EP1008204A4 - Rugged gas tube rf cellular antenna - Google Patents
Rugged gas tube rf cellular antennaInfo
- Publication number
- EP1008204A4 EP1008204A4 EP98901195A EP98901195A EP1008204A4 EP 1008204 A4 EP1008204 A4 EP 1008204A4 EP 98901195 A EP98901195 A EP 98901195A EP 98901195 A EP98901195 A EP 98901195A EP 1008204 A4 EP1008204 A4 EP 1008204A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- radio frequency
- electrically conductive
- filled tube
- gas filled
- conductive path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/364—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
- H01Q1/366—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/26—Supports; Mounting means by structural association with other equipment or articles with electric discharge tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/005—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements for radiating non-sinusoidal waves
Definitions
- This invention pertains to radio frequency (RF) antennae, and in particular to RF antennae adapted for short bursts of signal transmission, where a short burst is characterized by a discrete signal with no residual antenna resonance.
- US patents 3,404,403 and 3,719,829 describe the use of a plasma column formed in air by laser radiation as the antenna transmission element .
- the antenna represents a conducting wire which is sized to emit radiation at one or more selected frequencies.
- the antenna is adjusted in length to correspond to a resonating multiplier of the wavelength of frequency to be transmitted. Accordingly, typical antenna configurations will be represented by quarter, half and full wavelengths of the desired frequency.
- Effective radiation means that the signal is transmitted efficiently. Efficient transfer of RF energy is achieved when the maximum amount of signal strength sent to the antenna is expended into the propagated wave, and not wasted in antenna reflection. This efficient transfer occurs when the antenna is an appreciable fraction of transmitted frequency wavelength.
- the antenna will then resonate with RF radiation at some multiple of the length of the antenna.
- this essential resonating property is fundamental to the construction of an effective antenna, it also creates a dichotomy where a short burst of RF radiation is desired. For example, in many instances, a short pulse of emitted RF radiation is desired in a discrete packet having sharply defined beginning and ending points.
- a short pulse of emitted RF radiation is desired in a discrete packet having sharply defined beginning and ending points.
- One such application is in radar transmissions where reflections of the radiation are of primary interest. These reflections (backscatter) occur as the electromagnetic radiation passes through materials of differing dielectric constant. It is often desirable that these reflections provide detectable properties that whose interpretation can identify the object of interest (airplane, missile, etc.). The predictability of the reflected signal is in part dependent upon the uniform nature of emitted signals at the antenna and interference by secondary reflections with the returning signal.
- FIG. 1 illustrates a one cycle signal 10 such as might be broadcast from a conventional antenna.
- the RF transmission coupled to the antenna is cut off; however, a residual signal 11 continues to oscillate over the trailing period despite termination of RF transmission energy to the antenna.
- this trailing resonance signal 11 causes numerous reflections that create a complex array of unmanageable backscatter signals that generally resemble clutter.
- a further object of this invention is to provide an antenna for use with penetrating microwave radar that avoids unnecessary reflected signals from trailing antenna resonance signals.
- Another object of the present invention is the development of an antenna useful for transmitting short pulse signals for data transmission through barriers that tend to reflect radio frequency transmissions.
- Yet another object of the invention is to provide an antenna useful for transmitting discrete signal packets that can be recognized as digital data by digital communication devices. Still another object is to provide an antenna capable of generating a single pulse signal without transmission of a trailing resonance signal where the antenna body is a gas tube which is ruggedized for environments which are more harsh than those typically encountered inside an office.
- Another object is to adapt the ruggedized invention for use in digital cellular phones to thereby increase transmission rates of digital data.
- an antenna device for transmitting a short pulse duration signal of predetermined radio frequency which includes a gas filled ionization tube as the transmitting element. Means are provided for developing an electrically conductive path along a length of the ionization tube corresponding to a resonant wavelength multiple of the predetermined radio frequency. A signal transmission source is also coupled to the tube for supplying a radio frequency signal to the electronically conductive path for antenna transmission. Also disclosed is a method for generating a momentary antenna for transmission of short pulse, radio frequency signals with no trailing resonance transmissions.
