EP1008723B1 - Platform cooling in turbomachines - Google Patents
Platform cooling in turbomachines Download PDFInfo
- Publication number
- EP1008723B1 EP1008723B1 EP98811219A EP98811219A EP1008723B1 EP 1008723 B1 EP1008723 B1 EP 1008723B1 EP 98811219 A EP98811219 A EP 98811219A EP 98811219 A EP98811219 A EP 98811219A EP 1008723 B1 EP1008723 B1 EP 1008723B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- platforms
- cooling
- fluid
- platform
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
- F01D11/008—Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/80—Platforms for stationary or moving blades
- F05B2240/801—Platforms for stationary or moving blades cooled platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/80—Platforms for stationary or moving blades
- F05D2240/81—Cooled platforms
Definitions
- the invention relates to a device for cooling of platforms in Turbomachinery, in particular in gas turbines.
- the efficiency of turbomachines can be increased by increasing the cycle process parameters of the turbomachine.
- the relevant cycle process parameters are the pressure and the temperature of the fluid.
- the fluid temperatures which usually occur during the operation of turbomachines today are already well above the permissible material temperatures of the components, in particular in the turbine inlet region.
- the components forming the flow channel or projecting into the flow channel are directly exposed to the hot fluid flow.
- the conditional by the heat conduction of the material heat dissipation of the components is generally not sufficient here to avoid over-temperature of the components. Too high material temperatures initially lead to a decrease in the strength values of the material. This often leads to cracking in components.
- the flow channel of a turbomachine is often constructed of annularly lined-up platforms.
- the blades of the turbomachine are often arranged on such platforms. In most cases, one bucket is made in one piece with one platform each. In particular, in stators such platforms are also often arranged in the form of a shroud of the blading at the blade tips of the blades. These platforms are thus exposed directly to the hot fluid flow.
- a temperature profile of the fluid emerging from the combustion chamber, usually air, in the turbine inlet region has traditionally been desired above the channel height.
- This temperature profile could be achieved via an admixture of cooling fluid in the edge regions of the hot fluid flow in the outlet region of the combustion chamber.
- the fluid immediately adjacent to the side walls and thus to the platforms therefore had a significantly reduced temperature compared to the temperature of the core flow.
- an over-temperature of the platforms could be avoided.
- the invention is based on the object, platforms efficient and reliable to cool.
- This object is achieved in that at least in one Section along the running between adjacent platforms Parting line a cooling channel is arranged, which as a slot-shaped depression in both adjacent to the parting line side walls of the platforms is executed, and the one along the parting line changing depth of penetration in the respective platform.
- the cooling fluid guided in the cooling channel has a lower one Temperature on than the adjacent platforms. This is what happens a convective heat transfer between the to the cooling channel adjacent platforms and the cooling fluid and consequently to one Cooling the platforms. It turned out that in this way realized cooling almost independent of fluctuations of the Operating state of the turbomachine is. Furthermore, compared to the other cooling method described above a much smaller Coolant fluid mass flow required to cool the platforms.
- the cooling channel extends at least in sections approximately parallel to the platform surface. This ensures that a large area of the platform is cooled evenly. It was found that thus a largely uniform Setting temperature distribution in the refrigerated areas of the platform. So-called 'hot spots' in the form of local overheating of the platforms become thereby avoided.
- the platforms are one-piece or multi-piece with on the platforms arranged blades executed.
- the platforms can be on the blade foot or be arranged on the blade head of the blades. Form strung together the platforms one or both side walls of the flow channel.
- the cooling channel approximately centrally between the blades to arrange.
- Particularly advantageous is the cooling channel with a Shovel profile course executed approximately similar course. It presented It turns out that an over-temperature is common in the peripheral areas and the free areas of the platforms occurs.
- the free areas of a platform are the areas that in the top view or the bottom view are not one on the Platform arranged shovel to be covered.
- the cooling channel course has at least one S-beat in such a way, in that at least a part of the cooling fluid guided in the cooling channel is the one Dividing line overflowed.
- the Cooling channel as a slot-shaped depression in the at the parting line adjacent side walls of the platform and thus not as closed Cooling channel, but is open towards the parting line, the Cooling fluid accordingly also flow into the parting line.
- the Cooling fluid supplied to the cooling channel in a simple manner via the parting line become.
- cooling channel is open towards the parting line, it is expedient to use the Cooling channel arranged by means of at least one in the cooling channel Sealing element, preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal. As a result, an outflow of the Cooling fluid prevented from the cooling channel.
- Sealing element preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal.
- an open to the parting line cooling channel is advantageous at least in a section along the parting line in a sealing chamber and a Cooling chamber divided. This subdivision of the cooling channel preferably takes place via a gradation of the channel height.
- the sealing chamber is to arrange a Sealing element expediently designed with a larger channel height.
- the Cooling chamber advantageously has a smaller channel height at the same time greater penetration depth.
- FIG. 1 shows a platform 110 for use in a turbomachine typical embodiment shown in a side view.
- the hatching was not used here, as usual, for marking cut surfaces, but merely serves to illustrate the presentation.
- the Platform 110 in one piece with one on the platform arranged blade 120 executed.
- the platform 110 is in one Arrangement shown with a rotor disc 121 of the turbomachine. This Arrangement corresponds to the typical structure of a bladed Turbine rotor of a turbomachine. Shown is only one of the am Scope of the rotor disc lined up, each with platforms running Blades. Form the platforms strung together on the circumference of the runner in this case, the hub-side side wall of the flow channel of the turbomachine.
- the hot fluid flow 125 as the main flow of Turbomachine flows in the representation from right to left along the Top of the platform 110. This results in an immediate Heat transfer between the hot fluid 125 and the platform 110.
- the Temperature of the hot fluid 125 is in this case at least in the full load range of Turbomachine above the maximum permissible material temperature of the platform.
- a cooling channel 130 arranged.
- the cooling channel 130 is approximately parallel to that of the hot Fluid flow facing top of the platform 110. According to the Representation is the cooling channel 130 as a slot-shaped depression in the Side wall of the platform 110 executed.
- Cooling channel 130 is fed here from two reservoirs with cooling fluid.
- Cooling fluid 126 flows from between the platform and the rotor disk arranged cooling fluid reservoir 155 via an opening 150 in the cooling channel 130.
- Another way of supplying cooling fluid to the cooling channel 130 results here via the lateral opening 151 of the cooling channel.
