EP1003661B1 - Method for curve recognition and axle alignment in rail vehicles - Google Patents

Method for curve recognition and axle alignment in rail vehicles Download PDF

Info

Publication number
EP1003661B1
EP1003661B1 EP99925009A EP99925009A EP1003661B1 EP 1003661 B1 EP1003661 B1 EP 1003661B1 EP 99925009 A EP99925009 A EP 99925009A EP 99925009 A EP99925009 A EP 99925009A EP 1003661 B1 EP1003661 B1 EP 1003661B1
Authority
EP
European Patent Office
Prior art keywords
curvature
steering angle
rail
soll
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99925009A
Other languages
German (de)
French (fr)
Other versions
EP1003661A1 (en
EP1003661B2 (en
Inventor
Markus Koch
Frank Hentschel
Günther Himmelstein
Rolf Krouzilek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transportation Germany GmbH
Original Assignee
Bombardier Transportation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7870834&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1003661(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE1998126451 external-priority patent/DE19826451A1/en
Application filed by Bombardier Transportation GmbH filed Critical Bombardier Transportation GmbH
Publication of EP1003661A1 publication Critical patent/EP1003661A1/en
Publication of EP1003661B1 publication Critical patent/EP1003661B1/en
Application granted granted Critical
Publication of EP1003661B2 publication Critical patent/EP1003661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/38Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles
    • B61F5/383Adjustment controlled by non-mechanical devices, e.g. scanning trackside elements

Definitions

  • the invention relates to a method for measuring a track curvature in a chassis for rail vehicles, and a method for directing a direction of rotation A chassis frame mounted axle of a rail chassis after the Track curvature.
  • axle or the wheels steerable are stored in the chassis frame.
  • a device for aligning the axis or the wheels can be a steering movement corresponding to the track curvature.
  • the object of the present invention is to provide a method for Measurement of track curvature for rail vehicles to create using this value, the setpoint for the steering angle control to calculate.
  • FIGS 1 and 2 show a chassis 10 for a non-illustrated Rail vehicle with axles 12 and 13 to which wheels 16 are attached.
  • the axis 12 and 13 are mounted in the chassis 10.
  • the chassis 10 and the axles 12 and 13 are rotatably supported by a centrally arranged joint 15.
  • the chassis 10 is shown while at a translation speed v a Track 11 passes through, which has a radius R.
  • the Yaw rate ⁇ can determine the radius R or the track curvature ⁇ be calculated.
  • the track curvature ⁇ corresponds to the reciprocal of the radius R.
  • the division of the yaw rate ⁇ by the translation velocity v gives the Track curvature ⁇ , according to the equation shown in Figure 1.
  • the result The value of the track curvature ⁇ is used to steer the axles 12 and 13, respectively.
  • the relationship between the real and calculated track curvature ⁇ can the figure 3 be removed.
  • the yaw rate ⁇ is preferably by a non-illustrated Rate of rotation or gyroscope sensor determined, for example, from navigation technology is known.
  • the alignment of the axles 12 and 13 takes place with the aid of the track curvature so thus calculated.
  • the track curvature ⁇ serves to determine the desired steering angle ⁇ soll according to which the axles 12 and 13 are corrected.
  • the adjustment of the axes 12 and 13 can be done for example by a servo motor.
  • the sine of the desired steering angle ⁇ soll of the - not shown - controller system is calculated by multiplying the track curvature ⁇ with the half distance b between the axes 12 and 13, according to the equation in Figure 2.
  • the target steering angle ⁇ should be 1 + i for the following in the direction of travel undercarriages are calculated by time delays .DELTA.t from the first target steering angle ⁇ soll 1 .
  • the delay .DELTA.t results from the division of the distance a i of the trailing chassis i to the first chassis by the translation speed v.

Abstract

The invention relates to a method for measuring the curvature of a track for a running gear for rail vehicles and a method for aligning in a steering manner and in accordance with the curvature of the track an axle of a rail vehicle, which axle is rotationally mounted on a running gear frame. The track curvature is calculated by dividing a yaw velocity by a forward velocity and the wheels are aligned in accordance with a specified steering angle (ηsoll) which is calculated by multiplying the track curvature (χ) by half the distance (b) between the two axles (12, 13) of the running gear (10).

