EP1004953B1 - Schaltungsanordnung zum Betreiben eines Stromgenerators - Google Patents

Schaltungsanordnung zum Betreiben eines Stromgenerators Download PDF

Info

Publication number
EP1004953B1
EP1004953B1 EP19980122165 EP98122165A EP1004953B1 EP 1004953 B1 EP1004953 B1 EP 1004953B1 EP 19980122165 EP19980122165 EP 19980122165 EP 98122165 A EP98122165 A EP 98122165A EP 1004953 B1 EP1004953 B1 EP 1004953B1
Authority
EP
European Patent Office
Prior art keywords
current
generator
voltage
transistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980122165
Other languages
English (en)
French (fr)
Other versions
EP1004953A1 (de
Inventor
Stefan Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE59814063T priority Critical patent/DE59814063D1/de
Priority to EP19980122165 priority patent/EP1004953B1/de
Publication of EP1004953A1 publication Critical patent/EP1004953A1/de
Application granted granted Critical
Publication of EP1004953B1 publication Critical patent/EP1004953B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the invention relates to a circuit arrangement for operating a power generator.
  • a power generator is usually arranged between the poles of a power source.
  • the energy source is designed in particular as a DC voltage source. Operation of the power generator requires a minimum voltage drop on the power generator as the supply voltage.
  • a known circuit arrangement ( EP 0 793 343 A1 ) discloses a circuit block which generates a reference current depending on the value of an external resistor and the circuitry limits an output current in response to this reference current.
  • a circuit arrangement is known ( FR 2 750 244 A ), which measures a supply current of an electromagnetic actuator via a Hall sensor and thus adjusts the force of the electromagnetic actuator, regardless of voltage changes and influences of the air gap of the electromagnet.
  • Circuit arrangements are further known which describe the generation of a reference current proportional to a first current ( EP 0 647 894 A2 .
  • EP 0 715 239 A1 such as EP 0 760 555 A1 ).
  • a circuit arrangement which monitors a connection line of a current source for ground faults ( US 5,075,628A ).
  • This circuit has a current transformer and a Hall sensor.
  • the Hall sensor generates a fault current, which is detected by the transformer.
  • the object of the invention is to provide a supply voltage necessary for the operation of a power generator.
  • a current mirror circuit mirrors the generator current in a fixed ratio and feeds the mirrored current into a preferably high-impedance measuring resistor.
  • the current mirror circuit preferably contains a first transistor arranged in series with the current generator through which the generator current flows. The control input of this first transistor is connected to the control input of another transistor of the current mirror circuit, so that this second transistor is traversed by the measuring current proportional to the generator current.
  • the voltage drop at the power generator which are also regarded as the supply voltage of the power generator can, and the voltage drop across the current mirror circuit, so the voltage drop across the part of the current mirror circuit, which is arranged in series with the current generator - here the voltage drop across the first transistor, in sum, the voltage supplied by the DC voltage source.
  • the voltage drop at the first transistor and thus at the current mirror circuit is essentially dependent on the type of transistor used and its technology and is for example in a bipolar transistor 0.7 volts and in a transistor in MOS technology 3 to 3.5 volts. Due to the voltage drop across the current mirror circuit, the voltage drop across the current generator may fall below a minimum voltage required for proper operation of the power generator.
  • the power generator is preferably designed as a Hall sensor, which supplies a further usable measuring current as a generator current
  • the Hall sensor is only ready for operation, if a allergiesspsnnung of about 6 volts at the electrodes of the Hall sensor is applied.
  • the transistor of the current mirror circuit is designed as a transistor in MOS technology, a drain-source voltage of 3 volts usually drops across it. With an available battery voltage of 8 volts DC, the supply voltage at the Hall sensor is reduced to 5 volts. Thus, a perfect operation of the Hall sensor is no longer guaranteed.
  • the voltage drop across the current mirror circuit and in particular at the transistor of the current mirror circuit arranged in series with the current generator is regulated to a desired value.
