
- CPE autologous pancreatic carcinoma cells
- W6/32 panreactive HLA class I mAb
- FIG. 3 shows the fine specificity of T cell clone 69-30 in peptide pulsing experiments.
- the panel of nonamer peptides; peptide 10-18, spanning positions 4 to 20 of p21 ras containing the Val substitution at position 12 was tested. Only peptide 15 was capable of stimulating T cell clone 69-30 activity in these experiments.
- 3 H-thymidine labelled, mild acid eluted autologous EBV-B cells were plated 2500 cells per well in 96 well plates and pulsed with the peptides at a concentration of 1 mM together with b2-microglobulin (2.5 mg/mL) in a 5% C0 2 incubator at 37°C before addition of the T cells. Assays were set up in triplicate in 96 well plates and incubated for 4 hours with an effector to target ratio of 5 to 1. The specificity of cytotoxic T cell clone recognition for the appropriate mutant peptide was illustrated by the absence of lysis observed with the peptide expressing normal ras sequence.
- Figure 4 shows the sensitivity of the T cell clone 69-30_ ⁇ to peptide 15. The data show that an anti-ras cytotoxic T cell activity was detectable over a range of several log units, with maximal lysis at 1 x 10 -6 M and half maximal response at 1 x 10 "9 M peptide concentration. This was examined in a dose-response experiment using peptide sensitised EBV-B cells as target cells.
- the target cells were pulsed with peptide 15 as described in Figure 3, with the exception that the peptides were added at different concentrations before the addition of T cells.
- Controls included target cells alone and target cells pulsed with the irrelevant melanoma associated peptide Melan-A/Mart-1. Data are expressed as the mean of triplicate cultures ⁇ SD.
- FIG. 5 shows the fine specificity of T cell clone 42-33 in peptide pulsing experiments.
- T cell clone 42-33 was also obtained from a vaccinated patient. Of the panel of nonamer peptides; peptide 10-18, only peptide 18 was capable of stimulating T cell clone 42-33.
- the TAP deficient T2 cell line was used as antigen presenting cells. This cell line expresses only small amounts of HLA-A2 antigen, but increased levels of HLA class I antigens at the cell surface can be induced by addition of b2-microglobulin.
- 3 H-labelled target cells were incubated with the different test peptides and control peptides at a concentration of 1 mM together with b2-microglobulin (2.5 mg/mL) for one hour at 37°C. After peptide pulsing, the target cells were washed extensively, counted and plated 2500 cells per well in 96 well plates before addition of the T cells. The plates were incubated for 4 hours at 37°C in 5% C0 2 before harvesting.
- Controls included T cell clone cultured alone or with target cells in the absence of peptides. Assays were set up in triplicate in 96 well plates with an effector to target ratio of 20 to 1.
- FIG. 6 shows the specificity of the 12-Cys-p21 ras specific CD8+ CTL EG2.4 that recognize and kill autologous EBV cells pulsed with peptide (seq id no) 23 and 24.
- the CTL was obtained after cloning of T cell blasts present in PB,MC from a pancreatic carcinoma patient after mutant ras peptide vaccination.
- the peptide vaccination protocol consisted of 6 intradermal injections of a mixture of mutant ras peptides in combination with granulocyte-macrophage colony stimulating factor (GM-CSF) . Cloning of T cells was performed as described above.
- GM-CSF granulocyte-macrophage colony stimulating factor
- 51Cr+ labelled target cells were plated in 96-well plates (Costar) and incubated with synthetic peptides and b2-microglobulin for 1 hour. Then the cells were washed before adding the T cells. The plates were incubated for 4 hours at 37°C in 5% C02 before harvesting. Peptide 23 and 24 were capable of stimulating TLC-EG2.4 whereas the other nonamers were not. Assays were set up triplicate with an effector to target ratio of 25 to 1.
- FIG. 7 shows the specificity of the 12-Cys p21 ras specific CD8+ CTL EG2.8. This CTL recognize and kill autologous EBV cells pulsed with peptide (seq id no) 23 and 24. Generation of the CTL was done as outlined above.
- Figure 8 shows the sensitivity of the TLC EG2.4 to exogenous peptide. This was examined in a dose-response experiment using 51 Cr+ labelled, peptide sensitized EBV-B cells as target cells. The target cells were pulsed with peptide 23 and 24 separately as described in figure 6, with the exception that the peptides were added at different concentrations before the addition of T cells. Anti-ras CTL activity was detectable over a several log range for peptide 23, with maximal lysis at 1 x 10 "5 M and halfmaximal response at 1 x 10 "7 M peptide concentration, whereas peptide 24 could not stimulate the CTL at comparable peptide concentrations. Assays were set up in triplicate cultures with an effector to target ratio of 10 to 1. Data are expressed as the mean of triplicate cultures.
- Figure 9 shows the sensitivity of TLC EG2.8 to exogenous peptide. This was examined as described in figure 8. Anti- ras CTL activity was demonstrable over a several log range for peptide 23, but was not detectable for peptide 24 at_ comparable peptide concentrations. Assays were set up in triplicate cultures with an effector to target ratio of 10 to 1. Data are given as expressed in figure 8.
- the peptides were synthesised by using continuous flow solid phase peptide synthesis (9050 PepSynthesizer, MilliGen or Novasyn Crystal peptide synthesiser, Novabiochem) .
