EP1001975A1 - Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4 - Google Patents

Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4

Info

Publication number
EP1001975A1
EP1001975A1 EP98937054A EP98937054A EP1001975A1 EP 1001975 A1 EP1001975 A1 EP 1001975A1 EP 98937054 A EP98937054 A EP 98937054A EP 98937054 A EP98937054 A EP 98937054A EP 1001975 A1 EP1001975 A1 EP 1001975A1
Authority
EP
European Patent Office
Prior art keywords
phenylalanine
prolyl
sulfonyl
toluene
substimted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98937054A
Other languages
German (de)
French (fr)
Inventor
Eugene D. Thorsett
Christopher M. Semko
Michael A. Pleiss
Louis John Lombardo
Andrei W. Konradi
Francine S. Grant
Darren B. Dressen
Michael S. Dappen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Elan Pharmaceuticals LLC
Original Assignee
Elan Pharmaceuticals LLC
American Home Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Pharmaceuticals LLC, American Home Products Corp filed Critical Elan Pharmaceuticals LLC
Publication of EP1001975A1 publication Critical patent/EP1001975A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • C07K5/06165Dipeptides with the first amino acid being heterocyclic and Pro-amino acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic

Definitions

  • This invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA-4.
  • VLA-4 (also referred to as ⁇ 4 ⁇ l integrin and CD49d/CD29), first identified by Hemler and Takada 1 , is a member of the ⁇ l integrin family of cell surface receptors, each of which comprises two subunits, an ⁇ chain and a ⁇ chain.
  • VLA-4 contains an ⁇ 4 chain and a ⁇ l chain.
  • VLA-4 for example, binds to fibronectin.
  • VLA-4 is unique among ⁇ j integrins in that it also binds non-matrix molecules that are expressed by endothelial and other cells. These non-matrix molecules include VCAM-1, which is expressed on cytokine-activated human umbilical vein endothelial cells in culture. Distinct epitopes of VLA-4 are responsible for the fibronectin and VCAM-1 binding activities, and each activity has been shown to be inhibited independently. 2
  • Intercellular adhesion mediated by VLA-4 and other cell surface receptors is associated with a number of inflammatory responses.
  • activated vascular endothelial cells express molecules that are adhesive for leukocytes.
  • the mechanics of leukocyte adhesion to endothelial cells involves, in part, the recognition and binding of cell surface receptors on leukocytes to the corresponding cell surface molecules on endothelial cells. Once bound, the leukocytes migrate across the blood vessel wall to enter the injured site and release chemical mediators to combat infection.
  • adhesion receptors of the immune system see, for example, Springer 3 and Osborn 4 .
  • Inflammatory brain disorders such as experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS) and meningitis, are examples of central nervous system disorders in which the endothelium/leukocyte adhesion mechanism results in destruction to otherwise healthy brain tissue.
  • EAE experimental autoimmune encephalomyelitis
  • MS multiple sclerosis
  • M multiple sclerosis
  • meningitis are examples of central nervous system disorders in which the endothelium/leukocyte adhesion mechanism results in destruction to otherwise healthy brain tissue.
  • BBB blood brain barrier
  • the leukocytes release toxic mediators that cause extensive tissue damage resulting in impaired nerve conduction and paralysis.
  • tissue damage also occurs via an adhesion mechanism resulting in migration or activation of leukocytes.
  • tissue damage also occurs via an adhesion mechanism resulting in migration or activation of leukocytes.
  • the initial insult following myocardial ischemia to heart tissue can be further complicated by leukocyte entry to the injured tissue causing still further insult (Vedder et al. 5 ).
  • inflammatory conditions mediated by an adhesion mechanism include, by way of example, asthma 6"8 , Alzheimer's disease, atherosclerosis 9"10 , AIDS dementia 11 , diabetes 12 14 (including acute juvenile onset diabetis), inflammatory bowel disease 15 (including ulcerative colitis and Crohn's disease), multiple sclerosis 16"17 , rheumatoid arthritis 18"21 , tissue transplantation 22 , tumor metastasis 23 28 , meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • This invention provides compounds which bind to VLA-4.
  • Such compounds can be used, for example, to assay for the presence of VLA-4 in a sample and, in pharmaceutical compositions, to inhibit cellular adhesion mediated by VLA-4, for example, binding of VCAM-1 to VLA-4.
  • the compounds of this invention have a binding affinity to VLA-4 as expressed by an IC 50 of about 15 ⁇ M or less (as measured by Example 95 below), which compounds are defined by formula I below:
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl;
  • R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated heterocyclic group is not carboxyl;
  • R 5 is selected from the group consisting of -(CH 2 ) n -aryl and -(CH 2 ) n -heteroaryl, where n is an integer equal to 1 to 4;
  • Q is -C(X)NR 7 - wherein R 7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof, with the proviso that when R 1 is 2,4,6-trimethylphenyl, R 2 and R 3 together with the pendent nitrogen and carbon atoms form a pyrrolidinyl ring and Q is -C(O)NH-, then R 5 is not benzyl; and with the further proviso that when R 1 is /?-methylphenyl, R 2 and R 3 together with the pendent nitrogen and carbon atoms form a pyrrolidinyl ring derived from D-proline and Q is -C(O)NH-, then R 5 is not benzyl derived from D-phenylalanine.
  • the compounds of this invention can also be provided as prodrugs which convert (e.g., hydrolyze, metabolize, etc.) in vivo to a compound of formula I above.
  • the carboxylic acid of the compound of formula I is modified into a group which, in vivo, will convert to a carboxylic acid (including salts thereof).
  • prodrugs are represented by compounds of formula IA:
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl;
  • R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated heterocyclic group is not carboxyl;
  • R 5 is selected from the group consisting of -(CH 2 ) n -aryl and
  • n is an integer equal to 1 to 4.
  • R 6 is selected from the group consisting of amino, alkoxy, substituted alkoxy, cycloalkoxy, substituted cycloalkoxy, -O-(N-succinimidyl), -NH- adamantyl, -O-cholest-5-en-3- ⁇ -yl, -NHOY where Y is hydrogen, alkyl, substituted alkyl, aryl, and substituted aryl,
  • -NH(CH 2 ) p COOY where p is an integer of from 1 to 8 and Y is as defined above, -OCH 2 NR 9 R 10 where R 9 is selected from the group consisting of -C(O)-aryl and -C(O)-substituted aryl and R 10 is selected from the group consisting of hydrogen and -CH 2 COOR n where R 11 is alkyl, and -NHSO 2 Z where Z is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic;
  • Q is -C(X)NR 7 - wherein R 7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof, with the following provisos:
  • R 1 is 4-methylphenyl
  • R 2 and R 3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring
  • R 5 is benzyl and Q is -C(O)NH-
  • R 6 is not -NH(CH 2 ) 2 CO 2 Et or -(lR,2S,5R)-(-)- menthyl ester;
  • R 1 is 4-methylphenyl
  • R 2 and R 3 together with the pendent nitrogen and carbon atoms form a 3- ⁇ -phenyl-ring derived from D- proline
  • R 5 is benzyl and Q is -C(O)NH-
  • R 6 is not -OCH 2 CH 3
  • C when R 1 is l-N-methyl-3-methyl-5-chloropyrazol-4-yl, R 2 and R 3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2- yl ring, R 5 is benzyl and Q is -C(O)NH-, then R 6 is not -OCH 3 ;
  • R 1 is 4-methylphenyl
  • R 2 and R 3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring
  • R 5 is
  • D-benzyl and Q is -C(O)NH-, then R 6 is not -OCH 2 CH 3 ;
  • R 6 is not -O-benzyl.
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl.
  • R 1 is selected from the group consisting of 4-methylphenyl, methyl, benzyl, n-butyl, 4-chlorophenyl, 1- naphthyl, 2-naphthyl, 4-methoxyphenyl, phenyl, 2,4,6-trimethylphenyl, 2- (methoxycarbonyl)phenyl, 2-carboxyphenyl, 3,5-dichlorophenyl, 4- trifluoromethylphenyl, 3,4-dichlorophenyl, 3,4-dimethoxyphenyl, 4-
  • Such heterocyclic rings include thiazolidinyl
  • pyrrolidinyl e.g., L-pyrrolidin-2-yl
  • substituted pyrrolidinyl such as 4- hydroxypyrrolidinyl (e.g. , 4- ⁇ -(or ⁇ -)hydroxy-L-pyrrolidin-2-yl), 4-fluoropyrrolidinyl (e.g.
  • 4- -(or ⁇ -)fluoro-L-pyrrolidin-2-yl 3- phenylpyrrolidinyl (e.g., 3- ⁇ -(or ⁇ -)phenyl-L-pyrrolidin-2-yl), 3- thiophenylpyrrolidinyl (e.g., 3- ⁇ -(or ⁇ -)thiophenyl-L-pyrrolidin-2-yl), 4- aminopyrrolidinyl (e.g., 4- ⁇ -(or ⁇ -)amino-L-pyrrolidin-2-yl), 3- methoxypyrrolidinyl (e.g., 3- ⁇ -(or ⁇ -)methoxy-L-pyrrolidin-2-yl), 4,4- dimethylpyrrolidin-2-yl, substituted piperizinyl such as 4-N-Cbz-piperizin-2- yl, substituted thiazolidinyl such as 5,5-dimethylthiazolindin-4-yl,
  • such rings do not include those where R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 form a azetidine ring.
  • Q is preferably -C(O)NH- or -C(S)NH-.
  • R 5 is preferably selected from all possible isomers arising by substitution of the following groups: benzyl, phenethyl, -CH 2 -(3-indolyl), -CH 2 -(l-naphthyl), -CH 2 -(2-naphthyl), -CH 2 -(2-thienyl), -CH 2 -(3-pyridyl), -CH 2 -(5-imidazolyl), -CH 2 -3-(l,2,4-triazolyl), -CH 2 -(2-thiazolyl) and the like.
  • R 6 is preferably 2,4-dioxo- tetrahydrofuran-3-yl (3,4-enol), methoxy, ethoxy, iso-p ⁇ opoxy , n-butoxy, t-butoxy, cyclopentoxy, ne ⁇ -pentoxy, 2- ⁇ - so-propyl-4- ⁇ - methylcyclohexoxy, 2- ⁇ -isopropyl-4- ⁇ -methylcyclohexoxy, -NH 2 , benzyloxy, -NHCH 2 COOH, -NHCH 2 CH 2 COOH, -NH-adamantyl, -NHCH 2 CH 2 COOCH 2 CH 3 , -NHSO 2 -/?-CH 3 - ⁇ , -NHOR 8 where R 8 is hydrogen, methyl, ts ⁇ -propyl or benzyl, O-(N-succinimidyl), -O-cholest-5-en-3- ⁇ -yl,
  • ester compounds recited above wherein one ester is replaced with another ester selected from the group consisting of methyl ester, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, isobutyl ester, sec-butyl ester and tert- butyl ester.
  • This invention also provides methods for binding VLA-4 in a biological sample which method comprises contacting the biological sample with a compound of formula I or IA above under conditions wherein said compound binds to VLA-4.
  • Certain of the compounds of formula I and IA above are also useful in reducing VLA-4 mediated inflammation in vivo.
  • compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of one or more of the compounds of formula I or I A above, with the exception that R 3 and R 5 are derived from L-amino acids or other similarly configured starting materials. Alternatively, racemic mixtures can be used.
  • the pharmaceutical compositions may be used to treat VLA-4 mediated disease conditions.
  • disease conditions include, by way of example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetis), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • this invention also provides methods for the treatment of an inflammatory disease in a patient mediated by VLA-4 which methods comprise administering to the patient the pharmaceutical compositions described above.
  • Preferred compounds of formula I and IA above include those set forth in Table I below:
  • this invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA- 4.
  • VLA- 4 leukocyte adhesion mediated by VLA- 4.
  • alkyl refers to alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, t-butyl, n-heptyl, octyl and the like.
  • Substituted alkyl refers to an alkyl group, preferably of from 1 to 10 carbon atoms, having from 1 to 5 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substituted aryl, aryloxy, substituted aryloxy, aryloxylaryl, substituted aryloxyaryl, cyano, halogen, hydroxyl, nitro, carboxyl, carboxy lalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxy 1-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxy lheteroaryl
  • Alkoxy refers to the group “alkyl-O-" which includes, by way of example, methoxy, ethoxy, n-propoxy, /s ⁇ -propoxy, n-butoxy, tert-butoxy, sec-butoxy, rz-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
  • Substituted alkoxy refers to the group “substituted alkyl-O-” .
  • Acyl refers to the groups H-C(O)-, alkyl-C(O)-, substimted alkyl- C(O)-, alkenyl-C(O)-, substimted alkenyl-C(O)-, alkynyl-C(O)-, substimted alkynyl-C(O)- cycloalkyl-C(O)-, substimted cycloalkyl-C(O)-, aryl-C(O)-, substituted aryl-C(O)-, heteroaryl-C(O)-, substimted heteroaryl-C(O), heterocyclic-C(O)-, and substituted heterocyclic-C(O)-, wherein alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, and
  • Acylamino refers to the group -C(O)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, and where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, and where each R is independently selected from the group consisting of hydrogen, alkyl,
  • R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
  • Thiocarbonylamino refers to the group -C(S)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substituted alkynyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, and where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted
  • Acyloxy refers to the groups alkyl-C(0)O-, substituted alkyl-C(O)O-, alkenyl-C(O)O-, substimted alkenyl-C(O)O-, alkynyl-C(O)O-, substimted alkynyl-C(O)O-, aryl-C(O)O-, substimted aryl-C(O)O-, cycloalkyl-C(O)O-, substimted cycloalkyl-C(O)O-, heteroaryl-C(O)O-, substimted heteroaryl-C(O)O-, heterocyclic-C(O)O-, and substimted heterocyclic-C(O)O-, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, sub
  • Alkenyl refers to an alkenyl group preferably having from 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms, and having at least
  • Substimted alkenyl refers to alkenyl groups having from 1 to 5 substiments selected from the group consisting of alkoxy, substimted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxy aryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxy lalkyl, carboxy 1-substituted alkyl, carboxyl- cycloalkyl, carboxy 1-substituted cycloalkyl, carboxylaryl, carboxyl- substituted aryl, carboxy lheteroaryl, carboxyl-substi
  • R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substituted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-heterocyclic amino, mono- and
  • Alkynyl refers to an alkynyl group preferably having from 2 to 10 carbon atoms, and more preferably 3 to 6 carbon atoms, and having at least 1, and preferably from 1-2, sites of alkynyl unsaturation.
  • Substimted alkynyl refers to alkynyl groups having from 1 to 5 substiments selected from the group consisting of alkoxy, substimted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxyaryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxylalkyl, carboxy 1-substituted alkyl, carboxyl- cycloalkyl, carboxy 1-substituted cycloalkyl, carboxy laryl, carboxyl- substituted aryl, carboxy lheteroaryl, carboxyl-sub
  • NH refers to compounds having 1 to 3 alkyl groups (e.g., alkylHNC-).
  • Thioamidino refers to the group RSC-, where R is hydrogen or
  • aminoacyl refers to the groups -NRC(O)alkyl, -NRC(O)substituted alkyl, -NRC(O)cycloalkyl, -NRC(O)substituted cycloalkyl, -NRC(O)alkenyl, -NRC(O)substituted alkenyl, -NRC(O)alkynyl,
  • R is hydrogen or alkyl, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
  • Aminocarbonyloxy refers to the groups -NRC(O)O-alkyl
  • Oxycarbonylamino refers to the groups -OC(O)NH 2 , -OC(O)NRR, -OC(O)NR-alkyl, -OC(O)NR-substituted alkyl, -OC(O)NR-alkenyl, -OC(O)NR-substituted alkenyl, -OC(O)NR-alkynyl, -OC(O)NR-substituted alkynyl, -OC(O)NR-cycloalkyl, -OC(O)NR-substituted cycloalkyl, -OC(O)NR-aryl, -OC(O)NR-substimted aryl, -OC(O)NR-heteroaryl, -OC(O)NR-substituted heteroaryl,- OC(O)NR-heterocyclic, and -OC(O)NR-substimted heterocyclic where R is hydrogen, alkyl
  • Oxythiocarbonylamino refers to the groups -OC(S)NH 2 , -OC(S)NRR, -OC(S)NR-alkyl, -OC(S)NR-substituted alkyl, -OC(S)NR- alkenyl, -OC(S)NR-substituted alkenyl, -OC(S)NR-alkynyl, -OC(S)NR- substimted alkynyl, -OC(S)NR-cycloalkyl, -OC(S)NR-substituted cycloalkyl, -OC(S)NR-aryl, -OC(S)NR-substimted aryl, -OC(S)NR-heteroaryl, - OC(S)NR-substimted heteroaryl, -OC(S)NR-heterocyclic, and -OC(S)NR-substituted heterocyclic where R is hydrogen
  • Aminocarbonylamino refers to the groups -NRC(O)NRR, -NRC(O)NR-alkyl, -NRC(O)NR-substituted alkyl, -NRC(O)NR-alkenyl, -NRC(O)NR-substituted alkenyl, -NRC(O)NR-alkynyl, -NRC(O)NR- substimted alkynyl, -NRC(O)NR-aryl, -NRC(O)NR-substituted aryl,
  • each R is independently hydrogen or alkyl, or where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, as well as where one of the amino groups is blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, subs
  • Aminothiocarbonylamino refers to the groups -NRC(S)NRR, -NRC(S)NR-alkyl, -NRC(S)NR-substituted alkyl, -NRC(S)NR-alkenyl, -NRC(S)NR-substimted alkenyl, -NRC(S)NR-alkynyl, -NRC(S)NR- substimted alkynyl, -NRC(S)NR-aryl, -NRC(S)NR-substituted aryl, -NRC(S)NR-cycloalkyl, -NRC(S)NR-substimted cycloalkyl, -NRC(S)NR- heteroaryl, -NRC(S)NR-substimted heteroaryl, -NRC(S)NR-heterocyclic, and -NRC(S)NR-substituted heterocyclic where each R
  • Aryl or “Ar” refers to an unsaturated aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-l,4-benzoxazin-3(4H)- one-7yl, and the like).
  • Preferred aryls include phenyl and naphthyl.
  • Substimted aryl refers to aryl groups which are substimted with from 1 to 3 substiments selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substimted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substituted alky
  • thioheteroaryl substimted thioheteroaryl, thiocycloalkyl, substituted thiocycloalkyl, thioheterocyclic, substimted thioheterocyclic, cycloalkyl, substituted cycloalkyl, guanidino, guanidinosulfone, halo, nitro, heteroaryl, substituted heteroaryl, heterocyclic, substimted heterocyclic, oxycarbonylamino, oxythiocarbonylamino, -S(O) 2 -alkyl, -S(O) 2 -substituted alkyl, -S(O) 2 -cycloalkyl, -S(O) 2 -substituted cycloalkyl, -S(O) 2 -alkenyl, -S(O) 2 -substimted alkenyl, -S(O) 2 -aryl,
  • R is hydrogen or alkyl, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di- substituted arylamino, mono- and di-heteroarylamino, mono- and di- substituted heteroarylamino, mono- and di-heterocyclic amino, unsymmetric di-substituted amines having
  • Substimted aryloxy refers to substituted aryl-O- groups.
  • Aryloxyaryl refers to the gioup -aryl-O-aryl.
  • “Substimted aryloxyaryl” refers to aryloxyaryl groups substimted with from 1 to 3 substiments on either or both aryl rings selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substimted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylal
  • R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di
  • Cycloalkyl refers to cyclic alkyl groups of from 3 to 8 carbon atoms having a single cyclic ring including, by way of example, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like. Excluded from this definition are multi-ring alkyl groups such as adamantanyl, etc.
  • Cycloalkenyl refers to cyclic alkenyl groups of from 3 to 8 carbon atoms having single or multiple unsaturation but which are not aromatic.
  • Cycloalkoxy refers to -O-cycloalkyl groups.
  • Substimted cycloalkoxy refers to -O-substituted cycloalkyl groups.
  • each R is independently hydrogen and alkyl, as well as where one of the amino groups is blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
  • Halo or halogen refers to fluoro, chloro, bromo and iodo and preferably is either chloro or bromo.
  • Heteroaryl refers to an aromatic carbocyclic group of from 2 to 10 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within the ring.
  • Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl).
  • Preferred heteroaryls include pyridyl, pyrrolyl, indolyl and furyl.
  • Substituted heteroaryl refers to heteroaryl groups which are substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substituted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substituted alkynyl, amidino, alkylamidino, thioamidmo, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substimted alkyl
  • Heteroaryloxy refers to the group -O-heteroaryl and "substimted heteroaryloxy” refers to the group -O-substituted heteroaryl.
  • Heterocycle or “heterocyclic” refers to a saturated or unsaturated group having a single ring or multiple condensed rings having from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl.
  • “Saturated heterocyclic” refers to heterocycles of single or multiple condensed rings lacking unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • Unsaturated heterocyclic refers to non-aromatic heterocycles of single or multiple condensed rings having unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7- tetra
  • “Saturated substimted heterocyclic” refers to substimted heterocycles of single or multiple condensed rings lacking unsamration in any ring (e.g., carbon to carbon unsamration, carbon to nitrogen unsamration, nitrogen to nitrogen unsamration, and the like).
  • Unsaturated substimted heterocyclic refers to non-aromatic substituted heterocycles of single or multiple condensed rings having unsamration in any ring (e.g., carbon to carbon unsamration, carbon to nitrogen unsamration, nitrogen to nitrogen unsamration, and the like).
  • Heterocyclyloxy refers to the group -O-heterocyclic and “substimted heterocyclyloxy” refers to the group -O-substimted heterocyclic.
  • Thiol refers to the group -SH.
  • Thioalkyl refers to the groups -S-alkyl
  • Substimted thioalkyl refers to the group -S-substimted alkyl.
  • Thiocycloalkyl refers to the groups -S-cycloalkyl.
  • Substimted thiocycloalkyl refers to the group -S-substimted cycloalkyl.
  • Thioaryl refers to the group -S-aryl and "substimted thioaryl” refers to the group -S-substimted aryl.
  • Thioheteroaryl refers to the group -S-heteroaryl and "substimted thioheteroaryl” refers to the group -S-substimted heteroaryl.
  • Thioheterocyclic refers to the group -S-heterocyclic and "substimted thioheterocyclic” refers to the group -S-substimted heterocyclic.
  • “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound of formula I or I A, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the compound of formula I or I A contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
  • the compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions.
  • Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Second Edition, Wiley, New York, 1991, and references cited therein.
  • the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like. In a preferred method of synthesis, the compounds of formulas I and IA, wherein Q is -C(O)NR 7 -, are prepared by first coupling an amino acid of formula II:
  • R 2 and R 3 are as defined in formulas I and IA, and R 4 is hydrogen, with a sulfonyl chloride of formula III:
  • R 1 is as defined in formulas I and I A, to provide an N-sulfonyl amino acid of formula IV:
  • R -R are as defined above.
  • This reaction is typically conducted by reacting the amino acid of formula II with at least one equivalent, preferably about 1.1 to about 2 equivalents, of sulfonyl chloride III in an inert diluent such as dichloromethane and the like. Generally, the reaction is conducted at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like, as the base.
  • aqueous alkali such as sodium hydroxide and the like
  • the resulting N-sulfonyl amino acid IV is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration and the like.
  • amino acids of formula II employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures.
  • suitable amino acids for use in this reaction include, but are not limited to, L-proline, tr ⁇ ns-4-hydroxyl-L-proline , c/s-4-hydroxy 1-L-proline , tr ⁇ /w-3-phenyl-L- proline, s-3-phenyl-L-proline, L-(2-methyl)proline, L-pipecolinic acid, L- indoline-2-carboxylic acid, L-l ,2,3 ,4-tetrahydroisoquinoline-3-carboxylic acid, L-thiazolidine-4-carboxylic acid, L-(5,5-dimethyl)thiazolidine-4- carboxylic acid, L-thiamorpholine-3-carboxylic acid, glycine, 2-tert- butylglycine, D,L-phenylglycine, L-alanine,
  • the corresponding carboxylic acid esters of the amino acids of formula II can be employed in the above reaction with the sulfonyl chloride III.
  • the sulfonyl chlorides of formula III employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. Such compounds are typically prepared from the corresponding sulfonic acid, i.e. , from compounds of the formula R ⁇ SOsH where R 1 is as defined above, using phosphorous trichloride and phosphorous pentachloride.
  • This reaction is generally conducted by contacting the sulfonic acid with about 2 to 5 molar equivalents of phosphorous trichloride and phosphorous pentachloride, either neat or in an inert solvent, such as dichloromethane, at a temperamre in the range of about 0°C to about 80 °C for about 1 to about 48 hours to afford the sulfonyl chloride.
  • the sulfonyl chlorides of formula III can be prepared from the corresponding thiol compound, i.e., from compounds of the formula R ⁇ SH where R 1 is as defined above, by treating the thiol with chlorine (Cl 2 ) and water under conventional reaction conditions.
  • sulfonyl chlorides suitable for use in this invention include, but are not limited to, methanesulfonyl chloride, 2-propanesulfonyl chloride, 1-butanesulfonyl chloride, benzenesulfonyl chloride, 1-naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, -toluenesulfonyl chloride, -toluenesulfonyl chloride, 4-acetamidobenzenesulfonyl chloride, 4-amidinobenzenesulfonyl chloride,
  • 4-rert-butylbenzenesulfonyl chloride 4-bromobenzenesulfonyl chloride, 2-carboxybenzenesulfonyl chloride, 4-cyanobenzenesulfonyl chloride, 3,4-dichlorobenzenesulfonyl chloride, 3,5-dichlorobenzenesulfonyl chloride, 3,4-dimethoxybenzenesulfonyl chloride, 3,5- ditrifluoromethylbenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 4-methoxybenzenesulfony 1 chloride , 2-methoxycarbony Ibenzenesulf onyl chloride, 4-methylamidobenzenesulfonyl chloride, 4-nitrobenzenesulfonyl chloride, 4-thioamidobenzenesulfonyl chloride, 4- tr ifluoromethy
  • a sulfonyl fluoride, sulfonyl bromide or sulfonic acid anhydride may be used in place of the sulfonyl chloride in the above reaction to form the N-sulfonyl amino acids of formula IV.
  • R 5 -R 7 are as in formulas I and IA.
  • This coupling reaction is typically conducted using well-known coupling reagents such as carbodiimides, BOP reagent (benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphonate) and the like.
  • Suitable carbodiimides include, by way of example, dicyclohexylcarbodiimide (DCC), l-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC) and the like.
  • polymer supported forms of carbodiimide coupling reagents may also be used including, for example, those described in Tetrahedron Letters, 34(48), 7685 (1993). Additionally, well-known coupling promoters, such as N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like, may be used to facilitate the coupling reaction.
  • This coupling reaction is typically conducted by contacting the N-sulfonylamino acid IV with about 1 to about 2 equivalents of the coupling reagent and at least one equivalent, preferably about 1 to about 1.2 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like.
  • an inert diluent such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like.
  • this reaction is conducted at a temperamre ranging from about 0°C to about 37°C for about 12 to about 24 hours.
  • the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
  • the N-sulfonyl amino acid IV can be converted into an acid halide and the acid halide coupled with amino acid derivative VI to provide compounds of formula I.
  • the acid halide of VI can be prepared by contacting VI with an inorganic acid halide, such as thionyl chloride, phosphorous trichloride, phosphorous tribromide or phosphorous pentachloride, or, preferably, with oxalyl chloride under conventional conditions.
  • this reaction is conducted using about 1 to 5 molar equivalents of the inorganic acid halide or oxalyl chloride, either neat or in an inert solvent, such as dichloromethane or carbon tetrachloride, at temperamre in the range of about 0°C to about 80 °C for about 1 to about 48 hours.
  • a catalyst such as N,N-dimethylformamide, may also be used in this reaction.
  • the acid halide of N-sulfonyl amino acid IV is then contacted with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours.
  • this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
  • aqueous alkali such as sodium hydroxide and the like.
  • the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
  • the compounds of formula I can be prepared by first forming a diamino acid derivative of formula VII:
  • the diamino acid derivatives of formula VII can be readily prepared by coupling an amino acid of formula II with an amino acid derivative of formula VI using conventional amino acid coupling techniques and reagents, such as carbodiimides, BOP reagent and the like, as described above. Diamino acid VII can then be sulfonated using a sulfonyl chloride of formula III and using the synthetic procedures described above to provide a compound of formula I.
  • the amino acid derivatives of formula VI employed in the above reactions are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. For example, amino acid derivatives of formula VI can be prepared by C- alkylating commercially available diethyl 2-acetamidomalonate (Aldrich,
  • amino acid derivatives of formula VI suitable for use in the above reactions include, but are not limited to, L-tryptophan methyl ester, L-phenylalanine methyl ester, L-phenylalanine isopropyl ester, L- phenylalanine benzyl ester, L-phenylalaninamide, N-methyl-L-phenylalanine benzyl ester, D,L-homophenylalanine methyl ester, ⁇ -(l-naphthyl)-L-alanine methyl ester, ⁇ -(2-naphthyl)-L-alanine methyl ester, ⁇ -(2-thienyl)-L-alanine methyl ester, ⁇ -(2-pyridyl)-L-alanine methyl ester, ⁇ -(3-pyridyl)-L-alanine methyl ester, ⁇ -(4-pyridyl)-L-alanine methyl
  • the compounds of formula I are typically prepared as an ester, i.e. , where R 6 is an alkoxy or substimted alkoxy group and the like.
  • the ester group can be hydrolysed using conventional conditions and reagents to provide the corresponding carboxylic acid.
  • this reaction is conducted by treating the ester with at least one equivalent of an alkali metal hydroxide, such as lithium, sodium or potassium hydroxide, in an inert diluent, such as methanol or mixtures of methanol and water, at a temperamre ranging from about 0°C to about 24 °C for about 1 to about 12 hours.
  • benzyl esters may be removed by hydrogenolysis using a palladium catalyst, such as palladium on carbon.
  • the resulting carboxylic acids may be coupled, if desired, to amines such as ⁇ -alanine ethyl ester, hydroxyamines such as hydroxylamine and N- hydroxysuccinimide, alkoxyamines and substimted alkoxyamines such as O- methylhydroxylamine and O-benzylhydroxylamine, and the like, using conventional coupling reagents and conditions as described above.
  • a nitro group present on a substituent of a compound of formula I or an intermediate thereof may be readily reduced by hydrogenation in the presence of a palladium catalyst, such as palladium on carbon, to provide the corresponding amino group.
  • a palladium catalyst such as palladium on carbon
  • This reaction is typically conducted at a temperamre of from about 20 °C to about 50 °C for about 6 to about 24 hours in an inert diluent, such as methanol.
  • Compounds having a nitro group on the R 5 substituent can be prepared, for example, by using a 4- nitrophenylalanine derivative and the like in the above-described coupling reactions.
  • a pyridyl group can be hydrogenated in the presence of a platinum catalyst, such as platinum oxide, in an acidic diluent to provide the corresponding piperidinyl analogue.
  • a platinum catalyst such as platinum oxide
  • this reaction is conducted by treating the pyridine compound with hydrogen at a pressure ranging from about 20 psi to about 60 psi, preferably about 40 psi, in the presence of the catalyst at a temperamre of about 20 °C to about 50 °C for about 2 to about 24 hours in an acidic diluent, such as a mixture of methanol and aqueous hydrochloric acid.
  • a compound of formula I, or an intermediate thereof, having a substituent containing a primary or secondary amino group, such as where R 1 is a 4-aminophenyl group can be readily N-acylated using conventional acylating reagents and conditions to provide the corresponding amide.
  • This acylation reaction is typically conducted by treating the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of a carboxylic acid in the presence of a coupling reagent such as a carbodiimide, BOP reagent (benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphonate) and the like, in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N-dimethylformamide and the like, at a temperamre ranging from about 0°C to about 37 °C for about 4 to about 24 hours.
  • a promoter such as N-hydroxysuccinimide,
  • carboxylic acids suitable for use in this reaction include, but are not limited to, N-tert-butyloxycarbonylglycine, N-tert- butyloxycarbonyl-L-pheny lalanine , N-tert-butyloxycarbonyl-L-aspartic acid benzyl ester, benzoic acid, N-tert-butyloxycarbonylisonipecotic acid, N- methylisonipecotic acid, N-tert-butyloxycarbonylnipecotic acid, N-tert- butyloxycarbonyl-L-tetrahydroisoquinoline-3-carboxylic acid, N-(toluene-4- sulfonyl)-L-proline and the like.