  • the setpoint is dimensioned such that a minimum voltage drops on the power generator, which requires this for its operation.
  • the trouble-free operation of a power generator is ensured by the invention, since its supply voltage remains constant and in particular does not fall below a minimum voltage. On the other hand, remains unaffected by this voltage regulation of the generator current. It can be mirrored in an advantageous manner via the current mirror circuit in a predetermined ratio. The mirrored current is then fed to a measuring resistor, which preferably has a high resistance of greater than one kiloohm. The voltage drop across this measuring resistor is measured. Based on the voltage drop, the known resistance value of the measuring resistor and the known factor of the current mirror circuit, the generator current can be determined. The thus determined generator current can be used as a measured variable and processed as a control or controlled variable.
  • the power generator is designed as a Hall sensor.
  • the Hall sensor is used to determine the open or closed state of a buckle in the motor vehicle.
  • the single FIGURE shows a circuit diagram as an embodiment of the invention and its developments.
  • a trained as a DC voltage source with the poles + and - power source 1 provides a voltage of 12 volts.
  • This DC voltage source is for example the vehicle battery.
  • the circuit arrangement further includes a current generator 3 in the form of a Hall sensor, a current mirror circuit 5 with the transistors T1 and T2, a measuring resistor RM, a control device 4 and a further energy source 2 in the form of a DC voltage source which supplies 8 volts.
  • the power generator may generally be configured, for example, as a sensor, as an actuator or as an electrical component which can be charged with voltage, for example as a resistor.
  • the transistors T1 and T2 are formed as MOS field effect transistors with the terminals drain D, source S and gate / control input G.
  • the first transistor T1 is arranged in series with the current generator 3, the second transistor T2 in series with the measuring resistor RM. Both series circuits T1, 3 and T2, RM are arranged between the poles of the power source 1. The series circuits T1, 3 and T2, RM are arranged parallel to each other.
  • the supply voltage U3 drops.
  • the current generator 3 supplies the generator current I.
  • the measuring voltage UM drops at the measuring resistor RM; the measuring resistor RM is traversed by the measuring current IM.
  • the control device 4 is the control difference from a supplied from the further energy source 2 setpoint USOLL and the voltage at the node S1.
  • the voltage at the circuit point S1 is based on the negative potentials / poles of the energy sources 1 and 2, the voltage dropping across the first transistor T1 U5.
  • the exit the control device 4 is connected to the control inputs G of the transistors T1 and T2.
  • the circuit behaves in operation as follows:
  • the power generator supplies the Generaorstrom I, which represents in particular a measured variable.
  • the generator current I in a predetermined ratio, e.g. with the ratio one without amplification effect or with the ratio 20 with amplifying effect, mirrored and supplies the measuring current IM, which is fed into the measuring resistor RM.
  • the transistors T1 and T2 are the same type and thus provide the same current:
  • the mirror factor is one.
  • the measuring resistor is preferably high impedance.
  • the measuring voltage UM at the measuring resistor RM can be tapped and indirectly supplies the generator current I as a measured variable.
  • the voltage drop U5 of the current mirror circuit 5 is regulated by the control device 4 to a desired value USOLL.
  • the desired value USOLL is to be determined in such a way that the sum of the minimum voltage at the current generator and the voltage USOLL is smaller than the minimum voltage of the energy source 1.
  • the regulating device 4 is designed as a per se known regulator which acts on the transistors T1 and T2 as actuators ,
  • the current mirror voltage U5 is the controlled variable, which is returned. This achieves a constant voltage drop U5 between the circuit points S1 and S2 at the current mirror circuit and thus ensures a minimum supply voltage U3.
  • a regulation of the voltage at the circuit point S1 relative to the positive pole + the power source 1 is also protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)