- N-a-Fmoc-amino acids with appropriate side chain protection were synthesised by using continuous flow solid phase peptide synthesis (9050 PepSynthesizer, MilliGen or Novasyn Crystal peptide synthesiser, Novabiochem) .
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9718110 | 1997-08-27 | ||
GB9718110A GB2328689A (en) | 1997-08-27 | 1997-08-27 | Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer |
PCT/NO1998/000252 WO1999010382A1 (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1009771A1 true EP1009771A1 (en) | 2000-06-21 |
Family
ID=10818083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98946725A Withdrawn EP1009771A1 (en) | 1997-08-27 | 1998-08-26 | Peptides which elicit cytotoxic t cellular immunity |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1009771A1 (en) |
JP (1) | JP2001514190A (en) |
AU (1) | AU9367798A (en) |
CA (1) | CA2301840A1 (en) |
GB (1) | GB2328689A (en) |
WO (1) | WO1999010382A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO315238B1 (en) * | 1998-05-08 | 2003-08-04 | Gemvax As | Peptides derived from reading frame shift mutations in the TBF <beta> II or BAX gene, and pharmaceutical compositions containing them, nucleic acid sequences encoding such peptides, plasmids, and virus vector-encompassing such nucleic acid |
NO309798B1 (en) * | 1999-04-30 | 2001-04-02 | Targovax As | Peptide composition, as well as pharmaceutical composition and cancer vaccine including the peptide composition |
CN1321661A (en) * | 2000-04-29 | 2001-11-14 | 上海博德基因开发有限公司 | Novel polypeptide-human K-ras proto-oncogene protein 36 and polynucleotide for coding this polypeptide |
FR2836684B1 (en) * | 2002-03-04 | 2004-12-17 | Inst Nat Sante Rech Med | RAS MUTED PEPTIDES AND THEIR USE IN IMMUNOTHERAPY |
RU2016127327A (en) | 2013-12-09 | 2018-01-23 | Тарговакс Аса | MIXTURE OF PEPTIDES |
JP2017514847A (en) | 2014-05-06 | 2017-06-08 | タルゴバックス エーエスエー | Peptide vaccine comprising a mutant RAS peptide and a chemotherapeutic agent |
WO2016085904A1 (en) * | 2014-11-26 | 2016-06-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-mutated kras t cell receptors |
CA2989373A1 (en) * | 2015-06-16 | 2016-12-22 | Targovax Asa | Mutated fragments of the ras protein |
WO2018026691A1 (en) | 2016-08-02 | 2018-02-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-kras-g12d t cell receptors |
SG11201906969PA (en) | 2017-02-01 | 2019-08-27 | Modernatx Inc | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
WO2023060148A1 (en) * | 2021-10-05 | 2023-04-13 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Augmentation of innate and adaptive immunity by inhibition of interaction of lilrbs with mhc-1 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9103974D0 (en) * | 1991-02-26 | 1991-04-10 | Norsk Hydro As | Therapeutically useful peptides or peptide fragments |
WO1997040156A1 (en) * | 1996-04-19 | 1997-10-30 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Mutated ras peptides for generation of cd8+ cytotoxic t lymphocytes |
-
1997
- 1997-08-27 GB GB9718110A patent/GB2328689A/en not_active Withdrawn
-
1998
- 1998-08-26 JP JP2000507707A patent/JP2001514190A/en not_active Withdrawn
- 1998-08-26 AU AU93677/98A patent/AU9367798A/en not_active Abandoned
- 1998-08-26 EP EP98946725A patent/EP1009771A1/en not_active Withdrawn
- 1998-08-26 WO PCT/NO1998/000252 patent/WO1999010382A1/en not_active Application Discontinuation
- 1998-08-26 CA CA002301840A patent/CA2301840A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9910382A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU9367798A (en) | 1999-03-16 |
GB2328689A (en) | 1999-03-03 |
WO1999010382A1 (en) | 1999-03-04 |
CA2301840A1 (en) | 1999-03-04 |
JP2001514190A (en) | 2001-09-11 |
GB9718110D0 (en) | 1997-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0529023B1 (en) | Therapeutically useful peptides and peptides fragments | |
EP1078000B1 (en) | Peptides that ellicit t cellular immunity | |
AU755736B2 (en) | Frameshift mutants of beta-amyloid precursor protein and ubiquitin-B and their use | |
JP4422903B2 (en) | Cancer antigen based on the product of the tumor suppressor gene WT1 | |
AU4438900A (en) | Ras oncogen p21 peptide vaccines | |
EP2333065A1 (en) | Novel MHC class II restricted T cell epitopes from the cancer antigen, NY ESO-1 | |
EP1009771A1 (en) | Peptides which elicit cytotoxic t cellular immunity | |
EP1670899A2 (en) | Vaccines for cancer, autoimmune disease and infections | |
Hampton | Identification and characterization of tumor-associated antigens | |
WO2001083689A2 (en) | PEPTIDES FROM FRAMESHIFT MUTATED DNA POLYMERASE δ GENE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20000324;LT PAYMENT 20000324;LV PAYMENT 20000324;MK PAYMENT 20000324;RO PAYMENT 20000324;SI PAYMENT 20000324 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 20020515 |
|
R18W | Application withdrawn (corrected) |
Effective date: 20020513 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1029593 Country of ref document: HK |