Description

Die Erfindung betrifft ein Verfahren zur Messung einer Gleiskrümmung bei einem Fahrwerk für Schienenfahrzeuge, und ein Verfahren zur lenkenden Ausrichtung einer drehbar an einem Fahrwerkrahmen befestigten Achse eines Schienenfahrwerkes nach der Gleiskrümmung.The invention relates to a method for measuring a track curvature in a chassis for rail vehicles, and a method for directing a direction of rotation A chassis frame mounted axle of a rail chassis after the Track curvature.

Insbesondere im Nahverkehr kommen überwiegend Schienenfahrzeuge mit zweiachsigen Fahrwerken zum Einsatz. Dabei führen enge Kurven, die oftmals durch den Straßenverlauf vorgegeben sind, zu einer schlechten Kurvengängigkeit von mehrachsigen Fahrwerken. Dies ist vornehmlich bei Schienenfahrzeugen zu beobachten, deren Räder hinsichtlich ihrer Gierbewegung starr mit dem Fahrwerksrahmen verbunden sind.In particular, in local transport are mainly rail vehicles with biaxial Chassis used. This narrow curves, often through the course of the road are given, to a poor cornering of multi-axle suspensions. This is mainly observed in rail vehicles whose wheels in terms their yaw motion are rigidly connected to the chassis frame.

Eine Lösung dieses Problems wird dadurch erzielt, daß die Achse bzw. die Räder lenkbar im Fahrwerksrahmen gelagert sind. Durch eine Vorrichtung zum Ausrichten der Achse bzw. der Räder kann eine Lenkbewegung entsprechend der Gleiskrümmung erfolgen.A solution to this problem is achieved in that the axle or the wheels steerable are stored in the chassis frame. By a device for aligning the axis or the wheels can be a steering movement corresponding to the track curvature.

Aus der DE 195 38 379 C1 ist ein zweirädriges Fahrwerk mit Einzelradantrieb für spurgeführte Fahrzeuge mit gesteuerter Lenkung bekannt, bei dem das Fahrwerk pro Radträger zwei jeweils außerhalb der Radaufstandspunkte befindliche vertikale Schwenkachsen aufweist, wobei abwechselnd - unter Arretierung der Position der aktuell bogenäußeren Schwenkachse - der Radträger um genau diese arretierte Achse geschwenkt wird.From DE 195 38 379 C1 is a two-wheeled chassis with single-wheel drive for track-guided vehicles with controlled steering known in which the chassis per Wheel carrier two each located outside the wheel contact points vertical Has pivot axes, wherein alternately - while locking the position of the current bow-shaped swivel axis - the wheel carrier to exactly this locked axis is pivoted.

Aus der DE 92 19 042 U1 ist ein Verfahren zur Kurvenerkennung bekannt, das die Gleiskrümmung durch Indukivtaster bestimmt. From DE 92 19 042 U1 a method for curve recognition is known, which is the Track curvature determined by Indukivtaster.

Weiterhin sind Verfahren bekannt, bei denen die Lenkung der Räder bzw. Achsen passiv erfolgt. Dies kann entweder durch die Spurführungskräfte oder durch eine mechanische Kopplung der Achsstellung mit dem Verdrehwinkel zwischen den Wagenkästen erfolgen. Diese mechanischen Lösungen haben jedoch den Nachteil, daß sie nur eine sehr ungenaue Lenkung ermöglichen.Furthermore, methods are known in which the steering of the Wheels or axles passively. This can be done either by the Tracking forces or by a mechanical coupling of the Axle position with the angle of rotation between the car bodies respectively. However, these mechanical solutions have the disadvantage that they only allow a very inaccurate steering.

Eine genaue Ausrichtung ist hingegen nur möglich, wenn die Achse aktiv, z.B. mit einem Servoantrieb, eingestellt wird. Die Regelung des Lenkwinkels, der dem Relativwinkel zwischen Rad bzw. Achse und Fahrwerkrahmen entspricht, erfordert die Vorgabe eines Lenkwinkelsollwertes. Zur Bestimmung des Lenkwinkelsollwertes bedarf es wiederum der Kenntnis der Gleiskrümmung.An exact alignment, however, is only possible if the axis active, e.g. with a servo drive, is set. The Control of the steering angle, the relative angle between wheel or axle and chassis frame, requires the default a steering angle setpoint. For determination of the steering angle setpoint In turn, knowledge of the track curvature is required.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Messung der Gleiskrümmung für Schienenfahrzeuge zu schaffen, um mit Hilfe dieses Wertes den Sollwert für die Lenkwinkelregelung zu berechnen.The object of the present invention is to provide a method for Measurement of track curvature for rail vehicles to create using this value, the setpoint for the steering angle control to calculate.