Description

  • Die Erfindung betrifft eine Schaltungsanordnung zum Betreiben eines Stromgenerators.
  • Ein Stromgenerator ist üblicherweise zwischen den Polen einer Energiequelle angeordnet. Die Energiequelle ist dabei insbesondere als Gleichspannungsquelle ausgebildet. Der Betrieb des Stromgenerators erfordert einen Mindestspannungsabfall am Stromgenerator als Versorgungsspannung.
  • Eine bekannte Schaltungsanordnung ( EP 0 793 343 A1 ) offenbart einen Schaltungsblock, der abhängig vom Wert eines externen Widerstands einen Referenzstrom erzeugt und die Schaltungsanordnung in Abhängigkeit von diesem Referenzstrom einen Ausgangsstrom begrenzt.
  • Weiter ist eine Schaltungsanordnung bekannt ( FR 2 750 244 A ), die einen Versorgungsstrom eines elektromagnetischen Aktors über einen Hallsensor misst und so die Kraft des elektromagnetischen Aktors unabhängig von Spannungsänderungen und Einflüssen des Luftspalts des Elektromagneten einstellt.
  • Es sind weiter Schaltungsanordnungen bekannt, die das Erzeugen eines zu einem ersten Strom proportionalen Referenzstrom beschreiben ( EP 0 647 894 A2 , EP 0 715 239 A1 sowie EP 0 760 555 A1 ).
  • Auch ist eine Schaltungsanordnung bekannt, die eine Anschlussleitung einer Stromquelle auf Masseschlüsse hin überwacht ( US 5,075,628A ). Diese Schaltungsanordnung weist einen Stromwandler und einen Hallsensor auf. Der Hallsensor erzeug einen Fehlerstrom, der vom Transformator erkannt wird. Aufgabe der Erfindung ist es, eine für den Betrieb eines Stromgenerators notwendige Versorgungsspannung bereitzustellen.
  • Die Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1.
  • Liefert der Stromgenerator in seinem Betrieb einen Strom mit einer nur geringen Stromstärke, so ist zur Ermittlung der Stromstärke ihre Verstärkung unter Zuhilfenahme einer Stromspiegelschaltung erforderlich. Eine Stromspiegelschaltung spiegelt den Generatorstrom in einem festgelegten Verhältnis und speist den gespiegelten Strom in einen vorzugsweise hochohmigen Meßwiderstand ein. Die Stromspiegelschaltung enthält dabei vorzugsweise einen in Serie zum Stromgenerator angeordneten ersten Transistor, durch den der Generatorstrom fließt. Der Steuereingang dieses ersten Transistors ist mit dem Steuereingang eines weiteren Transistors der Stromspiegelschaltung verbunden, sodaß dieser zweite Transistor von dem zum Generatorstrom proportionalen Meßstrom durchflossen ist. Ist die Energiequelle als Gleichspannungsquelle ausgebildet, so ergeben der Spannungsabfall am Stromgenerator, der auch als Versorgungsspannung des Stromgenerators angesehen werden kann, und der Spannungsabfall an der Stromspiegelschaltung, also der Spannungsabfall an dem Teil der Stromspiegelschaltung, der in Serie zum Stromgenerator angeordnet ist - hier der Spannungsabfall am ersten Transistor, in Summe die von der Gleichspannungsquelle gelieferte Spannung. Der Spannungsabfall am ersten Transistor und damit an der Stromspiegelschaltung ist dabei im wesentlichen abhängig von der Art des verwendeten Transistors und seiner Technologie und beträgt beispielsweise bei einem Bipolartransistor 0,7 Volt und bei einem Transistor in MOS-Technologie 3 bis 3,5 Volt. Infolge des Spannungsabfalls an der Stromspiegelschaltung kann der Spannungsabfall an dem Stromgenerator eine Mindestspannung unterschreiten, die zum ordungsgemäßen Betrieb des Stromgenerators erforderlich ist.
  • Dieser Sachverhalt wird an folgendem Beispiel näher erläutert: Ist der Stromgenerator vorzugsweise als Hall-Sensor ausgebildet, der als Generatorstrom einen weiter zu verwertenden Meßstrom liefert, so ist der Hall-Sensor nur betriebsbereit, wenn eine Mindestspsnnung von ca. 6 Volt an den Elektroden des Hall-Sensors anliegt. Ist dabei der Transistor der Stromspiegelschaltung als Transistor in MOS-Technologie ausgebildet, so fällt an ihm gewöhnlich eine Drain-Source-Spannung 3 Volt ab. Bei einer zur Verfügung stehenden Batteriespannung von 8 Volt Gleichstrom reduziert sich damit die Versorgungsspannung am Hall-Sensor auf 5 Volt. Damit ist ein einwandfreier Betrieb des Hall-Sensors nicht mehr gewährleistet.
  • Erfindungsgemäß wird der Spannungsabfall an der Stromspiegelschaltung und insbesondere an dem mit dem Stromgenerator in Serie angeordneten Transistor der Stromspiegelschaltung auf einen Sollwert geregelt. Der Sollwert ist dabei derart bemessen, daß eine Mindestspannung am Stromgenerator abfällt, die dieser für seinen Betrieb erfordert.