  • a compound of formula I or an intermediate thereof containing a primary or secondary amino group can be N-acylated using an acyl halide or a carboxylic acid anhydride to form the corresponding amide.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the acyl halide or carboxylic acid anhydride in an inert diluent, such as dichloromethane, at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours.
  • an acylation catalyst such as 4- (NN-dimethylamino)pyridine may be used to promote the acylation reaction.
  • the acylation reaction is preferably conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
  • acyl halides and carboxylic acid anhydrides suitable for use in this reaction include, but are not limited to, 2-methylpropionyl chloride, trimethylacetyl chloride, phenylacetyl chloride, benzoyl chloride, 2-bromobenzoyl chloride, 2-methylbenzoyl chloride,
  • 2-trifluoromethylbenzoyl chloride isonicotinoyl chloride, nicotinoyl chloride, picolinoyl chloride, acetic anhydride, succinic anhydride and the like.
  • Carbamyl chlorides such as N,N-dimethylcarbamyl chloride, N,N- diethylcarbamyl chloride and the like, can also be used in this reaction to provide ureas.
  • dicarbonates such as di-tert-butyl dicarbonate, may be employed to provide carbamates.
  • a compound of formula I or an intermediate thereof containing a primary or secondary amino group may be N-sulfonated to form a sulfonamide using a sulfonyl halide or a sulfonic acid anhydride.
  • Sulfonyl halides and sulfonic acid anhydrides suitable for use in this reaction include, but are not limited to, methanesulfonyl chloride, chloromethanesulfonyl chloride, -toluenesulfonyl chloride, trifluoromethanesulfonic anhydride and the like.
  • sulfamoyl chlorides such as dimethylsulfamoyl chloride, can be used to provide sulfamides (e.g., > N-SO 2 -N ⁇ ).
  • a primary and secondary amino group present on a substituent of a compound of formula I, or an intermediate thereof can be reacted with an isocyanate or a thioisocyanate to give a urea or thiourea, respectively.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the isocyanate or thioisocyanate in an inert diluent, such as toluene and the like, at a temperamre ranging from about 24 °C to about 37 °C for about 12 to about 24 hours.
  • isocyanates and thioisocyanates used in this reaction are commercially available or can be prepared from commercially available compounds using well-known synthetic procedures.
  • isocyanates and thioisocyanates are readily prepared by reacting the appropriate amine with phosgene or thiophosgene.
  • isocyanates and thioisocyanates suitable for use in this reaction include, but are not limited to, ethyl isocyanate, «-propyl isocyanate, 4-cyanophenyl isocyanate, 3-methoxyphenyl isocyanate, 2-phenylethyl isocyanate, methyl thioisocyanate, ethyl thioisocyanate, 2-phenylethyl thioisocyanate, 3-phenylpropyl thioisocyanate, 3-(N,N-diethylamino)propyl thioisocyanate, phenyl thioisocyanate, benzyl thioisocyanate, 3-pyridyl thioisocyanate, fluorescein isothiocyanate (isomer I), and the like.
  • a compound of formula I or an intermediate thereof contains a primary or secondary amino group
  • the amino group can be reductively alkylated using aldehydes or ketones to form a secondary or tertiary amino group.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of an aldehyde or ketone and at least one equivalent based on the amino compound of a metal hydride reducing agent, such as sodium cyanoborohydride, in an inert diluent, such as methanol, tetrahydrofuran, mixtures thereof and the like, at a temperamre ranging from about 0°C to about 50 °C for about 1 to about 72 hours.
  • Aldehydes and ketones suitable for use in this reaction include, by way of example, benzaldehyde, 4- chlorobenzaldehyde, valeraldehyde and the like.
  • hydroxyl group when a compound of formula I, or an intermediate thereof, has a substituent containing a hydroxyl group, the hydroxyl group can be further modified or derivatized either before or after the above coupling reactions to provide, by way of example, ethers, carbamates and the like.
  • a compound of formula I or an intermediate thereof having a substituent containing a hydroxyl group can be readily O-alkylated to form ethers.
  • This O-alkylation reaction is typically conducted by contacting the hydroxy compound with a suitable alkali or alkaline earth metal base, such as potassium carbonate, in an inert diluent, such as acetone, 2-butanone and the like, to form the alkali or alkaline earth metal salt of the hydroxyl group.
  • This salt is generally not isolated, but is reacted in situ with at least one equivalent of an alkyl or substimted alkyl halide or sulfonate, such as an alkyl chloride, bromide, iodide, mesylate or tosylate, to afford the ether.
  • an alkyl or substimted alkyl halide or sulfonate such as an alkyl chloride, bromide, iodide, mesylate or tosylate
  • this reaction is conducted at a temperamre ranging from about 60 °C to about 150°C for about 24 to about 72 hours.
  • a catalytic amount of sodium or potassium iodide is added to the reaction mixture when an alkyl chloride or bromide is employed in the reaction.
  • alkyl or substimted alkyl halides and sulfonates suitable for use in this reaction include, but are not limited to, tert-butyl bromoacetate, N-tert-butyl chloroacetamide, 1-bromoethylbenzene, ethyl ⁇ -bromophenylacetate, 2-(N-ethyl-N-phenylamino)ethyl chloride, 2-(N,N- ethylamino)ethyl chloride, 2-(N,N-diisopropylamino)ethyl chloride, 2-(N,N- dibenzylamino)ethyl chloride, 3-(N, ⁇ -ethylamino)propyl chloride, 3-(N- benzyl-N-methylamino)propyl chloride, N-(2-chloroethyl)morpholine, 2-(hexamethy leneimino)ethyl
  • a hydroxyl group present on a substituent of a compound of formula I, or an intermediate thereof can be O-alkylated using the Mitsunobu reaction.
  • an alcohol such as 3-(N,N- dimethylamino)-l-propanol and the like
  • triphenylphosphine is reacted with about 1.0 to about 1.3 equivalents of triphenylphosphine and about 1.0 to about 1.3 equivalents of diethyl azodicarboxylate in an inert diluent, such as tetrahydrofuran, at a temperamre ranging from about -10 °C to about 5°C for about 0.25 to about 1 hour.
  • a hydroxy compound such as
  • N-tert-butyltyrosine methyl ester is then added and the reaction mixture is stirred at a temperamre of about 0°C to about 30 °C for about 2 to about 48 hours to provide the O-alkylated product.
  • a compound of formula I, or an intermediate thereof, containing an aryl hydroxy group can be reacted with an aryl iodide to provide a diary 1 ether.
  • this reaction is conducted by forming the alkali metal salt of the hydroxyl group using a suitable base, such as sodium hydride, in an inert diluent, such as xylenes, at a temperamre of about -25 °C to about 10°C.
  • the salt is then treated with about 1.1 to about 1.5 equivalents of cuprous bromide dimethyl sulfide complex at a temperamre ranging from about 10°C to about 30°C for about 0.5 to about 2.0 hours, followed by about 1.1 to about 1.5 equivalents of an aryl iodide, such as sodium 2-iodobenzoate and the like.
  • the reaction is then heated to a temperamre from about 70 °C to about 150°C for about 2 to about 24 hours to provide the diary 1 ether.
  • a hydroxy-containing compound can also be readily derivatized to form a carbamate.
  • a hydroxy compound of formula I, or an intermediate thereof is contacted with about 1.0 to about 1.2 equivalents of 4-nitrophenyl chloroformate in an inert diluent, such as dichloromethane, at a temperamre ranging from about -25 °C to about 0°C for about 0.5 to about 2.0 hours.
  • an inert diluent such as dichloromethane
  • a trialkylamine such as triethylamine
  • a primary or secondary amine Treatment of the resulting carbonate with an excess, preferably about 2 to about 5 equivalents, of a trialkylamine, such as triethylamine, for about 0.5 to 2 hours, followed by about 1.0 to about 1.5 equivalents of a primary or secondary amine, provides the carbamate.
  • amines suitable for using in this reaction include, but are not limited to, piperazine, 1- methylpiperazine, 1-acetylpiperazine, morpholine, thiomorpholine, pyrrolidine, piperidine and the like.
  • a hydroxy-containing compound is contacted with about 1.0 to about 1.5 equivalents of a carbamyl chloride in an inert diluent, such as dichloromethane, at a temperamre ranging from about 25 °C to about 70 °C for about 2 to about 72 hours.
  • this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • At least one equivalent (based on the hydroxy compound) of 4- (N,N-dimethylamino)pyridine is preferably added to the reaction mixmre to facilitate the reaction.
  • carbamyl chlorides suitable for use in this reaction include, by way of example, dimethylcarbamyl chloride, diethylcarbamyl chloride and the like.
  • hydroxyl groups can be readily converted into a leaving group and displaced to form, for example, amines, sulfides and fluorides.
  • derivatives of 4- hydroxy-L-proline can be converted into the corresponding 4-amino, 4-thio or 4-fluoro-L-proline derivatives via nucleophilic displacement of the derivatized hydroxyl group.
  • the stereochemistry at the carbon atom attached to the derivatized hydroxyl group is typically inverted.
  • These reactions are typically conducted by first converting the hydroxyl group into a leaving group, such as a tosylate, by treatment of the hydroxy compound with at least one equivalent of a sulfonyl halide, such as p-toluenesulfonyl chloride and the like, in pyridine. This reaction is generally conducted at a temperamre of from about 0°C to about 70 °C for about 1 to about 48 hours.
  • the resulting tosylate can then be readily displaced with sodium azide, for example, by contacting the tosylate with at least one equivalent of sodium azide in an inert diluent, such as a mixmre of N,N-dimethylformamide and water, at a temperamre ranging from about 0°C to about 37 °C for about 1 to about 12 hours to provide the corresponding azido compound.
  • the azido group can then be reduced by, for example, hydrogenation using a palladium on carbon catalyst to provide the amino (- ⁇ H 2 ) compound.
  • a tosylate group can be readily displaced by a thiol to form a sulfide.
  • This reaction is typically conducted by contacting the tosylate with at least one equivalent of a thiol, such as thiophenol, in the presence of a suitable base, such as l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), in an inert diluent, such as N,N-dimethylformamide, at a temperamre of from about
  • a thiol such as thiophenol
  • a suitable base such as l,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
  • DBU l,8-diazabicyclo[5.4.0]undec-7-ene
  • an inert diluent such as N,N-dimethylformamide
  • a compound of formula ⁇ , or an intermediate thereof, having a substituent containing an iodoaryl group for example, when R 1 is a 4-iodophenyl group, can be readily converted either before or after the above coupling reactions into a biaryl compound.
  • this reaction is conducted by treating the iodoaryl compound with about 1.1 to about 2 equivalents of an arylzinc iodide, such as 2-(methoxycarbonyl)phenylzinc iodide, in the presence of a palladium catalyst, such as palladium tetra(triphenylphosphine), in an inert diluent, such as tetrahydrofuran, at a temperamre ranging from about 24 °C to about 30 °C until the reaction is complete.
  • a palladium catalyst such as palladium tetra(triphenylphosphine
  • an inert diluent such as tetrahydrofuran
  • the compounds of formula I, or intermediates thereof may contain substituents having one or more sulfur atoms.
  • sulfur atoms will be present, for example, when the amino acid of formula II employed in the above reactions is derived from L-thiazolidine-4-carboxylic acid, L-(5,5-dimethyl)thiazolidine-4-carboxylic acid, L-thiamorpholine-3- carboxylic acid and the like.
  • sulfur atoms can be oxidized either before or after the above coupling reactions to provide a sulfoxide or sulfone compound using conventional reagents and reaction conditions.
  • Suitable reagents for oxidizing a sulfide compound to a sulfoxide include, by way of example, hydrogen peroxide, 3 -chloroperoxy benzoic acid (MCPBA), sodium periodate and the like.
  • MCPBA 3 -chloroperoxy benzoic acid
  • the oxidation reaction is typically conducted by contacting the sulfide compound with about 0.95 to about 1.1 equivalents of the oxidizing reagent in an inert diluent, such as dichloromethane, at a temperamre ranging from about -50°C to about 75 °C for about 1 to about 24 hours.
  • the resulting sulfoxide can then be further oxidized to the corresponding sulfone by contacting the sulfoxide with at least one additional equivalent of an oxidizing reagent, such as hydrogen peroxide, MCPBA, potassium permanganate and the like.
  • an oxidizing reagent such as hydrogen peroxide, MCPBA, potassium permanganate and the like.
  • the sulfone can be prepared directly by contacting the sulfide with at least two equivalents, and preferably an excess, of the oxidizing reagent.
  • Such reactions are described further in March, "Advanced Organic Chemistry", 4th Ed., pp. 1201-1202, Wiley Publisher (1992).
  • the compounds of formula I, where Q is -C(S)NR 7 - can be prepared by using an amino thionoacid derivative in place of amino acid II in the above described synthetic procedures.
  • amino thionoacid derivatives can be prepared by the procedures described in Shalaky, et al., J. Org. Chem., 61:9045-9048 (1996) and Brain, et al., J. Org. Chem., 62:3808- 3809 (1997) and references cited therein.
  • the compounds of formula I and IA are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.
  • compositions which contain, as the active ingredient, one or more of the compounds of formula I or IA above associated with pharmaceutically acceptable carriers.
  • the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container.
  • the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
  • the active compound In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy- benzoates; sweetening agents; and flavoring agents.
  • the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • compositions are preferably formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg, more usually about 10 to about 30 mg, of the active ingredient.
  • unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
  • the active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound acmally administered will be determined by a physician in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms and the like.
  • the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixmre of a compound of the present invention.
  • a solid preformulation composition containing a homogeneous mixmre of a compound of the present invention.
  • the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
  • the tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids and mixmres of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions suitably flavored with syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
  • compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixmres thereof, and powders.
  • the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
  • the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
  • Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device may be attached to a face mask tent or intermittent positive pressure breathing machine.
  • Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulatior in an appropriate manner.
  • Hard gelatin capsules containing the following ingredients are prepared:
  • Quantity Ingredient (mg/capsule)
  • the above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities.
  • a dry powder inhaler formulation is prepared containing the following components:
  • the active mixmre is mixed with the lactose and the mixmre is added to a dry powder inhaling appliance.
  • Formulation Example 4 Tablets, each containing 30 mg of active ingredient, are prepared as follows:
  • Capsules each containing 40 mg of medicament, are made as follows:
  • Quantity Ingredient (mg/capsule)
  • the active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
  • Suppositories each containing 25 mg of active ingredient, are made as follows:
  • the active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the samrated fatty acid glycerides previously melted using the minimum heat necessary.
  • the mixmre is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool.
  • the medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water.
  • the sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
  • the active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 560 mg quantities.
  • composition Example 9 An intravenous formulation may be prepared as follows:
  • a topical formulation may be prepared as follows:
  • the white soft paraffin is heated until molten.
  • the liquid paraffin and emulsifying wax are incorporated and stirred until dissolved.
  • the active ingredient is added and stirring is continued until dispersed.
  • the mixmre is then cooled until solid.
  • transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
  • transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g.. U.S. Patent 5,023,252, issued June 11, 1991, herein incorporated by reference.
  • patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
  • Indirect techniques usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs.
  • Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier.
  • the delivery of hydrophilic drugs may be enhanced by intra-arterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.
  • the compounds of this invention can be employed to bind VLA-4 (c l integrin) in biological samples and, accordingly, have utility in, for example, assaying such samples for VLA-4.
  • the compounds can be bound to a solid support and the VLA-4 sample added thereto.
  • the amount of VLA-4 in the sample can be determined by conventional methods such as use of a sandwich ELISA assay.
  • labeled VLA-4 can be used in a competitive assay to measure for the presence of VLA-4 in the sample.
  • Other suitable assays are well known in the art.
  • certain of the compounds of this invention inhibit, in vivo, adhesion of leukocytes to endothelial cells mediated by VLA-4 and, accordingly, can be used in the treatment of diseases mediated by VLA-4.
  • diseases include inflammatory diseases in mammalian patients such as asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • the biological activity of the compounds identified above may be assayed in a variety of systems.
  • a compound can be immobilized on a solid surface and adhesion of cells expressing VLA-4 can be measured. Using such formats, large numbers of compounds can be screened.
  • Cells suitable for this assay include any leukocytes known to express VLA-4 such as T cells, B cells, monocytes, eosinophils, and basophils.
  • a number of leukocyte cell lines can also be used, examples include Jurkat and U937.
  • test compounds can also be tested for the ability to competitively inhibit binding between VLA-4 and VCAM-1, or between VLA-4 and a labeled compound known to bind VLA-4 such as a compound of this invention or antibodies to VLA-4.
  • the VCAM-1 can be immobilized on a solid surface.
  • VCAM-1 may also be expressed as a recombinant fusion protein having an Ig tail (e.g., IgG) so that binding to VLA-4 may be detected in an immunoassay.
  • VCAM-1 expressing cells such as activated endothelial cells or VCAM-1 transfected fibroblasts, can be used.
  • the assays described in International Patent Application Publication No. WO 91/05038 are particularly preferred. This application is incorporated herein by reference in its entirety.
  • the labelling systems can be in a variety of forms.
  • the label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art.
  • a wide variety of labels may be used.
  • the component may be labelled by any one of several methods. The most common method of detection is the use of autoradiography with 3 H, 125 1, 35 S, 14 C, or 32 P labelled compounds or the like.
  • Non-radioactive labels include ligands which bind to labelled antibodies, fluorophores, chemiluminescent agents, enzymes and antibodies which can serve as specific binding pair members for a labelled ligand.
  • the choice of label depends on sensitivity required, ease of conjugation with the compound, stability requirements, and available instrumentation.
  • EAE experimental autoimmune encephalomyelitis
  • Compounds having the desired biological activity may be modified as necessary to provide desired properties such as improved pharmacological properties (e.g., in vivo stability, bio-availability), or the ability to be detected in diagnostic applications.
  • desired properties such as improved pharmacological properties (e.g., in vivo stability, bio-availability), or the ability to be detected in diagnostic applications.
  • inclusion of one or more D-amino acids in the sulfonamides of this invention typically increases in vivo stability. Stability can be assayed in a variety of ways such as by measuring the half-life of the proteins during incubation with peptidases or human plasma or serum. A number of such protein stability assays have been described (see, e.g. , Verhoef, et al., Eur. J. Drug Metab. Pharmacokinet. , 1990, 15 ⁇ 2): 83-93).
  • the compounds of the subject invention may be modified in a variety of ways for a variety of end purposes while still retaining biological activity.
  • various reactive sites may be introduced at the terminus for linking to particles, solid substrates, macromolecules, or the like.
  • Labeled compounds can be used in a variety of in vivo or in vitro applications.
  • a wide variety of labels may be employed, such as radionuclides (e.g., gamma-emitting radioisotopes such as technetium-99 or indium-Ill), fluorescers (e.g., fluorescein), enzymes, enzyme substrates, enzyme cof actors, enzyme inhibitors, chemiluminescent compounds, bioluminescent compounds, and the like.
  • radionuclides e.g., gamma-emitting radioisotopes such as technetium-99 or indium-Ill
  • fluorescers e.g., fluorescein
  • enzymes enzyme substrates
  • enzyme cof actors enzyme inhibitors
  • chemiluminescent compounds chemiluminescent compounds
  • bioluminescent compounds bioluminescent compounds
  • In vitro uses include diagnostic applications such as monitoring inflammatory responses by detecting the presence of leukocytes expressing VLA-4.
  • the compounds of this invention can also be used for isolating or labeling such cells.
  • the compounds of the invention can be used to assay for potential inhibitors of VLA-4/VCAM-1 interactions.
  • radioisotopes are typically used in accordance with well known techniques.
  • the radioisotopes may be bound to the peptide either directly or indirectly using intermediate functional groups.
  • chelating agents such as diethylenetriaminepentacetic acid (DTP A) and ethylenediaminetetraacetic acid (EDTA) and similar molecules have been used to bind proteins to metallic ion radioisotopes.
  • the complexes can also be labeled with a paramagnetic isotope for purposes of in vivo diagnosis, as in magnetic resonance imaging (MRI) or electron spin resonance (ESR), both of which are well known.
  • MRI magnetic resonance imaging
  • ESR electron spin resonance
  • any conventional method for visualizing diagnostic imaging can be used.
  • gamma- and positron-emitting radioisotopes are used for camera imaging and paramagnetic isotopes are used for MRI.
  • the compounds can be used to monitor the course of amelioration of an inflammatory response in an individual. By measuring the increase or decrease in lymphocytes expressing VLA-4, it is possible to determine whether a particular therapeutic regimen aimed at ameliorating the disease is effective.
  • compositions of the present invention can be used to block or inhibit cellular adhesion associated with a number of diseases and disorders.
  • a number of inflammatory disorders are associated with integrins or leukocytes.
  • Treatable disorders include, e.g., transplantation rejection (e.g., allograft rejection), Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), retinitis, cancer metastases, rheumatoid arthritis, acute leukocyte-mediated lung injury (e.g. , adult respiratory distress syndrome), asthma, nephritis, and acute and chronic inflammation, including atopic dermatitis, psoriasis, myocardial ischemia, and inflammatory bowel disease
  • the pharmaceutical compositions are used to treat inflammatory brain disorders, such as multiple sclerosis (MS), viral meningitis and encephalitis.
  • Inflammatory bowel disease is a collective term for two similar diseases referred to as Crohn's disease and ulcerative colitis.
  • Crohn's disease is an idiopathic, chronic ulceroconstrictive inflammatory disease characterized by sharply delimited and typically transmural involvement of all layers of the bowel wall by a granulomatous inflammatory reaction. Any segment of the gastrointestinal tract, from the mouth to the anus, may be involved, although the disease most commonly affects the terminal ileum and/or colon.
  • Ulcerative colitis is an inflammatory response limited largely to the colonic mucosa and submucosa. Lymphocytes and macrophages are numerous in lesions of inflammatory bowel disease and may contribute to inflammatory injury.
  • Asthma is a disease characterized by increased responsiveness of the tracheobronchial tree to various stimuli potentiating paroxysmal constriction of the bronchial airways.
  • the stimuli cause release of various mediators of inflammation from IgE-coated mast cells, including histamine, eosinophilic and neutrophilic chemotactic factors, leukotrines, prostaglandin and platelet activating factor. Release of these factors recruits basophils, eosinophils and neutrophils, which cause inflammatory injury.
  • Atherosclerosis is a disease of arteries (e.g., coronary, carotid, aorta and iliac).
  • the basic lesion, the atheroma consists of a raised focal plaque within the intima, having a core of lipid and a covering fibrous cap.
  • Atheromas compromise arterial blood flow and weaken affected arteries.
  • Myocardial and cerebral infarcts are a major consequence of this disease. Macrophages and leukocytes are recruited to atheromas and contribute to inflammatory injury.
  • Rheumatoid arthritis is a chronic, relapsing inflammatory disease that primarily causes impairment and destruction of joints. Rheumatoid arthritis usually first affects the small joints of the hands and feet but then may involve the wrists, elbows, ankles and knees. The arthritis results from interaction of synovial cells with leukocytes that infiltrate from the circulation into the synovial lining of the joints. See e.g., Paul, Immunology, 3d ed., Raven Press (1993).
  • Another indication for the compounds of this invention is in treatment of organ or graft rejection mediated by VLA-4.
  • organs such as skin, kidney, liver, heart, lung, pancreas and bone marrow.
  • the principal outstanding problem is the lack of satisfactory agents for inducing immunotolerance in the recipient to the transplanted allograft or organ.
  • the host immune system is likely to mount an immune response to foreign antigens in the transplant (host-versus-graft disease) leading to destruction of the transplanted tissue.
  • CD8 + cells, CD4 cells and monocytes are all involved in the rejection of transplant tissues.
  • Compounds of this invention which bind to alpha-4 integrin are useful, inter alia, to block alloantigen-induced immune responses in the donee, thereby preventing such cells from participating in the destruction of the transplanted tissue or organ. See, e.g., Paul et al., Transplant International 9: 420-425 (1996); Georczynski et al., Immunology 87: 573-580 (1996); Georcyznski et al., Transplant. Immunol. 3: 55-61 (1995); Yang et al., Transplantation 60: 71-76 (1996); Anderson et al., APMIS 102: 23-27 (1994).
  • GVHD graft versus host disease
  • the disease presents an especially severe problem when immune tissue is being transplanted, such as in bone marrow transplantation; but less severe GVHD has also been reported in other cases as well, including heart and liver transplants.
  • the therapeutic agents of the present invention are used, ter alia, to block activation of the donor T-cells, thereby interfering with their ability to lyse target cells in the host.
  • a further use of the compounds of this invention is inhibiting tumor metastasis.
  • Several tumor cells have been reported to express VLA-4 and compounds which bind VLA-4 block adhesion of such cells to endothelial cells. Steinback et al., Urol. Res. 23: 175-83 (1995); Orosz et al., Int. J. Cancer £0: 867-71 (1995); Freedman et al. , Leuk. Lymphoma H: 47-52 * ⁇ (1994); Okahara et al., Cancer Res. 54: 3233-6 (1994).
  • a further use of the compounds of this invention is in treating multiple sclerosis.
  • Multiple sclerosis is a progressive neurological autoimmune disease that affects an estimated 250,000 to 350,000 people in the United States. Multiple sclerosis is thought to be the result of a specific autoimmune reaction in which certain leukocytes attack and initiate the destruction of myelin, the insulating sheath covering nerve fibers.
  • murine monoclonal antibodies directed against VLA-4 have been shown to block the adhesion of leukocytes to the endothelium, and thus prevent inflammation of the central nervous system and subsequent paralysis in the animals 16 .
  • compositions of the invention are suitable for use in a variety of drug delivery systems. Suitable formulations for use in the present invention are found in Remington 's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, PA, 17th ed. (1985).
  • the compounds may be encapsulated, introduced into the lumen of liposomes, prepared as a colloid, or other conventional techniques may be employed which provide an extended serum half-life of the compounds.
  • a variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al. , U.S. Patent Nos. 4,235,871, 4,501,728 and 4,837,028, each of which is incorporated herein by reference.
  • compositions are administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications.
  • An amount adequate to accomplish this is defined as a "therapeutically effective dose.” Amounts effective for this use will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the inflammation, the age, weight and general condition of the patient, and the like.
  • compositions administered to a patient are in the form of pharmaceutical compositions described above. These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the compound preparations typically will be between 3 and 11 , more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
  • the therapeutic dosage of the compounds of the present invention will vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
  • the dose will typically be in the range of about 20 ⁇ g to about 500 ⁇ g per kilogram body weight, preferably about 100 ⁇ g to about 300 ⁇ g per kilogram body weight.
  • Suitable dosage ranges for intranasal administration are generally about 0.1 pg to 1 mg per kilogram body weight.
  • Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the following synthetic and biological examples are offered to illustrate this invention and are not to be construed in any way as limiting the scope of this invention. Unless otherwise stated, all temperatures are in degrees Celsius.
  • NaHCO 3 sodium bicarbonate
  • TsCl tosyl chloride
  • TsOH tosylate ""
  • ⁇ L microliter
  • N-Tosylation of the appropriate amino acid was conducted via the method of Cupps, Boutin and Rapoport, J. Org. Chem. , 1985, 5>0: 3972.
  • Amino acid methyl esters were prepared using the method of Brenner and Huber, Helv. Chim. Acta, 1953, 36: 1109.
  • the desired dipeptide ester was prepared by the reaction of a suitable ⁇ - protected amino acid (1 equivalent) with the appropriate amino acid ester or amino acid ester hydrochloride (1 equivalent), benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphate [BOP] (2.0 equivalent), triethylamine (1.1 equivalent), and DMF.
  • BOP benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphate
  • BOP triethylamine
  • the tert-butyl ester was dissolved in CH 2 C1 2 and treated with TFA. The reaction was complete in 1-3 hr, at which time the reaction mixmre was concentrated and the residue dissolved in H 2 O and lyophilized to yield the desired acid.
  • the aqueous phase was made acidic with 0.2 N HCl and the product was extracted with EtOAc.
  • the combined organic phase was washed with brine (1 x 5 mL), dried (MgSO 4 or Na 2 SO 4 ), filtered and concentrated to yield the acid as approximately a 1:1 mixmre of diastereomers.
  • Boc-L-Pro-OH and L-Phe-OBn • Hcl were treated with BOP and ⁇ MM in DMF to give, after aqueous workup and flash chromatography, Boc-L- Pro-L-Phe-OBn. This product was then treated with TFA and anisole, and the mixture was evaporated. The residue was dissolved in Et 2 O and washed with samrated aqueuos ⁇ aHCO 3 and samrated aqueous NaCl. The Et 2 O layer was dried over anhydrous MgSO 4 , filtered, and the solvent evaporated to give L-Pro-L-Phe-OBn.
  • N-Methyl-L-Phe-OH was treated with benzyl alcohol and 4-methylphenylsulfonic acid to give N-Methyl-L-Phe-OBnTsOH.
  • D-Pro-OH was treated with TsCl and ⁇ aOH in H 2 O to give, after acidification, extraction, drying over anhydrous MgSO 4 , and evaporation, N- (Toluene-4-sulfonyl)-D-Pro-OH.
  • This product was treated with H-Phe- "° ⁇ OBn • Hcl, BOP, and NMM in DMF to give, after aqueous workup and flash chromatography, N-(toluene-4-sulfonyl)-D-Pro-Phe-OBn.
  • This product was treated with 10% Pd on C in THF, and the mixmre was shaken under 50 psi H 2 . The mixmre was filtered through celite and evaporated to give the title compound as a clear oil.
  • N-(toluene-4-sulfonyl)-L-proline 250 mg, 0.92 mmol was dissolved in DMF (20 mL) with D,L-homophenylalanine methyl ester (166 mg, 1.1 eq), Et 3 ⁇ (2.1 eq, 283 ⁇ L), and BOP (1.1 eq, 410 mg).
  • the dipeptide was isolated in 73% yield (300 mg, 0.67 mmol) as an oil.
  • the ester (300 mg, 0.67 mmol) was then hydrolyzed in a 1:1 MeOH:H 2 O (5 mL) solution with NaOH (1.1 eq, 28 mg).
  • the acid was isolated as a foam in 60% yield (175 mg, 0.40 mmol).
  • N-(Toluene-4-sulfonyl)-L-(5,5-dimethyl)-thiazolidine-4-carboxylic acid was prepared from L-(5,5-dimethyl)-thiazolidine-4-carboxylic acid using the procedure described in Method 1.
  • Example 18 The product of Example 18 (56) (1.8 mmoles) was mixed with dioxane (25 mL) and IN ⁇ aOH (1.8 mmoles) and the reaction was stirred at room temperamre for 16 hours. IN HCl (1.8 mmoles) was added and the water and dioxane were removed under reduced pressure. The product was extracted with 0.2 ⁇ ⁇ aOH (50 mL) and EtOAc (2 x 50 mL) and the recovered organic layer was dried over MgSO 4 , filtered, and concentrated to yield a colorless oil.
  • N-(Toluene-4-sulfonyI)-L-thiaprolyl-L-phenylalanine N-(Toluene-4-sulfonyl)-L-thiazolidine-4-carboxylic acid was prepared from L-thiazolidine-4-carboxylic acid using the procedure described in Method 1.
  • Proline methyl ester hydrochloride (2.68 g, 16.2 mmol) was dissolved in pyridine (20 mL) and 3,5-dichlorophenylsulfonyl chloride (3.57 g, 14.6 mmol) was added to the mixmre and stirred for 19 hr. Water (5 mL) was added and the mixmre was stirred for 45 minutes before diluting with water (200 mL).
  • N-(Toluene-4-sulfonyl)-tr ⁇ w-3-phenylproline (prepared via the method of Chung et al., J. Org. Chem. , 55: 270-275 (1990)) was coupled to L-phenylalanine ethyl ester using the procedure described in Method 3 and purified by silica gel flash chromatography (93/7 CH 2 Cl 2 /MeOH) to give the ethyl ester of the title compound as a white solid.
  • the acid was prepared via hydrolysis of the ethyl ester using ⁇ aOH in ethanol.