- the feed the cooling channel 130 with cooling fluid 126 is thus here in relation to the Main flow 125 upstream.
- the outflow is related to the Main flow at the downstream end of the cooling channel instead.
- the in Figure 1 illustrated cooling channel 130 ends without specially shaped outlet in the Platform 110. The cooling fluid 126 escapes via the parting line.
- FIG. 2 shows two juxtaposed platforms 210, 210 'in plan view.
- a blade 220, 220 ' is arranged in each case.
- a cooling channel 230 is arranged in the side walls of the platforms 210, 210' adjoining the parting line 211 along the parting line 211.
- the cooling channel 230 consists of slot-shaped recesses in the side walls of both platforms 210, 210 '.
- the arrangement of the cooling channel 230 was chosen in the illustrated embodiment so that the cooling channel 230 approximately centrally between the blades 220, 220 'extends and in this case has a profile similar to the blade profile.
- This profile of the cooling channel 230 which is similar to the blade profile, is achieved in that the course of the cooling channel 230 along the parting line 211 has two S-strikes.
- the sealing chamber 235 here consists of slit-shaped depressions which are arranged in both adjacent to the parting line 211 side walls with approximately the same and along the parting line 211 constant penetration depth. Furthermore, the sealing chamber 235 has a greater channel height compared to the cooling chamber 236. This feature is not apparent due to the representation perspective of Figure 2.
- the sealing element which is expediently to be arranged in the sealing chamber is not shown. This sealing element seals the cooling channel against the hot fluid flow on the top of the platforms.
- the cooling chamber 236 is designed in the same way as the sealing chamber 235 as a slot-shaped depression but with a smaller channel height. In contrast to the sealing chamber, the cooling chamber 236, however, as shown in Figure 2, a greater penetration depth in the platforms 210, 210 'a.
- the feeding of the cooling channel 230 with cooling fluid 226 takes place in relation to the hot fluid flow 225 at the upstream end of the cooling passage 230 via a longitudinal slot 250 from a lower side reservoir.
- Cooling channel 230 flows from the cooling fluid 226 the cooling channel 230 via a Outlet opening 252 in a downstream, not shown in Figure 2 Component gap.
- a seal of the cooling channel 330 is shown in FIG. 3 as a section through two Side-by-side platforms 310, 310 'shown.
- the cooling channel 330 is here from slot-shaped depressions in both to the parting line formed adjacent side walls of the platforms 310, 310 '.
- the first Platform 310 is again in one piece with one located on the platform Shovel 320 executed.
- the cooling channel 330 is over a gradation of Channel height in a sealing chamber 335 and a cooling chamber 336 divided.
- a sealing strip 340 inserted so that he in the Cooling passage 330 flowing cooling fluid to one on the tops of the Platforms adjacent fluid seals.
- the sealing strip 340 has at its at the rear end, a flange 341 on. This flange 341 serves here Guide the sealing fluid in the overflow of the parting line 311st
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Kühlung von Plattformen in Turbomaschinen, insbesondere in Gasturbinen.The invention relates to a device for cooling of platforms in Turbomachinery, in particular in gas turbines.
Der Wirkungsgrad von Turbomaschinen, insbesondere von Gasturbinen, kann
über eine Erhöhung der Kreisprozeßparameter der Turbomaschine erhöht
werden. Die relevanten Kreisprozeßparameter sind hierbei der Druck und die
Temperatur des Fluids.
Die im Betrieb von Turbomaschinen heutzutage üblicherweise auftretenden
Fluidtemperaturen liegen insbesondere im Turbineneintrittsbereich bereits
deutlich über den zulässigen Materialtemperaturen der Bauteile. Speziell die
den Strömungskanal bildenden oder in den Strömungskanal ragenden Bauteile
sind hierbei unmittelbar der heißen Fluidströmung ausgesetzt. Die durch die
Wärmeleitung des Werkstoffs bedingte Wärmeabfuhr der Bauteile ist hier in der
Regel nicht ausreichend, um eine Übertemperatur der Bauteile zu vermeiden.
Zu hohe Materialtemperaturen führen zunächst zu einem Rückgang der
Festigkeitswerte des Werkstoffs. Hierbei kommt es oftmals zur Rißbildung in
Bauteilen. Im Falles des Überschreitens der Schmelztemperatur des Werkstoffs
kommt es darüber hinaus zu einer lokalen oder auch vollständigen Zerstörung
des Bauteils. Um diese fatalen Folgen zu vermeiden, ist dafür Sorge zu tragen,
daß die Bauteiltemperaturen die maximal zulässigen Materialtemperaturen nicht
überschreiten.
Der Strömungskanal einer Turbomaschine ist oftmals aus ringförmig
aneinandergereihten Plattformen aufgebaut. Die Schaufeln der Turbomaschine
sind häufig auf derartigen Plattformen angeordnet. Zumeist ist je eine Schaufel
einteilig mit je einer Plattform ausgeführt. Insbesondere bei Statoren sind
derartige Plattformen aber auch oftmals in Form eines Deckbandes der
Beschaufelung an den Schaufelspitzen der Schaufeln angeordnet. Diese
Plattformen sind somit unmittelbar der heißen Fluidströmung ausgesetzt.
Um die maximal zulässige Materialtemperatur der Plattformen nicht zu
überschreiten, wurde bisher üblicherweise über der Kanalhöhe ein
Temperaturprofil des aus der Brennkammer austretenden Fluids, meist Luft, im
Turbineneintrittsbereich angestrebt. Dieses Temperaturprofil ließ sich über eine
Beimischung von Kühlfluid in die Randbereiche der heißen Fluidströmung im
Austrittsbereich der Brennkammer erzielen. Das unmittelbar an die
Seitenwände und somit an die Plattformen angrenzende Fluid wies daher eine
im Vergleich zur Temperatur der Kernströmung deutlich verminderte
Temperatur auf. Somit konnte eine Übertemperatur der Plattformen vermieden
werden. Als Nachteile dieses Verfahrens ergeben sich hieraus einerseits ein
über die Kanalhöhe variierender Energiegehalt der Fluidströmung. Dieser über
die Kanalhöhe variierende Energiegehalt der Fluidströmung führt wiederum zu
einer uneinheitlichen Energieumsetzung in einem nachfolgenden Rotor und
somit zu einer uneinheitlichen Belastung der Beschaufelung über der
Kanalhöhe. Als ein weiterer Nachteil dieser Zumischung von Kühlfluid zur
Hauptströmung resultiert hieraus eine Verminderung des erzielbaren
Wirkungsgrades und somit auch der Leistungsdichte der Turbomaschine. Aus
diesen Gründen wird heutzutage ein gleichmäßiges Temperaturprofil über der
Kanalhöhe angestrebt. Darüber hinaus werden moderne Brennkammern
heutzutage unter dem Aspekt der NOx-Reduktion so ausgelegt, daß keine oder
nur eine geringe Beimischung von Sekundärverbrennungsluft mehr erfolgt.