  • In vorteilhafter Weise wird durch die Erfindung der störungsfreie Betrieb eines Stromgenerators gewährleistet, da seine Versorgungsspannung konstant bleibt und insbesondere eine Mindestspannung nicht unterschreitet. Andererseits bleibt durch diese Spannungsregelung der Generatorstrom unbeeinflußt. Er kann in vorteilhafter Weise über die Stromspiegelschaltung in einem vorgegebenen Verhältnis gespiegelt werden. Der gespiegelte Strom wird dann einem Meßwiderstand zugeführt, der vorzugsweise einen hohen Widerstand von größer einem Kiloohm aufweist. Der Spannungsabfall an diesem Meßwiderstand wird gemessen. Anhand des Spannungsabfalls, des bekannten Widerstandswertes des Meßwiderstandes und des bekannten Faktors der Stromspiegelschaltung kann der Generatorstrom ermittelt werden. Der derart ermittelte Generatorstrom kann als Meßgröße verwendet werden und als Steuer- oder Regelgröße weiterverarbeitet werden. Damit wird in vorteilhafter Weise eine genaue Messung des Generatorstromes erreicht, trotz seiner geringen Stromstärke. Das Einbringen eines hochohmigen Meßwiderstandes in Serie zum Stromgenerator würde dagegen einen zu großen Spannungsabfall am Meßwiderstand hervorrufen, der wiederum die Versorgungsspannung des Stromgenerators selbst verringern würde. Ein niederohmiger Meßwiderstand in Serie zum Stromgenerator würde aufgrund des dann geringen Spannungsabfalls am Meßwiderstand ein ungenaues Meßergebnis liefern. Die Erfindung stellt damit den störungsfreien Betrieb eines Stromgenerators sicher und erlaubt gleichzeitig eine genaue Messung des Generatorstromes.
  • Vorzugsweise ist der Stromgenerator als Hall-Sensor ausgebildet.
  • In einer vorteilhaften Weiterbildung der Erfindung dient der Hall-Sensor dazu, den geöffneten oder geschlossenen Zustand eines Gurtschlosses im Kraftfahrzeuges zu ermitteln.
  • Weitere vorteilhafte Weiterbildungen der Erfindung sind durch die Unteransprüche gekennzeichnet.
  • Die einzige Figur zeigt einen Stromlaufplan als Ausführungsbeispiel der Erfindung und ihrer Weiterbildungen.
  • Eine als Gleichspannungsquelle mit den Polen + und - ausgebildete Energiequelle 1 liefert eine Spannung von 12 Volt. Diese Gleichspannungsquelle ist beispielsweise die Fahrzeugbatterie. Die Schaltungsanordnung enthält weiter einen Stromgenerator 3 in Form eines Hall-Sensors, eine Stromspiegelschaltung 5 mit den Transistoren T1 und T2, einen Meßwiderstand RM, eine Regeleinrichtung 4 und eine weiter Energiequelle 2 in Form einer Gleichspannungsquelle, die 8 Volt liefert. Der Stromgenerator kann allgemein z.B. als Sensor, als Aktor oder als sontiges mit Spannung beaufschlagbares elektrisches Bauelement, z.B. als Widerstand ausgebildet sein. Die Transistoren T1 und T2 sind als MOS-Feldeffekttransistoren ausgebildet mit den Anschlüssen Drain D, Source S und Gate/Steuereingang G. Der erste Transistor T1 ist dabei in Serie zum Stromgenerator 3 angeordnet, der zweite Transistor T2 in Serie zum Meßwiderstand RM. Beide Serienschaltungen T1, 3 und T2, RM sind zwischen den Polen der Energiequelle 1 angeordnet. Die Serienschaltungen T1, 3 und T2, RM sind dabei zueinander parallel angeordnet. Am Stromgenerator 3 fällt die Versorgungsspannung U3 ab. Der Stromgenerator 3 liefert den Generatorstrom I. Am Meßwiderstand RM fällt die Meßspannung UM ab; der Meßwiderstand RM ist von dem Meßstrom IM durchflossen. An der Regeleinrichtung 4 liegt die Regeldifferenz aus einem von der weiteren Energiequelle 2 gelieferten Sollwert USOLL und der Spannung am Schaltungspunkt S1 an. Die Spannung am Schaltungspunkt S1 ist dabei bezogen auf die negativen Potentiale/Pole der Energiequellen 1 und 2 die am ersten Transistor T1 abfallende Spannung U5. Der Ausgang der Regeleinrichtung 4 ist mit den Steuereingängen G der Transistoren T1 und T2 verbunden.
  • Die Schaltungsanordnung verhält sich im Betrieb folgendermaßen: Der Stromgenerator liefert den Generaorstrom I, der insbesondere eine Meßgröße darstellt. Durch die Stromspiegelschaltung 5 wird der Generatorstrom I in einem vorgegebenen Verhältnis, z.B. mit dem Verhältnis Eins ohne Verstärkungswirkung oder mit dem Verhältnis 20 mit Vertärkungswirkung, gespiegelt und liefert den Meßstrom IM, der in den Meßwiderstand RM eingespeist wird. Im vorliegenden Fall sind die Transistoren T1 und T2 gleicher Bauart und liefern damit den gleichen Strom: Der Spiegelfaktor ist Eins. Der Meßwiderstand ist vorzugsweise hochohmig. Die Meßspannung UM am Meßwiderstand RM kann abgegriffen werden und liefert indirekt den Generatorstrom I als Meßgröße. Zum anderen wird der Spannungsabfall U5 der Stromspiegelschaltung 5 durch die Regeleinrichtung 4 auf einen Sollwert USOLL geregelt. Der Sollwert USOLL ist derart zu bestimmen, daß die Summe aus Mindestspannung am Stromgenerator und der Spannung USOLL kleiner ist als die Mindestspannung der Energiequelle 1. Die Regeleinrichtung 4 ist dazu als an sich bekannter Regler ausgebildet, der auf die Transistoren T1 und T2 als Stellglieder wirkt. Die Stromspiegelspannung U5 ist dabei die Regelgröße, die rückgeführt wird. Damit wird ein konstanter Spannungsabfall U5 zwischen den Schaltungspunkten S1 und S2 an der Stromspiegelschaltung erreicht und somit eine Mindestversorgungsspannung U3 sichergestellt. Natürlich wird auch auch eine Regelung der Spannung am Schaltungspunkt S1 bezogen auf den positiven Pol + der Energiequelle 1 unter Schutz gestellt.