  • NMR data was as follows:
  • Example 21 The title compound was prepared as in Example 21 (59) except that 3,4- dimethoxyphenylsulfonyl chloride was used in place of the 3,5- dichlorophenylsulfonyl chloride. ⁇ MR analysis indicated that epimerization had occurred to give a ca. 65:35 mixmre of diastereomers. ⁇ MR data was as follows:
  • N-Acetyl-cw-3-phenylproline ethyl ester (614mg, 2.35 mmol) (prepared via the method of Chung, et al., J. Org. Chem. ⁇ 5: 270-275 (1990)) was dissolved in HO Ac (4 mL) and 6 ⁇ HCl (12 mL) and heated at reflux for 18 hr. The mixmre was cooled to room temperamre and the volatiles were evaporated in vacuo to give a white solid. The solid was dissolved in IN NaOH (15 mL) and dioxane was added (10 mL), followed by 4-toluene- sulfonyl chloride (458 mg, 2.40 mmol).
  • N-(Toluene-4-sulfonyl)- ⁇ ' s-3-phenylproline was coupled to phenylalanine ethyl ester using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the ethyl ester using ⁇ aOH in ethanol.
  • ⁇ MR data was as follows:
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-tryptophan methyl ester hydrochloride using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/ water.
  • ⁇ MR data was as follows:
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to ⁇ -(l- naphthyl)alanine methyl ester hydrochloride using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water.
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to ⁇ -(2-naphthyl)- L-alanine methyl ester hydrochloride using the procedure described in
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L- ⁇ -(3- pyridyl)alanine methyl ester dihydrochloride using the procedure described in Method 3 to give N-(toluene-4-sulfonyl)prolyl-L- ⁇ -(3-pyridyl)alanine.
  • the title compound was prepared via hydrolysis of the methyl ester using 0.5 ⁇ aqueous ⁇ aOH in THF/water.
  • N-(Toluene-4-sulfonyl)-L-( s-4-phenylthio)prolyl-L-phenylalanine 7r ⁇ /2,s'-4-hydroxy-L-proline was treated with EtOH and HCl gas, and the mixmre was evaporated to give tra/z. ⁇ -4-hydroxy-L-proline ethyl ester hydrochloride.
  • This product was treated with TsCl in pyridine, to give after aqueous workup N-(toluene-4-sulfonyl)-tra «5 , -4-(O-(toluene-4-sulfonyl))-L- proline ethyl ester.
  • This product was treated with PhSH and DBU in DMF to give after aqueous workup and flash chromatography on silica gel, N-
  • N-(Toluene-4-sulfonyl)prolyl-L-(N-benzyl)histidine (237 mg, 0.464 mmol) was dissolved in MeOH (20 mL) and 10% Pd/C (50 mg) was added. The mixmre was hydrogenated at 50 psi H 2 for 36 hr. The mixture was filtered to remove the catalyst and the filtrate was evaporated in vacuo. The residue was purified by preparative TLC (90: 10: 1 CH 2 Cl 2 /MeOH/ ⁇ H 4 OH) to give N-(toluene-4-sulfonyl)-L-prolyl-L-histidine methyl ester (155 mg, 79%).
  • This product was treated with BoCjO and Et 3 ⁇ in t-BuOH and H 2 O to give, after evaporation, acidification, extraction, drying with MgSO 4 , filtration, and evaporation, N-(toluene-4-sulfonyl)-ris-4-(t-butoxycarbonylamino)-L-proline.
  • This product was treated with HClPhe-O-t-Bu, BOP, and ⁇ MM in DMF to give, after aqueous workup and flash chromatography, N-(toluene-4- sulfonyl)-ris-4-(t-butoxycarbonylamino)-Pro-Phe-O-t-Bu.
  • This product was treated with TFA to give after evaporation the trifluoroacetate salt of the title compound as a clear oil.
  • N-(Toluene-4-sulfonyl)-L-proline was coupled to L-phenylalanine benzyl ester toluenesulfonic acid salt using the procedure described in Method 3 to give the title compound as an oil.
  • N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine was coupled to O-methylhydroxylamine hydrochloride using the mixed anhydride procedure
  • N-(Toluene-4-sulfonyl)-L-proline was reacted with L-phenylalanine amide using the procedure described in Method 12 to yield N-(toluene-4- sulfonyl)-L-prolyl-L-phenylalanine amide.
  • ⁇ aH 50% mineral oil - prewashed with THF
  • N-(toluene-4- sulfonyl)-L-prolyl-L-phenylalanine amide was stirred at 0°C for 45 minutes.
  • N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-benzyloxyamide (see Example 43 (159)) was dissolved in MeOH (10 mL) and 5% Pd/BaSO 4 (52 mg) was added. The mixmre was hydrogenated at 50 psi H > for 9 h. The mixmre was filtered through a pad of diatomaceous earth and evaporated in vacuo to give a residue which was purified by silica gel chromatography (92:8 CH 2 Cl 2 /MeOH) to give the title compound as an oil.
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to phenylalanine isopropyl ester trifluoroacetate using the procedure described in Method 3 to give the title compound as an oil.
  • 3,5-Dichlorophenyl-sulfonyl-L-proline was coupled to L-phenylalanine ethyl ester using the procedure described in Method 3 to give the ethyl ester of the title compound (348 mg, 45%).
  • the title compound was prepared via hydrolysis of the ethyl ester using

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Disclosed are compounds which bind VLA-4. Certain of these compounds also inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA-4. Such compounds are useful in the treatment of inflammatory diseases in a mammalian patient, e.g., human, wherein the disease may be, for example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes, inflammatory bowel disease, rheumatoid arthritis, tissue transplantation, tumor metastasis and myocardial ischemia. The coumpounds can also be administered for the treatment of inflammatory brain diseases such as multiple sclerosis.

Description

BENZYL COMPOUNDS WHICH INHIBIT LEUKOCYTE ADHESION MEDIATED BY VLA-4
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA-4.
References
The following publications, patents and patent applications are cited in this application as superscript numbers:
ι Hemler and Takada, European Patent Application Publication No. 330,506, published August 30, 1989
Elices, et al., Cell, 60:577-584 (1990)
Springer, Nature, 346:425-434 (1990)
Osborn, Cell, 62:3-6 (1990)
Vedder, et al., Surgery, IQ6:509 (1989)
Pretolani, et al., J. Exp. Med. , 180:795 (1994) Abraham, et al., J. Clin. Invest. , 93:776 (1994)
Mulligan, et al. , J. Immunology, 150:2407 (1993)
Cybulsky, et al., Science, 251:788 (1991)
10 Li, et al., Arterioscler. Thromb. , 13: 197 (1993)
Sasseville, et al., Am. J. Path. , 144:27 (1994)
12 Yang, et al., Proc. Nat. Acad. Science (USA), 90: 10494 (1993)
Burkly, et al., Diabetes, 43:529 (1994)
14 Baron, et al., J. Clin. Invest. , 3: 1700 (1994)
15 Hamann, et al. , J. Immunology, 152:3238 (1994)
16 Yednock, et al. , Nature, 356:63 (1992)
17 Baron, et al., J. Exp. Med. , 177:57 (1993)
18 van Dinther-Janssen, et al. , J. Immunology, 147:4207 (1991)
19 van Dinther-Janssen, et al. , Annals. Rheumatic Dis. , 52:672 (1993)
20 Elices, et al., J. Clin. Invest. , 93:405 (1994)
21 Postigo, et al. , /. Clin. Invest. , 89: 1445 (1991)
22 Paul, et al. , Transpl. Proceed. , 25:813 (1993)
23 Okarhara, et al. , Can. Res. , 54:3233 (1994)
24 Paavonen, et al. , Int. J. Can. , 58:298 (1994)
25 Schadendorf, et al. , J. Path. , 170:429 (1993)
26 Bao, et al., Diff. , 52:239 (1993)
27 Lauri, et al., British J. Cancer, 68:862 (1993)
28 Kawaguchi, et al. , Japanese J. Cancer Res. , 83 : 1304 (1992) 29 Kogan, et al., U.S. Patent No. 5,510,332, issued April 23, 1996
3o International Patent Appl. Publication No. WO 96/01644
All of the above publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
State of the Art
VLA-4 (also referred to as α4βl integrin and CD49d/CD29), first identified by Hemler and Takada1, is a member of the βl integrin family of cell surface receptors, each of which comprises two subunits, an α chain and a β chain. VLA-4 contains an α4 chain and a βl chain. There are at least nine βl integrins, all sharing the same βl chain and each having a distinct α chain. These nine receptors all bind a different complement of the various cell matrix molecules, such as fibronectin, laminin, and collagen. VLA-4, for example, binds to fibronectin. VLA-4 is unique among βj integrins in that it also binds non-matrix molecules that are expressed by endothelial and other cells. These non-matrix molecules include VCAM-1, which is expressed on cytokine-activated human umbilical vein endothelial cells in culture. Distinct epitopes of VLA-4 are responsible for the fibronectin and VCAM-1 binding activities, and each activity has been shown to be inhibited independently.2
Intercellular adhesion mediated by VLA-4 and other cell surface receptors is associated with a number of inflammatory responses. At the site of an injury or other inflammatory stimulus, activated vascular endothelial cells express molecules that are adhesive for leukocytes. The mechanics of leukocyte adhesion to endothelial cells involves, in part, the recognition and binding of cell surface receptors on leukocytes to the corresponding cell surface molecules on endothelial cells. Once bound, the leukocytes migrate across the blood vessel wall to enter the injured site and release chemical mediators to combat infection. For reviews of adhesion receptors of the immune system, see, for example, Springer3 and Osborn4.
Inflammatory brain disorders, such as experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS) and meningitis, are examples of central nervous system disorders in which the endothelium/leukocyte adhesion mechanism results in destruction to otherwise healthy brain tissue. Large numbers of leukocytes migrate across the blood brain barrier (BBB) in subjects with these inflammatory diseases. The leukocytes release toxic mediators that cause extensive tissue damage resulting in impaired nerve conduction and paralysis.
In other organ systems, tissue damage also occurs via an adhesion mechanism resulting in migration or activation of leukocytes. For example, it has been shown that the initial insult following myocardial ischemia to heart tissue can be further complicated by leukocyte entry to the injured tissue causing still further insult (Vedder et al.5). Other inflammatory conditions mediated by an adhesion mechanism include, by way of example, asthma6"8, Alzheimer's disease, atherosclerosis9"10, AIDS dementia11, diabetes12 14 (including acute juvenile onset diabetis), inflammatory bowel disease15 (including ulcerative colitis and Crohn's disease), multiple sclerosis16"17, rheumatoid arthritis18"21, tissue transplantation22, tumor metastasis23 28, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome. In view of the above, assays for determining the VLA-4 level in a biological sample containing VLA-4 would be useful, for example, to diagnosis VLA-4 mediated conditions. Additionally, despite these advances in the understanding of leukocyte adhesion, the art has only recently addressed the use of inhibitors of adhesion in the treatment of inflammatory brain diseases and other inflammatory conditions29-30. The present invention addresses these and other needs.
SUMMARY OF THE INVENTION
This invention provides compounds which bind to VLA-4. Such compounds can be used, for example, to assay for the presence of VLA-4 in a sample and, in pharmaceutical compositions, to inhibit cellular adhesion mediated by VLA-4, for example, binding of VCAM-1 to VLA-4. The compounds of this invention have a binding affinity to VLA-4 as expressed by an IC50 of about 15 μM or less (as measured by Example 95 below), which compounds are defined by formula I below:
R3 O
I II
R1-SO2-N(R2)-C-Q-CH-C-OH I
H R5
where
R1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl;
R2 and R3 together with the nitrogen atom bound to R2 and the carbon atom bound to R3 form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated heterocyclic group is not carboxyl; R5 is selected from the group consisting of -(CH2)n-aryl and -(CH2)n-heteroaryl, where n is an integer equal to 1 to 4;
Q is -C(X)NR7- wherein R7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof, with the proviso that when R1 is 2,4,6-trimethylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidinyl ring and Q is -C(O)NH-, then R5 is not benzyl; and with the further proviso that when R1 is /?-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidinyl ring derived from D-proline and Q is -C(O)NH-, then R5 is not benzyl derived from D-phenylalanine.
In another embodiment, the compounds of this invention can also be provided as prodrugs which convert (e.g., hydrolyze, metabolize, etc.) in vivo to a compound of formula I above. In a preferred example of such an embodiment, the carboxylic acid of the compound of formula I is modified into a group which, in vivo, will convert to a carboxylic acid (including salts thereof). In a particularly preferred embodiment, such prodrugs are represented by compounds of formula IA:
R3 O
R1-SO2-N(R2)-C-Q-CH-C-R6 IA
H R5
R1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl; R2 and R3 together with the nitrogen atom bound to R2 and the carbon atom bound to R3 form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated heterocyclic group is not carboxyl; R5 is selected from the group consisting of -(CH2)n-aryl and
-(CH2)n-heteroaryl, where n is an integer equal to 1 to 4;
R6 is selected from the group consisting of amino, alkoxy, substituted alkoxy, cycloalkoxy, substituted cycloalkoxy, -O-(N-succinimidyl), -NH- adamantyl, -O-cholest-5-en-3-β-yl, -NHOY where Y is hydrogen, alkyl, substituted alkyl, aryl, and substituted aryl,
-NH(CH2)pCOOY where p is an integer of from 1 to 8 and Y is as defined above, -OCH2NR9R10 where R9 is selected from the group consisting of -C(O)-aryl and -C(O)-substituted aryl and R10 is selected from the group consisting of hydrogen and -CH2COORn where R11 is alkyl, and -NHSO2Z where Z is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic;
Q is -C(X)NR7- wherein R7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof, with the following provisos:
A. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -NH(CH2)2CO2Et or -(lR,2S,5R)-(-)- menthyl ester;
B. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a 3-β-phenyl-ring derived from D- proline, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OCH2CH3; C. when R1 is l-N-methyl-3-methyl-5-chloropyrazol-4-yl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2- yl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OCH3;
D. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is
D-benzyl and Q is -C(O)NH-, then R6 is not -OCH2CH3;
E. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a 5,5-dimethyl-l,l-dioxo-thiaprolyl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OC(CH3)3; and F. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring derived from D-proline, R5 is benzyl derived from D-phenylalanine and Q is -C(O)NH-, then R6 is not -OCH3;
G. when R1 is n-butyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is benzyl and Q is
-C(O)NH-, then R6 is not -O-benzyl.
Preferably, in the compounds of formula I and I A above, R1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl. Even more preferably R1 is selected from the group consisting of 4-methylphenyl, methyl, benzyl, n-butyl, 4-chlorophenyl, 1- naphthyl, 2-naphthyl, 4-methoxyphenyl, phenyl, 2,4,6-trimethylphenyl, 2- (methoxycarbonyl)phenyl, 2-carboxyphenyl, 3,5-dichlorophenyl, 4- trifluoromethylphenyl, 3,4-dichlorophenyl, 3,4-dimethoxyphenyl, 4-
(CH3C(O)NH-)phenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, isopropyl, 3,5-di-(trifluoromethyl)phenyl, 4-t-butylphenyl, 4-t-butoxyphenyl, 4- nitrophenyl, 2-thienyl, l-N-methyl-3-methyl-5-chloropyrazol-4-yl, phenethyl, l-N-methylimidazol-4-yl, 4-bromophenyl, 4-amidinophenyl, 4- methylamidinophenyl, 4-[CH3SC(=NH)]phenyl, 5-chloro-2-thienyl, 2,5- dichloro-4-thienyl, l-N-methyl-4-pyrazolyl, 2-thiazolyl, 5-methyl-l,3,4- thiadiazol-2-yl, 4-[H2NC(S)]phenyl, 4-aminophenyl, 4-fluorophenyl, 2- fluorophenyl, 3 -fluorophenyl, 3,5-difluorophenyl, pyridin-3-yl, pyrimidin-2- yl, and 4-(3'-dimethylamino-«-propoxy)-phenyl.
In one preferred embodiment, R2 and R3 together with the nitrogen atom bound to the R2 substituent and the carbon bound to the R3 substituent form a heterocyclic group or substituted heterocyclic group of 4 to 6 ring atoms having 1 to 2 heteroatoms in the ring selected from nitrogen, oxygen and sulfur, which ring is optionally substituted with 1 to 2 substituents selected from fluoro, methyl, hydroxy, amino, phenyl, thiophenyl and thiobenzyl, or can be fused to another saturated heterocyclic or cycloalkyl ring such as a cyclohexyl ring to provide for a fused ring heterocycle of from 10 to 14 ring atoms having 1 to 2 heteroatoms in the ring selected from nitrogen, oxygen and sulfur. Such heterocyclic rings include thiazolidinyl
(e.g., L-thiazolidin-4-yl), piperidinyl (e.g., L-piperidin-2-yl), piperizinyl (e.g., L-piperizin-2-yl), thiomorpholinyl (e.g., L-thiomorpholin-3-yl), pyrrolidinyl (e.g., L-pyrrolidin-2-yl), substituted pyrrolidinyl such as 4- hydroxypyrrolidinyl (e.g. , 4-α-(or β-)hydroxy-L-pyrrolidin-2-yl), 4-fluoropyrrolidinyl (e.g. , 4- -(or β-)fluoro-L-pyrrolidin-2-yl), 3- phenylpyrrolidinyl (e.g., 3-α-(or β-)phenyl-L-pyrrolidin-2-yl), 3- thiophenylpyrrolidinyl (e.g., 3-α-(or β-)thiophenyl-L-pyrrolidin-2-yl), 4- aminopyrrolidinyl (e.g., 4-α-(or β-)amino-L-pyrrolidin-2-yl), 3- methoxypyrrolidinyl (e.g., 3-α-(or β-)methoxy-L-pyrrolidin-2-yl), 4,4- dimethylpyrrolidin-2-yl, substituted piperizinyl such as 4-N-Cbz-piperizin-2- yl, substituted thiazolidinyl such as 5,5-dimethylthiazolindin-4-yl, 1,1-dioxo- thiazolidinyl (e.g., L-l,l-dioxo-thiazolidin-4-yl), substituted 1,1-dioxo- thiazolidinyl such as L-l,l-dioxo-5,5-dimethylthiazolidin-4-yl, 1,1- dioxothiomorpholinyl (e.g. , L-l,l-dioxo-thiomorpholin-3-yl) and the like. Preferably, such rings do not include those where R2 and R3 together with the nitrogen atom bound to R2 and the carbon atom bound to R3 form a azetidine ring.
Q is preferably -C(O)NH- or -C(S)NH-.
R5 is preferably selected from all possible isomers arising by substitution of the following groups: benzyl, phenethyl, -CH2-(3-indolyl), -CH2-(l-naphthyl), -CH2-(2-naphthyl), -CH2-(2-thienyl), -CH2-(3-pyridyl), -CH2-(5-imidazolyl), -CH2-3-(l,2,4-triazolyl), -CH2-(2-thiazolyl) and the like.
In the compounds of formula IA, R6 is preferably 2,4-dioxo- tetrahydrofuran-3-yl (3,4-enol), methoxy, ethoxy, iso-pτopoxy , n-butoxy, t-butoxy, cyclopentoxy, neø-pentoxy, 2-α- so-propyl-4-β- methylcyclohexoxy, 2-β-isopropyl-4-β-methylcyclohexoxy, -NH2, benzyloxy, -NHCH2COOH, -NHCH2CH2COOH, -NH-adamantyl, -NHCH2CH2COOCH2CH3, -NHSO2-/?-CH3-φ, -NHOR8 where R8 is hydrogen, methyl, tsø-propyl or benzyl, O-(N-succinimidyl), -O-cholest-5-en-3-β-yl, -OCH2-OC(O)C(CH3)3, -O(CH2)zNHC(O)W where z is 1 or 2 and W is selected from the group consisting of pyrid-3-yl, N-methylpyridyl, and N-methyl-l,4-dihydro-pyrid-3-yl, and -NR"C(O)-R' where R' is aryl, heteroaryl or heterocyclic and R" is hydrogen or -CH2C(O)OCH2CH3.
Preferred compounds within the scope of formula I and IA above include by way of example:
N-(methanesulfonyl)-L-prolyl-L-phenylalanine
N-( -toluenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-< toluene-4-sulfonyl)-L-prolyl-L-(N-methyl)phenylalanine
N toluene-4-sulfonyl)-L-pipecolinyl-L-phenylalanine
N- toluene-4-sulfonyl)-D-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-(4-hydroxy)prolyl-L-phenylalanine
N-i toluene-4-sulfonyl)-L-prolyl-D,L-homophenylalanine
N- 4-chlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N- l-naphthalenesulfonyl)-L-prolyl-L-phenylalanine
N- 2-naphthalenelsulfonyl)-L-prolyl-L-phenylalanine
N- 4-methoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N- 4-tert-butylbenzenesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-(4-fluoro)prolyl-L-phenylalanine
N- n-butanesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine
N- 2-methoxycarbonylbenzenesulfonyl)-L-prolyl-L-phenylalanine
N- 2-carboxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-thiaprolyl-L-phenylalanine
N- 3,5-dichlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N- 4-trifluoromethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N- 3,4-dichlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-D,L-(3-phenyl)prolyl-L-phenylalanine
N- 3,4-dimethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
iV- 4-nitrobenzenesulfonyl)-L-prolyl-L-phenylalanine
N- 4-acetamidobenzenesulfonyl)-L-prolyl-L-phenylalanine N- 4-cyanobenzenesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-prolyl-L-tryptophan
N- toluene-4-sulfonyl)-L-prolyl-β-(l-naphthyl)-L-alanine
N- toluene-4-sulfonyl)-L-prolyl-β-(2-naphthyl)-L-alanine
N- toluene-4-sulfonyl)-L-prolyl-β-(2-thienyl)-L-alanine
N- isopropanesulfonyl)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-prolyl-β-(3-pyridyl)-L-alanine
N- toluene-4-sulfonyl)-L-(4-phenylthio)prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-(4-benzylthio)-L-prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-prolyl-L-histidine
N- toluene-4-sulfonyl)-L-(4-amino)prolyl-L-phenylalanine
N- toluene-4-sulfonyl)-L-prolyl-L-phenylalaninamide
N- toluene-4-sulfonyl)-L-prolyl-L-phenylalanine benzyl ester
N- toluene-4-sulfonyl)-L-prolyl-L-phenylalanine ethyl ester
N- toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-methoxyamide
N- toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-benzyloxyamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-(toluene-4- sulfonyl)amide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalaninyl-β-alanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-hydroxyamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine isopropyl ester
N-(toluene-4-sulfonyl)-L-(4-hydroxy)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalaninyl-(N-benzoyl)glycine ethyl ester N-(toluene-4-sulfonyl)-L-(4-fluoro)prolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-thiaprolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine ethyl ester
N-(2-methoxycarbonylbenzenesulfonyl)-L-prolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(3-phenyl)prolyl-L-phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-(4-methoxy)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-ρhenylalanine (lS,2R,5S)-(+)- menthyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N- hydroxysuccinimide ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-
(nicotinamido)ethyl ester
N-(toluene-4-sulfony l)-L-proly 1-L-phenylalanine 2-( 1 - methylpyridinium-3-amido)ethyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine cholesteryl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-( 1 -methyl- 1 ,4- dihydropyridinyl-3-amido)ethyl ester
N-(thiophene-2-sulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(thiophene-2-sulfonyl)-L-prolyl-L-phenylalanine
N-(5-chloro-l ,3-dimethylpyrazole-4-sulfonyl)-L-prolyl-L- phenylalanine
N-(2-phenylethanesulfonyl)-L-prolyl-L-phenylalanine N-(l-methylimidazole-4-sulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-( 1 -methylimidazole-4-sulfony l)-L-prolyl-L-pheny lalanine
N-(4-amidinobenzenesulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(4-amidinobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-thiomethoxy imidatylbenzene-4-sulfony l)-L-prolyl-L- phenylalanine methyl ester
N-[4-(N-methylthioamido)benzenesulfonyl]-L-prolyl-L-phenylalanine methyl ester
N-(toluene-4-sulfonyl)-L-prolyl-D,L-β-(l,2,4-triazol-3-yl)alanine
N-(toluene-4-sulfonyl)-L-prolyl-D,L-β-(thiazol-2-yl)alanine
N-[4-(3-dimethylaminopropyloxy)benzenesulfonyl]-L-prolyl-L- phenylalanine
N-(toluene-4-sulfonyl)-L-pyrrolidin-2-yl-thiocarbonyl-L- phenylalanine
N-(4-thiocarbamoylbenzenesulfonyl)-L-(5,5-dimethyl)thiaprolyl-L- phenylalanine benzyl ester
N-(4-cyanobenzenesulfonyl)-L-(5,5-dimethyl)thiaprolyl-L- phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-prolyl-D-phenylalanine
N-(toluene-4-sulfonyl)-L-(thiamorpholin-3-carbonyl)-L-phenylalanine
N-(toluene-4-sulfonyl)-[(l,l-dioxo)thiamorpholin-3-carbonyl]-L- phenylalanine
N-(toluene-4-sulfonyl)-L-(3 , 3-dimethyl)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl-l , l-dioxo)thiaprolyl-L- phenylalanine
N-(toluene-4-sulfonyl)-[(l,l-dioxo)thiamorpholin-3-carbonyl]-L- phenylalanine ethyl ester N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine tert-butyl ester
N-(toluene-4-sulfonyl)-L-pyrrolidin-2-yl-thiocarbonyl-L- phenylalanine methyl ester
N-(benzenesulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(toluene-4-sulfonyl)-L-(5-oxo)prolyl-L-phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-(5-oxo)prolyl-L-phenylalanine
and pharmaceutically acceptable salts thereof, as well as any of the ester compounds recited above wherein one ester is replaced with another ester selected from the group consisting of methyl ester, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, isobutyl ester, sec-butyl ester and tert- butyl ester.
This invention also provides methods for binding VLA-4 in a biological sample which method comprises contacting the biological sample with a compound of formula I or IA above under conditions wherein said compound binds to VLA-4.
Certain of the compounds of formula I and IA above are also useful in reducing VLA-4 mediated inflammation in vivo.
This invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of one or more of the compounds of formula I or I A above, with the exception that R3 and R5 are derived from L-amino acids or other similarly configured starting materials. Alternatively, racemic mixtures can be used.
The pharmaceutical compositions may be used to treat VLA-4 mediated disease conditions. Such disease conditions include, by way of example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetis), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
Accordingly, this invention also provides methods for the treatment of an inflammatory disease in a patient mediated by VLA-4 which methods comprise administering to the patient the pharmaceutical compositions described above.
Preferred compounds of formula I and IA above include those set forth in Table I below:
C CD «
H
H
C m cn x m m
H
30
C m t σ>
CO c σ co
H
H
C H m n x m rn
3) c r- σ>
C 00 cn
H
H
C H m cn x t m rπ
33 c m t σ>
n c
03 cn
m cn x m rπ
H c rπ ro cn
cn c
03 cn
H
C H m cn N x m m
H
30
C r- m ro cn
cn c
03 cn
H C H m cn x t m J rπ
30 c m ro cn
cn c
CD cn
m n x m N m
H
30
C
I" rπ ro cn
cn c
CD cn
C H m cn x m rπ
H c r m* ro cn
cn
CD cn
m cn x m m
30 c r* rπ ro n
cn
CD cn
H
H
C H m cn x m rπ H
m ro cn
cn c
CD cn
H
C H m cn x t m m
H c r m ro n
cn c
CD cn
H
H
C H m cn x m m
H c r- rπ ro cn
DETAILED DESCRIPTION OF THE INVENTION
As above, this invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA- 4. However, prior to describing this invention in further detail, the following terms will first be defined.
Definitions
As used herein, "alkyl" refers to alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, t-butyl, n-heptyl, octyl and the like.
"Substituted alkyl" refers to an alkyl group, preferably of from 1 to 10 carbon atoms, having from 1 to 5 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substituted aryl, aryloxy, substituted aryloxy, aryloxylaryl, substituted aryloxyaryl, cyano, halogen, hydroxyl, nitro, carboxyl, carboxy lalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxy 1-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxy lheteroaryl, carboxyl-substituted heteroaryl, carboxy lheterocyclic, carboxyl-substituted heterocyclic, cycloalkyl, substituted cycloalkyl, guanidino, guanidinosulfone, thiol, thioalkyl, substituted thioalkyl, thioaryl, substituted thioaryl, thiocycloalkyl, substituted thiocycloalkyl, thioheteroaryl, substituted thioheteroaryl, thioheterocyclic, substituted thioheterocyclic, heteroaryl, substituted aryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, oxycarbonylamino, oxy thiocarbonylamino, -OS(O)2-alkyl, - OS(O)2-substituted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2- heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2-heterocyclic, -OS(O)2- substituted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substituted alkyl, -NRS(O)2-aryl, -NRS(O)2- substituted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic, -NRS(O)2-NR- alkyl, -NRS(O)2-NR-substituted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR- substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR-substituted heteroaryl, -NRS(O)2-NR-heterocyclic, -NRS(O)2-NR-substituted heterocyclic where R is hydrogen or alkyl, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di- substituted arylamino, mono- and di-heteroarylamino, mono- and di- substituted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substituted heterocyclic amino, unsymmetric di-substituted amines having different substituents selected from alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and substituted alkyl groups having amino groups blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and alkyl/ substituted alkyl groups substituted with -SO2-alkyl, -SO2-substituted alkyl, -SO2-alkenyl, -SO2-substituted alkenyl, -SO2-cycloalkyl, -SO2- substituted cycloalkyl, -SO2-aryl, -SO2-substituted aryl, -SO2-heteroaryl,
-SO2-substituted heteroaryl, -SO2-heterocyclic, -SO2-substituted heterocyclic and -SO2NRR where R is hydrogen or alkyl.
"Alkoxy" refers to the group "alkyl-O-" which includes, by way of example, methoxy, ethoxy, n-propoxy, /sø-propoxy, n-butoxy, tert-butoxy, sec-butoxy, rz-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
"Substituted alkoxy" refers to the group "substituted alkyl-O-" . "Acyl" refers to the groups H-C(O)-, alkyl-C(O)-, substimted alkyl- C(O)-, alkenyl-C(O)-, substimted alkenyl-C(O)-, alkynyl-C(O)-, substimted alkynyl-C(O)- cycloalkyl-C(O)-, substimted cycloalkyl-C(O)-, aryl-C(O)-, substituted aryl-C(O)-, heteroaryl-C(O)-, substimted heteroaryl-C(O), heterocyclic-C(O)-, and substituted heterocyclic-C(O)-, wherein alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Acylamino" refers to the group -C(O)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, and where each
R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Thiocarbonylamino" refers to the group -C(S)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substituted alkynyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, and where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Acyloxy" refers to the groups alkyl-C(0)O-, substituted alkyl-C(O)O-, alkenyl-C(O)O-, substimted alkenyl-C(O)O-, alkynyl-C(O)O-, substimted alkynyl-C(O)O-, aryl-C(O)O-, substimted aryl-C(O)O-, cycloalkyl-C(O)O-, substimted cycloalkyl-C(O)O-, heteroaryl-C(O)O-, substimted heteroaryl-C(O)O-, heterocyclic-C(O)O-, and substimted heterocyclic-C(O)O-, wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Alkenyl" refers to an alkenyl group preferably having from 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms, and having at least
1, and preferably from 1-2, sites of alkenyl unsaturation.
"Substimted alkenyl" refers to alkenyl groups having from 1 to 5 substiments selected from the group consisting of alkoxy, substimted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxy aryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxy lalkyl, carboxy 1-substituted alkyl, carboxyl- cycloalkyl, carboxy 1-substituted cycloalkyl, carboxylaryl, carboxyl- substituted aryl, carboxy lheteroaryl, carboxyl-substituted heteroaryl, carboxy lheterocyclic, carboxy 1-substituted heterocyclic, cycloalkyl, substimted cycloalkyl, guanidino, guanidinosulfone, thiol, thioalkyl, substimted thioalkyl, thioaryl, substimted thioaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheteroaryl, substimted thioheteroaryl, thioheterocyclic, substimted thioheterocyclic, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, oxycarbonylamino, oxy thiocarbonylamino, -OS(O)2-alkyl, -OS(O)2-substituted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2-heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2- heterocyclic, -OS(O)2-substituted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substimted alkyl, -NRS(O)2- aryl, -NRS(O)2-substituted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic,
-NRS(O)2-NR-alkyl, -NRS(O)2-NR-substimted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substituted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substituted heterocyclic, and substimted alkenyl groups having amino groups blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and alkenyl/substituted alkenyl groups substimted with -SOj-alkyl, - SO2-substimted alkyl, -SO2-alkenyl, -SO2-substituted alkenyl, -SO2- cycloalkyl, -SO2-substituted cycloalkyl, -SO2-aryl, -SO2-substituted aryl, -
SO2-heteroaryl, -SO2-substituted heteroaryl, -SO2-heterocyclic, -SO2- substimted heterocyclic and -SO2NRR where R is hydrogen or alkyl. "Alkynyl" refers to an alkynyl group preferably having from 2 to 10 carbon atoms, and more preferably 3 to 6 carbon atoms, and having at least 1, and preferably from 1-2, sites of alkynyl unsaturation.