Hieraus resultiert ein sehr gleichmäßiges Temperaturprofil über der Kanalhöhe.
Dies wiederum führt zu einer Erhöhung der thermischen Belastung der Bauteile,
die der Brennkammer nachgeordnet sind, insbesondere der Seitenwände und
somit der Plattformen.
Hier wurde bisher versucht, die Plattformen durch Ausblasung eines Kühlfluides
zumeist unmittelbar stromauf der Plattformen zu kühlen. Das Kühlfluid soll
hierbei einen Kühlfilm auf der Oberseite der Plattformen ausbilden, wodurch es
zu einer fluidmechanischen Trennung zwischen dem heißen Fluid und der
jeweiligen Plattform kommt. Bei der Lösung gemäss EP 0367984 sind zu
diesem Zweck in einer Trennfuge zwischen benachbarten Plattformen
schlitzförmige Kanäle zur Verteilung des Kühlfluids angeordnet, welches über
Spaltöffnungen in der Streifendichtung zwischen den Plattformen austritt und
auf der äusseren Plattformoberfläche einen Kühlfilm bildet. Die Wirkung
derartiger Kühlfilme ist aber aufgrund der Durchmischung mit dem Heißgas
oftmals räumlich eng begrenzt. Sich ändernde Druckverhältnisse der
Heißgasströmung oder auch des Kühlfluids über den Lastbereich einer
Turbomaschine führen ebenso zu einem veränderten Kühlfilm. Um eine
ausreichende Kühlung zu gewährleisten, ist darüber hinaus ein relativ großer
Kühlfluidmassenstrom erforderlich. Dies wiederum führt zu einer Verminderung
des Wirkungsgrades der Turbomaschine. Zur Erhöhung der Kühlwirkung wird
gemäss US 5281097 angeregt, die von einer Fluidquelle zur Trennfuge
führenden Kühlkanäle gekurvt auszubilden, um damit die Wirkung der
konvektiven Kühlung auf einen grösseren Flächenbereich auszudehnen und
somit eine intensivere und gleichmässigere Kühlung der Plattformen zu
erreichen. Nach EP 0866214 verlaufen die vom Kühlfluid beaufschlagten
Kühlkanäle vollständig innerhalb der Plattformen und im wesentlichen parallel
zu deren Rändern. Diese auf Dampf als Kühlfluid ausgelegte Lösung soll
insbesondere die Kühlung der peripheren, thermisch besonders beanspruchten
Bereiche der Plattformen verbessern.The efficiency of turbomachines, in particular gas turbines, can be increased by increasing the cycle process parameters of the turbomachine. The relevant cycle process parameters are the pressure and the temperature of the fluid.
The fluid temperatures which usually occur during the operation of turbomachines today are already well above the permissible material temperatures of the components, in particular in the turbine inlet region. In particular, the components forming the flow channel or projecting into the flow channel are directly exposed to the hot fluid flow. The conditional by the heat conduction of the material heat dissipation of the components is generally not sufficient here to avoid over-temperature of the components. Too high material temperatures initially lead to a decrease in the strength values of the material. This often leads to cracking in components. In the case of exceeding the melting temperature of the material, it also leads to a local or even complete destruction of the component. To avoid these fatal consequences, care must be taken that the component temperatures do not exceed the maximum permissible material temperatures.
The flow channel of a turbomachine is often constructed of annularly lined-up platforms. The blades of the turbomachine are often arranged on such platforms. In most cases, one bucket is made in one piece with one platform each. In particular, in stators such platforms are also often arranged in the form of a shroud of the blading at the blade tips of the blades. These platforms are thus exposed directly to the hot fluid flow.
In order not to exceed the maximum permissible material temperature of the platforms, a temperature profile of the fluid emerging from the combustion chamber, usually air, in the turbine inlet region has traditionally been desired above the channel height. This temperature profile could be achieved via an admixture of cooling fluid in the edge regions of the hot fluid flow in the outlet region of the combustion chamber. The fluid immediately adjacent to the side walls and thus to the platforms therefore had a significantly reduced temperature compared to the temperature of the core flow. Thus, an over-temperature of the platforms could be avoided. As disadvantages of this method, on the one hand, this results in an energy content of the fluid flow that varies over the channel height. This varying over the channel height energy content of the fluid flow in turn leads to a non-uniform energy conversion in a subsequent rotor and thus to a non-uniform loading of the blading above the channel height. As a further disadvantage of this admixture of cooling fluid to the main flow, this results in a reduction of the achievable efficiency and thus also the power density of the turbomachine. For these reasons, a uniform temperature profile over the channel height is nowadays sought. In addition, modern combustion chambers are now designed in terms of NO x reduction so that no or little admixture of secondary combustion occurs more. This results in a very uniform temperature profile above the channel height. This in turn leads to an increase in the thermal load of the components, which are arranged downstream of the combustion chamber, in particular the side walls and thus the platforms.
Here, attempts have been made previously to cool the platforms by blowing out a cooling fluid, usually immediately upstream of the platforms. In this case, the cooling fluid is to form a cooling film on the upper side of the platforms, which leads to a fluid-mechanical separation between the hot fluid and the respective platform. In the solution according to EP 0367984 slot-shaped channels for distributing the cooling fluid are arranged for this purpose in a parting line between adjacent platforms, which exits through gap openings in the strip seal between the platforms and forms a cooling film on the outer platform surface. However, the effect of such cooling films is often limited spatially due to the mixing with the hot gas. Changing pressure conditions of the hot gas flow or the cooling fluid over the load range of a turbomachine also lead to a changed cooling film. In order to ensure sufficient cooling, moreover, a relatively large cooling fluid mass flow is required. This in turn leads to a reduction in the efficiency of the turbomachine. In order to increase the cooling effect, according to US Pat. No. 5,281,097, it is suggested that the cooling channels leading from a fluid source to the parting line be curved in order to expand the effect of the convective cooling to a larger surface area and thus to achieve a more intensive and uniform cooling of the platforms. According to EP 0866214, the cooling channels acted upon by the cooling fluid run completely within the platforms and essentially parallel to their edges. This designed to steam as a cooling fluid solution is intended in particular to improve the cooling of peripheral, thermally stressed areas of the platforms.