- This method includes the steps of: a) selecting a gas tube with a length corresponding to a resonating multiple of a wavelength for the radio frequency signals to be transmitted; b) momentarily ionizing or otherwise energizing the gas tube to an electrically conductive state; c) transmitting the short pulse, radio frequency signals to the ionized gas tube; and d) immediately terminating the electrically conductive state of the gas tube following transmission of the short pulse radio frequency signals.
- Figure 1 shows a graphic illustration of a signal transmitted from a conventional antenna, including a residual signal resonating after termination of an RF signal source at a specified time T ⁇ .
- Figure 2 illustrates in block diagram an embodiment of the present invention as a penetrating microwave radar.
- Figure 3 depicts a short pulse signal transmitted in accordance with the present invention.
- Figure 4 shows a graphic representation of the transmitted signal of Figure 3.
- Figure 5 shows a block diagram of an embodiment of the present invention incorporated into a computer local area network (LAN) .
- LAN local area network
- Figure 6 shows an alternate configuration of antenna for use in the computer local area network of Figure 5.
- Figure 7 is an illustration of another alternative embodiment of the present invention which adapts the gas tube enclosure of the antenna for use in physically harsh environments where the antenna is likely to have contact with object that can cause damage.
- this embodiment contemplates a frame for the gas tube antenna so that the invention is used in digital cellular telephones.
- Figure 8 is an illustration of another alternative embodiment of the present invention which adapts the gas tube enclosure of the antenna for use in physically harsh environments by providing a flexible antenna.
- An antenna device 20 for transmitting a short pulse duration signal of predetermined radio frequency is shown as part of an RF transmitting system in Figure 2.
- the system includes a gas filled ionization tube 21, and an ionization power source 22 or other means for developing an electrically conductive path 23 along a length of the ionization tube 21 corresponding to a resonant wavelength multiple of the predetermined radio frequency.
- ionization tube is used in a broader sense than merely development of an ionized state of the contained gas.
- the meaning includes all gas tubes which are able to provide a conducting path capable of operating as a transmitting antenna.
- conventional gas tubes containing neon, xenon, argon and krypton, as well as mixtures thereof may be applied as part of this system.
- the ionization tube 21 includes opposing electrodes
- An RF signal transmission source 24 is coupled to the ionization tube 21 for supplying a radio frequency signal 25 to the conductive path 23 for antenna transmission.
- a signal source may include any conventional signal generating means that produces radar frequencies, AM or FM signals, as well as digital spread spectrum signals 25 which transmit short bursts of RF radiation separated by discrete time spans that provide the data carrier.
- Such signal transmission sources for initiating digitized data transmissions in short, noncontinuous bursts are well known in the industry.
- the power source 22 coupled to the opposing electrodes can be any voltage source capable of establishing the threshold voltage required to maintain a conductive state within the gas tube 21 for the desired transmission duration.
- Radio frequency decoupling means such as inductors or chokes 30, 31 are positioned electrically between the ionization tube 21 and the power source 22 to prevent undesired radio frequency signals of the power source 22 from being coupled into and corrupting the electrically conductive path 23 with spurious signals.
- a spike voltage or other form of trigger means 34 is coupled to the ionization tube for initiating the electrically conductive path 23. This is required where the initial threshold voltage to develop electron flow is higher than the voltage required to maintain such a path.
- This trigger voltage can be supplied by a capacitor or other form of pulse generator. Where the conductive path 23 within the ionization tube 21 is sufficiently short and the respective initiating and maintenance voltages for conductivity are approximately the same, voltage levels supplied by the radio frequency to be transmitted may be sufficient to create the ionized state of gas and transmit, without the need for separate triggering or ionized state maintenance means.
- the triggering means 34 or RF source 24 may also include a timing circuit for correlating and synchronizing (i) initiation of the conductive path 23 immediately prior to arrival of the radio frequency signal 25 to be transmitted, and (ii) cut-off for terminating conductivity of the ionization tube 21 immediately subsequent to transmission of the radio frequency signal 25.