"Substimted alkynyl" refers to alkynyl groups having from 1 to 5 substiments selected from the group consisting of alkoxy, substimted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxyaryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxylalkyl, carboxy 1-substituted alkyl, carboxyl- cycloalkyl, carboxy 1-substituted cycloalkyl, carboxy laryl, carboxyl- substituted aryl, carboxy lheteroaryl, carboxyl-substituted heteroaryl, carboxy lheterocyclic, carboxy 1-substituted heterocyclic, cycloalkyl, substimted cycloalkyl, guanidino, guanidinosulfone, thiol, thioalkyl, substituted thioalkyl, thioaryl, substimted thioaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheteroaryl, substimted thioheteroaryl, thioheterocyclic, substimted thioheterocyclic, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, oxycarbonylamino, oxythiocarbonylamino, -OS(O)2-alkyl, -OS(O)2-substituted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2-heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2- heterocyclic, -OS(O)2-substituted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substituted alkyl, -NRS(O)2- aryl, -NRS(O)2-substituted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic, -NRS(O)2-NR-alkyl, -NRS(O)2-NR-substituted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic, and substimted alkynyl groups having amino groups blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and alkynyl/substituted alkynyl groups substimted with -SCValkyl,
-SO2-substimted alkyl, -SO2-alkenyl, -SO2-substituted alkenyl, -SO2- cycloalkyl, -SO2-substituted cycloalkyl, -SO2-aryl, -SO2-substituted aryl, -SO2-heteroaryl, -SO2-substituted heteroaryl, -SO2-heterocyclic, -SO2- substituted heterocyclic and -SO2NRR where R is hydrogen or alkyl.
"Amidino" refers to the group H2NC-, and the term "alkylamidino"
NH refers to compounds having 1 to 3 alkyl groups (e.g., alkylHNC-).
NH
"Thioamidino" refers to the group RSC-, where R is hydrogen or
NH alkyl.
"Aminoacyl" refers to the groups -NRC(O)alkyl, -NRC(O)substituted alkyl, -NRC(O)cycloalkyl, -NRC(O)substituted cycloalkyl, -NRC(O)alkenyl, -NRC(O)substituted alkenyl, -NRC(O)alkynyl,
-NRC(O)substituted alkynyl, -NRC(O)aryl, -NRC(O)substituted aryl, -NRC(O)heteroaryl, -NRC(O)substimted heteroaryl, -NRC(O)heterocyclic, and -NRC(O)substituted heterocyclic where R is hydrogen or alkyl, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Aminocarbonyloxy" refers to the groups -NRC(O)O-alkyl,
-NRC(O)O-substituted alkyl, -NRC(O)O-alkenyl, -NRC(O)O-substituted alkenyl, -NRC(O)O-alkynyl, -NRC(O)O-substituted alkynyl, -NRC(O)O- cycloalkyl, -NRC(O)O-substimted cycloalkyl, -NRC(O)O-aryl, -NRC(O)O- substi ted aryl, -NRC(O)O-heteroaryl, -NRC(O)O-substimted heteroaryl, -NRC(O)O-heterocyclic, and -NRC(O)O-substituted heterocyclic where R is hydrogen or alkyl, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Oxycarbonylamino" refers to the groups -OC(O)NH2, -OC(O)NRR, -OC(O)NR-alkyl, -OC(O)NR-substituted alkyl, -OC(O)NR-alkenyl, -OC(O)NR-substituted alkenyl, -OC(O)NR-alkynyl, -OC(O)NR-substituted alkynyl, -OC(O)NR-cycloalkyl, -OC(O)NR-substituted cycloalkyl, -OC(O)NR-aryl, -OC(O)NR-substimted aryl, -OC(O)NR-heteroaryl, -OC(O)NR-substituted heteroaryl,- OC(O)NR-heterocyclic, and -OC(O)NR-substimted heterocyclic where R is hydrogen, alkyl or where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, and wherein alkyl, substimted alkyl, alkenyl, substituted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Oxythiocarbonylamino" refers to the groups -OC(S)NH2, -OC(S)NRR, -OC(S)NR-alkyl, -OC(S)NR-substituted alkyl, -OC(S)NR- alkenyl, -OC(S)NR-substituted alkenyl, -OC(S)NR-alkynyl, -OC(S)NR- substimted alkynyl, -OC(S)NR-cycloalkyl, -OC(S)NR-substituted cycloalkyl, -OC(S)NR-aryl, -OC(S)NR-substimted aryl, -OC(S)NR-heteroaryl, - OC(S)NR-substimted heteroaryl, -OC(S)NR-heterocyclic, and -OC(S)NR-substituted heterocyclic where R is hydrogen or alkyl, or where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Aminocarbonylamino" refers to the groups -NRC(O)NRR, -NRC(O)NR-alkyl, -NRC(O)NR-substituted alkyl, -NRC(O)NR-alkenyl, -NRC(O)NR-substituted alkenyl, -NRC(O)NR-alkynyl, -NRC(O)NR- substimted alkynyl, -NRC(O)NR-aryl, -NRC(O)NR-substituted aryl,
-NRC(O)NR-cycloalkyl, -NRC(O)NR-substituted cycloalkyl, -NRC(O)NR- heteroaryl, -NRC(O)NR-substituted heteroaryl, -NRC(O)NR-heterocyclic, and -NRC(O)NR-substituted heterocyclic where each R is independently hydrogen or alkyl, or where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, as well as where one of the amino groups is blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Aminothiocarbonylamino" refers to the groups -NRC(S)NRR, -NRC(S)NR-alkyl, -NRC(S)NR-substituted alkyl, -NRC(S)NR-alkenyl, -NRC(S)NR-substimted alkenyl, -NRC(S)NR-alkynyl, -NRC(S)NR- substimted alkynyl, -NRC(S)NR-aryl, -NRC(S)NR-substituted aryl, -NRC(S)NR-cycloalkyl, -NRC(S)NR-substimted cycloalkyl, -NRC(S)NR- heteroaryl, -NRC(S)NR-substimted heteroaryl, -NRC(S)NR-heterocyclic, and -NRC(S)NR-substituted heterocyclic where each R is independently hydrogen or alkyl, or where each R is joined to form, together with the nitrogen atom, a heterocyclic or substimted heterocyclic ring, as well as where one of the amino groups is blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and wherein alkyl, substituted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Aryl" or "Ar" refers to an unsaturated aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-l,4-benzoxazin-3(4H)- one-7yl, and the like). Preferred aryls include phenyl and naphthyl.
"Substimted aryl" refers to aryl groups which are substimted with from 1 to 3 substiments selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substimted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxy 1-cycloalkyl, carboxyl-substimted cycloalkyl, carboxy laryl, carboxyl- substimted aryl, carboxy lheteroaryl, carboxyl-substimted heteroaryl, carboxy lheterocyclic, carboxyl-substimted heterocyclic, carboxy lamido, cyano, thiol, thioalkyl, substituted thioalkyl, thioaryl, substimted thioaryl, .. 4i „
thioheteroaryl, substimted thioheteroaryl, thiocycloalkyl, substituted thiocycloalkyl, thioheterocyclic, substimted thioheterocyclic, cycloalkyl, substituted cycloalkyl, guanidino, guanidinosulfone, halo, nitro, heteroaryl, substituted heteroaryl, heterocyclic, substimted heterocyclic, oxycarbonylamino, oxythiocarbonylamino, -S(O)2-alkyl, -S(O)2-substituted alkyl, -S(O)2-cycloalkyl, -S(O)2-substituted cycloalkyl, -S(O)2-alkenyl, -S(O)2-substimted alkenyl, -S(O)2-aryl, -S(O)2-substimted aryl, -S(O)2- heteroaryl, -S(O)2-substituted heteroaryl, -S(O)2-heterocyclic, -S(O)2- substituted heterocyclic, -OS(O)2-alkyl, -OS(O)2-substimted alkyl, -OS(O)2-aryl, -OS(O)2-substimted aryl, -OS(O)2-heteroaryl, -OS(O)2- substituted heteroaryl, -OS(O)2-heterocyclic, -OS(O)2-substimted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(OValkyl, -NRS(O)2-substimted alkyl, -NRS(O)2-aryl, -NRS(O)2-substimted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substimted heteroaryl, -NRS(O)2- heterocyclic, -NRS(O)2-substimted heterocyclic, -NRS(O)2-NR-alkyl,
-NRS(O)2-NR-substimted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR- substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR-substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR-substimted heterocyclic where R is hydrogen or alkyl, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di- substituted arylamino, mono- and di-heteroarylamino, mono- and di- substituted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substituted amines having different substituents selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic, and amino groups on the substimted aryl blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, or substimted with -SO2NRR where R is hydrogen or alkyl. "Aryloxy" refers to the group aryl-O- which includes, by way of example, phenoxy, naphthoxy, and the like.
"Substimted aryloxy" refers to substituted aryl-O- groups.
"Aryloxyaryl" refers to the gioup -aryl-O-aryl.
"Substimted aryloxyaryl" refers to aryloxyaryl groups substimted with from 1 to 3 substiments on either or both aryl rings selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substimted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substimted alkyl, carboxy 1-cycloalkyl, carboxyl- substimted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxy lheteroaryl, carboxyl-substimted heteroaryl, carboxy lheterocyclic, carboxyl-substimted heterocyclic, carboxy lamido, cyano, thiol, thioalkyl, substimted thioalkyl, thioaryl, substimted thioaryl, thioheteroaryl, substimted thioheteroaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheterocyclic, substimted thioheterocyclic, cycloalkyl, substimted cycloalkyl, guanidino, guanidinosulfone, halo, nitro, heteroaryl, substimted heteroaryl, heterocyclic, substituted heterocyclic, oxycarbonylamino, oxythiocarbonylamino, -S(O)2-alkyl, -S(O)2-substituted alkyl, -S(O)2- cycloalkyl, -S(O)2-substituted cycloalkyl, -S(O)2-alkenyl, -S(O)2-substituted alkenyl, -S(O)2-aryl, -S(O)2-substituted aryl, -S(O)2-heteroaryl, -S(O)2- substituted heteroaryl, -S(O)2-heterocyclic, -S(O)2-substituted heterocyclic, -OS(O)2-alkyl, -OS(O)2-substituted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2-heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2- heterocyclic, -OS(O)2-substimted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substituted alkyl, -NRS(O)2- aryl, -NRS(O)2-substituted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substimted heterocyclic,
-NRS(O)2-NR-alkyl, -NRS(O)2-NR-substimted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substimted heterocyclic, and amino groups on the substimted aryl blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, or substimted with -SO2NRR where R is hydrogen or alkyl.
"Cycloalkyl" refers to cyclic alkyl groups of from 3 to 8 carbon atoms having a single cyclic ring including, by way of example, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like. Excluded from this definition are multi-ring alkyl groups such as adamantanyl, etc.
"Cycloalkenyl" refers to cyclic alkenyl groups of from 3 to 8 carbon atoms having single or multiple unsaturation but which are not aromatic.
"Substimted cycloalkyl" and "substimted cycloalkenyl" refer to cycloalkyl and cycloalkenyl groups, preferably of from 3 to 8 carbon atoms, having from 1 to 5 substiments selected from the group consisting of oxo ( = O), thioxo ( = S), alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxyaryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxy lalkyl, carboxyl-substimted alkyl, carboxy 1-cycloalkyl, carboxyl-substituted cycloalkyl, carboxy laryl, carboxyl-substimted aryl, carboxy lheteroaryl, carboxyl-substimted heteroaryl, carboxy lheterocyclic, carboxyl-substimted heterocyclic, cycloalkyl, substimted cycloalkyl, guanidino, guanidinosulfone, thiol, thioalkyl, substimted thioalkyl, thioaryl, substimted thioaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheteroaryl, substimted thioheteroaryl, thioheterocyclic, substimted thioheterocyclic, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, oxycarbonylamino, oxy thiocarbonylamino, -OS(O)2-alkyl, -OS(O)2- substituted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2-heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2-heterocyclic, -OS(O)2-substituted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substituted alkyl, -NRS(O)2-aryl, -NRS(O)2- substituted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic, -NRS(O)2-NR-alkyl, -NRS(O)2-NR-substituted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substituted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic, and substituted alkynyl groups having amino groups blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and alkynyl/substituted alkynyl groups substimted with -SOj-alkyl,
-SO2-substimted alkyl, -SO2-alkenyl, -SO2-substituted alkenyl, -SO2- cycloalkyl, -SO2-substituted cycloalkyl, -SO2-aryl, -SO2-substituted aryl, -SO2-heteroaryl, -SO2-substituted heteroaryl, -SO2-heterocyclic, -SO2- substimted heterocyclic and -SO2NRR where R is hydrogen or alkyl.
"Cycloalkoxy" refers to -O-cycloalkyl groups.
"Substimted cycloalkoxy" refers to -O-substituted cycloalkyl groups.
"Guanidino" refers to the groups -NRC(=NR)NRR,
-NRC(=NR)NR-alkyl, -NRC(=NR)NR-substituted alkyl, -NRC(=NR)NR- alkenyl, -NRC(=NR)NR-substituted alkenyl, -NRC(=NR)NR-alkynyl, -NRC(=NR)NR-substituted alkynyl, -NRC(=NR)NR-aryl, -NRC(=NR)NR-substituted aryl, -NRC(=NR)NR-cycloalkyl, -NRC(=NR)NR-substituted cycloalkyl, -NRC(=NR)NR-heteroaryl,
-NRC(=NR)NR-substimted heteroaryl, -NRC(=NR)NR-heterocyclic, and -NRC(=NR)NR-substituted heterocyclic where each R is independently hydrogen and alkyl, as well as where one of the amino groups is blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein. "Guanidinosulfone" refers to the groups -NRC(=NR)NRSO2-alkyl, -NRC(=NR)NRSO2-substimted alkyl, -NRC(=NR)NRSO2-alkenyl, -NRC( = NR)NRSO2-substituted alkenyl, -NRC( = NR)NRSO2-alkynyl, -NRC(=NR)NRSO2-substituted alkynyl, -NRC( = NR)NRSO2-aryl, -NRC( = NR)NRSO2-substituted aryl, -NRC( = NR)NRSO2-cycloalkyl,
-NRC(=NR)NRSO2-substimted cyc,oalkyl, -NRC(=NR)NRSO2-heteroaryl, -NRC(=NR)NRSO2-substimted heteroaryl, -NRC(=NR)NRSO2- heterocyclic, and -NRC(=NR)NRSO2-substituted heterocyclic where each R is independently hydrogen and alkyl, and wherein alkyl, substimted alkyl, alkenyl, substimted alkenyl, alkynyl, substimted alkynyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic are as defined herein.
"Halo" or "halogen" refers to fluoro, chloro, bromo and iodo and preferably is either chloro or bromo.
"Heteroaryl" refers to an aromatic carbocyclic group of from 2 to 10 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within the ring. Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl). Preferred heteroaryls include pyridyl, pyrrolyl, indolyl and furyl.
"Substituted heteroaryl" refers to heteroaryl groups which are substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substituted alkyl, alkoxy, substimted alkoxy, alkenyl, substimted alkenyl, alkynyl, substituted alkynyl, amidino, alkylamidino, thioamidmo, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substimted aryl, aryloxy, substimted aryloxy, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substimted alkyl, carboxy 1-cycloalkyl, carboxyl-substimted cycloalkyl, carboxy laryl, carboxyl-substimted aryl, carboxy lheteroaryl, carboxyl-substimted heteroaryl, carboxy lheterocyclic, carboxyl-substimted heterocyclic, carboxy lamido, cyano, thiol, thioalkyl, substimted thioalkyl, thioaryl, substimted thioaryl, thioheteroaryl, substimted thioheteroaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheterocyclic, substimted thioheterocyclic, cycloalkyl, substimted cycloalkyl, guanidino, guanidinosulfone, halo, nitro, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, oxycarbonylamino, oxy thiocarbonylamino, -S(O)2-alkyl, -S(O)2-substituted alkyl, -S(O) - cycloalkyl, -S(O)2-substituted cycloalkyl, -S(O)2-alkenyl, -S(O)2-substituted alkenyl, -S(O)2-aryl, -S(O)2-substituted aryl, -S(O)2-heteroaryl, -S(O)2- substimted heteroaryl, -S(O)2-heterocyclic, -S(O)2-substituted heterocyclic,
-OS(O)2-alkyl, -OS(O)2-substimted alkyl, -OS(O)2-aryl, -OS(O)2-substimted aryl, -OS(O)2-heteroaryl, -OS(O)2-substimted heteroaryl, -OS(O)2- heterocyclic, -OS(O)2-substimted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl, -NRS(O)2-alkyl, -NRS(O)2-substimted alkyl, -NRS(O)2- aryl, -NRS(O)2-substimted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substimted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic, -NRS(O)2-NR-alkyl, -NRS(O)2-NR-substimted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substimted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic, and amino groups on the substimted aryl blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, or substimted with -SO2NRR where R is hydrogen or alkyl.
"Heteroaryloxy" refers to the group -O-heteroaryl and "substimted heteroaryloxy" refers to the group -O-substituted heteroaryl.
"Heterocycle" or "heterocyclic" refers to a saturated or unsaturated group having a single ring or multiple condensed rings having from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl.
"Saturated heterocyclic" refers to heterocycles of single or multiple condensed rings lacking unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
"Unsaturated heterocyclic" refers to non-aromatic heterocycles of single or multiple condensed rings having unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
"Substimted heterocyclic" refers to heterocycle groups which are substimted with from 1 to 3 substiments selected from the group consisting of oxo (=O), thioxo (=S), alkoxy, substimted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substimted aryl, aryloxy, substimted aryloxy, aryloxyaryl, substimted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxylalkyl, carboxyl-substimted alkyl, carboxyl-cycloalkyl, carboxyl-substimted cycloalkyl, carboxylaryl, carboxyl-substimted aryl, carboxy lheteroaryl, carboxyl-substimted heteroaryl, carboxy lheterocyclic, carboxyl-substimted heterocyclic, cycloalkyl, substituted cycloalkyl, guanidino, guanidinosulfone, thiol, thioalkyl, substimted thioalkyl, thioaryl, substimted thioaryl, thiocycloalkyl, substimted thiocycloalkyl, thioheteroaryl, substimted thioheteroaryl, thioheterocyclic, substimted thioheterocyclic, heteroaryl, substimted heteroaryl, heterocyclic, substimted heterocyclic, cycloalkoxy, substimted cycloalkoxy, heteroaryloxy, substimted heteroaryloxy, heterocyclyloxy, substimted heterocyclyloxy, oxycarbonylamino, oxy thiocarbonylamino, -OS(O)2-alkyl, -OS(O)2- substimted alkyl, -OS(O)2-aryl, -OS(O)2-substituted aryl, -OS(O)2-heteroaryl, -OS(O)2-substituted heteroaryl, -OS(O)2-heterocyclic, -OS(O)2-substituted heterocyclic, -OSO2-NRR where R is hydrogen or alkyl,
-NRS(O)2-alkyl, -NRS(O)2-substituted alkyl, -NRS(O)2-aryl, -NRS(O)2- substimted aryl, -NRS(O)2-heteroaryl, -NRS(O)2-substituted heteroaryl, -NRS(O)2-heterocyclic, -NRS(O)2-substituted heterocyclic, -NRS(O)2-NR-alkyl, -NRS(O)2-NR-substituted alkyl, -NRS(O)2-NR-aryl, -NRS(O)2-NR-substimted aryl, -NRS(O)2-NR-heteroaryl, -NRS(O)2-NR- substimted heteroaryl, -NRS(O)2-NR-heterocyclic and -NRS(O)2-NR- substimted heterocyclic where R is hydrogen or alkyl, mono- and di- alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-substimted arylamino, mono- and di-heteroarylamino, mono- and di-substimted heteroarylamino, mono- and di-heterocyclic amino, mono- and di-substimted heterocyclic amino, unsymmetric di-substimted amines having different substiments selected from alkyl, substimted alkyl, aryl, substituted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substimted heterocyclic, and substimted alkynyl groups having amino groups blocked by conventional blocking groups such as Boc, Cbz, formyl, and the like, and alkynyl/substituted alkynyl groups substituted with -SOj-alkyl, -SO2-substimted alkyl, -SO2-alkenyl, -SO2-substimted alkenyl, -SO2- cycloalkyl, -SO2-substituted cycloalkyl, -SO2-aryl, -SO2-substituted aryl, -SO2-heteroaryl, -SO2-substimted heteroaryl, -SO2-heterocyclic, -SO2- substimted heterocyclic and -SO2NRR where R is hydrogen or alkyl.
Examples of heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7- tetrahydrobenzo[b]thiophene, thiazole, thiazolidine, thiophene, benzo[b]thiophene, morpholino, thiomorpholino, piperidinyl, pyrrolidine, tetrahydrofuranyl, and the like.
"Saturated substimted heterocyclic" refers to substimted heterocycles of single or multiple condensed rings lacking unsamration in any ring (e.g., carbon to carbon unsamration, carbon to nitrogen unsamration, nitrogen to nitrogen unsamration, and the like).
"Unsaturated substimted heterocyclic" refers to non-aromatic substituted heterocycles of single or multiple condensed rings having unsamration in any ring (e.g., carbon to carbon unsamration, carbon to nitrogen unsamration, nitrogen to nitrogen unsamration, and the like).
"Heterocyclyloxy" refers to the group -O-heterocyclic and "substimted heterocyclyloxy" refers to the group -O-substimted heterocyclic. "Thiol" refers to the group -SH.
"Thioalkyl" refers to the groups -S-alkyl
"Substimted thioalkyl" refers to the group -S-substimted alkyl.
"Thiocycloalkyl" refers to the groups -S-cycloalkyl.
"Substimted thiocycloalkyl" refers to the group -S-substimted cycloalkyl.
"Thioaryl" refers to the group -S-aryl and "substimted thioaryl" refers to the group -S-substimted aryl.
"Thioheteroaryl" refers to the group -S-heteroaryl and "substimted thioheteroaryl" refers to the group -S-substimted heteroaryl.
"Thioheterocyclic" refers to the group -S-heterocyclic and "substimted thioheterocyclic" refers to the group -S-substimted heterocyclic.
"Pharmaceutically acceptable salt" refers to pharmaceutically acceptable salts of a compound of formula I or I A, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the compound of formula I or I A contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like. Compound Preparation
The compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Second Edition, Wiley, New York, 1991, and references cited therein.
Furthermore, the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like. In a preferred method of synthesis, the compounds of formulas I and IA, wherein Q is -C(O)NR7-, are prepared by first coupling an amino acid of formula II:
R3
R2-NH-C-COOH II
R4
wherein R2 and R3 are as defined in formulas I and IA, and R4 is hydrogen, with a sulfonyl chloride of formula III:
R1-SO2-Cl III
wherein R1 is as defined in formulas I and I A, to provide an N-sulfonyl amino acid of formula IV:
R3 R1-SO2-Ν(R2)-C-COOH IV
R4
wherein R -R are as defined above.
This reaction is typically conducted by reacting the amino acid of formula II with at least one equivalent, preferably about 1.1 to about 2 equivalents, of sulfonyl chloride III in an inert diluent such as dichloromethane and the like. Generally, the reaction is conducted at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like. Alternatively, the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like, as the base. Upon completion of the reaction, the resulting N-sulfonyl amino acid IV is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration and the like.
The amino acids of formula II employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. Examples of suitable amino acids for use in this reaction include, but are not limited to, L-proline, trαns-4-hydroxyl-L-proline , c/s-4-hydroxy 1-L-proline , trø/w-3-phenyl-L- proline, s-3-phenyl-L-proline, L-(2-methyl)proline, L-pipecolinic acid, L- indoline-2-carboxylic acid, L-l ,2,3 ,4-tetrahydroisoquinoline-3-carboxylic acid, L-thiazolidine-4-carboxylic acid, L-(5,5-dimethyl)thiazolidine-4- carboxylic acid, L-thiamorpholine-3-carboxylic acid, glycine, 2-tert- butylglycine, D,L-phenylglycine, L-alanine, -methylalanine, N-methyl-L- phenylalanine, L-diphenylalanine, sarcosine, D,L-phenylsarcosine, L- aspartic acid β-tert-butyl ester, L-glutamic acid γ -tert-butyl ester, L-(0- benzyl)serine, 1-aminocyclopropanecarboxylic acid, 1- aminocyclobutanecarboxylic acid, 1-aminocyclopentanecarboxylic acid (cycloleucine) 1-aminocyclohexanecarboxylic acid, L-serine and the like. If desired, the corresponding carboxylic acid esters of the amino acids of formula II, such as the methyl esters, ethyl esters and the like, can be employed in the above reaction with the sulfonyl chloride III. Subsequent hydrolysis of the ester group to the carboxylic acid using conventional reagents and conditions, i.e., treatment with an alkali metal hydroxide in an inert diluent such as methanol/water, then provides the N-sulfonyl amino acid IV.
Similarly, the sulfonyl chlorides of formula III employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. Such compounds are typically prepared from the corresponding sulfonic acid, i.e. , from compounds of the formula R^SOsH where R1 is as defined above, using phosphorous trichloride and phosphorous pentachloride. This reaction is generally conducted by contacting the sulfonic acid with about 2 to 5 molar equivalents of phosphorous trichloride and phosphorous pentachloride, either neat or in an inert solvent, such as dichloromethane, at a temperamre in the range of about 0°C to about 80 °C for about 1 to about 48 hours to afford the sulfonyl chloride. Alternatively, the sulfonyl chlorides of formula III can be prepared from the corresponding thiol compound, i.e., from compounds of the formula R^SH where R1 is as defined above, by treating the thiol with chlorine (Cl2) and water under conventional reaction conditions.
Examples of sulfonyl chlorides suitable for use in this invention include, but are not limited to, methanesulfonyl chloride, 2-propanesulfonyl chloride, 1-butanesulfonyl chloride, benzenesulfonyl chloride, 1-naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, -toluenesulfonyl chloride, -toluenesulfonyl chloride, 4-acetamidobenzenesulfonyl chloride, 4-amidinobenzenesulfonyl chloride,
4-rert-butylbenzenesulfonyl chloride, 4-bromobenzenesulfonyl chloride, 2-carboxybenzenesulfonyl chloride, 4-cyanobenzenesulfonyl chloride, 3,4-dichlorobenzenesulfonyl chloride, 3,5-dichlorobenzenesulfonyl chloride, 3,4-dimethoxybenzenesulfonyl chloride, 3,5- ditrifluoromethylbenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 4-methoxybenzenesulfony 1 chloride , 2-methoxycarbony Ibenzenesulf onyl chloride, 4-methylamidobenzenesulfonyl chloride, 4-nitrobenzenesulfonyl chloride, 4-thioamidobenzenesulfonyl chloride, 4- tr ifluoromethy Ibenzenesulf ony 1 chloride , 4-trifluoromethoxybenzenesulfony 1 chloride, 2,4,6-trimethylbenzenesulfonyl chloride, 2-phenylethanesulfonyl chloride, 2-thiophenesulfonyl chloride, 5-chloro-2-thiophenesulfonyl chloride, 2,5-dichloro-4-thiophenesulfonyl chloride, 2-thiazolesulfonyl chloride, 2-methyl-4-thiazolesulfonyl chloride, l-methyl-4-imidazolesulfonyl chloride, l-methyl-4-pyrazolesulfonyl chloride, 5-chloro-l,3-dimethyl-4- pyrazolesulfonyl chloride, 3-pyridinesulfonyl chloride, 2-pyrimidinesulfonyl chloride and the like. If desired, a sulfonyl fluoride, sulfonyl bromide or sulfonic acid anhydride may be used in place of the sulfonyl chloride in the above reaction to form the N-sulfonyl amino acids of formula IV.
The compounds of formula I are then prepared by coupling the intermediate N-sulfonyl amino acid of formula IV with an amino acid derivative of formula VI:
O
R7-ΝH-CH-C-R6 VI
I
R5
wherein R5-R7 are as in formulas I and IA. This coupling reaction is typically conducted using well-known coupling reagents such as carbodiimides, BOP reagent (benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphonate) and the like. Suitable carbodiimides include, by way of example, dicyclohexylcarbodiimide (DCC), l-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC) and the like. If desired, polymer supported forms of carbodiimide coupling reagents may also be used including, for example, those described in Tetrahedron Letters, 34(48), 7685 (1993). Additionally, well-known coupling promoters, such as N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like, may be used to facilitate the coupling reaction.
This coupling reaction is typically conducted by contacting the N-sulfonylamino acid IV with about 1 to about 2 equivalents of the coupling reagent and at least one equivalent, preferably about 1 to about 1.2 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like. Generally, this reaction is conducted at a temperamre ranging from about 0°C to about 37°C for about 12 to about 24 hours. Upon completion of the reaction, the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
Alternatively, the N-sulfonyl amino acid IV can be converted into an acid halide and the acid halide coupled with amino acid derivative VI to provide compounds of formula I. The acid halide of VI can be prepared by contacting VI with an inorganic acid halide, such as thionyl chloride, phosphorous trichloride, phosphorous tribromide or phosphorous pentachloride, or, preferably, with oxalyl chloride under conventional conditions. Generally, this reaction is conducted using about 1 to 5 molar equivalents of the inorganic acid halide or oxalyl chloride, either neat or in an inert solvent, such as dichloromethane or carbon tetrachloride, at temperamre in the range of about 0°C to about 80 °C for about 1 to about 48 hours. A catalyst, such as N,N-dimethylformamide, may also be used in this reaction. The acid halide of N-sulfonyl amino acid IV is then contacted with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like. Alternatively, the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like. Upon completion of the reaction, the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
Alternatively, the compounds of formula I can be prepared by first forming a diamino acid derivative of formula VII:
R3 R7 O
I I II
R2-ΝH-C-C(O)Ν-CH-C-R6 VII
R4 R5
wherein R2-R7 are as defined above. The diamino acid derivatives of formula VII can be readily prepared by coupling an amino acid of formula II with an amino acid derivative of formula VI using conventional amino acid coupling techniques and reagents, such as carbodiimides, BOP reagent and the like, as described above. Diamino acid VII can then be sulfonated using a sulfonyl chloride of formula III and using the synthetic procedures described above to provide a compound of formula I. The amino acid derivatives of formula VI employed in the above reactions are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. For example, amino acid derivatives of formula VI can be prepared by C- alkylating commercially available diethyl 2-acetamidomalonate (Aldrich,
Milwaukee, Wisconsin, USA) with an alkyl or substimted alkyl halide. This reaction is typically conducted by treating the diethyl 2-acetamidomalonate with at least one equivalent of sodium ethoxide and at least one equivalent of an alkyl or substimted alkyl halide in refluxing ethanol for about 6 to about 12 hours. The resulting C-alkylated malonate is then deacetylated, hydrolyzed and decarboxylated by heating in aqueous hydrochloric acid at reflux for about 6 to about 12 hours to provide the amino acid, typically as the hydrochloride salt.
Examples of amino acid derivatives of formula VI suitable for use in the above reactions include, but are not limited to, L-tryptophan methyl ester, L-phenylalanine methyl ester, L-phenylalanine isopropyl ester, L- phenylalanine benzyl ester, L-phenylalaninamide, N-methyl-L-phenylalanine benzyl ester, D,L-homophenylalanine methyl ester, β-(l-naphthyl)-L-alanine methyl ester, β-(2-naphthyl)-L-alanine methyl ester, β-(2-thienyl)-L-alanine methyl ester, β-(2-pyridyl)-L-alanine methyl ester, β-(3-pyridyl)-L-alanine methyl ester, β-(4-pyridyl)-L-alanine methyl ester, β-(2-thiazolyl)-D,L- alanine methyl ester, β-(l,2,4-triazol-3-yl)-D,L-alanine methyl ester, and the like. If desired, of course, other esters or amides of the above-described compounds may also be employed.