Der Erfindung liegt die Aufgabe zugrunde, Plattformen effizient und zuverlässig zu kühlen.The invention is based on the object, platforms efficient and reliable to cool.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zumindest in einem Abschnitt längs der zwischen benachbarten Plattformen verlaufenden Trennfuge ein Kühlkanal angeordnet ist, welcher als schlitzförmige Vertiefung in beiden an die Trennfuge angrenzenden Seitenwänden der Plattformen ausgeführt ist, und der eine sich längs der Trennfuge verändernde Eindringtiefe in der jeweiligen Plattform aufweist. This object is achieved in that at least in one Section along the running between adjacent platforms Parting line a cooling channel is arranged, which as a slot-shaped depression in both adjacent to the parting line side walls of the platforms is executed, and the one along the parting line changing depth of penetration in the respective platform.
Zweckmäßig weist das in dem Kühlkanal geführte Kühlfluid eine niedrigere Temperatur auf als die angrenzenden Plattformen. Hierdurch kommt es zu einem konvektiv bedingten Wärmeübergang zwischen den an den Kühlkanal angrenzenden Plattformen und dem Kühlfluid und infolgedessen zu einer Kühlung der Plattformen. Es stellte sich heraus, daß die in dieser Weise realisierte Kühlung nahezu unabhängig von Schwankungen des Betriebszustandes der Turbomaschine ist. Ferner ist im Vergleich zu den anderen, oben beschriebenen Kühlverfahren ein wesentlich kleinerer Kühlfluidmassenstrom zur Kühlung der Plattformen erforderlich.Suitably, the cooling fluid guided in the cooling channel has a lower one Temperature on than the adjacent platforms. This is what happens a convective heat transfer between the to the cooling channel adjacent platforms and the cooling fluid and consequently to one Cooling the platforms. It turned out that in this way realized cooling almost independent of fluctuations of the Operating state of the turbomachine is. Furthermore, compared to the other cooling method described above a much smaller Coolant fluid mass flow required to cool the platforms.
Zweckmäßig verläuft der Kühlkanal zumindest in Teilabschnitten näherungsweise parallel zur Plattformoberfläche. Hierdurch ist sichergestellt, daß ein großer Bereich der Plattform gleichmäßig gekühlt wird. Es wurde gefunden, daß sich somit eine weitestgehend gleichmäßige Temperaturverteilung in den gekühlten Bereichen der Plattform einstellt. Sogenannte 'Hot-Spots' in Form lokaler Überhitzungen der Plattformen werden hierdurch vermieden.Suitably, the cooling channel extends at least in sections approximately parallel to the platform surface. This ensures that a large area of the platform is cooled evenly. It was found that thus a largely uniform Setting temperature distribution in the refrigerated areas of the platform. So-called 'hot spots' in the form of local overheating of the platforms become thereby avoided.
Oftmals sind die Plattformen einteilig oder mehrteilig mit auf den Plattformen angeordneten Schaufeln ausgeführt. Die Plattformen können am Schaufelfuß oder am Schaufelkopf der Schaufeln angeordnet sein. Aneinandergereiht bilden die Plattformen eine oder beide Seitenwände des Strömungskanals. Hierbei ist es vorteilhaft, den Kühlkanal näherungsweise mittig zwischen den Schaufeln anzuordnen. Besonders vorteilhaft ist der Kühlkanal mit einem dem Schaufelprofilverlauf näherungsweise ähnlichen Verlauf ausgeführt. Es stellte sich heraus, daß eine Übertemperatur häufig in den Randbereichen und den freien Bereichen der Plattformen auftritt. Die freien Bereiche einer Plattform sind die Bereiche, die in der Draufsicht oder der Untersicht nicht von einer auf der Plattform angeordneten Schaufel überdeckt werden. Diese besondere Gefährdung der Randbereiche und freien Bereiche hinsichtlich Übertemperatur ist darauf zurückzuführen, daß hier aufgrund geringer Wanddicken der Plattformen eine nur geringe Wärmeabfuhr durch Wärmeleitung in der Plattform selbst stattfindet. Darüber hinaus verlaufen Kühlfluidzuleitungen zur Schaufelkühlung, sofern es sich um eine fluidgekühlte Schaufel handelt, oftmals nur in der Mitte der Plattformen durch die Plattformen in die Schaufeln. Diese Kühlfluidzuleitungen in die Schaufeln führen aber nur in ihrer unmittelbaren Umgebung zu einer Kühlung der jeweiligen Plattform. Die Randbereiche der Plattform verbleiben somit ungekühlt. Es wurde gefunden, daß ein bevorzugt näherungsweise mittig zwischen den Schaufeln angeordneter Kühlkanal hier zu einer optimalen Kühlung insbesondere der Randbereiche der Plattformen führt. Infolge des gekrümmten Profilverlaufs der Schaufeln, ist es darüber hinaus zweckmäßig, den Kühlkanal mit einem näherungsweise dem Schaufelprofilverlauf ähnlichen Verlauf in den Plattformen anzuordnen.Often the platforms are one-piece or multi-piece with on the platforms arranged blades executed. The platforms can be on the blade foot or be arranged on the blade head of the blades. Form strung together the platforms one or both side walls of the flow channel. Here is It is advantageous, the cooling channel approximately centrally between the blades to arrange. Particularly advantageous is the cooling channel with a Shovel profile course executed approximately similar course. It presented It turns out that an over-temperature is common in the peripheral areas and the free areas of the platforms occurs. The free areas of a platform are the areas that in the top view or the bottom view are not one on the Platform arranged shovel to be covered. This particular Endangerment of the edge areas and free areas with regard to overtemperature is due to the fact that here due to small wall thicknesses of Platforms only a small heat dissipation through heat conduction in the platform itself takes place. In addition, cooling fluid supply lines run to Blade cooling, if it is a fluid-cooled blade, often only in the middle of the platforms through the platforms in the blades. This Kühlfluidzuleitungen in the blades but lead only in their immediate Environment to a cooling of the respective platform. The border areas of Platform remain uncooled. It has been found that one preferred Approximately centrally between the blades arranged cooling channel here too optimal cooling in particular the edge regions of the platforms leads. Due to the curved profile of the blades, it is beyond expediently, the cooling channel with an approximately the Shovel profile course similar course in the platforms to arrange.