Gelöst wird die Aufgabe durch die Merkmale der Ansprüche 1 und 4, u.a. dadurch, daß die Gleiskrümmung aus der Division einer Giergeschwindigkeit durch eine Translationsgeschwindigkeit berechnet wird und die Räder nach einem Soll-Lenkwinkel ausgerichtet werden, der durch Multiplikation der so berechneten Gleiskrümmung mit dem halben Abstand zwischen den beiden Achsen des Fahrwerks berechnet wird.The problem is solved by the features of claims 1 and 4, i.a. in that the track curvature from the division of a Yaw rate calculated by a translation speed and the wheels are aligned to a desired steering angle be multiplied by the so calculated Track curvature with half the distance between the two axes of the landing gear is calculated.

Weitere vorteilhafte Maßnahmen sind in den Unteransprüchen beschrieben. Die Erfindung ist in der beiliegenden Zeichnung dargestellt und wird nachfolgend näher beschreiben; es zeigt:

Fig. 1
das Verhältnis der Translations- und der Giergeschwindigkeit in Abhängigkeit von der Krümmung der Schiene;
Fig. 2
die Abhängigkeit der idealen Winkelstellung der Achse von der Kurvenkrümmung;
Fig. 3
den Krümmungsverlauf an der Hinterachse im Vergleich zu der Näherung durch das Meßverfahren beim Durchfahren einer Gleiskrümmung;
Fig. 4
den idealen Lenkwinkelverlauf (γ ideal) im Vergleich mit dem berechneten Soll-Lenkwinkel (γ soll);
Fig. 5
den idealen Lenkwinkelverlauf (γ ideal) im Vergleich mit dem berechneten Soll-Lenkwinkel (γ soll) nach der Filterung der Giergeschwindigkeit (Ω);
Further advantageous measures are described in the subclaims. The invention is illustrated in the accompanying drawings and will be described in more detail below; it shows:
Fig. 1
the ratio of translational and yaw rates as a function of the curvature of the rail;
Fig. 2
the dependence of the ideal angular position of the axis on the curve curvature;
Fig. 3
the curvature of the rear axle compared to the approximation by the measurement method when passing through a track curvature;
Fig. 4
the ideal steering angle curve (γ ideal ) in comparison with the calculated target steering angle (γ soll );
Fig. 5
the ideal steering angle course (γ ideal ) in comparison with the calculated target steering angle (γ soll ) after filtering the yaw rate (Ω);

Die Figuren 1 und 2 zeigen ein Fahrwerk 10 für ein nicht näher dargestellten Schienenfahrzeug, mit Achsen 12 und 13, an denen Räder 16 befestigt sind. Die Achse 12 und 13 sind in dem Fahrwerk 10 befestigt. Das Fahrwerk 10 bzw. die Achsen 12 und 13 sind durch ein zentrisch angeordnetes Gelenk 15 drehbar gelagert.Figures 1 and 2 show a chassis 10 for a non-illustrated Rail vehicle with axles 12 and 13 to which wheels 16 are attached. The axis 12 and 13 are mounted in the chassis 10. The chassis 10 and the axles 12 and 13 are rotatably supported by a centrally arranged joint 15.

Das Fahrwerk 10 ist dargestellt, während es mit einer Translationsgeschwindigkeit v einen Gleisbogen 11 durchfährt, der einen Radius R aufweist. Mit Hilfe von Mitteln, die die Giergeschwindigkeit Ω bestimmen, kann der Radius R bzw. die Gleiskrümmung χ berechnet werden. Die Gleiskrümmung χ entspricht hierbei dem Kehrwert des Radius R. Die Division der Giergeschwindigkeit Ω durch die Translationsgeschwindigkeit v ergibt die Gleiskrümmung χ, entsprechend der in Figur 1 dargestellten Gleichung. Der hieraus gewonnene Wert der Gleiskrümmung χ wird zur Lenkung der Achsen 12 bzw. 13 genutzt. Das Verhältnis zwischen der realen und berechneten Gleiskrümmung χ kann der Figur 3 entnommen werden. The chassis 10 is shown while at a translation speed v a Track 11 passes through, which has a radius R. With the help of means that the Yaw rate Ω can determine the radius R or the track curvature χ be calculated. The track curvature χ corresponds to the reciprocal of the radius R. The division of the yaw rate Ω by the translation velocity v gives the Track curvature χ, according to the equation shown in Figure 1. The result The value of the track curvature χ is used to steer the axles 12 and 13, respectively. The relationship between the real and calculated track curvature χ can the figure 3 be removed.