For ease of synthesis, the compounds of formula I are typically prepared as an ester, i.e. , where R6 is an alkoxy or substimted alkoxy group and the like. If desired, the ester group can be hydrolysed using conventional conditions and reagents to provide the corresponding carboxylic acid. Typically, this reaction is conducted by treating the ester with at least one equivalent of an alkali metal hydroxide, such as lithium, sodium or potassium hydroxide, in an inert diluent, such as methanol or mixtures of methanol and water, at a temperamre ranging from about 0°C to about 24 °C for about 1 to about 12 hours. Alternatively, benzyl esters may be removed by hydrogenolysis using a palladium catalyst, such as palladium on carbon. The resulting carboxylic acids may be coupled, if desired, to amines such as β-alanine ethyl ester, hydroxyamines such as hydroxylamine and N- hydroxysuccinimide, alkoxyamines and substimted alkoxyamines such as O- methylhydroxylamine and O-benzylhydroxylamine, and the like, using conventional coupling reagents and conditions as described above.
As will be apparent to those skilled in the art, other functional groups present on any of the substiments of the compounds of formula I can be readily modified or derivatized either before or after the above-described coupling reactions using well-known synthetic procedures. For example, a nitro group present on a substituent of a compound of formula I or an intermediate thereof may be readily reduced by hydrogenation in the presence of a palladium catalyst, such as palladium on carbon, to provide the corresponding amino group. This reaction is typically conducted at a temperamre of from about 20 °C to about 50 °C for about 6 to about 24 hours in an inert diluent, such as methanol. Compounds having a nitro group on the R5 substituent can be prepared, for example, by using a 4- nitrophenylalanine derivative and the like in the above-described coupling reactions.
Similarly, a pyridyl group can be hydrogenated in the presence of a platinum catalyst, such as platinum oxide, in an acidic diluent to provide the corresponding piperidinyl analogue. Generally, this reaction is conducted by treating the pyridine compound with hydrogen at a pressure ranging from about 20 psi to about 60 psi, preferably about 40 psi, in the presence of the catalyst at a temperamre of about 20 °C to about 50 °C for about 2 to about 24 hours in an acidic diluent, such as a mixture of methanol and aqueous hydrochloric acid. Compounds having a pyridyl group can be readily prepared by using, for example, β-(2-pyridyl)-, β-(3-pyridyl)- or β-(4- pyridyl)-L-alanine derivatives in the above-described coupling reactions.
By way of illustration, a compound of formula I, or an intermediate thereof, having a substituent containing a primary or secondary amino group, such as where R1 is a 4-aminophenyl group, can be readily N-acylated using conventional acylating reagents and conditions to provide the corresponding amide. This acylation reaction is typically conducted by treating the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of a carboxylic acid in the presence of a coupling reagent such as a carbodiimide, BOP reagent (benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphonate) and the like, in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N-dimethylformamide and the like, at a temperamre ranging from about 0°C to about 37 °C for about 4 to about 24 hours. Preferably, a promoter, such as N-hydroxysuccinimide,
1 -hydroxy benzotriazole and the like, is used to facilitate the acylation reaction. Examples of carboxylic acids suitable for use in this reaction include, but are not limited to, N-tert-butyloxycarbonylglycine, N-tert- butyloxycarbonyl-L-pheny lalanine , N-tert-butyloxycarbonyl-L-aspartic acid benzyl ester, benzoic acid, N-tert-butyloxycarbonylisonipecotic acid, N- methylisonipecotic acid, N-tert-butyloxycarbonylnipecotic acid, N-tert- butyloxycarbonyl-L-tetrahydroisoquinoline-3-carboxylic acid, N-(toluene-4- sulfonyl)-L-proline and the like. Alternatively, a compound of formula I or an intermediate thereof containing a primary or secondary amino group can be N-acylated using an acyl halide or a carboxylic acid anhydride to form the corresponding amide. This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the acyl halide or carboxylic acid anhydride in an inert diluent, such as dichloromethane, at a temperamre ranging from about -70 °C to about 40 °C for about 1 to about 24 hours. If desired, an acylation catalyst such as 4- (NN-dimethylamino)pyridine may be used to promote the acylation reaction. The acylation reaction is preferably conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like. Alternatively, the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
Examples of acyl halides and carboxylic acid anhydrides suitable for use in this reaction include, but are not limited to, 2-methylpropionyl chloride, trimethylacetyl chloride, phenylacetyl chloride, benzoyl chloride, 2-bromobenzoyl chloride, 2-methylbenzoyl chloride,
2-trifluoromethylbenzoyl chloride, isonicotinoyl chloride, nicotinoyl chloride, picolinoyl chloride, acetic anhydride, succinic anhydride and the like. Carbamyl chlorides, such as N,N-dimethylcarbamyl chloride, N,N- diethylcarbamyl chloride and the like, can also be used in this reaction to provide ureas. Similarly, dicarbonates, such as di-tert-butyl dicarbonate, may be employed to provide carbamates.
In a similar manner, a compound of formula I or an intermediate thereof containing a primary or secondary amino group may be N-sulfonated to form a sulfonamide using a sulfonyl halide or a sulfonic acid anhydride. Sulfonyl halides and sulfonic acid anhydrides suitable for use in this reaction include, but are not limited to, methanesulfonyl chloride, chloromethanesulfonyl chloride, -toluenesulfonyl chloride, trifluoromethanesulfonic anhydride and the like. Similarly, sulfamoyl chlorides, such as dimethylsulfamoyl chloride, can be used to provide sulfamides (e.g., > N-SO2-N < ).
Additionally, a primary and secondary amino group present on a substituent of a compound of formula I, or an intermediate thereof, can be reacted with an isocyanate or a thioisocyanate to give a urea or thiourea, respectively. This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the isocyanate or thioisocyanate in an inert diluent, such as toluene and the like, at a temperamre ranging from about 24 °C to about 37 °C for about 12 to about 24 hours. The isocyanates and thioisocyanates used in this reaction are commercially available or can be prepared from commercially available compounds using well-known synthetic procedures. For example, isocyanates and thioisocyanates are readily prepared by reacting the appropriate amine with phosgene or thiophosgene. Examples of isocyanates and thioisocyanates suitable for use in this reaction include, but are not limited to, ethyl isocyanate, «-propyl isocyanate, 4-cyanophenyl isocyanate, 3-methoxyphenyl isocyanate, 2-phenylethyl isocyanate, methyl thioisocyanate, ethyl thioisocyanate, 2-phenylethyl thioisocyanate, 3-phenylpropyl thioisocyanate, 3-(N,N-diethylamino)propyl thioisocyanate, phenyl thioisocyanate, benzyl thioisocyanate, 3-pyridyl thioisocyanate, fluorescein isothiocyanate (isomer I), and the like.
Furthermore, when a compound of formula I or an intermediate thereof contains a primary or secondary amino group, the amino group can be reductively alkylated using aldehydes or ketones to form a secondary or tertiary amino group. This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of an aldehyde or ketone and at least one equivalent based on the amino compound of a metal hydride reducing agent, such as sodium cyanoborohydride, in an inert diluent, such as methanol, tetrahydrofuran, mixtures thereof and the like, at a temperamre ranging from about 0°C to about 50 °C for about 1 to about 72 hours. Aldehydes and ketones suitable for use in this reaction include, by way of example, benzaldehyde, 4- chlorobenzaldehyde, valeraldehyde and the like.
In a similar manner, when a compound of formula I, or an intermediate thereof, has a substituent containing a hydroxyl group, the hydroxyl group can be further modified or derivatized either before or after the above coupling reactions to provide, by way of example, ethers, carbamates and the like.
By way of example, a compound of formula I or an intermediate thereof having a substituent containing a hydroxyl group, such as where R1 is a 4-hydroxyphenyl group, can be readily O-alkylated to form ethers. This O-alkylation reaction is typically conducted by contacting the hydroxy compound with a suitable alkali or alkaline earth metal base, such as potassium carbonate, in an inert diluent, such as acetone, 2-butanone and the like, to form the alkali or alkaline earth metal salt of the hydroxyl group. This salt is generally not isolated, but is reacted in situ with at least one equivalent of an alkyl or substimted alkyl halide or sulfonate, such as an alkyl chloride, bromide, iodide, mesylate or tosylate, to afford the ether. Generally, this reaction is conducted at a temperamre ranging from about 60 °C to about 150°C for about 24 to about 72 hours. Preferably, a catalytic amount of sodium or potassium iodide is added to the reaction mixture when an alkyl chloride or bromide is employed in the reaction. Examples of alkyl or substimted alkyl halides and sulfonates suitable for use in this reaction include, but are not limited to, tert-butyl bromoacetate, N-tert-butyl chloroacetamide, 1-bromoethylbenzene, ethyl α-bromophenylacetate, 2-(N-ethyl-N-phenylamino)ethyl chloride, 2-(N,N- ethylamino)ethyl chloride, 2-(N,N-diisopropylamino)ethyl chloride, 2-(N,N- dibenzylamino)ethyl chloride, 3-(N,Λ-ethylamino)propyl chloride, 3-(N- benzyl-N-methylamino)propyl chloride, N-(2-chloroethyl)morpholine, 2-(hexamethy leneimino)ethyl chloride , 3-(N-methy lpiperazine)propyl chloride, l-(3-chlorophenyl)-4-(3-chloropropyl)piperazine, 2-(4-hydroxy-4- phenylpiperidine)ethyl chloride, N-terr-butyloxycarbonyl-3-piperidinemethyl tosylate and the like.
Alternatively, a hydroxyl group present on a substituent of a compound of formula I, or an intermediate thereof, can be O-alkylated using the Mitsunobu reaction. In this reaction, an alcohol, such as 3-(N,N- dimethylamino)-l-propanol and the like, is reacted with about 1.0 to about 1.3 equivalents of triphenylphosphine and about 1.0 to about 1.3 equivalents of diethyl azodicarboxylate in an inert diluent, such as tetrahydrofuran, at a temperamre ranging from about -10 °C to about 5°C for about 0.25 to about 1 hour. About 1.0 to about 1.3 equivalents of a hydroxy compound, such as
N-tert-butyltyrosine methyl ester, is then added and the reaction mixture is stirred at a temperamre of about 0°C to about 30 °C for about 2 to about 48 hours to provide the O-alkylated product.
In a similar manner, a compound of formula I, or an intermediate thereof, containing an aryl hydroxy group can be reacted with an aryl iodide to provide a diary 1 ether. Generally, this reaction is conducted by forming the alkali metal salt of the hydroxyl group using a suitable base, such as sodium hydride, in an inert diluent, such as xylenes, at a temperamre of about -25 °C to about 10°C. The salt is then treated with about 1.1 to about 1.5 equivalents of cuprous bromide dimethyl sulfide complex at a temperamre ranging from about 10°C to about 30°C for about 0.5 to about 2.0 hours, followed by about 1.1 to about 1.5 equivalents of an aryl iodide, such as sodium 2-iodobenzoate and the like. The reaction is then heated to a temperamre from about 70 °C to about 150°C for about 2 to about 24 hours to provide the diary 1 ether.
Additionally, a hydroxy-containing compound can also be readily derivatized to form a carbamate. In one method for preparing such carbamates, a hydroxy compound of formula I, or an intermediate thereof, is contacted with about 1.0 to about 1.2 equivalents of 4-nitrophenyl chloroformate in an inert diluent, such as dichloromethane, at a temperamre ranging from about -25 °C to about 0°C for about 0.5 to about 2.0 hours. Treatment of the resulting carbonate with an excess, preferably about 2 to about 5 equivalents, of a trialkylamine, such as triethylamine, for about 0.5 to 2 hours, followed by about 1.0 to about 1.5 equivalents of a primary or secondary amine, provides the carbamate. Examples of amines suitable for using in this reaction include, but are not limited to, piperazine, 1- methylpiperazine, 1-acetylpiperazine, morpholine, thiomorpholine, pyrrolidine, piperidine and the like.
Alternatively, in another method for preparing carbamates, a hydroxy-containing compound is contacted with about 1.0 to about 1.5 equivalents of a carbamyl chloride in an inert diluent, such as dichloromethane, at a temperamre ranging from about 25 °C to about 70 °C for about 2 to about 72 hours. Typically, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like. Additionally, at least one equivalent (based on the hydroxy compound) of 4- (N,N-dimethylamino)pyridine is preferably added to the reaction mixmre to facilitate the reaction. Examples of carbamyl chlorides suitable for use in this reaction include, by way of example, dimethylcarbamyl chloride, diethylcarbamyl chloride and the like.
Likewise, when a compound of formula I, or an intermediate thereof, contains a primary or secondary hydroxyl group, such hydroxyl groups can be readily converted into a leaving group and displaced to form, for example, amines, sulfides and fluorides. For example, derivatives of 4- hydroxy-L-proline can be converted into the corresponding 4-amino, 4-thio or 4-fluoro-L-proline derivatives via nucleophilic displacement of the derivatized hydroxyl group. Generally, when a chiral compound is employed in these reactions, the stereochemistry at the carbon atom attached to the derivatized hydroxyl group is typically inverted.
These reactions are typically conducted by first converting the hydroxyl group into a leaving group, such as a tosylate, by treatment of the hydroxy compound with at least one equivalent of a sulfonyl halide, such as p-toluenesulfonyl chloride and the like, in pyridine. This reaction is generally conducted at a temperamre of from about 0°C to about 70 °C for about 1 to about 48 hours. The resulting tosylate can then be readily displaced with sodium azide, for example, by contacting the tosylate with at least one equivalent of sodium azide in an inert diluent, such as a mixmre of N,N-dimethylformamide and water, at a temperamre ranging from about 0°C to about 37 °C for about 1 to about 12 hours to provide the corresponding azido compound. The azido group can then be reduced by, for example, hydrogenation using a palladium on carbon catalyst to provide the amino (- ΝH2) compound. Similarly, a tosylate group can be readily displaced by a thiol to form a sulfide. This reaction is typically conducted by contacting the tosylate with at least one equivalent of a thiol, such as thiophenol, in the presence of a suitable base, such as l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), in an inert diluent, such as N,N-dimethylformamide, at a temperamre of from about
0°C to about 37 °C for about 1 to about 12 hours to provide the sulfide. Additionally, treatment of a tosylate with morpholinosulfur trifluoride in an inert diluent, such as dichloromethane, at a temperamre ranging from about 0°C to about 37°C for about 12 to about 24 hours affords the corresponding fluoro compound.
Furthermore, a compound of formula ϊ, or an intermediate thereof, having a substituent containing an iodoaryl group, for example, when R1 is a 4-iodophenyl group, can be readily converted either before or after the above coupling reactions into a biaryl compound. Typically, this reaction is conducted by treating the iodoaryl compound with about 1.1 to about 2 equivalents of an arylzinc iodide, such as 2-(methoxycarbonyl)phenylzinc iodide, in the presence of a palladium catalyst, such as palladium tetra(triphenylphosphine), in an inert diluent, such as tetrahydrofuran, at a temperamre ranging from about 24 °C to about 30 °C until the reaction is complete. This reaction is further described, for example, in Rieke, J. Org. Chem. 1991, 56, 1445.
In some cases, the compounds of formula I, or intermediates thereof, may contain substituents having one or more sulfur atoms. Such sulfur atoms will be present, for example, when the amino acid of formula II employed in the above reactions is derived from L-thiazolidine-4-carboxylic acid, L-(5,5-dimethyl)thiazolidine-4-carboxylic acid, L-thiamorpholine-3- carboxylic acid and the like. When present, such sulfur atoms can be oxidized either before or after the above coupling reactions to provide a sulfoxide or sulfone compound using conventional reagents and reaction conditions. Suitable reagents for oxidizing a sulfide compound to a sulfoxide include, by way of example, hydrogen peroxide, 3 -chloroperoxy benzoic acid (MCPBA), sodium periodate and the like. The oxidation reaction is typically conducted by contacting the sulfide compound with about 0.95 to about 1.1 equivalents of the oxidizing reagent in an inert diluent, such as dichloromethane, at a temperamre ranging from about -50°C to about 75 °C for about 1 to about 24 hours. The resulting sulfoxide can then be further oxidized to the corresponding sulfone by contacting the sulfoxide with at least one additional equivalent of an oxidizing reagent, such as hydrogen peroxide, MCPBA, potassium permanganate and the like. Alternatively, the sulfone can be prepared directly by contacting the sulfide with at least two equivalents, and preferably an excess, of the oxidizing reagent. Such reactions are described further in March, "Advanced Organic Chemistry", 4th Ed., pp. 1201-1202, Wiley Publisher (1992).
Lastly, the compounds of formula I, where Q is -C(S)NR7-, can be prepared by using an amino thionoacid derivative in place of amino acid II in the above described synthetic procedures. Such amino thionoacid derivatives can be prepared by the procedures described in Shalaky, et al., J. Org. Chem., 61:9045-9048 (1996) and Brain, et al., J. Org. Chem., 62:3808- 3809 (1997) and references cited therein.
Pharmaceutical Formulations
When employed as pharmaceuticals, the compounds of formula I and IA are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.
This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of formula I or IA above associated with pharmaceutically acceptable carriers. In making the compositions of this invention, the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy- benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
The compositions are preferably formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg, more usually about 10 to about 30 mg, of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
The active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound acmally administered will be determined by a physician in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms and the like.
For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixmre of a compound of the present invention. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
The tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixmres of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions suitably flavored with syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixmres thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device may be attached to a face mask tent or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulatior in an appropriate manner.
The following formulation examples illustrate the pharmaceutical compositions of the present invention.
Formulation Example 1
Hard gelatin capsules containing the following ingredients are prepared:
Quantity Ingredient (mg/capsule)
Active Ingredient 30.0
Starch 305.0
Magnesium stearate 5.0
The above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities.
Formulation Example 2 A tablet formula is prepared using the ingredients below: Quantity
Ingredient (mg/tablef)
Active Ingredient 25.0
Cellulose, microcrystalline 200.0
Colloidal silicon dioxide 10.0 Stearic acid 5.0
The components are blended and compressed to form tablets, each weighing 240 mg. Formulation Example 3
A dry powder inhaler formulation is prepared containing the following components:
Ingredient Weight % Active Ingredient 5
Lactose 95
The active mixmre is mixed with the lactose and the mixmre is added to a dry powder inhaling appliance.
Formulation Example 4 Tablets, each containing 30 mg of active ingredient, are prepared as follows:
Quantity
Ingredient (mg/table >
Active Ingredient 30.0 mg
Starch 45.0 mg
Microcrystalline cellulose 35.0 mg
Polyvinylpyrrolidone
(as 10% solution in water) 4.0 mg
Sodium carboxymethyl starch 4.5 mg
Magnesium stearate 0.5 mg
Talc 1.0 mg
Total 120 mg
The active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve. The granules so produced are dried at 50° to 60 °C and passed through a 16 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg. Formulation Example 5 ""
Capsules, each containing 40 mg of medicament, are made as follows:
Quantity Ingredient (mg/capsule)
Active Ingredient 40.0 mg
Starch 109.0 mg
Magnesium stearate 1.0 mg
Total 150.0 mg
The active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
Formulation Example 6
Suppositories, each containing 25 mg of active ingredient, are made as follows:
Ingredient Amount
Active Ingredient 25 mg Samrated fatty acid glycerides to 2,000 mg
The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the samrated fatty acid glycerides previously melted using the minimum heat necessary. The mixmre is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool.
Formulation Example 7 Suspensions, each containing 50 mg of medicament per 5.0 ml dose, are made as follows:
Ingredient Amount
Active Ingredient 50.0 mg
Xanthan gum 4.0 mg
Sodium carboxymethyl cellulose (11 %)/
Microcrystalline cellulose (89%) 50.0 mg
Sucrose 1.75 g
Sodium benzoate 10.0 mg Flavor and Color q.v.
Purified water to 5.0 ml
The medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water. The sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
Formulation Example 8
Quantity
Ingredient (mg/capsule
Active Ingredient 15.0 mg Starch 407.0 mg
Magnesium stearate 3.0 mg
Total 425.0 mg
The active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 560 mg quantities.
Formulation Example 9 An intravenous formulation may be prepared as follows:
Ingredient Quantity
Active Ingredient 250.0 mg
Isotonic saline 1000 ml
Formulation Example 10
A topical formulation may be prepared as follows:
Ingredient Quantity
Active Ingredient 1-10 g
Emulsifying Wax 30 g Liquid Paraffin 20 g
White Soft Paraffin to 100 g The white soft paraffin is heated until molten. The liquid paraffin and emulsifying wax are incorporated and stirred until dissolved. The active ingredient is added and stirring is continued until dispersed. The mixmre is then cooled until solid.
Another preferred formulation employed in the methods of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g.. U.S. Patent 5,023,252, issued June 11, 1991, herein incorporated by reference. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
It may be desirable or necessary to introduce the pharmaceutical composition to the brain, either directly or indirectly. Direct techniques usually involve placement of a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier. One such implantable delivery system used for the transport of biological factors to specific anatomical regions of the body is described in U.S. Patent 5,011,472, which is herein incorporated by reference.
Indirect techniques, which are generally preferred, usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs. Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier. Alternatively, the delivery of hydrophilic drugs may be enhanced by intra-arterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.
Utility The compounds of this invention can be employed to bind VLA-4 (c l integrin) in biological samples and, accordingly, have utility in, for example, assaying such samples for VLA-4. In such assays, the compounds can be bound to a solid support and the VLA-4 sample added thereto. The amount of VLA-4 in the sample can be determined by conventional methods such as use of a sandwich ELISA assay. Alternatively, labeled VLA-4 can be used in a competitive assay to measure for the presence of VLA-4 in the sample. Other suitable assays are well known in the art.
In addition, certain of the compounds of this invention inhibit, in vivo, adhesion of leukocytes to endothelial cells mediated by VLA-4 and, accordingly, can be used in the treatment of diseases mediated by VLA-4. Such diseases include inflammatory diseases in mammalian patients such as asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
The biological activity of the compounds identified above may be assayed in a variety of systems. For example, a compound can be immobilized on a solid surface and adhesion of cells expressing VLA-4 can be measured. Using such formats, large numbers of compounds can be screened. Cells suitable for this assay include any leukocytes known to express VLA-4 such as T cells, B cells, monocytes, eosinophils, and basophils. A number of leukocyte cell lines can also be used, examples include Jurkat and U937.
The test compounds can also be tested for the ability to competitively inhibit binding between VLA-4 and VCAM-1, or between VLA-4 and a labeled compound known to bind VLA-4 such as a compound of this invention or antibodies to VLA-4. In these assays, the VCAM-1 can be immobilized on a solid surface. VCAM-1 may also be expressed as a recombinant fusion protein having an Ig tail (e.g., IgG) so that binding to VLA-4 may be detected in an immunoassay. Alternatively, VCAM-1 expressing cells, such as activated endothelial cells or VCAM-1 transfected fibroblasts, can be used. For assays to measure the ability to block adhesion to brain endothelial cells, the assays described in International Patent Application Publication No. WO 91/05038 are particularly preferred. This application is incorporated herein by reference in its entirety.
Many assay formats employ labelled assay components. The labelling systems can be in a variety of forms. The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. A wide variety of labels may be used. The component may be labelled by any one of several methods. The most common method of detection is the use of autoradiography with 3H, 1251, 35S, 14C, or 32P labelled compounds or the like. Non-radioactive labels include ligands which bind to labelled antibodies, fluorophores, chemiluminescent agents, enzymes and antibodies which can serve as specific binding pair members for a labelled ligand. The choice of label depends on sensitivity required, ease of conjugation with the compound, stability requirements, and available instrumentation. Appropriate in vivo models for demonstrating efficacy in treating inflammatory responses include EAE (experimental autoimmune encephalomyelitis) in mice, rats, guinea pigs, or primates, as well as other inflammatory models dependent upon 4 integrins.
Compounds having the desired biological activity may be modified as necessary to provide desired properties such as improved pharmacological properties (e.g., in vivo stability, bio-availability), or the ability to be detected in diagnostic applications. For instance, inclusion of one or more D-amino acids in the sulfonamides of this invention typically increases in vivo stability. Stability can be assayed in a variety of ways such as by measuring the half-life of the proteins during incubation with peptidases or human plasma or serum. A number of such protein stability assays have been described (see, e.g. , Verhoef, et al., Eur. J. Drug Metab. Pharmacokinet. , 1990, 15{2): 83-93).
For diagnostic purposes, a wide variety of labels may be linked to the compounds, which may provide, directly or indirectly, a detectable signal. Thus, the compounds of the subject invention may be modified in a variety of ways for a variety of end purposes while still retaining biological activity. In addition, various reactive sites may be introduced at the terminus for linking to particles, solid substrates, macromolecules, or the like.
Labeled compounds can be used in a variety of in vivo or in vitro applications. A wide variety of labels may be employed, such as radionuclides (e.g., gamma-emitting radioisotopes such as technetium-99 or indium-Ill), fluorescers (e.g., fluorescein), enzymes, enzyme substrates, enzyme cof actors, enzyme inhibitors, chemiluminescent compounds, bioluminescent compounds, and the like. Those of ordinary skill in the art will know of other suitable labels for binding to the complexes, or will be able to ascertain such using routine experimentation. The binding of these *""" labels is achieved using standard techniques common to those of ordinary skill in the art.
In vitro uses include diagnostic applications such as monitoring inflammatory responses by detecting the presence of leukocytes expressing VLA-4. The compounds of this invention can also be used for isolating or labeling such cells. In addition, as mentioned above, the compounds of the invention can be used to assay for potential inhibitors of VLA-4/VCAM-1 interactions.
For in vivo diagnostic imaging to identify, e.g., sites of inflammation, radioisotopes are typically used in accordance with well known techniques. The radioisotopes may be bound to the peptide either directly or indirectly using intermediate functional groups. For instance, chelating agents such as diethylenetriaminepentacetic acid (DTP A) and ethylenediaminetetraacetic acid (EDTA) and similar molecules have been used to bind proteins to metallic ion radioisotopes.
The complexes can also be labeled with a paramagnetic isotope for purposes of in vivo diagnosis, as in magnetic resonance imaging (MRI) or electron spin resonance (ESR), both of which are well known. In general, any conventional method for visualizing diagnostic imaging can be used. Usually, gamma- and positron-emitting radioisotopes are used for camera imaging and paramagnetic isotopes are used for MRI. Thus, the compounds can be used to monitor the course of amelioration of an inflammatory response in an individual. By measuring the increase or decrease in lymphocytes expressing VLA-4, it is possible to determine whether a particular therapeutic regimen aimed at ameliorating the disease is effective. The pharmaceutical compositions of the present invention can be used to block or inhibit cellular adhesion associated with a number of diseases and disorders. For instance, a number of inflammatory disorders are associated with integrins or leukocytes. Treatable disorders include, e.g., transplantation rejection (e.g., allograft rejection), Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), retinitis, cancer metastases, rheumatoid arthritis, acute leukocyte-mediated lung injury (e.g. , adult respiratory distress syndrome), asthma, nephritis, and acute and chronic inflammation, including atopic dermatitis, psoriasis, myocardial ischemia, and inflammatory bowel disease
(including Crohn's disease and ulcerative colitis). In preferred embodiments, the pharmaceutical compositions are used to treat inflammatory brain disorders, such as multiple sclerosis (MS), viral meningitis and encephalitis.
Inflammatory bowel disease is a collective term for two similar diseases referred to as Crohn's disease and ulcerative colitis. Crohn's disease is an idiopathic, chronic ulceroconstrictive inflammatory disease characterized by sharply delimited and typically transmural involvement of all layers of the bowel wall by a granulomatous inflammatory reaction. Any segment of the gastrointestinal tract, from the mouth to the anus, may be involved, although the disease most commonly affects the terminal ileum and/or colon. Ulcerative colitis is an inflammatory response limited largely to the colonic mucosa and submucosa. Lymphocytes and macrophages are numerous in lesions of inflammatory bowel disease and may contribute to inflammatory injury.
Asthma is a disease characterized by increased responsiveness of the tracheobronchial tree to various stimuli potentiating paroxysmal constriction of the bronchial airways. The stimuli cause release of various mediators of inflammation from IgE-coated mast cells, including histamine, eosinophilic and neutrophilic chemotactic factors, leukotrines, prostaglandin and platelet activating factor. Release of these factors recruits basophils, eosinophils and neutrophils, which cause inflammatory injury.
Atherosclerosis is a disease of arteries (e.g., coronary, carotid, aorta and iliac). The basic lesion, the atheroma, consists of a raised focal plaque within the intima, having a core of lipid and a covering fibrous cap. Atheromas compromise arterial blood flow and weaken affected arteries. Myocardial and cerebral infarcts are a major consequence of this disease. Macrophages and leukocytes are recruited to atheromas and contribute to inflammatory injury.
Rheumatoid arthritis is a chronic, relapsing inflammatory disease that primarily causes impairment and destruction of joints. Rheumatoid arthritis usually first affects the small joints of the hands and feet but then may involve the wrists, elbows, ankles and knees. The arthritis results from interaction of synovial cells with leukocytes that infiltrate from the circulation into the synovial lining of the joints. See e.g., Paul, Immunology, 3d ed., Raven Press (1993).
Another indication for the compounds of this invention is in treatment of organ or graft rejection mediated by VLA-4. Over recent years there has been a considerable improvement in the efficiency of surgical techniques for transplanting tissues and organs such as skin, kidney, liver, heart, lung, pancreas and bone marrow. Perhaps the principal outstanding problem is the lack of satisfactory agents for inducing immunotolerance in the recipient to the transplanted allograft or organ. When allogeneic cells or organs are transplanted into a host (i.e., the donor and donee are different individuals from the same species), the host immune system is likely to mount an immune response to foreign antigens in the transplant (host-versus-graft disease) leading to destruction of the transplanted tissue. CD8+ cells, CD4 cells and monocytes are all involved in the rejection of transplant tissues. Compounds of this invention which bind to alpha-4 integrin are useful, inter alia, to block alloantigen-induced immune responses in the donee, thereby preventing such cells from participating in the destruction of the transplanted tissue or organ. See, e.g., Paul et al., Transplant International 9: 420-425 (1996); Georczynski et al., Immunology 87: 573-580 (1996); Georcyznski et al., Transplant. Immunol. 3: 55-61 (1995); Yang et al., Transplantation 60: 71-76 (1996); Anderson et al., APMIS 102: 23-27 (1994).
A related use for compounds of this invention which bind to VLA-4 is in modulating the immune response involved in "graft versus host" disease (GVHD). See e.g., Schlegel et al., J. Immunol. 1≤5: 3856-3865 (1995). GVHD is a potentially fatal disease that occurs when immunologically competent cells are transferred to an allogeneic recipient. In this situation, the donor's immunocompetent cells may attack tissues in the recipient. Tissues of the skin, gut epithelia and liver are frequent targets and may be destroyed during the course of GVHD. The disease presents an especially severe problem when immune tissue is being transplanted, such as in bone marrow transplantation; but less severe GVHD has also been reported in other cases as well, including heart and liver transplants. The therapeutic agents of the present invention are used, ter alia, to block activation of the donor T-cells, thereby interfering with their ability to lyse target cells in the host.
A further use of the compounds of this invention is inhibiting tumor metastasis. Several tumor cells have been reported to express VLA-4 and compounds which bind VLA-4 block adhesion of such cells to endothelial cells. Steinback et al., Urol. Res. 23: 175-83 (1995); Orosz et al., Int. J. Cancer £0: 867-71 (1995); Freedman et al. , Leuk. Lymphoma H: 47-52 *~ (1994); Okahara et al., Cancer Res. 54: 3233-6 (1994).
A further use of the compounds of this invention is in treating multiple sclerosis. Multiple sclerosis is a progressive neurological autoimmune disease that affects an estimated 250,000 to 350,000 people in the United States. Multiple sclerosis is thought to be the result of a specific autoimmune reaction in which certain leukocytes attack and initiate the destruction of myelin, the insulating sheath covering nerve fibers. In an animal model for multiple sclerosis, murine monoclonal antibodies directed against VLA-4 have been shown to block the adhesion of leukocytes to the endothelium, and thus prevent inflammation of the central nervous system and subsequent paralysis in the animals16.