Vorteilhaft weist der Kühlkanalverlauf zumindest einen S-Schlag dergestalt auf, daß zumindest ein Teil des in dem Kühlkanal geführten Kühlfluids die Trennfuge überströmt. Hierdurch ist es möglich, zumindest Teilbereiche beider Plattformen mit nur einem Kühlkanal zu kühlen. Insbesondere im Falle der Anordnung von Schaufeln auf den Plattformen, ist somit lediglich ein Kühlkanal zur Kühlung der Bereiche zwischen jeweils zwei Schaufeln erforderlich.Advantageously, the cooling channel course has at least one S-beat in such a way, in that at least a part of the cooling fluid guided in the cooling channel is the one Dividing line overflowed. This makes it possible to at least parts of both To cool platforms with only one cooling channel. Especially in the case of Arrangement of blades on the platforms, is thus only a cooling channel to cool the areas between each two blades required.
Indem der Kühlkanal als schlitzförmige Vertiefung in den an die Trennfuge angrenzenden Seitenwänden der Plattform und somit nicht als geschlossener Kühlkanal, sondern gegenüber der Trennfuge hin offen ausgeführt ist, kann das Kühlfluid demgemäß auch in die Trennfuge einströmen. Dies führt vorteilhaft auch zu einer Kühlung der Seitenwände der Trennfuge. Ferner kann das Kühlfluid dem Kühlkanal in einfacher Weise über die Trennfuge zugeführt werden.By the cooling channel as a slot-shaped depression in the at the parting line adjacent side walls of the platform and thus not as closed Cooling channel, but is open towards the parting line, the Cooling fluid accordingly also flow into the parting line. This leads to advantage also to a cooling of the side walls of the parting line. Furthermore, the Cooling fluid supplied to the cooling channel in a simple manner via the parting line become.
Verläuft der Kühlkanal zur Trennfuge hin offen, so ist es zweckmäßig, den Kühlkanal mittels zumindest eines in dem Kühlkanal angeordneten Dichtelements, bevorzugt eines in den Kühlkanal eingelegten Dichtstreifens, gegenüber einem auf der Oberseite der Plattformen anliegenden Fluides, in der Regel dem heißen Fluid, abzudichten. Hierdurch wird ein Ausströmen des Kühlfluides aus dem Kühlkanal verhindert. If the cooling channel is open towards the parting line, it is expedient to use the Cooling channel arranged by means of at least one in the cooling channel Sealing element, preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal. As a result, an outflow of the Cooling fluid prevented from the cooling channel.
Ferner ist ein zur Trennfuge hin offener Kühlkanal vorteilhaft zumindest in einem Abschnitt längs der Trennfuge in eine Dichtkammer und eine Kühlkammer unterteilt. Bevorzugt erfolgt diese Unterteilung des Kühlkanals über eine Stufung der Kanalhöhe. Die Dichtkammer ist zur Anordnung eines Dichtelements zweckmäßig mit einer größeren Kanalhöhe ausgeführt. Die Kühlkammer weist hingegen vorteilhaft eine kleinere Kanalhöhe bei gleichzeitig größerer Eindringtiefe auf.Furthermore, an open to the parting line cooling channel is advantageous at least in a section along the parting line in a sealing chamber and a Cooling chamber divided. This subdivision of the cooling channel preferably takes place via a gradation of the channel height. The sealing chamber is to arrange a Sealing element expediently designed with a larger channel height. The Cooling chamber, however, advantageously has a smaller channel height at the same time greater penetration depth.
Zweckmäßig erfolgt die Zuführung des Kühlfluides zum Kühlkanal in Bezug zu einer die Plattformen überströmenden Hauptströmung stromauf, wohingegen der Auslaß zweckmäßig stromab erfolgt. Hierbei kann das Kühlfluid in die Hauptströmung oder aber auch in einen nachgeordneten Spalt entweichen. In einigen Fällen wird es darüber hinaus sinnvoll sein, das Kühlfluid weiterhin zur Kühlung in einem Kühlkanal einzusetzen.Suitably, the supply of the cooling fluid to the cooling channel with respect to a main flow overflowing the platforms upstream, whereas the outlet is expedient downstream. Here, the cooling fluid in the Mainstream or escape into a downstream gap. In In some cases, it will also make sense to continue the cooling fluid for Use cooling in a cooling channel.
In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Erfindung ist hierbei aber nicht nur auf diese Ausführungsbeispiele beschränkt, sondern kann auch von diesen Ausführungsbeispielen abweichend realisiert werden.In the drawings, embodiments of the invention are shown. The However, the invention is not limited to these exemplary embodiments, but can also be realized deviating from these embodiments become.
Es zeigen:
- Fig. 1
- eine Plattform mit einem in der Plattform angeordneten Kühlkanal in der Seitenansicht
- Fig. 2
- zwei aneinandergereihte Plattformen mit auf den Plattformen angeordneten Schaufeln und einem längs der Trennfuge zwischen den Plattformen angeordneten Kühlkanal in der Draufsicht
- Fig. 3
- einen Schnitt durch zwei nebeneinander angeordnete Plattformen mit einem in den Plattformen angeordneten Kühlkanal
- Fig. 1
- a platform with a cooling channel arranged in the platform in the side view
- Fig. 2
- two juxtaposed platforms with arranged on the platforms blades and along the parting line between the platforms arranged cooling channel in plan view
- Fig. 3
- a section through two juxtaposed platforms with a cooling channel arranged in the platforms
In Figur 1 ist eine Plattform 110 in einer für den Einsatz in einer Turbomaschine
typischen Ausführung in einer Seitenansicht dargestellt. Die Schraffur wurde
hier nicht, wie üblicherweise, zur Kennzeichnung von Schnittflächen verwendet,
sondern dient lediglich der Veranschaulichung der Darstellung. Gemäß der
Darstellung ist die Plattform 110 hier einteilig mit einer auf der Plattform
angeordneten Schaufel 120 ausgeführt. Ferner ist die Plattform 110 in einer
Anordnung mit einer Läuferscheibe 121 der Turbomaschine dargestellt. Diese
Anordnung entspricht dem typischen Aufbau eines beschaufelten
Turbinenrotors einer Turbomaschine. Dargestellt ist jedoch nur eine der am
Umfang der Läuferscheibe aufgereihten, jeweils mit Plattformen ausgeführten
Schaufeln. Die am Umfang des Läufers aneinandergereihten Plattformen bilden
hierbei die nabenseitige Seitenwand des Strömungskanals der Turbomaschine.