Die Giergeschwindigkeit Ω wird vorzugsweise durch einen nicht näher dargestellten Drehraten- oder Kreiselsensor bestimmt, wie er beispielsweise aus der Navigationstechnik bekannt ist.The yaw rate Ω is preferably by a non-illustrated Rate of rotation or gyroscope sensor determined, for example, from navigation technology is known.

Da der Abstand zwischen den Spurkränzen der Räder 16 einer Achse 12 bzw. 13 etwas kleiner ist als der Abstand zwischen den Schienen 17, kann sich die Lage der Achse im Spurkanal lateral um einige Millimeter verschieben. Somit können Kraftstöße, die wegen der oft nicht exakten Gleisführung auf das Fahrwerk 10 wirken, zur Gierbewegung führen. Diese pendelnden Bewegungen haben jedoch auf die Meßwerte des Kreiselsensors einen nicht unwesentlichen Einfluß. Zur Eliminierung der Wirkung der pendelnden Gierbewegung des Fahrwerks im Gleis wird der Meßwert der Giergeschwindigkeit Ω mittels eines - nicht dargestellten - Tiefpaßfilters geglättet. Die Wirkung des Tiefpaßfilters beim Durchfahren eines Gleisbogens ist Figur 5 zu entnehmen.Since the distance between the wheel flanges of the wheels 16 of an axle 12 and 13 something smaller than the distance between the rails 17, the position of the axis may be in the Move the track channel laterally by a few millimeters. Thus, power surges, because of the often not exact track guide act on the chassis 10, lead to yaw. However, these oscillating movements have an effect on the measured values of the gyroscope sensor not insignificant influence. To eliminate the effect of commuting yaw of the undercarriage in the track, the measured value of the yaw rate Ω by means of a - is not smoothed - low pass filter smoothed. The effect of the low-pass filter when driving through of a track curve is shown in Figure 5.

Mit Hilfe der so berechneten Gleiskrümmung χ erfolgt die Ausrichtung der Achsen 12 und 13. Dabei dient die Gleiskrümmung χ zur Ermittlung des Soll-Lenkwinkels γ soll nach dem die Achsen 12 und 13 ausgeregelt werden. Die Einstellung der Achsen 12 und 13 kann z.B. durch einen Servomotor erfolgen.The alignment of the axles 12 and 13 takes place with the aid of the track curvature so thus calculated. The track curvature χ serves to determine the desired steering angle γ soll according to which the axles 12 and 13 are corrected. The adjustment of the axes 12 and 13 can be done for example by a servo motor.

Der Sinus des Soll-Lenkwinkels γ soll des - nicht dargestellten - Reglersystems berechnet sich durch Multiplikation der Gleiskrümmung χ mit dem halben Abstand b zwischen den Achsen 12 und 13, entsprechend der Gleichung in Figur 2.The sine of the desired steering angle γ soll of the - not shown - controller system is calculated by multiplying the track curvature χ with the half distance b between the axes 12 and 13, according to the equation in Figure 2.

So ergeben sich während des Kurveneinlaufs zwei Näherungen. Die erste Näherung besagt, daß für eine exakte Sollwertberechnung beim Kurveneinlauf sowohl der Krümmungsverlauf an der Vorderachse 12 als auch an der Hinterachse 13 bekannt sein müßte, jedoch wird aufgrund der Fahrwerksdrehung nur ein Wert dazwischen gemessen, wie Figur 3 zeigt. Außerdem erfolgt eine Näherung bei der Lenkwinkelberechnung während des Kurveneinlaufs, da die geometrische Beziehung nach Figur 2 nur exakt richtig ist, wenn sich beide Achsen 12 und 13 in der Kurve befinden, Die beiden Näherungen heben sich im wesentlichen auf, so daß der berechnete Soll-Wert γ soll, wie Figur 4 zeigt, sehr gut mit dem idealen Lenkwinkel γ ideal übereinstimmt. This results in two approximations during cornering. The first approximation states that for an exact setpoint calculation at the bend entry both the curvature course at the front axle 12 and at the rear axle 13 would have to be known, however, only a value between them is measured due to the chassis rotation, as FIG. 3 shows. In addition, an approximation in the steering angle calculation during the curve run-in, since the geometric relationship of Figure 2 is only exactly correct when both axes 12 and 13 are in the curve, the two approximations are essentially canceled, so that the calculated target Value γ should ideally match the ideal steering angle γ, as FIG. 4 shows.