- a timing circuit for correlating and synchronizing (i) initiation of the conductive path 23 immediately prior to arrival of the radio frequency signal 25 to be transmitted, and (ii) cut-off for terminating conductivity of the ionization tube 21 immediately subsequent to transmission of the radio frequency signal 25.
- a significant advantage of the gas tube configuration of antenna in accordance with the present invention is its ability to be adapted to different lengths and geometric configurations. Unlike the laser monopole antenna of the prior art that by its nature is created in a straight line configuration, fluorescent tubes of gas are created in many shapes and are limited only by the dynamics of the material used for construction. In essence, this enables implementation of the substantial technology which has developed with respect to wave shaping based on specific antenna geometries. In addition, tube lengths can be tailored to any desired harmonic multiplier of the wavelength to be broadcast. This includes a conventional one-quarter wavelength design that is noted for efficient transfer of RF energy to the propagated electromagnetic waveform. There are several other advantages of the gas tube configuration over the prior art laser monopole antenna.
- the ionized trail 23 in the tube 21 requires less energy to maintain its ionized state because the tube confines the gas, preventing dissipation. Using less energy enables the applied radio frequency transmission 25, in some cases, to supply the energy to the gas necessary to maintain the ionized state. This reduces reliance on an external source of power to ionize the gas and prepare for transmission of the signal.
- the ability to use different gases also gives an advantage over using air as the ionized antenna medium.
- the present invention is not limited to the rise and fall time characteristics of air, but can instead take advantage of other gases, or a mixture of gases.
- the selection of specific gases and tube environments can also be tailored to control physical operating parameters of the gas tube antenna. For example, each gas has a characteristic rise and fall time associated with its conductive state.
- voltage of the gas tube is represented versus time, illustrating rise and fall times 40, 42.
- the level section 41 of the waveform conforms to the period of conductivity of the gas tube.
- the rise time extends from Tj . to T 2 and the fall time covers the time span from
- T 3 to T 4 In most instances of short pulse transmissions, minimizing the rise and fall time is desired to enable short and rapid bursts of transmission signal 43. Obviously, the shorter the fall time 42, the shorter the trailing resonance signal will be.
- rise time 40 the more rapid is the potential repetition rate of transmission of short energy bursts.
- Rise and fall times should be less than 100 nanoseconds to enable the antenna to be used in short pulse transmissions.
- the superimposed transmission signal 43 of Figure 3 is isolated in Figure 4.
- the advantage of the gas tube antenna is clear, in view of the uniform wave configuration 50 with nominal trailing edge 51.
- the occurrence of a single pulse package of uniform frequency and amplitude greatly reduces the types and number of reflected signals which must be analyzed for detection of target objects.
- the transmission of digital pulses as part of a data train is enabled because of the absence of post transmission radiation following each energy burst as is shown in Figure 2, item 25.
- the method involves the steps of: a) selecting a gas tube with a length corresponding to a resonating multiple of a wavelength for the radio frequency signals to be transmitted; b) momentarily ionizing or otherwise energizing the gas tube to an electrically conductive state; c) transmitting the short pulse, radio frequency signals to the ionized gas tube; and d) immediately terminating the conductive state of the gas tube following transmission of the short pulse radio frequency signals.
- the momentary antenna will not be restricted to broadcasting at only one frequency. Although certain transmission wavelengths will inherently have better power transfer efficiency, the same antenna could generate signals at radio frequencies of other resonating multiples of a wavelength of the frequency being transmitted. This ability will enable multiplexing and transmission of various radio frequencies using the same length gas tube. Other procedures to be included as part of this methodology will be apparent to those skilled in the art, based upon the preceding description.
- Figure 5 illustrates an example of short pulse transmission application in the field of wireless digital communications. More specifically, the present invention is ideally suited for computer local area networks (LANs) .
- Computer networks use packets of digital data to communicate, typically over a cable or wire medium. Digital data is not transmitted in its raw binary, octal or hexadecimal format, but is instead encoded for such purposes as more efficient speed, error correction, and security when transmitted over a LAN. There are many ways to encode and subsequently decode digital data. The resulting rules and methods are defined as transmission protocols. A transmission protocol determines what digital data will be transmitted in a single packet. A packet contains sufficient data to define the type of transmission protocol used to encode the data carried by the packet so that receiving devices can extract the useful digital data.