Zwischen der dargestellten Plattform 110 und der nächsten, unmittelbar
angrenzend angeordneten Plattform verläuft eine Trennfuge zwischen den
Plattformen. Die heiße Fluidströmung 125 als die Hauptströmung der
Turbomaschine strömt in der Darstellung von rechts nach links entlang der
Oberseite der Plattform 110. Hierdurch kommt es zu einer unmittelbaren
Wärmeübertragung zwischen dem heißen Fluid 125 und der Plattform 110. Die
Temperatur des heißen Fluids 125 liegt hierbei zumindest im Volllastbereich der
Turbomaschine über der maximal zulässigen Materialtemperatur der Plattform.
Um eine Übertemperatur der Plattform 110 zu verhindern, ist in der
dargestellten Plattform 110 erfindungsgemäß ein Kühlkanal 130 angeordnet.
Der Kühlkanal 130 verläuft näherungsweise parallel zu der der heißen
Fluidströmung zugewandten Oberseite der Plattform 110. Gemäß der
Darstellung ist der Kühlkanal 130 als schlitzförmige Vertiefung in der
Seitenwand der Plattform 110 ausgeführt. Zu berücksichtigen ist hierbei, daß in
Figur 1 nur eine der beiden an den Trennspalt angrenzenden Plattformen
dargestellt ist. Der vollständige Kühlkanal erstreckt sich jedoch anteilig auf
beide Plattformen. Im Folgenden wird zur Vereinfachung der Beschreibung
davon ausgegangen, daß sich der Kühlkanal nur in die dargestellte Plattform
erstreckt. Über eine Stufung der Kanalhöhe ist der hier dargestellte Kühlkanal
130 in zwei zur Trennfuge hin offene Kammern unterteilt. Die vordere Kammer
ist als Dichtkammer 135 mit einer großen Kanalhöhe ausgeführt. Mit einer
tieferen Eindringtiefe in die Plattform als die Dichtkammer ist hinter der
Dichtkammer ferner eine Kühlkammer 136 angeordnet. Diese Kühlkammer 136
weist eine geringere Kanalhöhe auf als die Dichtkammer 135 und erstreckt sich
auch in ihrer Länge auch nur über einen Abschnitt der Dichtkammer 135. Der
Kühlkanal 130 wird hier aus zwei Reservoirs mit Kühlfluid gespeist. Einerseits
strömt Kühlfluid 126 aus einem zwischen der Plattform und der Läuferscheibe
angeordneten Kühlfluidreservoir 155 über eine Öffnung 150 in den Kühlkanal
130. Eine weitere Möglichkeit der Zuführung von Kühlfluid zu dem Kühlkanal
130 ergibt sich hier über die seitliche Öffnung 151 des Kühlkanals. In der
zusammengebauten Anordnung der Turbomaschine mündet die seitliche
Öffnung 151 des Kühlkanals in den Bauteilspalt zwischen dem Rotor und dem
in Bezug zur Hauptströmung 125 stromauf angeordneten Bauteil. Die Speisung
des Kühlkanals 130 mit Kühlfluid 126 erfolgt hier somit in Bezug zu der
Hauptströmung 125 stromauf. Die Abströmung findet hingegen in Bezug zu der
Hauptströmung am stromabwärtigen Ende des Kühlkanals statt. Der in Figur 1
dargestellte Kühlkanal 130 endet ohne speziell ausgeformten Auslaß in der
Plattform 110. Das Kühlfluid 126 entweicht über die Trennfuge.FIG. 1 shows a
Figur 2 zeigt zwei nebeneinander angeordnete Plattformen 210, 210' in der
Draufsicht. Auf jeder Plattform ist jeweils eine Schaufel 220, 220' angeordnet.
Die Plattformen 210, 210' sind ist hierbei jeweils einteilig mit den Schaufeln 220,
220' ausgeführt. Die dreidimensional geformten Schaufeln 220, 220' sind über
Schnitte am Schaufelfuß sowie in der Mitteischnittsebene des Strömungskanals
als auch in der Draufsicht dargestellt. Ferner sind die Schaufeln 220, 220' hier
als gekühlte Turbinenschaufeln ausgeführt. Zwischen den Plattformen 210, 210'
verläuft eine Trennfuge 211. Erfindungsgemäß ist in den an die Trennfuge 211
angrenzenden Seitenwänden der Plattformen 210, 210' längs der Trennfuge
211 ein Kühlkanal 230 angeordnet. Der Kühlkanal 230 besteht aus
schlitzförmigen Vertiefungen in den Seitenwänden beider Plattformen 210, 210'.
Die Anordnung des Kühlkanals 230 wurde in der dargestellten Ausführung so
gewählt, daß der Kühlkanal 230 näherungsweise mittig zwischen den Schaufeln
220, 220' verläuft und hierbei einen dem Schaufelprofil ähnlichen Verlauf
aufweist. Dieser dem Schaufelprofil ähnliche Verlauf des Kühlkanals 230 wird
dadurch erzielt, daß der Verlauf des Kühlkanals 230 längs der Trennfuge 211
zwei S-Schläge aufweist. Diese S-Schläge sind so angeordnet, daß jeweils
zumindest ein Teil des in dem Kühlkanal 230 geführten Kühlfluids 226 die
Trennfuge 211 überströmt. Infolge des Verlaufs des Kühlkanals 230
entsprechend Figur 2 wird eine optimale Kühlung der Randbereiche und der
freien Bereiche der Plattformen 210, 210' erzielt. Die freien Bereiche einer
Plattform sind hierbei diejenigen Bereiche, die in der Draufsicht nicht von einer
auf der Plattform angeordneten Schaufel überdeckt werden. Der Kühlkanal 230
weist hierzu entsprechend dem zu kühlenden Bereich eine sich längs der
Trennfuge 211 verändernde Eindringtiefe in der jeweiligen Plattform 210, 210'
auf.
Der in Figur 2 dargestellte Kühlkanal 230 weist zusätzlich eine Unterteilung des
Kühlkanals 230 in eine Dichtkammer 235 und eine Kühlkammer 236 auf. Die
Dichtkammer 235 besteht hierbei aus schlitzförmigen Vertiefungen, die in
beiden an die Trennfuge 211 angrenzenden Seitenwänden mit annähernd
gleicher und längs der Trennfuge 211 konstanter Eindringtiefe angeordnet sind.