Claims (4)

  1. Schaltungsanordnung zum Betreiben eines Stromgenerators, bei der der Stromgenerator (3) zwischen den Polen (+,-) einer Energiequelle (1) angeordnet ist,
    mit einer Stromspiegelschaltung (5) zum Einspeisen eines zum Generatorstrom (I) proportionalen Meßstromes (IM) in einen Meßwiderstand (RM), an dem eine Meßspannung (U1) abgegriffen werden kann, die zum Generatorstrom (I) proportional ist,
    mit einer Regeleinrichtung (4) zum Regeln des Spannungsabfalls (U5) an der Stromspiegelschaltung (U5) auf einen Sollwert (USOLL),
    bei der die Stromspiegelschaltung (5) einen ersten Transistor (T1) in Serie zum Stromgenerator (3) enthält und einen zweiten Transistor (T2) in Serie zum Meßwiderstand (RM), dadurch gekennzeichnet, daβ die Regeleinrichtung (4) auf die Steuereingänge (G) der Transistoren (T1,T2) direkt wirkt.
  2. Schaltungsanordnung nach Anspruch 1, bei der der Meßwiderstand (RM) und der zweite Transistor (T2) zwischen den Polen (+,-) der Energiequelle (1) angeordnet sind.
  3. Schaltungsanordnung nach Anspruch 1 oder 2, bei der der Spannungsabfall (U5) am ersten Transistor (T1) als Regelgröße dient.
  4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, bei der der Stromgenerator (3) als Hall-Sensor ausgebildet ist.
EP19980122165 1998-11-25 1998-11-25 Schaltungsanordnung zum Betreiben eines Stromgenerators Expired - Lifetime EP1004953B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59814063T DE59814063D1 (de) 1998-11-25 1998-11-25 Schaltungsanordnung zum Betreiben eines Stromgenerators
EP19980122165 EP1004953B1 (de) 1998-11-25 1998-11-25 Schaltungsanordnung zum Betreiben eines Stromgenerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19980122165 EP1004953B1 (de) 1998-11-25 1998-11-25 Schaltungsanordnung zum Betreiben eines Stromgenerators

Publications (2)

Publication Number Publication Date
EP1004953A1 EP1004953A1 (de) 2000-05-31
EP1004953B1 true EP1004953B1 (de) 2007-07-18

Family

ID=8233015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980122165 Expired - Lifetime EP1004953B1 (de) 1998-11-25 1998-11-25 Schaltungsanordnung zum Betreiben eines Stromgenerators

Country Status (2)