Weist ein Schienenfahrzeug mehrere Fahrwerke 10 auf, so muß nur der Soll-Lenkwinkel γ soll 1 für das in Fahrtrichtung vorderste Fahrwerk ermittelt werden. Die weiteren Fahrwerke können diesen Soll-Lenkwinkel zeitlich versetzt übernehmen. Die Soll-Lenkwinkel γ soll 1 + i für die in Fahrtrichtung nachfolgenden Fahrwerke werden durch zeitliche Verzögerungen Δt aus dem ersten Soll-Lenkwinkel γ soll 1 berechnet. Die Verzögerung Δt ergibt sich aus der Division des Abstandes ai des nachlaufenden Fahrwerkes i zum ersten Fahrwerk durch die Translationsgeschwindigkeit v. If a rail vehicle has several running gears 10, then only the desired steering angle γ soll 1 for the foremost running gear in the direction of travel must be determined. The other chassis can take over this target steering angle offset in time. The target steering angle γ should be 1 + i for the following in the direction of travel undercarriages are calculated by time delays .DELTA.t from the first target steering angle γ soll 1 . The delay .DELTA.t results from the division of the distance a i of the trailing chassis i to the first chassis by the translation speed v.

Bezugszeichenreference numeral

1010
Schienenfahrzeug-FahrwerkRail vehicle chassis
1111
Gleiskrümmungtrack curvature
1212
Achse, vorneAxle, front
1313
Achse, hintenAxle, rear
1515
Gelenkjoint
1616
Radwheel
1717
Schienerail
χχ
Gleiskrümmungtrack curvature
ΩΩ
Giergeschwindigkeityaw rate
vv
Translationsgeschwindigkeittranslational speed
RR
Krümmungsradiusradius of curvature
γ soll γ should
Soll-LenkwinkelTarget steering angle
γ ideal γ ideal
Ideal-LenkwinkelIdeal steering angle
bb
Abstand zwischen den AchsenDistance between the axes
Δt.delta.t
zeitliche Verzögerungdelay
ai a i
Abstand zwischen dem 1. und dem i-ten FahrwerkDistance between the 1st and the i-th chassis

Claims (6)

  1. A method for measuring rail curvature in an undercarriage structure for rail vehicles, characterised in that the rail curvature (χ) is calculated by dividing the yaw rate (Ω) by the translatory rate (v).
  2. The method according to claim 1, characterised in that the measured value of yaw rate (Ω) is smoothed using a low pass filter to eliminate the effect of the alternating yaw movement of the undercarriage structure in the track channel.
  3. The method according to either of claims 1 or 2, characterised in that the yaw rate (Ω) is determined by an angular rate sensor or gyroscopic sensor.
  4. A method for steered orientation of wheels attached rotatably to an undercarriage structure of a rail vehicle in a curved track, characterised in that the wheels are steered according to a target steering angle (γsoll) that is calculated by multiplying the rail curvature (χ) by half the distance (b) between the two axles of the undercarriage structure, the rail curvature (χ) being determined by a method according to any one of claims 1 to 3.
  5. The method according to claim 4, characterised in that, in order to steer a plurality of undercarriage structures, only the rail curvature (χ) and the target steering angle (γsoll 1) are determined for the leading undercarriage structure, whereas the target steering angles (γsoll 1 + i) for the undercarriage structures following in the direction of travel are calculated from the first target steering angle (γsoll 1) by temporal delaying (Δt).
  6. The method according to claim 5, characterised in that the delay is yielded by Δt = ai /v, where ai is the distance between the following undercarriage structure and the first undercarriage structure, and v is the translatory speed.
EP99925009A 1998-06-13 1999-05-19 Method for curve recognition and axle alignment in rail vehicles Expired - Lifetime EP1003661B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19826451 1998-06-13
DE1998126451 DE19826451A1 (en) 1998-06-13 1998-06-13 Measuring track curvature with running gear and chassis for rail vehicle
PCT/EP1999/003430 WO1999065751A1 (en) 1998-06-13 1999-05-19 Method for curve recognition and axle alignment in rail vehicles