- a transmission protocol determines what digital data will be transmitted in a single packet.
- a packet contains sufficient data to define the type of transmission protocol used to encode the data carried by the packet so that receiving devices can extract the useful digital data.
- Ethernet currently operates at a transmission rate of 10 megabits per second. This results in a data bit having a maximum of 100 nanoseconds in which to rise, transmit, and fall.
- the present invention can use a gas or mixture of gases that allow the antenna to transmit data well within the tolerance limits of the ethernet specification.
- a network using the present invention consists of a network server or servers, and additional nodes on the network.
- Nodes may be any processing device typically found on LANs such as computer workstations, terminals, printers, scanners, concentrators, bridges, repeaters, or other input/output devices.
- Each node is equipped with a standard network interface card (NIC) used in the industry to encode and decode packets of digital data according to industry protocols .
- NIC network interface card
- a processor of a node will send digital data to a NIC.
- the NIC will encode data according to predefined software settings and the hardware capabilities of the NIC.
- the encoded data will then be communicated over a transmission medium to other network nodes .
- server 60 has N nodes on a local area network (LAN) .
- the NIC 64 would transmit a data packet compliant with industry standard protocols over a short length of wire 61 to the gas tube antenna transmit/receive device 62 equipped with a gas tube antenna 63.
- Each transmit/receive device 62 is capable of receiving a digital data packet from the transmitting node over a wire 61 and transmitting said data packet as an RF signal.
- Each transmit/receive device 62 is also capable of receiving RF signals, and transmitting the received digital data packet over a wire 61 to the receiving node's NIC 64.
- the transmit/receive device 62 also has the means to translate between a protocol that the NIC 64 is capable of encoding and decoding, and the radio frequency signals received and transmitted by the antenna.
- the present invention also takes advantage of computer LAN components already installed by not replacing the NIC of existing nodes. In this way, the gas antenna 63 and the transmit/receive device 62 only replace the cabling medium, thus simplifying installation of the invention in existing networks.
- the advantages of such an application of the gas tube antenna are many. For example, upgrading the existing cabling presently used by a LAN would require installation of new cabling, a time consuming process that will have to be repeated when LAN transmission rates increase again.
- the present invention will only require replacement of easy to access circuitry or a gas tube placed next to the node.
- the present invention can transmit distances that prior art cabling is incapable of doing.
- access to the cabling can be difficult when cable is hidden in walls and ceilings.
- the problem is compounded when the cabling extends between numerous floors of a building. Utilizing the present invention will eliminate the need for gaining access to difficult to reach locations, decreasing overall installation time of LANs. Repair is also easier when the LAN transmission components are sitting next to each node on the network, instead of buried behind building walls.
- the invention may also significantly reduce or eliminate the hardware requirements of prior art LANs.
- network concentrators or HUBs are used in many network topologies. These devices serve as local branching locations from which all nodes within cabling distance attach to the network. When the number of nodes exceeds the number of attachment ports on a concentrator, an expansion concentrator must be coupled to the existing one, even if only one additional node is being added.
- the present invention eliminates the need for concentrators when the distance between all nodes is within the maximum transmission range of the gas antenna. However, even if the maximum range is exceeded, the network will only require the addition of repeaters to boost the signal strength so that all nodes receive the signal.
- Figure 5 is not the only configuration that a computer LAN must have when using the present invention.
- the gas tube antenna 63 is only necessary for transmission of the digital data packet. Any appropriately sized antenna may act as the reception antenna 65 for the node. Using a separate antenna for reception would also result in reduced power consumption because the gas in the tube would not have to be maintained in an ionized state for reception of RF signals.
- nodes that use the gas antenna for reception in combination with nodes that have a separate receiving antenna enable construction of a LAN tailored to the needs of the user.