Country Link
EP (1) EP1004953B1 (de)
DE (1) DE59814063D1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645650B1 (fr) * 1989-04-06 1991-09-27 Merlin Gerin Systeme de controle d'isolement d'un reseau a courant continu
GB9320991D0 (en) * 1993-10-12 1993-12-01 Philips Electronics Uk Ltd A circuit for providing a current source
EP0715239B1 (de) * 1994-11-30 2001-06-13 STMicroelectronics S.r.l. Hochgenauer Stromspiegel für niedrige Versorgungsspannung
EP0760555B9 (de) * 1995-08-31 2005-05-04 STMicroelectronics S.r.l. Strom-Generatorschaltung mit einem breiten Frequenzgang
EP0793343B1 (de) * 1996-02-29 2001-07-18 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Programmierbare Schaltung mit Strombegrenzung für Leistungsstellantriebe
FR2750244B1 (fr) * 1996-06-20 1998-11-06 Clausin Jacques Dispositif de commande proportionnelle de force delivree par un electro-aimant independant des variations des tensions d'alimentation et des entrefes

Also Published As

Publication number Publication date
DE59814063D1 (de) 2007-08-30
EP1004953A1 (de) 2000-05-31

Similar Documents

Publication Publication Date Title
DE102008059853A1 (de) Schaltungsanordnung mit einem Lasttransistor und einem Messtransistor
DE102015205359B4 (de) Ruhestrombegrenzung für einen low-dropout-regler bei einer dropout-bedingung
DE3932776A1 (de) Stromversorgungseinrichtung mit spannungsregelung und strombegrenzung
DE10218097B4 (de) Schaltungsanordnung zur Spannungsregelung
DE2139999A1 (de) Zustandsfuhlerschaltung in Brücken anordnung
DE102004041886B4 (de) Verfahren und Schaltanordnung zur Messung eines Laststroms im Lastkreis eines Halbleiterbauelements
DE102005061207A1 (de) Schaltungsanordnung zur Energieversorgung und Verfahren
DE102004004775B4 (de) Spannungsregelsystem
EP1004953B1 (de) Schaltungsanordnung zum Betreiben eines Stromgenerators
DE102011017640B3 (de) Sensoranordnung und Verfahren
DE19604041C1 (de) Schaltungsanordnung zur Erkennung eines durch eine Last fließenden Laststroms
EP0725995B1 (de) Fernspeiseeinrichtung
EP0435048B1 (de) Breitbandverstärkerstufe mit steuerbarer Verstärkung
DE102018116669B4 (de) Verfahren zum Betrieb eines stützkondensatorfreien Low-Drop-Spannungsreglers mit großem Spannungsbereich
DE102020113822A1 (de) Vorrichtung und Verfahren zur elektrischen Stromkreisüberwachung
EP3584925B1 (de) Schaltungsanordnung zum erzeugen einer geregelten versorgungs-kleinspannung
EP0553451B1 (de) Vorrichtung zur Überwachung der Funktionsweise von Induktivitäten
DE102006056591A1 (de) Schaltung zur Spannungsbegrenzung
EP0779702B1 (de) Elektrische Schaltungsanordnung zur Umformung einer Eingangsspannung
DE102018116667B4 (de) Stützkondensatorfreier Low-Drop-Spannungsregler mit großem Spannungsbereich mit einem DIMOS- und einem NMOS-Transistor als Lasttransistor und Spannungsreglersystem
DE102005029813A1 (de) Schaltungsanordnung zum Messen einer elektrischen Spannung
DE10128772B4 (de) Verfahren und Vorrichtung zur Einschaltstrombegrenzung in Gegentaktverstärkerendstufen
DE102013015859A1 (de) Verfahren zur Regelung des Ladestroms zum Laden eines Fahrzeugakkumulators sowie Ladestromregler
DE102019116700B4 (de) Stützkondensatorfreier Low-Drop-Spannungsregler mit großem Spannungsbereich mit einem DIMOS Transistor und Verfahren zu dessen Betrieb
EP1610198B1 (de) Schaltungsanordnung zum wahlweisen Generieren eines analogen Stromausgangswertes oder eines analogen Spannungsausgangswertes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001130

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20020806

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070808

REF Corresponds to:

Ref document number: 59814063

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091126

Year of fee payment: 12

Ref country code: GB

Payment date: 20091119

Year of fee payment: 12

Ref country code: FR

Payment date: 20091201

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101125