Ferner weist die Dichtkammer 235 im Vergleich zu der Kühlkammer 236 eine
größere Kanalhöhe auf. Dieses Merkmal ist aufgrund der
Darstellungsperspektive der Figur 2 nicht zu entnehmen. Ebenso ist in Figur 2
das in der Dichtkammer zweckmäßig anzuordnende Dichtelement nicht
abgebildet. Dieses Dichtelement dichtet den Kühlkanal gegenüber der heißen
Fluidströmung auf der Oberseite der Plattformen ab. Die Kühlkammer 236 ist in
gleicher Weise wie die Dichtkammer 235 als schlitzförmige Vertiefung mit
jedoch einer kleineren Kanalhöhe ausgeführt. Im Vergleich zur Dichtkammer
weist die Kühlkammer 236 hingegen, wie in Figur 2 dargestellt, eine größere
Eindringtiefe in die Plattformen 210, 210' ein. Figure 2 shows two juxtaposed
The cooling
Die Speisung des Kühlkanals 230 mit Kühlfluid 226 erfolgt in Bezug zu der
heißen Fluidströmung 225 an dem stromaufwärtigen Ende des Kühlkanals 230
über einen Längsschlitz 250 aus einem unterseitigen Reservoir. Am Ende des
Kühlkanals 230 entströmt das Kühlfluid 226 dem Kühlkanal 230 über eine
Austrittsöffnung 252 in einen nachgeordneten, in Figur 2 nicht dargestellten
Bauteilspalt.The feeding of the
Eine Abdichtung des Kühlkanals 330 ist in Figur 3 als Schnitt durch zwei
nebeneinander angeordnete Plattformen 310, 310' dargestellt. Der Kühlkanal
330 wird hier aus schlitzförmigen Vertiefungen in beiden an die Trennfuge
angrenzenden Seitenwänden der Plattformen 310, 310' gebildet. Die erste
Plattform 310 ist wiederum einteilig mit einer auf der Plattform angeordneten
Schaufel 320 ausgeführt. Der Kühlkanal 330 ist über eine Stufung der
Kanalhöhe in eine Dichtkammer 335 und eine Kühlkammer 336 unterteilt. In die
Dichtkammer 335 ist hier ein Dichtstreifen 340 so eingelegt, daß er das in dem
Kühlkanal 330 strömende Kühlfluid gegenüber einem auf den Oberseiten der
Plattformen anliegenden Fluid abdichtet. Der Dichtstreifen 340 weist an seinem
hinteren Ende eine Bördelung 341 auf. Diese Bördelung 341 dient hier der
Führung des Dichtfluids bei dem Überströmen der Trennfuge 311.A seal of the
- 110,210,310110,210,310
- (erste) Plattform(first) platform
- 210',310'210 ', 310'
- (zweite) Plattform(second) platform
- 211,311211.311
- Trennfugeparting line
- 120,220,220',320120,220,220 ', 320
- Schaufelshovel
- 121121
- Läuferscheiberotor disc
- 125,225125.225
- Strömung des heißen Fluides (Hauptströmung durch die Turbomaschine)Flow of hot fluid (main flow through the Turbomachinery)
- 126,226126.226
- Kühlfluidcooling fluid
- 130,230,330130,230,330
- Kühlkanalcooling channel
- 135,235,335135,235,335
- Dichtkammersealing chamber
- 136,236,336136,236,336
- Kühlkammercooling chamber
- 340340
- Dichtstreifensealing strips
- 341341
- Bördelungflanging
- 150,151,250150,151,250
- Zuströmöffnunginflow
- 252252
- Austrittsöffnungoutlet opening
- 155155
- KühlfluidreservoirCooling fluid reservoir
Claims (5)
- Platforms of a turbomachine, in particular a gas turbine, at least two platforms (_10, _10') being arranged next to one another, and a separating gap (_11) running between the platforms (_10, _10'), and, to cool the platforms (_10, _10') by means of a cooling fluid (226), a cooling passage (_30) being arranged at least in one section along the separating gap (_11), this cooling passage (_30) being designed as a slit-like recess in both side walls, adjacent to the separating gap (_11), of the platforms (_10; _10'), characterized in that the cooling passage (_30) has a depth of penetration varying along the separating gap (_11) in the respective platform (_10; _10').
- Platforms of a turbomachine according to Claim 1 characterized in that blades (_20, _20') are arranged on the platforms (_10, _10'), and the cooling passage (_30) is arranged approximately centrally between the blades (_20, _20') with a course similar to the blade profile.
- Platforms of a turbomachine according to Claim 1 characterized in that the course of the cooling passage (_30) has at least one S-turn designed in such a way that at least some of the cooling fluid (226) directed in the cooling passage (_30) flows over the separating gap (_11).
- Platforms of a turbomachine according to Claim 1 characterized in that the cooling passage (_30), by means of at least one sealing strip (340) arranged in the cooling passage (30), is sealed off from a fluid in contact with the top side of the platforms (_10, _10').