- Figure 7 illustrates in an alternative embodiment the additional concepts of having a gas tube antenna 70 which can withstand abrupt contact with objects in environments outside of an office, and then using this ruggedized gas tube antenna in a digital cellular telephone 72.
- a gas tube antenna for use in computer networks implies that the gas tube antenna would be relatively protected from harsh treatment, a cellular telephone 72 does not enjoy that freedom of design. Therefore, an important realization in this embodiment is that the role played by a glass-type enclosure for the gas tube which contains the gas to be excited, is to provide an enclosure for the gas which does not interfere with the transmission or reception of radio frequency energy in the form of electromagnetic waves.
- the gas tube antenna 70 can be ruggedized in at least two ways.
- the gas tube 70 can consist of a glass-type enclosure such as those used in florescent lights. Because the gas tube antenna 70 is not intended to provide light, the characteristics of the glass-type enclosure are modified accordingly. For instance, the glass-type material is constructed as substantially thicker than would otherwise be used in lighting applications.
- a frame 74 is created for the glass-type enclosure. The frame does not interfere with electromagnetic energy because of the type of materials selected for use therein.
- the frame 74 is constructed of a hardened plastic.
- the frame 74 itself can also be constructed around the glass-type tube 70 so as not be in contact therewith, and thereby providing a buffer zone to allow the frame 74 to deform without cracking or breaking the glass-type gas tube 70 enclosure within.
- FIG. 8 shows that a second method for providing a rugged gas tube antenna 76 is to entirely replace the glass-type material being used to contain the gas.
- the gas tube antenna material selected is thus not only capable of functioning as an antenna by not interfering with electromagnetic energy, but also withstands repeated or constant exposure to electrical energy applied to the gas within.
- the flexible gas tube antenna 76 is also selected for advantageously having the property of being flexible. Inherent flexibility of the flexible gas tube antenna 76 eliminates the concerns over an operating environment where the flexible gas tube antenna 76 can come into contact with objects which would otherwise break a glass-type tube.
- the material for the flexible gas tube antenna 76 can therefore be any material which has the properties described above and as known to those skilled in the art.
- a rugged gas tube antenna advantageously results in a cellular phone which can take advantage of the high data transmission rates possible with the present invention.
- digital cellular telephones are gaining widespread acceptance in the industry as an alternative to analog systems in order to obtain desired characteristics such as clearer signals.
- digital cellular telephones are also becoming more ubiquitous in the industry as a method for transmitting and receiving digital data.
- transmission of digital data in a secure format is also becoming more important to users. This is due in large part because cellular telephone signals are subject to being intercepted.
- sensitive digital data can be encrypted for transmission via an otherwise unsecured digital cellular telephone.
- the rugged gas tube antenna brings increased transmission rates to digital cellular telephones, for both analog voice data and data already in a digital format.
Landscapes
- Details Of Aerials (AREA)
- Mobile Radio Communication Systems (AREA)
- Support Of Aerials (AREA)
- Transmitters (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US783368 | 1991-10-28 | ||
US08/783,368 US5990837A (en) | 1994-09-07 | 1997-01-13 | Rugged gas tube RF cellular antenna |
PCT/US1998/000271 WO1998031068A1 (en) | 1997-01-13 | 1998-01-13 | Rugged gas tube rf cellular antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1008204A1 EP1008204A1 (en) | 2000-06-14 |