Pharmaceutical compositions of the invention are suitable for use in a variety of drug delivery systems. Suitable formulations for use in the present invention are found in Remington 's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, PA, 17th ed. (1985).
In order to enhance serum half-life, the compounds may be encapsulated, introduced into the lumen of liposomes, prepared as a colloid, or other conventional techniques may be employed which provide an extended serum half-life of the compounds. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al. , U.S. Patent Nos. 4,235,871, 4,501,728 and 4,837,028, each of which is incorporated herein by reference.
The amount administered to the patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like. In therapeutic applications, compositions are administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the inflammation, the age, weight and general condition of the patient, and the like.
The compositions administered to a patient are in the form of pharmaceutical compositions described above. These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the compound preparations typically will be between 3 and 11 , more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
The therapeutic dosage of the compounds of the present invention will vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician. For example, for intravenous administration, the dose will typically be in the range of about 20 μg to about 500 μg per kilogram body weight, preferably about 100 μg to about 300 μg per kilogram body weight. Suitable dosage ranges for intranasal administration are generally about 0.1 pg to 1 mg per kilogram body weight. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems. The following synthetic and biological examples are offered to illustrate this invention and are not to be construed in any way as limiting the scope of this invention. Unless otherwise stated, all temperatures are in degrees Celsius.
EXAMPLES
In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning. aq or aq. aqueous
AcOH acetic acid bd broad doublet bm broad multiplet bs broad singlet
Bn benzyl
Boc N-tert-butoxylcarbonyl
Boc2O di-tert-butyl dicarbonate
BOP benzotriazol- 1 -y loxy- tris(dimethylamino)phosphonium hexafluorophosphate
Cbz carbobenzyloxy
CHC13 chloroform
CH2 1 dichloromethane
(COCl)2 oxalyl chloride d doublet dd doublet of doublets dt doublet of triplets
DBU 1 ,8-diazabicyclo[5.4.0]undec-7-ene
DCC 1 ,3-dicyclohexylcarbodiimide
DMAP 4-N,N-dimethylaminopyridine
DME ethylene glycol dimethyl ether
DMF N, N-dimethy lf ormamide
DMSO dimethylsulfoxide
EDC l-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride
Et3N triethylamine
Et2O diethyl ether
EtOAc ethyl acetate
EtOH ethanol eq or eq. equivalent
Fmoc N-(9-fluorenylmethoxycarbonyl) FmocONSu — N-(9-fluorenylmethoxycarbonyl) succinimide g = grams h = hour
H2O = water
HBr = hydrobromic acid
HCl = hydrochloric acid
HOBT = 1-hydroxybenzotriazole hydrate hr = hour
K2CO3 = potassium carbonate
L = liter m = multiplet
MeOH = methanol mg = milligram
MgSO4 = magnesium sulfate mL = milliliter mm = millimeter mM = millimolar mmol = millimol mp = melting point
N = normal
NaCl = sodium chloride
Na2CO3 = sodium carbonate
NaHCO3 = sodium bicarbonate
NaOEt = sodium ethoxide
NaOH = sodium hydroxide
NH4C1 = ammonium chloride
NMM = N-methylmorpholine
Phe = L-phenylalanine
Pro = L-proline psi = pounds per square inch
PtO2 = platinum oxide q = quartet q.s. = quantity sufficient quint. = quintet rt = room temperamre s = singlet sat = saturated t = triplet t-BuOH = tert-butanol
TFA = trifluoroacetic acid
THF = tetrahydrofuran
TLC or tic = thin layer chromatography
Ts = tosyl
TsCl = tosyl chloride TsOH = tosylate "" μL = microliter
In the examples below, all temperatures are in degrees Celcius (unless otherwise indicated). The following Methods were used to prepare the compounds set forth below as indicated.
Method 1 N-Tosylation Procedure
N-Tosylation of the appropriate amino acid was conducted via the method of Cupps, Boutin and Rapoport, J. Org. Chem. , 1985, 5>0: 3972.
Method 2 Methyl Ester Preparation Procedure
Amino acid methyl esters were prepared using the method of Brenner and Huber, Helv. Chim. Acta, 1953, 36: 1109.
Method 3
BOP Coupling Procedure
The desired dipeptide ester was prepared by the reaction of a suitable Ν- protected amino acid (1 equivalent) with the appropriate amino acid ester or amino acid ester hydrochloride (1 equivalent), benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphate [BOP] (2.0 equivalent), triethylamine (1.1 equivalent), and DMF. The reaction mixmre was stirred at room temperamre overnight. The crude product is purified by flash chromatography to afford the dipeptide ester.
Method 4 Hydrogenation Procedure I
Hydrogenation was performed using 10% palladium on carbon (10% by weight) in methanol at 30 psi overnight. The mixmre was filtered through a pad of Celite and the filtrate concentrated to yield the desired amino compound.
Method 5 Hydrolysis Procedure I
To a chilled (0°C) THF/H2O solution (2:1, 5 - 10 mL) of the appropriate ester was added LiOH (or NaOH) (0.95 equivalents). The temperature was maintained at 0°C and the reaction was complete in 1-3 hours. The reaction mixmre was extracted with ethyl acetate and the aqueous phase was lyophilized resulting in the desired carboxylate salt.
Method 6 Ester Hydrolysis Procedure II
To a chilled (0°C) THF/H2O solution (2:1, 5 - 10 mL) of the appropriate ester was added LiOH (1.1 equivalents). The temperamre was maintained at 0°C and the reaction was complete in 1-3 hours. The reaction mixmre was concentrated and the residue was taken up into F^O and the pH adjusted to 2-3 with aqueous HCl. The product was extracted with ethyl acetate and the combined organic phase was washed with brine, dried over MgSO4, filtered and concentrated to yield the desired acid.
Method 7 Ester Hydrolysis Procedure III
The appropriate ester was dissolved in dioxane/H2O (1:1) and 0.9 equivalents of 0.5 N NaOH was added. The reaction was stirred for 3-16 hours and then concentrated. The resulting residue was dissolved in HjO and extracted with ethyl acetate. The aqueous phase was lyophilized to yield the desired carboxylate sodium salt. Method 8 *"
Sulfonylation Procedure I
To the appropriately protected aminophenylalanine analog (11.2 mmol), dissolved in methylene chloride (25ml) and cooled to -78 °C, was added the desired sulfonyl chloride (12 mmol) followed by dropwise addition of pyridine (2 mL). The solution was allowed to warm to room temperature and was stirred for 48 hr. The reaction solution was transferred to a 250 mL separatory funnel with methylene chloride (100 mL) and extracted with IN HCl (50 mL x 3), brine (50 mL), and water (100 mL). The organic phase was dried (MgSO4) and the solvent concentrated to yield the desired product.
Method 9 Reductive Amination Procedure
Reductive amination of Tos-Pro-p-NHF-Phe with the appropriate aldehyde was conducted using acetic acid, sodium triacetoxyborohydride and methylene chloride, and the combined mixmre was stirred at room temperamre overnight. The crude product was purified by flash chromatography.
Method 10 BOC Removal Procedure
Anhydrous hydrochloride (HCl) gas was bubbled through a methanolic solution of the appropriate Boc-amino acid ester at 0°C for 15 minutes and the reaction mixmre was stirred for three hours. The solution was concentrated to a syrup and dissolved in Et2O and reconcentrated. This procedure was repeated and the resulting solid was placed under high vacuum overnight. Method 11 rert-Butyl Ester Hydrolysis Procedure I
The tert-butyl ester was dissolved in CH2C12 and treated with TFA. The reaction was complete in 1-3 hr, at which time the reaction mixmre was concentrated and the residue dissolved in H2O and lyophilized to yield the desired acid.
Method 12 EDC Coupling Procedure I
To a CH2C12 solution (5-20 mL) of N-(toluene-4-sulfonyl)-L-proline (1 equivalent), the appropriate amino acid ester hydrochloride (1 equivalent), N-methylmorpholine (1.1-2.2 equivalents) and 1-hydroxybenzotriazole (2 equivalents) were added and mixed, placed in an ice bath and l-(3- dimethylaminopropyl)-3-ethyl carbodiimide (1.1 equivalents) added. The reaction was allowed to rise to room temperamre and was stirred overnight. The reaction mixmre was poured into H2O and the organic phase was washed with sat. NaHCO3 and brine, dried (MgSO4 or Na2SO4), filtered and concentrated. The crude product was purified by column chromatography.
Method 13 EDC Coupling Procedure II
To a DMF solution (5-20 mL) of the appropriate N-protected amino acid
(1 equivalent), the appropriate amino acid ester hydrochloride (1 equivalent), Et3N (1.1 equivalents) and 1-hydroxybenzotriazole (2 equivalents) were added and mixed, placed in an ice bath and l-(3-dimethylaminopropyl)-3- ethyl carbodiimide (1.1 equivalents) added. The reaction was allowed to rise to room temperamre and was stirred overnight. The reaction mixmre was partitioned between EtOAc and H2O and the organic phase washed with 0.2 N citric acid, H2O, sat. NaHCO3 and brine, dried (MgSO4 or Na2SO4), filtered and concentrated. The crude product was purified by column "~ chromatography or preparative TLC.
Method 14 Sulfonylation Procedure II
The appropriate sulfonyl chloride was dissolved in CH2C12 and placed in an ice bath. L-Pro-L-Phe-OMe • HCl (1 equivalent) and E^N (1.1 equivalent) was added and the reaction allowed to warm to room temperature and stirred overnight under an atmosphere of nitrogen. The reaction mixmre was concentrated and the residue partitioned between EtOAc and H2O, and the organic phase was washed with sat. NaHCO, and brine, dried (MgSO4 or Na2SO4), filtered and concentrated. The crude product was purified by column chromatography or preparative TLC.
Method 15 Sulfonylation Procedure III
To a solution of L-Pro-L-4-(3-dimethylaminopropyloxy)-Phe-OMe (1 equivalent) [prepared using the procedure described in Method 10] in was added Et3N (5 equivalents) followed by the appropriate sulfonyl chloride (1.1 equivalent). The reaction was allowed to warm to room temperamre and stirred overnight under an atmosphere of nitrogen. The mixmre was concentrated, dissolved in EtOAc, washed with sat. NaHCO3 and 0.2 N citric acid. The aqueous phase was made basic with solid NaHCO, and the product extracted with EtOAc. The organic phase was washed with brine, dried (MgSO4 or Na2SO4), filtered and concentrated. The crude methyl ester was purified by preparative TLC. The corresponding acid was prepared using the procedure described in Method 7. Method 16 Hydrogenation Procedure II
To a methanol (10 -15 mL) solution of the azlactone was added NaOAc (1 equivalent) and 10% Pd/C. This mixmre was placed on the hydrogenator at 40 psi H2. After 8 - 16 hours, the reaction mixture was filtered through a pad of Celite and the filtrate concentrated to yield the dehydrodipeptide methyl ester. The ester was dissolved in dioxane/H2O (5- 10 mL), to which was added 0.5 N NaOH (1.05 equivalents). After stirring for 1- 3 hours, the reaction mix was concentrated and the residue was redissolved in E^O and washed with EtOAc. The aqueous phase was made acidic with 0.2 N HCl and the product was extracted with EtOAc. The combined organic phase was washed with brine (1 x 5 mL), dried (MgSO4 or Na2SO4), filtered and concentrated to yield the acid as approximately a 1:1 mixmre of diastereomers.
Method 17 rert-Butyl Ester Hydrolysis Procedure II
The tert-butyl ester was dissolved in CH2C12 (5 mL) and treated with
TFA (5 mL). The reaction was complete in 1-3 hours, at which time the reaction mixmre was concentrated and the residue dissolved in H2O and concentrated. The residue was redissolved in H2O and lyophilized to yield the desired product.
Example 1
Synthesis of
N-(Methanesulfonyl)-L-prolyl-L-phenylaIanine
Boc-L-Pro-OH and L-Phe-OBn • Hcl were treated with BOP and ΝMM in DMF to give, after aqueous workup and flash chromatography, Boc-L- Pro-L-Phe-OBn. This product was then treated with TFA and anisole, and the mixture was evaporated. The residue was dissolved in Et2O and washed with samrated aqueuos ΝaHCO3 and samrated aqueous NaCl. The Et2O layer was dried over anhydrous MgSO4, filtered, and the solvent evaporated to give L-Pro-L-Phe-OBn. The residue was treated with CH3SO2Cl and Et3N in CH2C12 to give, after aqueous workup and flash chromatography, N- (CH3SO2)-L-Pro-L-Phe-OBn. This product was then treated with 10% Pd on C in THF, and the mixture was shaken under 50 psi t^. The mixmre was filtered through Celite, and evaporated to give the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO- ;, 300 MHz): δ = 7.93 (d, J = 8.2, IH), 7.27-7.13 (m, 5H), 4.51-4.45 (m, IH), 4.15 (dd, J = 8.7, J=2.6, IH), 3.59 (t, J =
6.1, IH), 3.30-3.25 (m, 2H), 3.10 (dd, J = 13.7, J=4.9, IH), 2.96 (dd, J = 13.7, J = 9.1, IH), 2.87 (s, 3H), 2.03-1.93 (m, IH), 1.77-1.54 (m, 3H).
13C ΝMR (DMSO-d6, 75 MHz): δ = 172.6, 171.1, 137.4, 129.2, 128.1, 126.4, 61.2, 53.0, 48.6, 36.5, 35.2, 30.6, 24.0. Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 341 (MH+).
Example 2
Synthesis of
N-(α-ToluenesulfonyI)-L-prolyl-L-phenylaIanine
Substitution of PhCH2SO2Cl for CH3SO2Cl, and following the methods for preparation of Example 1 (9), gave the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO- ,, 300 MHz): δ = 8.01 (d, J = 8.2, IH), 7.39-7.20 (m, 5H), 7.18-7.13 (m, 5H), 4.53-4.46 (m, IH), 4.42 (d, J = 13.5, IH),
4.35 (d, / = 13.5, IH), 4.20-4.17 (m, IH), 3.31-3.18 (m, 3H), 3.09 (dd, J = 13.9, J = 4.8, IH), 2.96 (dd, J = 13.8, J = 8.9, IH), 2.03-1.95 (m, IH), 1.79-1.58 (m, 3H). 13C NMR DMSO-d6, 75 MHz): δ = 172.6, 171.5, 137.6, 131.0, "
129.3, 129.0, 128.9, 128.1, 128.0, 126.3, 61.5, 53.3, 48.8, 36.5, 30.8,
30.6, 24.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 417 (MH+).
Example 3
Synthesis of
N-(Toluene-4-suIfonyl)-L-prolyI-L-phenyIalanine
Substimtion of 4-CH3(C6H4)SO2Cl for CH3SO2Cl, and following the methods for preparation of Example 1 (9), gave the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO-< , 300 MHz): δ = 8.07 (d, J = 8.0, IH), 7.68 (d, J = 8.2, 2H), 7.39 (d, J = 8.1, 2H), 7.29-7.15 (m, 5H), 4.52-4.44 (m,
IH), 4.10-4.07 (m, IH), 3.34-3.27 (m, IH), 3.12-3.06 (m, 2H), 2.98 (dd, J = 13.7, J = 8.7, IH), 2.39 (s, 3H), 1.57-1.36 (m, 4H).
13C ΝMR (DMSO-J6, 75 MHz): δ = 172.6, 170.8, 143.6, 137.4, 133.8, 129.8, 129.3, 128.1, 127.5, 126.4, 61.3, 53.2, 49.0, 36.6, 30.4, 23.7, 21.0.
Mass Spectroscopy: (+FAB, glycerol/trifluoroacetic acid) 417 (MH+).
Example 4 Synthesis of N-(Toluene-4-sulfonyl)-L-prolyl-L-(N-methyl)phenylalanine
N-Methyl-L-Phe-OH was treated with benzyl alcohol and 4-methylphenylsulfonic acid to give N-Methyl-L-Phe-OBnTsOH. Substimtion of L-Pro-OH for D-Pro-OH, and substimtion of N-Methyl-Phe- OBn • TsOH for L-Phe-OBn • TsOH, and following the methods for preparation of Example 6 (17), gave the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR DMSO-d6, 300 MHz): δ = 7.60 (d, J = 8.2, 2H), 7.34 (d, J = 8.2, 2H), 7.27-7.16 (m, 5H), 4.97-4.92 (m, IH), 4.64-4.61 (m, IH), "" 3.33 (bs, IH), 3.25-3.12 (m, 3H), 3.04 (dd, J = 10.5, J = 14.6, IH), 2.85 (s, 3H), 2.37 (s, 3H), 1.86-1.72 (m, 2H), 1.68-1.50 (m, 2H).
13C NMR (DMSO-J6, 75 MHz): δ = 171.9, 171.1, 143.0, 137.9, 135.6, 129.6, 128.7, 128.2, 127.2, 126.3, 58.6, 48.0, 33.4, 33.0, 30.4,
29.6, 23.9, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 431 (MH+).
Example 5 Synthesis of
N-(Toluene-4-sulfonyI)-L-pipecolinyl-L-phenylalanine
Substimtion of L-pipecolinic acid for D-Pro-OH, and following the methods for preparation of Example 6 (17), gave the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO- , 300 MHz): δ = 8.09 (d, / = 8.0, IH), 7.44 (d, J = 8.2, 2H), 7.34-7.21 (m, 5H), 7.17 (d, J = 8.2, 2H), 4.44 (d, J = 4.8, IH), 4.32-4.24 (m, IH), 3.61-3.53 (m, 2H), 3.33 (bs, IH), 3.17-3.11 (m, IH), 3.07 (dd, J = 13.8, J = 4.5, IH), 2.89 (dd, J = 13.8, J = 9.9, IH),
2.33 (s, 3H), 1.88 (bd, J = 12.9, IH), 1.40-1.30 (m, 3H), 1.08-1.05 (m, 2H).
13C ΝMR (DMSO- , 75 MHz): δ = 172.8, 169.8, 142.7, 137.7, 136.6, 129.4, 129.2, 128.2, 126.8, 126.5, 54.1, 53.4, 42.4, 36.3, 30.4, 26.7, 23.5, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 431 (MH+).
Example 6 Synthesis of N-(Toluene-4-sulfonyl)-D-prolyl-L-phenylalanine
D-Pro-OH was treated with TsCl and ΝaOH in H2O to give, after acidification, extraction, drying over anhydrous MgSO4, and evaporation, N- (Toluene-4-sulfonyl)-D-Pro-OH. This product was treated with H-Phe- "°~ OBn • Hcl, BOP, and NMM in DMF to give, after aqueous workup and flash chromatography, N-(toluene-4-sulfonyl)-D-Pro-Phe-OBn. This product was treated with 10% Pd on C in THF, and the mixmre was shaken under 50 psi H2. The mixmre was filtered through celite and evaporated to give the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO- 6, 300 MHz): δ = 8.10 (d, / = 8.4, IH), 7.70 (d, J = 8.2, 2H), 7.40 (d, J = 8.2, 2H), 7.28-7.15 (m, 5H), 4.51-4.44 (m, IH), 4.13 (t, J=5.7, IH), 3.33-3.25 (m, 2H), 3.11-3.03 (m, 2H), 2.94 (dd,
J = 13.8, J = 9.0, IH), 2.39 (s, 3H), 1.66-1.57 (m, IH), 1.50-1.37 (m, 3H).
13C ΝMR (DMSO-rf6, 75 MHz): δ = 172.6, 170.8, 143.5, 137.3, 134.1, 129.8, 129.3, 128.1, 127.4, 126.4, 61.3, 53.0, 48.9, 36.8, 30.4, 23.8, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 417 (MH+).
Example 7 Synthesis of N-(Toluene-4-sulfonyl)-L-(trαns-4-hydroxy)-prolyl-L-phenylalanine
Substimtion of trans-4-hydroxy -L-proline for D-Pro-OH, and following the methods for preparation of Example 6 (17), gave the title compound as a clear oil. ΝMR data was as follows:
Η ΝMR (DMSO-tf6, 300 MHz): δ = 8.25 (d, J = 8.1, IH), 7.64 (d, J = 8.2, 2H), 7.36 (d, J = 8.2, 2H), 7.30-7.15 (m, 5H), 4.81 (bs, IH), 4.47-4.40 (m, IH), 4.15-4.10 (m, 2H), 3.44 (dd, J = 10.3, J = 4.8, IH), 3.35 (bs, IH), 3.09-2.91 (m, 3H), 2.38 (s, 3H), 1.72-1.64 (m, 2H). 13C NMR (DMSO-tf6, 75 MHz): δ = 172.6, 171.0, 143.1, 137.4, " 134.1, 129.5, 129.3, 128.1, 127.7, 126.4, 68.1, 60.3, 56.1, 53.4, 36.7, 30.4, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 433 (MH+).
Example 8
Synthesis of
N-(Toluene-4-sulfonyl)-L-(azetidine-2-carbonyl)-L-phenylaIanine
Substimtion of (S)-2-azetidinecarboxylic acid for D-Pro-OH, and following the methods for preparation of Example 6 (17), gave the title compound as a clear oil.
NMR data was as follows:
Η NMR (DMSO- 6, 300 MHz): δ = 8.12 (d, J = 8.0, IH), 7.69 (d, J = 8.2, 2H), 7.47 (d, J = 8.2, 2H), 7.31-7.13 (m, 5H), 4.54-4.47 (m,
IH), 4.23 (t, J = 8.3, IH), 3.67-3.58 (m, 2H), 3.47 (q, J = 8.4, IH), 3.33 (bs, IH), 3.10 (dd, J = 13.7, J = 5.2, IH), 2.98 (dd, J = 13.6, / = 7.9, IH), 2.42 (s, 3H), 2.03-1.87 (m, 2H).
13C NMR (DMSO- ,, 75 MHz): δ = 172.3, 168.7, 144.3, 137.1, 130.9, 130.0, 129.4, 128.3, 128.2, 126.6, 61.8, 53.1, 47.9, 36.7, 21.1,
19.6.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 403 (MH+).
Example 9 Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-D,L-homophenylalanine
N-(toluene-4-sulfonyl)-L-proline (250 mg, 0.92 mmol) was dissolved in DMF (20 mL) with D,L-homophenylalanine methyl ester (166 mg, 1.1 eq), Et3Ν (2.1 eq, 283 μL), and BOP (1.1 eq, 410 mg). The dipeptide was isolated in 73% yield (300 mg, 0.67 mmol) as an oil. The ester (300 mg, 0.67 mmol) was then hydrolyzed in a 1:1 MeOH:H2O (5 mL) solution with NaOH (1.1 eq, 28 mg). The acid was isolated as a foam in 60% yield (175 mg, 0.40 mmol).
NMR data was as follows:
Η NMR (300 MHz, CD3OD): δ = 7.60 (m, 2H), 7.20 (m, 2H), 7.03 (m, 5H), 4.23-3.87 (m, 2H), 3.42 (m, IH), 3.29 (m, IH), 2.58 (m, 2H),
2.20 (s, 3H), 2.02-1.38 (m, 7H).
13C NMR (75 MHz, CD3OD): δ = 175.53, 175.17, 146.49, 146.19, 142.93, 135.91, 135.04, 131.72, 130.28, 129.61, 129.49, 129.21, 127.70, 64.39, 63.59, 53.76, 53.52, 51.55, 51.17, 35.15, 33.42, 32.74, 32.60, 32.48, 26.28, 26.20, 22.14.
Mass Spectroscopy: (FAB) 431 (M+H).
Example 10 Synthesis of N-(4-Chlorobenzenesulfonyl)-L-prolyI-L-phenylalanine
Substimtion of 4-chlorophenyl-SO2Cl for CH3SO2Cl, and following the methods for the preparation of Example 1 (9), gave the title compound as a solid, mp = 69-71 °C. ΝMR data was as follows:
Η ΝMR (300 MHz, CDC13): δ = 7.77 (m, 2H), 7.53 (m, 2H), 7.31 (m, 5H), 4.72 (m, IH), 4.04 (m, IH), 3.35 (m, 2H), 3.10 (m, 2H), 2.05 (m, IH), 1.54 (m, 3H).
I3C ΝMR (75 MHz, CD3OD): δ = 174.67, 174.41, 141.23, 138.81, 137.55, 135.02, 131.18, 130.04, 129.45, 128.45, 63.75, 55.48, 38.79,
32.32, 25.87 (IC buried under solvent peak).
Mass Spectroscopy: (FAB) 437 (M+H). Example 11 *"*
Synthesis of N-(l-Naphthalenesulfonyl)-L-prolyl-L-phenylalanine
Substimtion of l-naphthyl-SO2Cl for CH3SO2Cl, and following the methods for preparation of Example 1 (9), gave the title compound as a clear oil.
NMR data was as follows:
Η NMR (OMSO-d6, 300 MHz): δ - 8.73-8.70 (m, IH), 8.24 (d, J = 8.2, IH), 8.12-8.06 (m, 2H), 7.69-7.57 (m, 2H), 7.33-7.13 (m, 7H), 4.40-
4.33 (m, 2H), 3.34-3.23 (m, 3H), 3.03 (dd, J = 14.0, / = 5.2, IH), 2.88 (dd, J = 13.7, J = 8.8, IH), 1.79-1.15 (m, 4H).
I3C NMR (DMSO-d6, 75 MHz): δ = 172.6, 170.9, 137.4, 134.3, 134.0, 133.6, 129.2, 129.1, 129.0, 128.23, 128.18, 128.1, 126.9, 126.4, 124.7, 124.6, 60.6, 53.4, 48.7, 36.5, 30.8, 24.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 475 (Mna+).
Example 12 Synthesis of N-(2-Naphthalenesulfonyl)-L-prolyl-L-phenylalanine
Substimtion of 2-naphthyl-SO2Cl for CH3SO2Cl, and following the methods for preparation of Example 1 (9), gave the title compound as a clear oil. NMR data was as follows:
Η NMR DMSO-d6, 300 MHz): δ = 8.18-8.03 (m, 4H), 7.82 (dd, J = 8.7, J = 1.8, IH), 7.74-7.64 (m, 2H), 7.32-7.15 (m, 6H), 4.53-4.46 (m, IH), 4.25-4.21 (m, IH), 3.34-3.27 (m, 3H), 3.10 (dd, J = 13.8, J = 5.1, IH), 2.99 (dd, J = 13.7, J = 8.8, IH), 1.56-1.36 (m, 4H). 13C NMR DMSO-d6, 75 MHz): δ = 172.6, 170.8, 137.4, 134.4,
133.9, 131.8, 129.4, 129.3, 129.0, 128.7, 128.1, 127.8, 127.6, 127.4,
122.8, 61.4, 53.2, 49.1, 36.6, 30.4, 23.8.
Mass Spectroscopy: (+FAB, 3-nitrobenzy) alcohol) 475 (Mna+).
Example 13
Synthesis of
N-(4-Methoxybenzenesulfonyl)-L-prolyl-L-phenylaIanine
Substitution of 4-methoxyphenyl-SO2Cl for CH3SO2Cl, and following the methods for the preparation of Example 1 (9), gave the title compound as a solid.
ΝMR data was as follows:
Η ΝMR (300 MHz, CDC13): δ = 7.77 (m, 2H), 7.31 (m, 5H), 7.01 (m, 2H), 4.80 (m, IH), 4.05 (m, IH), 3.86 (s, 3H), 3.35 (m, 2H), 3.10 (m,
2H), 1.96 (m, IH), 1.54 (m, 3H).
13C ΝMR (75 MHz, CD3OD): δ = 174.69, 174.54, 165.63, 136.75, 131.69, 131.07, 130.02, 128.45, 116.13, 63.84, 56.83, 55.35, 51.09, 38.81, 32.15, 26.63. Mass Spectroscopy: (FAB) 433 (M+H).
Example 14
Synthesis of
N-(4-tert-Butylbenzenesulfonyl)-L-prolyl-L-phenylaIanine
Substitution of 4-tert-butylphenyl-SO2Cl for CH3SO2Cl, and following the methods for preparation of Example 1 (9), gave the title compound as a solid.
ΝMR data was as follows: Η ΝMR (300 MHz, CDC13): δ = 7.75 (d, 2H, J = 8.52 Hz), 7.55 (d,
2H, / = 8.43 Hz), 7.29 (m, 5H), 4.80 (m, IH), 4.05 (m, IH), 3.30 (m, 3H), 3.10 (m, 3H), 1.95 (m, IH), 1.56 (m, 2H), 1.34 (s, 9H). 13C NMR (75 MHz, CD3OD): δ = 174.81, 174.47, 159.01, 138.79, " 135.59, 131.09, 130.02, 129.45, 128.43, 128.05, 63.83, 55.46, 51.09, 38.84, 36.66, 32.20, 31.99, 25.83.
Mass Spectroscopy: (FAB) 459 (M+H).
Example 15
Synthesis of
N-(Toluene-4-sulfonyl)-L-(trαns-4-fluoro)-prolyl-L-phenylalanine
The product from Example 49 (176) was treated with 10% Pd on C in
THF and the mixmre was shaken under 50 psi H2. The mixmre was filtered through celite and evaporated to give the title compound as a clear oil. NMR data was as follows:
Η NMR DMSO-d6, 300 MHz): δ = 8.43 (d, / = 8.1, IH), 7.66 (d, J = 8.3, 2H), 7.35 (d, J = 8.3, 2H), 7.29-7.13 (m, 5H), 5.10 (bd, J =
53.3, IH), 4.49-4.42 (m, IH), 4.19 (t, J = 8.3, IH), 3.63-3.46 (m, 2H), 3.34 (bs, IH), 3.06 (dd, / = 13.7, J=5.4, IH), 2.95 (dd, / = 13.7,
J = 8.3, IH), 2.38 (s, 3H), 2.25-2.12 (m, IH), 1.94-1.72 (m, IH). 13C NMR (DMSO-tf6, 75 MHz): δ = 172.5, 170.4, 143.4, 137.4, 134.2, 129.5, 129.4, 128.1, 127.6, 126.5, 92.0 (d, J = 177 Hz), 59.9, 55.1,
53.4, 37.6 (d, j=21 Hz), 36.8, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 435 (MH+).
Example 16 Synthesis of
N-(Toluene-4-sulfonyl)-L-(cw-4-fluoro)-prolyI-L-phenylalanine
The product from Example 50 (177) was treated with 10% Pd on C in THF and was shaken under 50 psi H2. The mixmre was filtered through celite and evaporated to give the title compound as a clear oil. NMR data was as follows:
'H NMR (DMSO-tf6, 300 MHz): δ = 7.78 (d, / = 7.7, IH), 7.73 (d, J = 8.2, 2H), 7.41 (d, J = 8.2, 2H), 7.29-7.13 (m, 5H), 5.10 (dt, Jd = 52.9, Jt = 3.5, IH), 4.53-4.46 (m, IH), 4.31-4.27 (m, IH), 3.60-3.28 (m, 3H), 3.06-2.94 (m, 2H), 2.39 (s, 3H), 2.18 (dd, J = 19.8, J = 15.2, IH), 1.93-
1.70 (m, IH).
13C NMR (DMSO-<i6, 75 MHz): δ = 172.1, 169.7, 144.1, 136.8, 132.8, 130.0, 129.3, 128.1, 127.7, 126.6, 92.0 (d, J = 176 Hz), 60.5, 55.1 (d, J=23.5), 53.2, 36.9, 36.2, 21.0. Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 435 (MH+).
Example 17
Synthesis of
N-(Toluene-4-suIfonyl)-L-(5,5-dimethyl)-thiaprolyl-L-phenylalanine
N-(Toluene-4-sulfonyl)-L-(5,5-dimethyl)-thiazolidine-4-carboxylic acid was prepared from L-(5,5-dimethyl)-thiazolidine-4-carboxylic acid using the procedure described in Method 1. The title compound was prepared according to the procedure described for Example 1 (9) to provide for a solid having a mp = 79-81 °C.
ΝMR data was as follows:
'H ΝMR (CDC13, 300 MHz): δ = .98 (s, 3H), 1.08 (s, 3H), 2.42 (s, 3H), 3.04-3.34 (m, 2H), 3.88 (s, IH), 4.38 (d, IH, J = 10.3 Hz), 4.52 (d, IH, J = 10.2 Hz), 4.90 (m, IH), 7.09 (bd, IH), 7.15-7.37 (m, 7H), 7.73 (d, 2H, J = 8.2 Hz).