Publications (3)

Publication Number Publication Date
EP1003661A1 EP1003661A1 (en) 2000-05-31
EP1003661B1 true EP1003661B1 (en) 2005-01-05
EP1003661B2 EP1003661B2 (en) 2009-09-16

Family

ID=7870834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925009A Expired - Lifetime EP1003661B2 (en) 1998-06-13 1999-05-19 Method for curve recognition and axle alignment in rail vehicles

Country Status (8)

Country Link
US (1) US6571178B1 (en)
EP (1) EP1003661B2 (en)
DE (2) DE19861086B4 (en)
HU (1) HU222388B1 (en)
IL (1) IL134496A (en)
NO (1) NO320337B1 (en)
PL (1) PL197048B1 (en)
WO (1) WO1999065751A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195756B1 (en) * 2001-12-27 2005-03-01 Patentes Talgo, S.A SYSTEM TO OPTIMIZE THE GUIDE OF RAILWAY AXLES.
DE102006025773A1 (en) 2006-05-31 2007-12-06 Bombardier Transportation Gmbh Method for controlling an active chassis of a rail vehicle
EP2196377B1 (en) * 2007-09-21 2017-07-05 Nippon Steel & Sumitomo Metal Corporation Steering bogie for rolling stock, rolling stock and articulated vehicle
DE102007054861A1 (en) * 2007-11-16 2009-05-28 Siemens Ag Method for limiting the angle between the longitudinal axes of interconnected car bodies
EP2772406B1 (en) * 2011-10-26 2017-01-04 Nippon Steel & Sumitomo Metal Corporation Method and device for steering bogie of railway vehicle, and bogie
CA2860887C (en) * 2012-01-25 2019-01-15 Prairie Machine & Parts Mfg. (1978) Ltd. Steering system and method for train vehicle
CN103358817A (en) * 2012-03-29 2013-10-23 上海宝钢工业技术服务有限公司 Vehicle rear axle arrangement applicable to pavements
AT518698B1 (en) * 2016-04-28 2021-06-15 Siemens Mobility Austria Gmbh Force-controlled track guidance for a rail vehicle
WO2019023601A1 (en) * 2017-07-28 2019-01-31 Innokind, Inc. Steering system for vehicles on grooved tracks
PT110903B (en) * 2018-08-03 2021-08-02 Inst Superior Tecnico RAILWAY GUIDANCE DEVICE AND ITS METHOD OF OPERATION.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103547A (en) * 1977-02-07 1978-08-01 The United States Of America As Represented By The Secretary Of The Department Of Transportation Locomotive track curvature indicator
US4679809A (en) 1984-09-10 1987-07-14 Nissan Motor Co., Ltd. Steering control system for wheeled vehicle
FR2584040B2 (en) * 1985-06-26 1990-08-10 Regie Autonome Transports GUIDED VEHICLE WITH STEERABLE AXLES
DE3663500D1 (en) * 1986-12-15 1989-06-29 Honeywell Regelsysteme Gmbh Method and device for the regulation of tilting
DE4114860C1 (en) * 1991-05-07 1992-06-17 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Railed vehicle drive using digital track guidance - uses opto-electric triangulation sensor pair comprising transmitter and receiver using laser measuring beams
DE9219042U1 (en) * 1992-09-18 1997-04-17 Siemens Ag Independent wheel control device
JPH0986365A (en) * 1995-09-21 1997-03-31 Fuji Heavy Ind Ltd Braking force control device
DE19538379C1 (en) 1995-10-14 1997-01-02 Daimler Benz Ag Two-wheeled running gear for rail vehicle
JPH09109866A (en) * 1995-10-19 1997-04-28 Fuji Heavy Ind Ltd Vehicle motion control device
DE19612695C1 (en) 1996-03-29 1997-06-26 Siemens Ag Method of adjusting inclination of rail vehicle carriage
DE19617003C2 (en) * 1996-04-27 2002-08-01 Bombardier Transp Gmbh Rail vehicle with a single-axle drive
DE19654862C2 (en) * 1996-12-04 1999-11-04 Abb Daimler Benz Transp Method for influencing the articulation angle of rail vehicle car bodies and rail vehicle for carrying out the method
DE19812236C2 (en) * 1998-03-20 2001-10-18 Daimler Chrysler Ag Method for suppressing high-frequency vibrations on the steered axles of a vehicle