EP1008204A4 true EP1008204A4 (en) | 2001-01-17 |
Family
ID=25129035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98901195A Withdrawn EP1008204A4 (en) | 1997-01-13 | 1998-01-13 | Rugged gas tube rf cellular antenna |
Country Status (5)
Country | Link |
---|---|
US (1) | US5990837A (en) |
EP (1) | EP1008204A4 (en) |
AU (1) | AU742917B2 (en) |
CA (1) | CA2318041C (en) |
WO (1) | WO1998031068A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046705A (en) * | 1999-05-21 | 2000-04-04 | The United States Of America As Represented By The Secretary Of The Navy | Standing wave plasma antenna with plasma reflector |
US6674970B1 (en) * | 1999-05-21 | 2004-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Plasma antenna with two-fluid ionization current |
US6369763B1 (en) * | 2000-04-05 | 2002-04-09 | Asi Technology Corporation | Reconfigurable plasma antenna |
US6624719B1 (en) * | 2000-04-05 | 2003-09-23 | Asi Technology Corporation | Reconfigurable electromagnetic waveguide |
US6812895B2 (en) | 2000-04-05 | 2004-11-02 | Markland Technologies, Inc. | Reconfigurable electromagnetic plasma waveguide used as a phase shifter and a horn antenna |
GB0015895D0 (en) * | 2000-06-28 | 2000-08-23 | Plasma Antennas Limited | An antenna |
US6842146B2 (en) | 2002-02-25 | 2005-01-11 | Markland Technologies, Inc. | Plasma filter antenna system |
US6876330B2 (en) * | 2002-07-17 | 2005-04-05 | Markland Technologies, Inc. | Reconfigurable antennas |
US6710746B1 (en) | 2002-09-30 | 2004-03-23 | Markland Technologies, Inc. | Antenna having reconfigurable length |
US7119744B2 (en) * | 2004-01-20 | 2006-10-10 | Cisco Technology, Inc. | Configurable antenna for a wireless access point |
US7482981B2 (en) * | 2004-07-29 | 2009-01-27 | Interdigital Technology Corporation | Corona wind antennas and related methods |
US7474273B1 (en) | 2005-04-27 | 2009-01-06 | Imaging Systems Technology | Gas plasma antenna |
US7719471B1 (en) | 2006-04-27 | 2010-05-18 | Imaging Systems Technology | Plasma-tube antenna |
US7999747B1 (en) | 2007-05-15 | 2011-08-16 | Imaging Systems Technology | Gas plasma microdischarge antenna |
US10498018B2 (en) | 2014-07-30 | 2019-12-03 | Jonathan P. Towle | Ionic fluid antenna |
US10181639B2 (en) | 2014-11-14 | 2019-01-15 | Mitsubishi Electric Corporation | Antenna device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238531A (en) * | 1963-03-12 | 1966-03-01 | Thompson Ramo Wooldridge Inc | Electronically steerable narrow beam antenna system utilizing dipolar resonant plasma columns |
US3719829A (en) * | 1970-04-10 | 1973-03-06 | Versar Inc | Laser beam techniques |
FR2580889A1 (en) * | 1985-04-18 | 1986-10-24 | Guasco Roger | Method of creating a plasma by combustion of a gas or a vapour by means of a high electrostatic voltage. |
EP0476144A1 (en) * | 1990-04-04 | 1992-03-25 | Matsushita Electric Industrial Co., Ltd. | Antenna device |
FR2690580A1 (en) * | 1992-04-08 | 1993-10-29 | Nokia Mobile Phones Ltd | Radio device with retractable antenna. |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4090198A (en) * | 1964-08-31 | 1978-05-16 | General Motors Corporation | Passive reflectance modulator |
US3404403A (en) * | 1966-01-20 | 1968-10-01 | Itt | Laser beam antenna |
FR29377E (en) * | 1970-03-12 | 1925-07-25 | Springless latch system for frames, transoms, skylights and others | |
US4028707A (en) * | 1974-01-30 | 1977-06-07 | The Ohio State University | Antenna for underground pipe detector |
CA1080333A (en) * | 1976-03-11 | 1980-06-24 | Jonathan D. Young | Underground pipe detector |
FR2512281B1 (en) * | 1981-08-28 | 1983-10-28 | Thomson Csf | |
US4435713A (en) * | 1981-11-20 | 1984-03-06 | Motorola, Inc. | Whip antenna construction |
US4989013A (en) * | 1989-03-31 | 1991-01-29 | Litton Systems, Inc. | Multifrequency antenna having a DC power path |
US5594456A (en) * | 1994-09-07 | 1997-01-14 | Patriot Scientific Corporation | Gas tube RF antenna |
-
1997
- 1997-01-13 US US08/783,368 patent/US5990837A/en not_active Expired - Fee Related
-
1998
- 1998-01-13 EP EP98901195A patent/EP1008204A4/en not_active Withdrawn