13C ΝMR (CDCI3, 75 MHz): δ = 22.3, 24.3, 29.6, 38.3, 51.2, 54.1, 55.3, 73.9, 127.7, 128.7, 129.2, 130.1, 130.7, 133.0, 136.5, 145.6, 169.9, 174.5.
Mass Spectroscopy: (FAB+) 463 (M+H). Example 18 "*
Synthesis of N-(2-Methoxycarbonylbenzenesulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared from the product of Example 53 using the procedure described in Method 4, yielding a yellow solid, mp = 163- 165°C.
ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 8.74 (bs, IH); 7.93 (d, IH, J = 7.57 Hz); 7.70 (d, IH, J = 8.12 Hz); 7.57 & 7.25 (M, 8H); 4.69 (m, IH);
4.39 (d, IH, J = 7.69 Hz); 3.93 (s, 3H); 3.44 (m, IH); 3.29 (m, 2H); 2.93 (m, IH); 1.88, 1.62 & 1.17 (m, 4H).
13C ΝMR (CDCI3, 300 MHz): δ = 175.67, 172.45, 169.27, 137.19, 135.39, 134.12, 133.67, 131.42, 130.55, 129.77, 129.52, 129.09, 127.52, 62.19, 54.08, 49.34, 37.58, 31.48, 30.89, 24.21.
Mass Spectroscopy: (+FAB) 461 (M+H) 483 (M+Νa).
Example 19 Synthesis of N-(2-Carboxybenzenesulfonyl)-L-prolyl-L-phenylalanine
The product of Example 18 (56) (1.8 mmoles) was mixed with dioxane (25 mL) and IN ΝaOH (1.8 mmoles) and the reaction was stirred at room temperamre for 16 hours. IN HCl (1.8 mmoles) was added and the water and dioxane were removed under reduced pressure. The product was extracted with 0.2 Ν ΝaOH (50 mL) and EtOAc (2 x 50 mL) and the recovered organic layer was dried over MgSO4, filtered, and concentrated to yield a colorless oil.
ΝMR data was as follows: Η ΝMR (CDC13, 300 MHz): δ = 11.15 (bs, 2H); 7.95, 7.57, & 7.21
(m, 9H); 4.74 (m, IH); 4.53 (m, IH); 3.44 (m, IH); 3.28 (m, 2H); 2.91 (m, IH); 1.89 (M, 2H); 1.60 (m, IH); 1.06 (m, IH). 13C NMR (CDC13, 300 MHz): δ = 175.75, 173.60, 171.31, 136.81, " 135.18, 133.72, 131.58, 130.81, 129.70, 129.18, 127.66, 67.52, 61.99, 53.95, 49.36, 45.09, 37.40, 24.19, 21.66.
Mass Spectroscopy: (+FAB) 447 (M+H).
Example 20
Synthesis of
N-(Toluene-4-sulfonyI)-L-thiaprolyl-L-phenylalanine N-(Toluene-4-sulfonyl)-L-thiazolidine-4-carboxylic acid was prepared from L-thiazolidine-4-carboxylic acid using the procedure described in Method 1. The title compound was prepared according to the procedure described for Example 1 (9) as a solid, mp = 60-65 °C. ΝMR data was as follows: Η ΝMR (CDC13, 300 MHz): δ = 2.43 (s, 5H), 3.0-3.40 (m, 3H), 4.0
(d, IH, J = 15.7 Hz), 4.55 (d, IH, J = 15.8 Hz), 4.64 (m, IH), 4.87 (m, IH), 7.19-7.41 (m, 7H), 7.72 (m, 2H).
13C ΝMR (CDCI3, 75 MHz): δ = 22.3, 33.6, 37.7, 52.0, 53.0, 65.8, 127.8, 128.5, 129.4, 129.9, 130.7, 133.9, 136.2, 145.7, 169.4, 175.0. Mass Spectroscopy : (FAB + ) 435 (M + H) .
Example 21
Synthesis of
N-(3,5-Dichlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
Proline methyl ester hydrochloride (2.68 g, 16.2 mmol) was dissolved in pyridine (20 mL) and 3,5-dichlorophenylsulfonyl chloride (3.57 g, 14.6 mmol) was added to the mixmre and stirred for 19 hr. Water (5 mL) was added and the mixmre was stirred for 45 minutes before diluting with water (200 mL). The mixture was extracted with Et2O (2 x 150 mL) and the combined extracts were washed with water (3 x 100 mL), IN HCl (150 mL) and saturated aqueous ΝaHCO3 (150 mL), then dried (MgSO4), filtered and evaporated in vacuo to give 3,5-dichlorophenylsulfonylproline methyl ester as an oil (4.34 g, 88%). The methyl ester was dissolved in MeOH (20 mLf and IN NaOH (20 mL) was added. The mixmre was gently warmed until homogeneous and then stirred for 1.5 hr. The solvent was removed in vacuo and the residue taken up in water (50 mL). The aqueous solution was washed with Et2O (30 mL) and then made acidic with 12 N HCl. The mixmre was extracted with CHC13 (2 x 40 mL) and the combined extracts were dried over anhydrous MgSO4, filtered and the solvent evaporated in vacuo to give 3,5-dichlorophenylsulfonyl-L-proline as a solid (3.37 g, 83%). 3,5-Dichlorophenylsulfonyl-L-proline was coupled to L-phenylalanine ethyl ester using the procedure described in Method 3 above to give the corresponding dipeptide ethyl ester (348 mg, 45%). The title compound was prepared via hydrolysis of the ethyl ester using NaOH in MeOH (61 mg, 19%). NMR analysis indicated that diastereomers were present. NMR data was as follows: Η NMR (CDC13): δ = 8.11 (bs, IH), 7.72 (d, 2H, J = 1.9 Hz), 7.61
(q, IH, J = 2.0 Hz), 7.39-7.20 (6H), 4.92 (m, IH), 4.15 (m, IH), 3.52- 3.09 (4H), 2.11 (m, IH), 1.95-1.49 (3H).
13C NMR (CDC13): δ = 175.4, 175.2, 171.8, 171.7, 139.5, 139.3, 137.0, 136.6, 135.8, 134.0, 134.0, 129.9, 129.5, 127.7, 126.7, 111.4, 63.1, 62.9, 53.8, 53.6, 50.5, 50.3, 45.1, 37.9, 31.3, 30.8, 24.8, 24.6. Mass Spectroscopy: FAB m/e 471 (M+H).
Example 22 Synthesis of N-(4-Trifluoromethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared as described in Example 21 (59) except 4-trifluoromethoxyphenylsulfonyl chloride was used in place of 3,5- dichlorophenylsulfonyl chloride. NMR data was as follows:
Η NMR (CDCI3): δ = 7.90 (d, 2H, / = 8.8 Hz), 7.38-7.21 (8H), 6.90 (bs, IH), 4.90 (m, IH), 4.15 (dd, IH, J = 2.5, 8.4 Hz), 3.38 (m, 2H), 3.12 (m, 2H), 1.98 (m, IH), 1.55 (2H), 1.41 (m, IH). 13C NMR (CDCI3): δ = 174.9, 172.0, 153.3, 136.6, 134.9, 130.6,
129.9, 129.2, 127.7, 121.7, 62.8, 53.8, 50.2, 37.9, 30.6, 24.6.
Mass Spectroscopy: FAB m/e 487 (M+H).
Example 23 Synthesis of
N-(3,4-DichIorobenzenesuIfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared as in Example 21 (59) except 3,4- dichlorophenylsulfonyl chloride was used in place of 3,5- dichlorophenylsulfonyl chloride.
ΝMR data was as follows:
Η ΝMR (CDCI3): δ = 7.94 (d, IH, J = 1.9 Hz), 7.64 (m, 2H), 7.55 (bs, IH), 7.36-7.21 (6H), 4.92 (dt, IH, J = 5.2, 8.0 Hz), 4.16 (m, IH), 3.36 (m, 2H), 3.11 (m, IH), 1.98 (m, IH), 1.58 (m, 2H), 1.40 (m, IH). 13C ΝMR (CDCI3): δ = 175.0, 171.8, 139.5, 136.4, 134.7, 132.1,
130.2, 129.9, 129.2, 127.7, 127.4, 62.9, 53.8, 50.3, 37.9, 30.7, 24.6.
Mass Spectroscopy: FAB m e 471 (M+H).
Example 24 Synthesis of
N-(Toluene-4-sulfonyl)-D,L-(trαns-3-phenyl)prolyl-L-phenylalanine
N-(Toluene-4-sulfonyl)-trαw-3-phenylproline (prepared via the method of Chung et al., J. Org. Chem. , 55: 270-275 (1990)) was coupled to L-phenylalanine ethyl ester using the procedure described in Method 3 and purified by silica gel flash chromatography (93/7 CH2Cl2/MeOH) to give the ethyl ester of the title compound as a white solid. The acid was prepared via hydrolysis of the ethyl ester using ΝaOH in ethanol. NMR data was as follows:
Η NMR (DMSO-cL. d 8.38 (m,lH), 7.70 (m, 2H), 7.40-7.06 (10H), 6.80 (m, IH), 6.62 (m, IH), 4.50 (m, IH), 4.13 (d, 0.5H, J = 5.2 Hz), 3.97 (d, 0.5H, J = 5.5 Hz), 3.46 (m, 2H), 3.02 (m, 3H), 2.43 (s, 1/2 X 3H), 2.42 (s, 1/2 X 3H), 2.07 (m, IH), 1.45 (m, IH).
13C NMR (DMSO-de): δ = 172.9, 172.8, 170.7, 170.7, 144.1, 143.9, 141.4, 141.3, 138.0, 137.7, 134.9, 134.6, 130.2, 130.1, 129.8, 129.6, 128.7, 128.6, 128.5, 127.8. 127.7, 127.2, 127.1, 126.9, 126.8, 126.7, 79.6, 67.9, 53.6, 53.5, 49.7, 49.5, 49.5, 49.1, 37.2, 37.1, 32.5, 32.3, 21.4.
Mass Spectroscopy: FAB m e 493 (M+H).
Example 25 Synthesis of N-(3,4-Dimethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared as in Example 21 (59) except that 3,4- dimethoxyphenylsulfonyl chloride was used in place of the 3,5- dichlorophenylsulfonyl chloride. ΝMR analysis indicated that epimerization had occurred to give a ca. 65:35 mixmre of diastereomers. ΝMR data was as follows:
Η ΝMR (CDC13): δ = 7.46 (m, IH), 7.39-7.20 (6H), 6.97 (dd, IH, J = 4.5, 8.4 Hz), 4.85 (m, IH), 4.10 (m, IH), 3.96 (s, 0.35 X 3H), 3.95 (s, 0.65 X 3H), 3.93 (s, 0.35 X 3H), 3.92 (s, 0.65 X 3H), 3.44-3.22 (2H), 3.11 (m, 2H), 2.01 (m, IH), 1.60-1.33 (3H).
13C ΝMR (CDCI3): δ = 175.1, 174.7, 172.5, 172.3, 153.7, 149.8, 136.6, 135.9, 130.2, 129.9, 129.4, 129.1, 128.0, 128.0, 127.9, 127.7, 122.4, 111.4, 110.7, 63.2, 62.8, 57.0, 56.8, 53.8, 53.6, 50.3, 50.2, 38.0, 31.1, 30.5, 24.8, 24.7. Mass Spectroscopy: FAB m/e 463 (M+H). Example 26
Synthesis of
N-(Benzene-4-sulfonyl)-D,L-( -3-phenyl)prolyl-L-phenylalanine
N-Acetyl-cw-3-phenylproline ethyl ester (614mg, 2.35 mmol) (prepared via the method of Chung, et al., J. Org. Chem.^5: 270-275 (1990)) was dissolved in HO Ac (4 mL) and 6Ν HCl (12 mL) and heated at reflux for 18 hr. The mixmre was cooled to room temperamre and the volatiles were evaporated in vacuo to give a white solid. The solid was dissolved in IN NaOH (15 mL) and dioxane was added (10 mL), followed by 4-toluene- sulfonyl chloride (458 mg, 2.40 mmol). The mixmre was stirred at room temp for 18 hr before addition of 6N HCl to bring the pH < 4. The mixmre was extracted with Et2O (3 X 40 mL) and the extracts were dried (MgSO4), filtered, and evaporated in vacuo to give N-(toluene-4-sulfonyl)-αs-3- phenylproline as a white solid (765 mg, 94%).
N-(Toluene-4-sulfonyl)-α's-3-phenylproline was coupled to phenylalanine ethyl ester using the procedure described in Method 3. The title compound was prepared via hydrolysis of the ethyl ester using ΝaOH in ethanol. ΝMR data was as follows:
Η ΝMR (CDC13): δ = 8.57 (bs, IH), 7.77 (m, 2H), 7.31-6.70 (12H), 4.65 (m, 0.5H), 4.47 (m, 0.5H), 4.41 (d, 0.5H, J = 8.9 Hz), 4.34 (d, 0.5H, / = 9.0 Hz). 3.73, (m, IH), 3.28-2.76 (4H), 2.44 (s, 3H), 2.40 (m, 0.5H), 2.17 (m, 0.5H), 1.8 (m, IH). 13C ΝMR (CDCI3): δ = 174.5, 173.9, 169.5, 168.8, 144.3, 136.1,
135.8, 135.6, 135.3, 133.4, 133.1, 129.9, 129.6, 129.4, 128.6, 128.6, 128.3, 127.8, 127.7, 127.5, 127.1, 127.0, 65.9, 65.8, 53.6, 52.5, 48.5, 48.3, 48.2, 37.5, 37.3, 39.0, 28.6, 21.6.
Mass Spectroscopy: FAB m e 493 (M+H). - Ill -
Example 27 *~
Synthesis of N-(4-NitrobenzenesulfonyI)-L-prolyl-L-phenylalanine
The title compound was prepared as in Example 21 (59) except 4- nitrophenylsulfonyl chloride was used in place of 3,5-dichlorophenylsulfonyl chloride, mp = 70-80°C.
NMR data was as follows:
Η NMR (CDC13): δ = 8.38 (d, 2H, J = 8.9 Hz), 8.02 (d, 2H, / = 8.9 Hz), 7.32-7.20 (6H), 4.90 (m, IH), 4.25 (dd, IH, J = 2.5, 8.4 Hz), 3.42
(m, 2H), 3.16 (m, 2H), 1.98 (m, IH), 1.62 (m, 2H), 1.54 (m, IH).
13C NMR (CDCI3): δ = 175.0, 171.8, 151.1, 142.5, 136.4, 129.9,
129.7, 127.8, 125.2, 62.9, 53.7, 50.3, 37.9, 30.9, 24.7.
Mass Spectroscopy: FAB m e 448 (M+H).
Example 28
Synthesis of
N-(4-Acetamidobenzenesulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared as in Example 21 (59) except 4- acetamido-phenylsulfonyl chloride is used in place of 3,5- dichlorophenylsulfonyl chloride. ΝMR data was as follows:
Η ΝMR (DMSO-dβ): δ = 12.85 (bs, IH), 10.4 (bs, IH), 8.07 (d, IH, J = 8.2 Hz), 7.76 (ab q, 4H), 7.25 (m, 5H), 4.49 (dd, 2H, / = 3.2, 8.2
Hz), 4.06 (m, IH), 3.36 (m, IH), 3.08 (3H), 2.09 (s, 3H), 1.58-1.48 (4H). I3C ΝMR (DMSO-cU: δ = 173.0, 171.2, 169.5, 143.9, 137.8, 130.4, 129.7, 129.1, 128.5, 126.8, 119.0, 61.7, 53.5, 49.4, 37.0, 30.7, 24.6, 24.1. Mass Spectroscopy: FAB m/e 460 (M+H). Example 29
Synthesis of
N-(4-Cyanobenzenesulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared as in Example 21 (59) except
4-cyanophenyl-sulfonyl chloride is used in place of 3,5- dichlorophenylsulfonyl chloride. ΝMR data was as follows:
Η ΝMR (CDClj): δ = 8.40 (bs, IH), 7.95 (d, 2H, J = 8.3 Hz), 8.07 (d, 2H, J = 8.3 Hz), 7.36-7.20 (6H), 4.93, (dt, IH, J = 5.4, 8.0 Hz), 4.22
(m, IH), 3.38 (m, 2H), 3.13 (m, 2H), 1.92 (m, IH), 1.56 (m, 2H), 1.40 (m, IH).
1 C ΝMR (CDCI3): δ = 175.0, 171.9, 140.8, 136.5, 133.8, 129.9, 129.2, 129.0, 127.8, 117.8, 117.7, 62.8, 53.7, 50.3, 37.9, 30.9, 24.6. Mass Spectroscopy: FAB m/e 428 (M+H).
Example 30
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-L-tryptophan
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-tryptophan methyl ester hydrochloride using the procedure described in Method 3. The title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/ water. ΝMR data was as follows:
'H ΝMR (CDCI3): δ = 8.45 (d, IH, J = 2.0 Hz), 7.64 (d, 2H, J = 8.2 Hz), 7.60 (d, IH, / = 7.6 Hz), 7.45 (d, IH, J = 7.4 Hz), 7.33 (d, IH, J = 8.0 Hz), 7.27 (d, 2H, J = 8.0 Hz), 7.19-7.06 (3H), 4.88 (m, IH), 4.07 (dd, IH, J = 2.9, 8.6 Hz), 3.48 (dd, IH, J = 5.4, 14.8 Hz), 3.36 (dd, IH, J = 7.1 , 14.8 Hz), 3.03 (m, 2H), 2.40 (s, 3H), 1.88 (m, IH), 1.47 (m, IH), 1.32 (m, IH), 1.22 (m, IH). I3C NMR (CDCI3): δ = 174.8, 172.7, 145.0, 136.7, 133.3, 130.6, "
128.4, 128.3, 124.3, 122.6, 118.9, 112.0, 110.0, 62.8, 54.0, 50.1, 30.5,
27.5, 24.6, 22.1.
Mass Spectroscopy: FAB m/e 456 (M+H).
Example 31
Synthesis of
N-(Toluene-4-suIfonyl)-L-prolyl-β-(l-naphthyI)-L-alanine
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to β-(l- naphthyl)alanine methyl ester hydrochloride using the procedure described in Method 3. The title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water. ΝMR data was as follows: _ ΝMR (CDCI3): δ = 8.16 (d, IH, J = 8.2 Hz), 8.05 (bs, IH), 7.85
(d, IH, J = 6.9 Hz), 7.77-7.27 (10H), 4.99 (m, IH), 4.05 (m, IH), 3.90 (dd, IH, J = 5.0, 14.3 Hz), 3.51 (dd, IH, J = 9.6, 14.3 Hz), 3.11 (m, IH), 3.02 (m, IH), 2.41 (s, 3H), 1.74 (m, IH), 1.34 (m, 2H), 1.00 (m, IH). 13C ΝMR (CDCI3): δ = 174.9, 172.5, 145.0, 134.4, 133.4, 133.1,
132.6, 130.6, 129.4, 128.5, 128.4, 127.2, 126.4, 126.0, 14.0, 62.7, 53.9, 50.1, 34.9, 30.3, 24.5, 22.1.
Mass Spectroscopy: FAB m e 467 (M+H).
Example 32
Synthesis of N-(Toluene-4-sulfonyl)-L-prolyl-β-(2-naphthyl)-L-alanine
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to β-(2-naphthyl)- L-alanine methyl ester hydrochloride using the procedure described in
Method 3. The title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water.
ΝMR data was as follows: Η NMR (CDCI3): δ = 8.20 (bs, IH), 7.80-7.67 (6H), 7.55 (d, IH, j" = 7.9 Hz), 7.46-7.27 (5H), 4.99 (m, IH), 4.12 (m, IH), 3.55 (m, IH), 3.27 (dd, IH, / = 8.2, 14.1 Hz), 3.17 (m, IH), 3.01 (m, IH), 2.39 (s, 3H), 1.83 (m, IH), 1.40-1.26 (3H). 13C NMR (CDCI3): δ = 174.8, 172.4, 145.0, 134.3, 133.9, 133.4,
133.0, 130.6, 128.9, 128.8, 128.4, 128.2, 128.1, 127.9, 126.7, 126.3, 62.7, 53.9, 50.1, 38.2, 30.4, 24.5, 22.1.
Mass Spectroscopy: FAB m/e 467 (M+H).
Example 33
Synthesis of N-(Toluene-4-sulfonyI)-L-prolyl-β-(2-thienyl)-L-alanine
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to β-(2-thienyl)- L-alanine methyl ester hydrochloride using the procedure described in
Method 3. The title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water. ΝMR data was as follows:
Η ΝMR (CDCI3): δ = 8.42 (bs, IH), 7.73 (d, 2H, J = 8.3 Hz), 7.57 (d, IH, J = 7.4 Hz), 7.34 (d, 2H, J = 7.9 Hz), 7.16 (dd, IH, J = 1.2, 5.1
Hz), 6.95-6.88 (m, 2H), 4.87 (m, IH), 4.18 (m, IH) 3.56-3.41 (3H), 3.17 (m, IH), 2.43 (s, 3H), 2.08 (m, IH), 1.60 (m, 3H).
13C ΝMR (CDC13): δ = 174.2, 172.6, 145.1, 137.9, 133.4, 130.6, 128.5, 127.7, 127.6, 125.4, 62.8, 54.0, 50.4, 32.11, 30.7, 24.9, 22.2 Mass Spectroscopy: FAB m/e 423 (M+H).
Example 34
Synthesis of
N-(Isopropanesulfonyι)-L-prolyl-L-phenylalanine
Substimtion of (CH3)2CHSO2Cl for CH3SO2Cl, and following the procedures described in Example 1 (9), gave the title compound as a clear oil. NMR data was as follows: "~
Η NMR (OMSO-d6, 300 MHz): δ = 8.10 (d, J = 7.9, IH), 7.28-7.16 (m, 5H), 4.48-4.41 (m, IH), 4.27-4.24 (m, IH), 3.47-3.23 (m, 3H), 3.11- 3.00 (m, 2H), 2.89 (dd, J = 13.9, J = 9.4, IH), 2.11-2.01 (m, IH), 1.82- 1.71 (m, 3H), 1.11 (d, J = 6.8, 6H).
13C NMR (DMSO- 6, 75 MHz): δ = 172.6, 171.1, 137.4, 129.2, 128.1, 126.4, 61.2, 53.0, 48.6, 43.6, 36.5, 30.6, 24.0, 20.0, 19.8
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 369 (MH+).
Example 35
Synthesis of N-(Toluene-4-sulfonyI)-L-prolyl-β-(3-pyridyl)-L-alanine
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-β-(3- pyridyl)alanine methyl ester dihydrochloride using the procedure described in Method 3 to give N-(toluene-4-sulfonyl)prolyl-L-β-(3-pyridyl)alanine. The title compound was prepared via hydrolysis of the methyl ester using 0.5 Ν aqueous ΝaOH in THF/water. ΝMR data was as follows: Η ΝMR (DMSO-dg): δ = 8.33 (dd, IH, / = 1.4, 4.7 Hz), 8.27 (d,
IH, J = 1.9 Hz), 7.75 (d, 2H, J = 8.2 Hz), 7.71 (m, IH), 7.52 (m, IH), 7.42 (d, 2H, J = 8.5 Hz), 7.19 (dd, IH, J = 4.7, 7.7 Hz), 4.00 (m, 2H), 3.20-3.00 (4H), 2.40 (s, 3H), 1.72 (m, IH), 1.40 (3H).
13C ΝMR (DMSO-cy: δ = 172.7, 170.0, 150.9, 147.4, 144.1, 137.4, 134.6, 133.8, 130.3, 128.1, 123.1, 62.4, 55.1, 49.3, 34.4, 30.5, 24.00,
21.4.
Mass Spectroscopy: FAB m/e 440 (M+Νa). Example 36
Synthesis of
N-(Toluene-4-sulfonyl)-L-( s-4-phenylthio)prolyl-L-phenylalanine 7rø/2,s'-4-hydroxy-L-proline was treated with EtOH and HCl gas, and the mixmre was evaporated to give tra/z.ϊ-4-hydroxy-L-proline ethyl ester hydrochloride. This product was treated with TsCl in pyridine, to give after aqueous workup N-(toluene-4-sulfonyl)-tra«5,-4-(O-(toluene-4-sulfonyl))-L- proline ethyl ester. This product was treated with PhSH and DBU in DMF to give after aqueous workup and flash chromatography on silica gel, N-
(Toluene-4-sulfonyl)-cw-4-(phenylthio)-L-proline ethyl ester. This product was treated with ΝaOH in CH3OH and H2O, to give after acidification, extraction, drying with MgSO4, filtration and evaporation, N-(toluene-4- sulfonyl)- -4-(phenylthio)-L-proline. This product was treated with HCl Phe-OMe, BOP, and ΝMM in DMF, to give, after aqueous workup and flash chromatography , N-(toluene-4-sulfony l)-cw-4-(phenylthio)-Pro-Phe- OMe. This product was treated with ΝaOH in CH3OH and H2O, to give, after acidification, extraction, drying with MgSO4, filtration and evaporation, the title compound as a clear oil. ΝMR data was as follows:
Η ΝMR (DMSO- 6, 300 MHz): δ = 8.19 (d, / = 8.0, IH), 7.71 (d, J = 8.3, 2H), 7.41 (d, J = 8.2, 2H), 7.35-7.14 (m, 10H), 4.53-4.46 (m, IH), 4.24 (t, J = 7.8, IH), 3.73 (dd, J = 11.6, J = 6.7, IH), 3.36 (bs, IH), 3.17-2.86 (m, 4H), 2.39 (s, 3H), 2.34-2.25 (m, IH), 1.57-1.47 (m, IH).
13C ΝMR (DMSO-d6, 75 MHz): δ = 172.4, 170.0, 144.0, 137.3, 134.1, 133.9, 130.0, 129.8, 129.4, 129.3, 128.2, 127.5, 126.9, 126.5, 61.0, 54.9, 53.2, 42.3, 36.7, 36.4, 21.1.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 525 (MH+). Example 37 "*
Synthesis of N-(Toluene-4-sulfonyl)-L-( -4-benzylthio)prolyl-L-phenylalanine
Substimtion of benzylthiol for phenylthiol, and following the methods for preparation of Example 36 (131), gave the title compound as a clear oil. ΝMR data was as follows:
Η ΝMR DMSO-d6, 300 MHz): δ = 8.18 (d, J = 8.1, IH), 7.65 (d, / = 8.3, 2H), 7.38 (d, J = 8.2, 2H), 7.29-7.17 (m, 10H), 4.50-4.43 (m, IH), 4.05 (t, J = 7.9, IH), 3.74-3.56 (m, 3H), 3.35 (bs, IH), 3.09-2.94
(m, 4H), 2.40 (s, 3H), 2.20-2.10 (m, IH), 1.40-1.28 (m, IH).
13C ΝMR (DMSO-rf6, 75 MHz): δ = 172.4, 170.2, 143.8, 138.5, 137.3, 134.0, 130.0, 129.4, 128.7, 128.4, 128.2, 127.3, 126.9, 126.5, 60.9, 55.5, 53.1, 39.3, 36.7, 36.6, 34.9, 21.1. Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 539 (MH+).
Example 38
Synthesis of
N-(Toluene-4-sulfonyl)-L-proIyl-L-histidine
N-(Toluene-4-sulfonyl)prolyl-L-(N-benzyl)histidine (237 mg, 0.464 mmol) was dissolved in MeOH (20 mL) and 10% Pd/C (50 mg) was added. The mixmre was hydrogenated at 50 psi H2 for 36 hr. The mixture was filtered to remove the catalyst and the filtrate was evaporated in vacuo. The residue was purified by preparative TLC (90: 10: 1 CH2Cl2/MeOH/ΝH4OH) to give N-(toluene-4-sulfonyl)-L-prolyl-L-histidine methyl ester (155 mg, 79%). The title compound was prepared via hydrolysis of the methyl ester using 0.5 Ν ΝaOH in THF/water (128 mg, 81 %). ΝMR data was as follows: Η ΝMR (DMSO-dg): δ = 7.77 (d, 3H, J = 6.5 Hz), 7.42 (m,3H),
4.03 (m, IH), 3.99 (m, IH), 3.22 (m, IH), 3.05 (m 2H), 2.95 (m, IH), 2.41 (s, 3H), 1.80 (m, IH), 1.45 (3H). 13C NMR (DMSO-de): δ = 174.0, 169.8, 144.1, 133.8, 10.3, 128.0, 62.4, 49.4, 40.0, 30.6, 24.0, 21.4.
Mass Spectroscopy: FAB m/e 429 (M+Na).
Example 39
Synthesis of N-(Toluene-4-sulfonyl)-L-(cw-4-amino)prolyl-L-phenylalanine
7ratzs-4-hydroxy-L-proline was treated with EtOH and HCl gas, and the mixmre was evaporated to give trans-4-hydroxy-L-proline ethyl ester hydrochloride. This product was treated with TsCl in pyridine to give, after aqueous workup, N-(toluene-4-sulfonyl)-tra/25-4-(TsO)-L-proline ethyl ester. This product was treated with ΝaΝ3 in DMF and H2O to give, after aqueous workup and flash chromatography, N-(toluene-4-sulfonyl)-cw-4-azido-L- proline ethyl ester. This product was treated with ΝaOH in CHjOH and
H2O to give, after acidification, extraction, drying with MgSO4, filtration and evaporation, N-(toluene-4-sulfonyl)-c 5-4-azido-L-proline. This product was treated with 10% Pd on C in THF, AcOH and H>O, and the mixmre was shaken under 50 psi H2. The mixmre was filtered through Celite and evaporated to give N-(toluene-4-sulfonyl)- s-4-amino-L-proline. This product was treated with BoCjO and Et3Ν in t-BuOH and H2O to give, after evaporation, acidification, extraction, drying with MgSO4, filtration, and evaporation, N-(toluene-4-sulfonyl)-ris-4-(t-butoxycarbonylamino)-L-proline. This product was treated with HClPhe-O-t-Bu, BOP, and ΝMM in DMF to give, after aqueous workup and flash chromatography, N-(toluene-4- sulfonyl)-ris-4-(t-butoxycarbonylamino)-Pro-Phe-O-t-Bu. This product was treated with TFA to give after evaporation the trifluoroacetate salt of the title compound as a clear oil.
ΝMR data was as follows: Η ΝMR (CD3OD, 300 MHz): δ = 7.47 (d, J = 8.3, 2H), 7.22-7.00
(m, 7H), 4.47 (dd, J = 7.9, J = 5.3, IH), 4.18 (dd, J = 9.8, J = 1.7, IH), 3.64 (t, J = 5.2, IH), 3.43 (d, J = 11.2, IH), 3.22 (dd, J = 11.3, J = 5~ ), IH), 3.01 (dd, J = 14.1, J = 5.3, IH), 2.88 (dd, J = 14.0, J = 7.9, IH), 2.23 (s, 3H), 2.21-2.08 (m, IH), 1.87-1.80 (m, IH).
,3C NMR (CD3OD, 75 MHz): δ = 174.7, 173.9, 146.1, 138.0, 134.7, 131.1, 130.5, 129.6, 128.7, 128.0, 60.7, 55.6, 53.9, 51.5, 38.2, 35.3,
21.5.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 432 (MH+).
Example 40 Synthesis of
N-(Toluene-4-sulfonyl)-L-(tra«s-4-amino)prolyl-L-phenylalanine
Substitution of s-4-hydroxy-L-proline for tra/w-4-hydroxy -L-proline, and following the methods for preparation of Example 39 (136), gave the trifluoroacetate salt of the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (CD3OD, 300 MHz): δ = 7.39 (d, J = 8.4, 2H), 7.13-7.01
(m, 7H), 4.40-4.33 (m, IH), 4.28 (dd, J = 9.0, J = 2.2, IH), 3.59-3.50
(m, 2H), 3.07-2.97 (m, 2H), 2.81 (dd, J = 14.0, J = 8.9, IH), 2.21 (s, 3H), 1.24-2.06 (m, IH), 1.80-1.68 (m, IH).
13C ΝMR (CD3OD, 75 MHz): δ = 174.1, 172.6, 145.9, 138.3, 135.0,
131.0, 130.5, 129.6, 128.9, 128.0, 61.1, 55.2, 52.0, 49.7, 38.2, 35.4,
21.5.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 432 (MH+).