Also Published As

Publication number Publication date
NO320337B1 (en) 2005-11-21
HUP0003302A3 (en) 2001-10-29
IL134496A0 (en) 2001-04-30
EP1003661A1 (en) 2000-05-31
IL134496A (en) 2004-02-19
US6571178B1 (en) 2003-05-27
HUP0003302A2 (en) 2001-02-28
WO1999065751A1 (en) 1999-12-23
PL197048B1 (en) 2008-02-29
HU222388B1 (en) 2003-06-28
DE59911399D1 (en) 2005-02-10
NO995807L (en) 1999-12-23
NO995807D0 (en) 1999-11-26
DE19861086B4 (en) 2004-04-15
EP1003661B2 (en) 2009-09-16
DE19861086A1 (en) 2000-01-27
PL337851A1 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
DE102006037588B4 (en) Method for the automatic or semi-automatic tracking-accurate multi-axle steering of a road vehicle and apparatus for carrying out the method
DE102015212229B4 (en) Method for steering a vehicle, control for a motor vehicle and vehicle with front-axle and rear-axle steering
WO2012041670A1 (en) Method and device for assisting a parking maneuver of a vehicle
DE102006062390A1 (en) Rear parking method of a vehicle and parking assistance system therefor
EP1003661B1 (en) Method for curve recognition and axle alignment in rail vehicles
DE102009029238A1 (en) Lenkzugkompensation
DE4133882A1 (en) Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle
DE19919644C2 (en) Measuring and control system for the transverse regulation of successive vehicles and method therefor
DE3612122A1 (en) METHOD FOR CONTROLLING THE STEERING OF THE REAR WHEELS OF A MOTOR VEHICLE WITH CONTROLLABLE FRONT AND REAR WHEELS
DE19752175A1 (en) Steering control device for vehicle
DE102014214141B4 (en) Method and control device for determining an angle between longitudinal axes of a combination of vehicle segments
DE102008045377A1 (en) Method and device for supporting a parking process of a vehicle
WO2013127410A1 (en) Device and method for determining the driving state of a vehicle
DE60129760T2 (en) Motor vehicle front and rear wheel steering angle control device and its control method
DE4127750C1 (en) Automotive equipment improving stability of car and trailer linkage - uses sensors or measurement value pick=ups to register undesired swing of trailer and automatic auxiliary linkage to counteract it
DE102018116935B4 (en) Method for maintaining the lane of a two-lane vehicle
EP1283149B1 (en) Method and apparatus for directionally stabilizing articulated vehicles, especially articulated busses
EP1003662B1 (en) Method for coordinating the drive of track-guided vehicles with independently driven wheels
DE19735912A1 (en) Establishing transverse inclination or banking of vehicle
DE4114860C1 (en) Railed vehicle drive using digital track guidance - uses opto-electric triangulation sensor pair comprising transmitter and receiver using laser measuring beams
DE102007019698B4 (en) Method and device for the electrically controlled assisting a driving movement of a vehicle and vehicle
EP0969997A2 (en) Rail vehicle with an articulated joint
DE102005018834A1 (en) Motor vehicle position and orientation determination system, has computing unit that computes current vehicle position and orientation from detected position and orientation using defined motion equations
DE19826451A1 (en) Measuring track curvature with running gear and chassis for rail vehicle
EP1568570A2 (en) Calculation of a vehicle wheel angle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB IT PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER RAIL SYSTEMS GMBH

17Q First examination report despatched

Effective date: 20030512

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOMBARDIER TRANSPORTATION GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050105

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59911399

Country of ref document: DE

Date of ref document: 20050210

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050416

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050418

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT OESTERREICH

Effective date: 20051004

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050605

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090916

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE DK ES FR GB IT PT SE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 15

Ref country code: GB

Payment date: 20130521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130603

Year of fee payment: 15

Ref country code: BE

Payment date: 20130521

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911399

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911399

Country of ref document: DE

Effective date: 20141202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531