- 1998-01-13 WO PCT/US1998/000271 patent/WO1998031068A1/en not_active Application Discontinuation
- 1998-01-13 CA CA002318041A patent/CA2318041C/en not_active Expired - Fee Related
- 1998-01-13 AU AU57329/98A patent/AU742917B2/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238531A (en) * | 1963-03-12 | 1966-03-01 | Thompson Ramo Wooldridge Inc | Electronically steerable narrow beam antenna system utilizing dipolar resonant plasma columns |
US3719829A (en) * | 1970-04-10 | 1973-03-06 | Versar Inc | Laser beam techniques |
FR2580889A1 (en) * | 1985-04-18 | 1986-10-24 | Guasco Roger | Method of creating a plasma by combustion of a gas or a vapour by means of a high electrostatic voltage. |
EP0476144A1 (en) * | 1990-04-04 | 1992-03-25 | Matsushita Electric Industrial Co., Ltd. | Antenna device |
FR2690580A1 (en) * | 1992-04-08 | 1993-10-29 | Nokia Mobile Phones Ltd | Radio device with retractable antenna. |
Non-Patent Citations (1)
Title |
---|
See also references of WO9831068A1 * |
Also Published As
Publication number | Publication date |
---|---|
US5990837A (en) | 1999-11-23 |
CA2318041C (en) | 2002-05-21 |
AU5732998A (en) | 1998-08-03 |
CA2318041A1 (en) | 1998-07-16 |
EP1008204A1 (en) | 2000-06-14 |
AU742917B2 (en) | 2002-01-17 |
WO1998031068A1 (en) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5594456A (en) | Gas tube RF antenna | |
US5990837A (en) | Rugged gas tube RF cellular antenna | |
US6870465B1 (en) | Interface controller for magnetic field based power transmission line communication | |
US6492951B1 (en) | Plasma antenna | |
Vieira et al. | Analysis of aloha protocols for underwater acoustic sensor networks | |
WO1991016770A1 (en) | Data communication system | |
US10601125B2 (en) | Electrically short antennas with enhanced radiation resistance | |
Serkov et al. | Ultra wideband signals in control systems of unmanned aerial vehicles | |
Serkov et al. | Noise-like signals in wireless information transmission systems | |
JP2004503971A (en) | Beam forming method and apparatus | |
Dmitriev et al. | Ultrawideband wireless communications based on dynamic chaos | |
US20240205058A1 (en) | Digital Pulse-Position Noise Shift Keying to Communicate Information | |
US20210376906A1 (en) | Interactive beam alignment with delayed feedback | |
US20030193435A1 (en) | Laser driven plasma antenna utilizing laser modified maxwellian relaxation | |
Fralick et al. | Technological considerations for packet radio networks | |
Dmitriev et al. | Experiments on direct chaotic communications in microwave band | |
Serkov et al. | Ultra wideband technologies in mobile object management systems | |
Ghassemlooy et al. | A new modulation technique based on digital pulse interval modulation (DPIM) for optical‐fiber communication | |
Balakirev et al. | Excitement TEM-horn antenna by impulsive relativistic electron beam | |
Derneryd et al. | Bandwidth characteristics of monopulse slotted waveguide antennas | |
Jabri et al. | Adaptive-rate transmission with coding and interleaving for a further improvement in the throughput of meteor-burst communication systems | |
Bhavarthe et al. | Comparative study of Metal Antenna & Plasma Antenna | |
Giannetti | Radio Design Criteria in the Early XX Century: The Dawn of the Global Communication Era | |
US8422381B1 (en) | System and method for improved jamming resistance for high throughput point to point communication networks | |
Rogers et al. | Expanding protection and control communications networks with wireless radio links |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991028 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20001205 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7H 01Q 1/26 A, 7H 01Q 1/36 B, 7H 01Q 9/00 B, 7H 05H 1/24 B, 7H 01Q 1/24 B |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASI TECHNOLOGY CORPORATION |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MARKLAND TECHNOLOGIES, INC. |
|
17Q | First examination report despatched |
Effective date: 20050405 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061109 |