- Platforms of a turbomachine according to Claim 4, characterized in that the cooling passage (_30), at least in a section along the separating gap (_11), via a graduation of the passage height, is subdivided into a sealing chamber (_35) and a cooling chamber (_36).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98811219A EP1008723B1 (en) | 1998-12-10 | 1998-12-10 | Platform cooling in turbomachines |
DE59810806T DE59810806D1 (en) | 1998-12-10 | 1998-12-10 | Platform cooling in turbomachinery |
US09/456,332 US6309175B1 (en) | 1998-12-10 | 1999-12-08 | Platform cooling in turbomachines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98811219A EP1008723B1 (en) | 1998-12-10 | 1998-12-10 | Platform cooling in turbomachines |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1008723A1 EP1008723A1 (en) | 2000-06-14 |
EP1008723B1 true EP1008723B1 (en) | 2004-02-18 |
Family
ID=8236479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98811219A Expired - Lifetime EP1008723B1 (en) | 1998-12-10 | 1998-12-10 | Platform cooling in turbomachines |
Country Status (3)
Country | Link |
---|---|
US (1) | US6309175B1 (en) |
EP (1) | EP1008723B1 (en) |
DE (1) | DE59810806D1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4508482B2 (en) * | 2001-07-11 | 2010-07-21 | 三菱重工業株式会社 | Gas turbine stationary blade |
US6945749B2 (en) * | 2003-09-12 | 2005-09-20 | Siemens Westinghouse Power Corporation | Turbine blade platform cooling system |
GB0328952D0 (en) * | 2003-12-12 | 2004-01-14 | Rolls Royce Plc | Nozzle guide vanes |
US7097417B2 (en) * | 2004-02-09 | 2006-08-29 | Siemens Westinghouse Power Corporation | Cooling system for an airfoil vane |
US7309212B2 (en) * | 2005-11-21 | 2007-12-18 | General Electric Company | Gas turbine bucket with cooled platform leading edge and method of cooling platform leading edge |
US7416391B2 (en) * | 2006-02-24 | 2008-08-26 | General Electric Company | Bucket platform cooling circuit and method |
US7604456B2 (en) * | 2006-04-11 | 2009-10-20 | Siemens Energy, Inc. | Vane shroud through-flow platform cover |
EP1892383A1 (en) * | 2006-08-24 | 2008-02-27 | Siemens Aktiengesellschaft | Gas turbine blade with cooled platform |
US8152436B2 (en) | 2008-01-08 | 2012-04-10 | Pratt & Whitney Canada Corp. | Blade under platform pocket cooling |
US8727726B2 (en) * | 2009-08-11 | 2014-05-20 | General Electric Company | Turbine endwall cooling arrangement |
US8647064B2 (en) | 2010-08-09 | 2014-02-11 | General Electric Company | Bucket assembly cooling apparatus and method for forming the bucket assembly |
US9416666B2 (en) * | 2010-09-09 | 2016-08-16 | General Electric Company | Turbine blade platform cooling systems |
US9366142B2 (en) | 2011-10-28 | 2016-06-14 | General Electric Company | Thermal plug for turbine bucket shank cavity and related method |
US8870525B2 (en) | 2011-11-04 | 2014-10-28 | General Electric Company | Bucket assembly for turbine system |
US8845289B2 (en) | 2011-11-04 | 2014-09-30 | General Electric Company | Bucket assembly for turbine system |
US8858160B2 (en) | 2011-11-04 | 2014-10-14 | General Electric Company | Bucket assembly for turbine system |
US8840370B2 (en) | 2011-11-04 | 2014-09-23 | General Electric Company | Bucket assembly for turbine system |
US9022735B2 (en) | 2011-11-08 | 2015-05-05 | General Electric Company | Turbomachine component and method of connecting cooling circuits of a turbomachine component |
EP2762679A1 (en) * | 2013-02-01 | 2014-08-06 | Siemens Aktiengesellschaft | Gas Turbine Rotor Blade and Gas Turbine Rotor |
WO2015026430A1 (en) * | 2013-08-20 | 2015-02-26 | United Technologies Corporation | Ducting platform cover plate |
WO2015088699A1 (en) * | 2013-12-09 | 2015-06-18 | United Technologies Corporation | Gas turbine engine component mateface surfaces |
US20190085706A1 (en) * | 2017-09-18 | 2019-03-21 | General Electric Company | Turbine engine airfoil assembly |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4902198A (en) * | 1988-08-31 | 1990-02-20 | Westinghouse Electric Corp. | Apparatus for film cooling of turbine van shrouds |
GB2251897B (en) * | 1991-01-15 | 1994-11-30 | Rolls Royce Plc | A rotor |
US5281097A (en) * | 1992-11-20 | 1994-01-25 | General Electric Company | Thermal control damper for turbine rotors |
US5382135A (en) * | 1992-11-24 | 1995-01-17 | United Technologies Corporation | Rotor blade with cooled integral platform |
US5634766A (en) * | 1994-08-23 | 1997-06-03 | General Electric Co. | Turbine stator vane segments having combined air and steam cooling circuits |
JP3457831B2 (en) * | 1997-03-17 | 2003-10-20 | 三菱重工業株式会社 | Gas turbine blade cooling platform |
-
1998
- 1998-12-10 EP EP98811219A patent/EP1008723B1/en not_active Expired - Lifetime
- 1998-12-10 DE DE59810806T patent/DE59810806D1/en not_active Expired - Lifetime
-
1999
- 1999-12-08 US US09/456,332 patent/US6309175B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6309175B1 (en) | 2001-10-30 |
DE59810806D1 (en) | 2004-03-25 |
EP1008723A1 (en) | 2000-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1008723B1 (en) | Platform cooling in turbomachines | |
DE60128865T2 (en) | Cooling for a turbine shroud ring | |
DE2837123C2 (en) | Turbomachinery blade | |
DE2718661C2 (en) | Guide vane grille for a gas turbine with an axial flow | |
DE602005000350T2 (en) | Turbine stator blade with improved cooling | |
DE69915786T2 (en) | Turbine blade with cooled platform | |
DE60016058T2 (en) | Cooled turbine shroud | |
DE69515442T2 (en) | Cooling of turbine blade tips | |
DE69910913T2 (en) | Coolable blade for gas turbines | |
DE69822100T2 (en) | turbine blade | |
DE69922328T2 (en) | Turbine blade with double end rib | |
EP1614859B1 (en) | Film cooled turbine blade | |
DE1946535C3 (en) | Component for a gas turbine engine | |
DE69324506T2 (en) | COOLED TURBINE BLADE | |
DE60027967T2 (en) | Turbine blade with thermally insulated tip | |
EP1907670B1 (en) | Cooled turbine blade for a gas turbine and use of such a turbine blade | |
DE60021650T2 (en) | Cooling channels with Tublenzerzeugern for the exit edges of gas turbine guide vanes | |
EP2828484B2 (en) | Turbine blade | |
EP1191189A1 (en) | Gas turbine blades | |
DE1476804A1 (en) | Turbine blade with aerofoil profile | |
DE60021658T2 (en) | Trailing edge cooling of a turbine blade | |
EP1112439A1 (en) | Turbine bucket | |
DE3015653A1 (en) | AIR-COOLED BLADE REINFORCING TAPE OF A TURBINE ROTOR WITH BRACKETS | |
DE2906365A1 (en) | TURBINE SHOVEL | |
CH642428A5 (en) | COVER ARRANGEMENT IN A TURBINE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001027 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM POWER (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17Q | First examination report despatched |
Effective date: 20020716 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59810806 Country of ref document: DE Date of ref document: 20040325 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040603 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: UWE ROESLER, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 19 Ref country code: DE Payment date: 20161213 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59810806 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171210 |