Example 41
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine Benzyl Ester
N-(Toluene-4-sulfonyl)-L-proline was coupled to L-phenylalanine benzyl ester toluenesulfonic acid salt using the procedure described in Method 3 to give the title compound as an oil. ΝMR data was as follows: 'H NMR (CDCI3): δ = 7.68 (d, 2H, J = 8.2 Hz), 7.39-7.17 (10H), 7.05 (m, IH), 5.22 (d, 2H, J = 12.2 Hz), 5.14 (d, IH, J = 12.2 Hz), 4.88 (m, IH), 4.08 (m, IH), 3.28 (m, 3H), 3.08 (m, 2H), 2.39 (s, 3H), 2.00 (m, IH), 1.46 (m, 3H). 13C NMR (CDCI3): δ = 171.4, 171.3, 144.9, 136.5, 135.8, 133.6,
130.6, 129.9, 129.1, 129.1, 129.0, 129.0, 128.4, 127.6, 67.8, 62.8, 54.0, 50.2, 38.4, 30.4, 24.8, 22.2.
Mass Spectroscopy: FAB m e 507 (M+H).
Example 42
Synthesis of N-(Toluene-4-sulfonyl)-L-prolyl-L-phenyIaIanine N-Methoxyamide
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine was coupled to O-methylhydroxylamine hydrochloride using the mixed anhydride procedure
(as described in Greenstein, J.P. and Milton Wenitz, "Chemistry of the Amino Acids," volume 2, pp. 978-979, Robert E. Krieger Publishing Co., Malabar, FL. (1961)) to give the title compound as an oil. ΝMR data was as follows: Η ΝMR (CDCI3): δ = 9.66 (s, IH), 7.70 (d, 2H, J = 8.2 Hz), 7.36
(d, 2H, J = 8.0 Hz), 7.33-7.21 (5H), 6.90 (d, IH, J = 9.5 Hz), 4.88 (m, IH), 3.81 (m, IH), 3.75 (s, 3H), 3.46 (m, 2H), 3.07 (m, 2H), 2.45 (s, 3H), 1.60 (m, 2H), 1.47 (m, 2H).
13C ΝMR (CDC13): δ = 171.7, 168.1, 145.6, 137.0, 131.8, 130.7, 129.7, 129.3, 128.5, 127.7, 64.9, 62.7, 52.6, 50.6, 37.6, 31.4, 24.7, 22.2.
Mass Spectroscopy: FAB m/e 446 (M+H). Example 43
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-Benzyloxyamide
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine was coupled to
O-benzylhydroxylamine using the procedure described in Method 3 to give the title compound as a white solid, rr.p = 127-130°C. ΝMR data was as follows:
Η ΝMR (CDC13): δ = 9.54 (s, IH), 7.61 (d, 2H, J = 8.2 Hz), 7.43- 7.19 (12H), 6.86 (d, IH, J = 9.3 Hz), 4.91 (m, 2H), 4.82 (m, IH), 3.72
(m, IH), 3.42 (m, 2H), 3.07 (m, 2H), 2.45 (s, 3H), 1.64 (m, 2H), 1.44 (m, IH), 1.26 (m, IH).
13C ΝMR (CDCI3): δ = 171.6, 168.2, 145.5, 136.9, 135.7, 132.0, 130.7, 129.9, 129.7, 129.0, 128.9, 128.5, 127.7, 78.8, 62.7, 52.7, 50.6, 37.6, 31.2, 24.7, 22.2.
Mass Spectroscopy: FAB m e 522 (M+H).
Example 44 Synthesis of N-(Toluene-4-suIfonyl)-L-prolyl-
L-phenylalanine N-(ToIuene-4-sulfonyl)amide
N-(Toluene-4-sulfonyl)-L-proline was reacted with L-phenylalanine amide using the procedure described in Method 12 to yield N-(toluene-4- sulfonyl)-L-prolyl-L-phenylalanine amide. To a solution of ΝaH (60% mineral oil - prewashed with THF) in THF at 0°C was added N-(toluene-4- sulfonyl)-L-prolyl-L-phenylalanine amide and the reaction was stirred at 0°C for 45 minutes. Toluene-4-sulfonyl chloride was added and the reaction was stirred for 16 hours at room temperamre. The reaction mixmre was extracted with EtOAc (3 x 50 mL) and 0.2 Ν HCl (50 mL), and the combined organic layers were washed successively with sat. ΝaHCO3 (50 mL), and sat. NaCl (2 x 50 mL), dried over MgSO4, filtered, and concentrated to yield the title compound as an oil. NMR data was as follows:
Η NMR (CDCI3, 300 MHz): δ = 7.97 (d, 2H, 8.52 Hz); 7.72 (d, 2H, 8.52 Hz); 7.37 - 7.04 (m, 10 H); 4.80 (m, IH); 3.86 (m, IH); 3.42 (m, IH); 3.29 (m, IH); 3.01 (m, 2H); 2.45 (bs, 6H); 1.65 (m 2H); 1.45 & 1.31 (m, 2H).
13C NMR (CDCI3, 300 MHz): δ = 172.46, 169.93, 145.47, 136.43, 132.06, 130.70, 130.07, 129.58, 129.32, 129.17, 128.61, 127.74, 62.68, 54.52, 50.57, 36.91, 31.10, 24.69, 22.30, 22.23.
Mass Spectroscopy: (+FAB) 570 (M+H).
Preparative Example A
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-D,L-phenyalanyl-β-alanine Ethyl Ester
To N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine ( ~ 2 eq.) in DMF was added BOP ( ~2.1 eq.) and ΝMM ( ~4 eq.), and the reaction was stirred at room temperamre for about 45 minutes, β-alanine ethyl ester ( ~2 eq.) was added and the reaction stirred for about 16 hours at room temperamre. The reaction mixmre was extracted with water and diethyl ether. The combined organic solution was then washed with 0.2 Ν HCl, sat. ΝaHCO3 and sat. NaCl solutions. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (50% EtOAc/Hexane, Rf = 0.18) to yield the title compound as a colorless oil, which was determined to be a mixmre of diastereomers by NMR.
NMR data was as follows:
Η NMR (CDCI3, 300 MHz): δ = 7.68 (m, 2H); 7.25 (m, 9H); 4.07 (m, 3H); 3.45 (m, 4H); 3.06 (m, 3H); 2.50 & 2.34 (m, 3H), 2.41 (s, 3H), 1.62 (m, 4H); 1.20 (t, 3H, J = 5.55 Hz). 13C NMR (CDCI3, 300 MHz): δ = 177.62, 172.72, 171.98, 171.73,
171. 25, 170.80, 145.39, 145.02, 137.52, 137.20, 133.28, 132.09, 133.28, 132.09, 130.66, 130.57, 130.02, 129.59, 129.18, 128.49, 128.44, 127.49, 127.46, 63.06, 62.75, 61.18, 61.12, 55.49, 54.17, 50.62, 50.36, 38.27,
37.92, 35.98, 35.32, 34.47, 34.30, 31.27, 30.95, 24.92, 24.62, 22.18,
14.72.
Mass Spectroscopy: (+FAB) 516 (M+H).
Example 45
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-D,L-phenylalanyl-β-alanine
The title compound was prepared from Preparative Example A (161) using the procedure described for Example 19 (57), yielding a translucent solid, which was determined to be a mixmre of diastereomers by ΝMR, mp = 91-95°C.
ΝMR data was as follows: Η ΝMR (CDC13, 300 MHz): δ = 7.70 & 7.27 (m, 9H); 4.83 (m, 0.5
H); 4.05 (m, 0.5 H); 3.47 (m, 4H); 3.06 (m, 3H); 2.55 (m, 2H); 2.43 (s, 3H); 1.62 (m, 4H).
13C ΝMR (CDCI3, 300 MHz): δ = 175.85, 175.68, 172.45, 172.23, 171.67, 171.43, 145.32, 144.96, 137.37, 136.91, 133.42, 132.37, 130.67, 130.56, 130.52, 130.03, 129.65, 129.15, 129.12, 128.51, 128.48, 127.52,
63.01, 62.72, 55.25, 54.34, 50.52, 50.43, 50.39, 38.81, .38.07, 35.82, 35.79, 35.25, 35.23, 34.17, 34.10, 34.08, 31.23, 24.91, 24.61, 22.18. Mass Spectroscopy: (+FAB) 488 (M+H).
Example 46
Synthesis of N-(Toluene-4-sulfonyl)-L-prolyI-L-phenylalanine N-Hydroxyamide
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-benzyloxyamide (see Example 43 (159)) was dissolved in MeOH (10 mL) and 5% Pd/BaSO4 (52 mg) was added. The mixmre was hydrogenated at 50 psi H> for 9 h. The mixmre was filtered through a pad of diatomaceous earth and evaporated in vacuo to give a residue which was purified by silica gel chromatography (92:8 CH2Cl2/MeOH) to give the title compound as an oil.
NMR data was as follows:
Η NMR (CDC13): δ = 9.85 (br s, IH), 7.73 (d, 2H, J = 7.2 Hz), 7.36 (d, 2H, J = 7.0 Hz), 7.28-7.20 (5H), 7.07 (m, IH), 4.96 (m, IH), 3.87 (m,
IH), 3.47 (m, 2H), 3.07 (m, 2H), 2.45 (s, 3H), 1.90 (br s, IH), 1.63 (m, 2H), 1.46 (m, IH), 1.36 (m, IH).
13C NMR (CDC13): δ = 171.8, 168.4, 145.5, 136.9, 132.0, 130.7, 129.7, 129.2, 128.6, 127.6, 62.7, 52.2, 50.6, 38.0, 31.2, 24.6, 22.2. Mass Spectroscopy: FAB m/e 432 (M+H).
Example 47
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-L-phenylalanine Isopropyl Ester
N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to phenylalanine isopropyl ester trifluoroacetate using the procedure described in Method 3 to give the title compound as an oil.
ΝMR data was as follows: Η ΝMR (CDC13): δ = 7.68 (d, 2H, J = 8.2 Hz), 7.33-7.12 (8H), 5.05
(p, IH, J = 6.3 Hz), 4.77 (m, IH), 4.06 (m, IH), 3.33 (m, IH), 3.22 (dd, IH, J = 5.8, 14.0 Hz), 3.06 (m, 2H), 2.40 (s, 3H), 1.99 (m, IH), 1.46 (3H), 1.23 (d, 6H, J = 6.3 Hz).
13C ΝMR (CDCI3): δ = 171.3, 170.9, 144.9, 136.7, 133.5, 130.5, 129.9, 129.0, 128.4, 127.5, 70.0, 62.9, 54.0, 50.2, 38.5, 30.4, 24.7, 22.3,
22.2, 22.1.
Mass Spectroscopy: FAB m/e 459 (M+H) Example 48
Synthesis of
N-(Toluene-4-sulfonyl)-L-(«s-4-hydroxy)-prolyl-L-phenylaIanine
Substimtion of s-4-hydroxy-L-proline for D-Pro-OH, and following the methods described in Example 6 (17), gave the title compound as a clear oil.
ΝMR data was as follows:
Η ΝMR (DMSO- 6, 300 MHz): δ = 8.14 (d, J=7.9, IH), 7.70 (d, J=8.2, 2H), 7.41 (d, J=8.2, 2H), 7.28-7.15 (m, 5H), 5.30 (bs, IH), 4.52- 2.45 (m, IH), 4.15 (dd, J=9.0, J=4.1, IH), 3.85 (bs, IH), 3.31 (bs, IH), 3.24 (dd, J= 10.6, J=4.9, IH), 3.17 (dd, J= 10.9, J=3.4, IH), 3.01-2.94 (m, 2H), 2.40 (s, 3H), 1.92-1.82 (m, IH), 1.79-1.69 (m, IH).
13C ΝMR DMSO-d6, 75 MHz): δ = 172.2, 171.2, 143.8, 136.9, 133.4, 129.9, 129.5, 128.1, 127.5, 126.5, 68.6, 60.3, 56.4, 53.4, 38.0,
37.0, 21.0.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 433 (MH+).
Example 49 Synthesis of
N-(Toluene-4-sulfonyι)-L-(trαws-4-fluoro)- prolyl-L-phenylalanine Benzyl Ester
Substimtion of ri.s-4-hydroxy -L-proline for trans-4-hydroxy -L-proline, and following the methods for preparation of Example 50 (177), gave the title compound as a clear oil. ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 7.70 (d, J = 8.3, 2H), 7.41-7.20 (m, 10H), 7.10-7.07 (m, 2H), 5.24 (dd, J = 12.1, IH), 5.16 (dd, J= 12.2, IH), 4.93-4.87 (m, IH), 4.88 (bd, J=52.4, IH), 4.15-4.09 (m, IH), 3.80 (ddd, J = 1.6, J=20.7, J= 12.5, IH), 3.37 (ddd, J=3.1, J= 13.9, J=36.8, IH), 3.28 (dd, J=13.9, J=5.8, IH), 3.06 (dd, J = 13.9, J=7.2, IH), 2.43 (s, 3H), 2.32-2.18 (m, IH), 2.11-1.91 (m, IH). 13C NMR (CDCI3, 75 MHz): δ = 170.7, 170.0, 144.4, 135.8, 135.1,^ 129.7, 129.4, 128.58, 128.56, 128.4, 128.1, 127.0, 91.2 (d, J = 181.0 Hz), 67.3, 60.8, 55.6 (d, J=23.0 Hz), 53.2, 37.9, 37.0 (d, J=22.0 Hz), 21.6.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 525 (MH+).
Example 50
Synthesis of
N-(Toluene-4-sulfonyl)-L-(cw-4-fluoro)- prolyl-L-phenylalanine Benzyl Ester
rra«5-4-hydroxy-L-proline was treated with EtOH and HCl gas, and the mixmre was evaporated to give trø/w-4-hydroxy-L-proline ethyl ester hydrochloride. This product was treated with TsCl and Et3Ν in CH2C12, to give after aqueous workup N-(toluene-4-sulfonyl)-tra« -4-hydroxy-L-proline ethyl ester. This product was treated with morpholinosulfur trifluoride in
CH2C12, to give after aqueous workup N-(toluene-4-sulfonyl)-ds-4-fluoro-L- proline ethyl ester. This product was treated with ΝaOH in CE^OH and H2O to give, after acidification, extraction, drying with MgSO4, filtration and evaporation, N-(toluene-4-sulfonyl)-ds-4-fluoro-L-proline. This product was treated with HCl • Phe-OBn, BOP, and ΝMM in DMF, to give after aqueous workup and flash chromatography the title compound as a clear oil. ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 7.69 (d, J=8.3, 2H), 7.41 (d, J=7.8, IH), 7.38-7.27 (m, 7H), 7.21-7.17 (m, 3H), 7.07-7.04 (m, 2H), 5.19 (d, J= 12.1, IH), 5.12 (d, J = 12.1, IH), 5.05 (dt, Jd=52.7, Jt=3.4, IH), 4.89 (dt, Jd=7.9, Jt=6.0, IH), 4.27 (d, J=9.9, IH), 3.68 (ddd, J = 1.6, J = 12.6, J=21.1, IH), 3.37 (ddd, J=3.7, J = 12.4, J=35.7, IH) 3.13 (dd, J=5.9, J= 13.8, IH), 3.08 (dd, J=6.1, J = 13.8, IH), 2.62 (t, J = 15.9, IH), 2.43 (s, 3H), 1.82-1.59 (m, IH). 13C NMR (CDC13, 75 MHz): δ = 170.5, 169.9, 144.8, 135.5, 135.1,"
132.4, 130.1, 129.41, 129.39, 128.6, 128.5, 128.4, 127.9, 126.9, 91.7 (d,
J= 179.4 Hz), 67.1, 55.6 (d, J=23.8 Hz), 36.3 (d, J=21.5 Hz), 21.6.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 525 (MH+).
Example 51
Synthesis of
N-(Toluene-4-sulfonyl)-L-thiaprolyl-L-phenylalanine Benzyl Ester
The title compound was prepared following the procedure outlined for the preparation of Example 3 (11). ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 2.45 (s, 3H), 3.05-3.35 (m, 2H), 4.03 (d, IH, J = 10.3 Hz), 4.55 (d, IH, J = 10.3 Hz), 4.60 (m, IH), 4.86 (m, IH), 5.20 (dd, 2H, J = 12.1 and 13.6 Hz), 7.03 (m, IH), 7.14-7.40 (m,
12H), 7.70 (d, 2H, J = 8.2 Hz).
13C ΝMR (CDC.3, 75 MHz): δ = 22.3, 33.5, 38.1, 52.0, 54.2, 65.8, 68.0, 127.8, 128.5, 129.1, 129.2, 129.9, 130.7, 134.0, 135.6, 136.0, 145.6, 168.7, 171.1. Mass Spectroscopy: (FAB+) 525 (M+H).
Example 52 Synthesis of N-(Toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl- L-phenylalanine Benzyl Ester
The title compound was prepared following the procedure described for the preparation of Example 3 (11).
ΝMR data was as follows: Η ΝMR (CDCI3, 300 MHz): δ = 1.10 (s, 6H), 2.44 (s, 3H), 3.08-3.14
(m, 2H), 3.85 (s, IH), 4.39 (d, IH, J = 9.7 Hz), 4.52 (d, IH, J = 9.7 Hz), 4.94 (m, IH), 5.17 (m, 2H), 7.01 (d, IH, J = 2.5 Hz), 7.10-7.40 (m, 12H), 7.74 (d, 2H, J = 8.3 Hz). 13C NMR (CDCI3, 75 MHz): δ = 22.3, 24.5, 29.8, 38.9, 51.2, 53.9, 55.2, 67.9, 74.1, 127.6, 128.7, 129.0, 129.1, 129.2, 129.3, 130.0, 130.5, 133.3, 135.7, 136.4, 145.3, 169.0, 171.3.
Mass Spectroscopy: (FAB+) 553 (M+H).
Example 53
Synthesis of
N-(2-Methoxycarbonylbenzenesulfonyl)-L-prolyl-
L-phenylalanine Benzyl Ester
To L-prolyl-L-phenylalanine benzyl ester (4.64 mmoles) in THF (15 mL) was added triethylamine (4.70 mmoles) and the reaction proceeded for 30 minutes at room temperamre. The reaction mixmre was chilled to 0°C and methyl 2-(chlorosulfonyl) benzoate (4.64 mmoles) was added and me reaction proceeded for 4 hours at room temperamre. The reaction was extracted with EtOAc (3 x 50 mL) and water (50 mL), and the combined organic layers were successively washed with sat. NaHCOj (50 mL) and sat NaCl (2 x 50 mL), dried over MgSO4, filtered and roto-evaporated to yield a colorless oil (2.30 g, 90%). The crude product was purified by silica gel chromatography (50% EtOAc/Hexane, Rf = 0.47) to yield a colorless oil (1.49 g, 58%).
NMR data was as follows:
Η NMR (CDCI3, 300 MHz): δ = 7.88 (d, IH, J = 7.29 Hz); 7.48 & 7.16 (m, 14H); 5.04 (m, 2H); 4.75 (m, IH); 4.37 (d, 1H,6.92 Hz); 3.86 (s, 3H); 3.40 & 3.28 (m, 2H); 3.06 (m, 2H); 1.75, 1.61, & 1.32 (m, 4H).
13C NMR (CDCI3, 300 MHz): δ = 171.61, 171.32, 171.23, 169.03, 136.75, 135.89, 135. 51, 133.89, 133.62, 131.14, 130.34, 129.77, 129.38, 129.09, 129.00, 128.96, 128.88, 128.79, 127.48, 62.13, 60.90, 53.97, 49.48, 38.10, 31.07, 24.48, 21.56. Mass Spectroscopy: (+FAB) 551 (M+H). Example 54
Synthesis of
N-(3,5-Dichlorobenzenesulfonyl)-L-proIyl-L-phenylalanine
L-Proline methyl ester hydrochloride (2.68 g, 16.2 mmol) was dissolved in pyridine (20 mL), 3,5-dichlorophenylsulfonyl chloride (3.57 g, 14.6 mmol) was added and me mixture was stirred for 19 hr. Water (5 mL) was added and the mixmre was stirred for 45 min before diluting with water (200 mL). The mixmre was extracted with Et2O (2 X 150 mL) and the combined extracts were washed with water (3 X 100 mL), IN HCl (150 mL) and samrated aq ΝaHCO3 (150 mL), then dried (MgSO4), filtered and evaporated in vacuo to give 3,5-dichlorophenyl-sulfonyl-L-proline methyl ester as an oil (4.34 g, 88%).
The methyl ester was dissolved in MeOH (20 mL) and IN NaOH (20 mL) was added. The mixmre was gently warmed until homogeneous and then stirred for 1.5 hr. The solvent was removed in vacuo and the residue taken up in water (50 mL). The aqueous solution was washed with E^O (30 mL) and dien made acidic with 12 N HCl. The mixmre was extracted with CHC13 (2 X 40 mL) and the combined extracts were dried (MgSO4), filtered and evaporated in vacuo to give N-(3,5-dichlorophenylsulfonyl)-L-proline as a solid (3.37 g, 83%).
3,5-Dichlorophenyl-sulfonyl-L-proline was coupled to L-phenylalanine ethyl ester using the procedure described in Method 3 to give the ethyl ester of the title compound (348 mg, 45%). The title compound was prepared via hydrolysis of the ethyl ester using
ΝaOH in MeOH. ΝMR analysis indicated that diastereomers were present. ΝMR data was as follows:
Η ΝMR (CDCI3): δ = 8.11 (br s, IH), 7.72 (d, 2H, J = 1.9 Hz), 7.61 (q, IH, J = 2.0 Hz), 7.39-7.20 (6H), 4.92 (m, IH), 4.15 (m, IH), 3.52- 3.09 (4H), 2.11 (m, IH), 1.95-1.49 (3H). 13C NMR (CDCI3): δ = 175.4, 175.2, 171.8, 171.7, 139.5, 139.3, " 137.0, 136.6, 135.8, 134.0, 134.0, 129.9, 129.5, 127.7, 126.7, 111.4, 63.1, 62.9, 53.8, 53.6, 50.5, 50.3, 45.1, 37.9, 31.3, 30.8, 24.8, 24.6.
Mass Spectroscopy: FAB m/e 471 (M+H).
Example 55
Synthesis of
N-(Toluene-4-sulfonyl)-L-proIyl-
L-phenylalanine N-Hydroxysuccinimide ester
Equimolar amounts of Cbz-L-phenylalanine, N-hydroxysuccinimide and DCC in CH2C12 were stirred for 3 hr at room temperamre. Hexane was added and the reaction mixmre filtered through a bed of Celite. The filtrate was extracted with 10% citric acid, water and samrated ΝaCl, dried over MgSO4, filtered and concentrated to yield the title compound as a solid, mp = 186-188°C.
ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 7.66 (m, 3H); 7.28 (m, 6H); 4.64 (m, IH); 4.01 (m, IH); 3.36 (m, IH); 2.89 (m, 6H); 2.42 (s, 3H); 1.90 & 1.68 (m, 3H); 1.33 & 1.15 (m, 4H).
13C ΝMR (CDCI3, 300 MHz): δ = 173.07, 171.83, 166.89, 144.86, 137.90, 133.35, 130.51, 130.44, 129.06, 128.33, 127.36, 63.21, 50.12, 47.74, 45.09, 38.30, 36.53, 34.30, 30.67, 25.454, 24.35, 22.15.
Mass Spectroscopy: (+FAB) 528 (M+H).
Example 56
Synthesis of
N-(Thiophene-2-sulfonyι)-L-prolyI-L-phenylalanine Methyl Ester
The title compound was prepared via Method 14 and isolated the as an oil.
ΝMR data was as follows: Η NMR (CDCI3, 300 MHz): δ = 7.63 (m, IH); 7.32 - 7.10 (br m, 7H); 4.85 (m, IH); 4.09 (m, IH); 3.77 (s, 3H); 3.40 (m, IH); 3.38 (m, IH); 3.17 (m, IH); 3.05 (m, IH); 2.05 (m; IH); 1.62 - 1.40 (br m, 3H).
13C NMR (CDCI3, 75 MHz): δ = 171.9, 170.9, 136.6, 136.2, 133.9, 133.4, 129.8, 129.1, 128.3, 127.7, 63.2, 53.9, 53.1, 38.4, 30.1, 24.8.
Mass Spectroscopy: (PI-FAB) 423, (M+H)+.
Example 57 Synthesis of N-(Thiophene-2-sulfonyl)-L-prolyl-L-phenylalanine
The title compound was prepared from Example 56 (285) via Method 6 and the product was isolated as a solid.
ΝMR data was as follows: Η ΝMR (DMSO-α 300 MHz): δ = 8.14 (d, IH, J = 8.0 Hz); 8.02
(d, IH, J = 5.0 Hz); 7.70 (d, IH, J = 4.0 Hz); 7.25 (m, 6H); 4.51 (m, IH); 4.05 (m, IH); 3.40 (m, IH); 3.40 (m, IH); 3.20 - 2.90 (br m, 3H); 1.65 - 1.32 (br m, 4H).
13C ΝMR (DMSQ-dβ, 75 MHz): δ = 172.9, 170.9, 137.8, 136.4, 134.1, 133.4, 129.7, 128.6, 128.5, 126.8, 62.1, 53.5, 49.7, 36.8, 30.7,
24.1.
Mass Spectroscopy: (PI-FAB) 409, (M+H)+.
Example 58 Synthesis of
N-(l,3-Dimethyl-5-chloropyrazole-4-sulfonyl)- L-prolyl-L-phenylalanine
The title compound was prepared using Method 14 and Method 7, and the product was isolated as a white solid. ΝMR data was as follows: 'H NMR (CD3OD, 300 MHz): δ = 7.00 - 6.93 (br m, 5H); 4.21 (m, " IH); 3.96 (m, IH); 3.59 (s, 3H); 3.16 - 3.03 (br m, 3H); 2.88 (m, IH); 2.14 (s, 3H); 1.68 (m, 2H); 1.56-1.29 (br m, 2H).
13C NMR (CD3OD, 75 MHz): δ = 177.9, 173.6, 150.9, 139.7, 131.8, 131.4, 129.9, 127.9, 115.3, 63.7, 57.6, 50.7, 39.4, 37.7, 32.6, 25.8, 14.9.
Mass Spectroscopy: (PI-FAB) 477, (M+H)+.
Example 59 Synthesis of N-(l-Phenylethanesulfonyl)-L-prolyl-L-phenylalanine
PhCH2CH2SH was treated with Cl2 in a rapidly stirred mixmre of CHC13 and H2O, and then the CHC13 layer was washed with 5% ΝaHSO, and sat. ΝaCl, dried with MgSO4, filtered, and concentrated to give PhCH2CH2SO2Cl. This product was treated with Pro-OtBu and Et,Ν in
CH2C12 to give, after aqueous workup, PhCH2CH2SO2-Pro-OtBu. This product was treated with HCO2H, and the mixmre was evaporated to give PhCH2CH2SO2-Pro-OH. This product was treated with HCl • Phe-OtBu, EDAC, HOBT, and Et3N in CH2C12 to give, after aqueous workup and flash chromatography, PhCH2CH2SO2-Pro-Phe-OtBu. This product was treated with HCO2H, and the mixmre was evaporated to give the title compound as a clear oil.
NMR data was as follows:
Η NMR (OMSO-d6, 300 MHz): δ = 8.06 (d, J=8.1, IH), 7.32-7.14 (m, 10H), 4.52-4.24 (m, IH), 4.26 (dd, J=7.0, J=2.6, IH), 3.40-3.31 (m,
3H), 3.29-3.23 (m, 2H), 3.08 (dd, J = 13.8, J=4.8, IH), 2.97-2.90 (m, 3H), 2.05-1.99 (m, IH), 1.77-1.65 (m, 3H).
13C NMR (DMSO-tf6, 75 MHz): δ = 172.7, 171.4, 138.5, 137.4, 129.2, 128.6, 128.5, 128.1, 126.5, 126.4, 60.8, 53.1, 50.0, 48.6, 36.6, 30.9, 28.6, 24.2.
Mass Spectroscopy: (+FAB, 3-nitrobenzyl alcohol) 431 (MH+). Example 60
Synthesis of
N-(l-Methylimidazole-4-sulfonyl)-L-prolyI-L-phenylalanine Methyl Ester
The title compound was prepared using Method 14 and was isolated as an oil.
NMR data was as follows:
Η NMR (CDC13, 300 MHz): δ = 7.55 - 7.40 (br m, 3H); 7.31 - 7.10 (br m, 5 H); 4.80 (m, IH); 4.31 (m, IH); 3.70 (s, 3H); 3.49 - 3.18 (br m, 3H); 3.05 (m, 1 H); 2.05 (m, IH); 1.74 (m, 2 H); 1.41 (m, IH).
13C NMR (CDCI3, 75 MHz): δ = 172.0, 171.6, 140.1, 137.9, 136.8, 129.8, 129.0, 127.5, 126.1, 63.1, 53.9, 52.9, 50.3, 38.4, 34.6, 30.4, 24.9. Mass Spectroscopy: (PI-FAB) 421, (M+H)+.
Example 61
Synthesis of N-(l-Methylimidazole-4-sulfonyl)-L-prolyI-L-phenylalanine
The title compound was prepared from Example 60 (297) using Method 7 and was isolated as a white solid.
ΝMR data was as follows:
Η ΝMR (DMSO- ,, 300 MHz): δ = 7.83 (d, 2H, J = 9.0 Hz), 7.65 (d, IH, J = 5.0 Hz), 7.20 - 7.05 (br m, 5H), 4.14 (m, IH); 3.94 (m, IH); 3.67 (s, 3H); 3.04 (m, 4H), 1.81 (m, IH), 1.50 (m, 2H); 1.29 (m, IH). !3C ΝMR (DMSO- ,, 75 MHz): δ = 173.1, 169.9, 140.7, 139.2,
136.0, 130.0, 127.8, 126.7, 125.9, 63.0, 55.1, 49.7, 36.8, 33.9, 30.5, 23.9.
Mass Spectroscopy: (PI-FAB) 429, (M+H)+. Example 62 *"
Synthesis of N-(4-Amidinobenznesulfonyl)-L-prolyl-L-phenylalanine Methyl Ester
The title compound was prepared by refluxing the product from
Example 64 (313) (0.26 mmol) with ammonium acetate (0.32 mmol) in methanol (3 mL) for 3.5 hours and then concentrating under vacuum to give an oil (114 mg, 96%). The crude product was purified on silica gel chromatography (100% EtOAc, Rf = 0.01) to yield a colorless oil (40 mg, 34%).
ΝMR data was as follows:
Η ΝMR (CD3OD, 300 MHz): δ = 7.77 (m, 4 H); 7.07 (m, 5H); 4.48 (m, IH); 4.01 (m ,1H); 3.51 (s, 3H); 3.25 (m, IH); 3.04 (m, 3H); 2.85 (m, IH); 1.50 (m, 4H). 13C ΝMR (CD3OD, 300 MHz): δ = 174.45, 173.58, 168.09, 143.77,
138.72, 134.54, 131.01, 130.84, 130.16, 130.11, 128.57, 63.71, 55.72, 53.45, 51.09 38.72, 32.61, 25.97.
Mass Spectroscopy: (+FAB) 459 (M+H).
Example 63
Synthesis of N-(4-Amidinobenzenesulfonyι)-L-prolyl-L-phenylalanine
The title compound was prepared from the product of Example 62 (303) using the procedure described in Method 7. ΝMR data was as follows:
Η ΝMR (CD3OD, 300 MHz): δ = 7.72 (m, 4H); 7.00 (m, 5H); 4.51 (m, 0.5 H); 4.20 (t, IH, J = 5.92); 3.93 (m, IH); 3.23 (m, 0.5H); 3.14 (s, IH); 3.04 (m, IH); 2.85 (m, IH); 1.48 (m, 4H). 13C ΝMR (CD3OD, 300 MHz): δ = 178.07, 173.31, 141.62, 141.36,
139.70, 138.57, 131.36, 131.05, 131.00, 130.21, 130.17, 130.13, 130.02, 129.92, 129.78, 129.71, 128.60, 128.03, 64.12, 57.64, 51.20, 39.52, *~ 32.36, 25.88.
Mass Spectroscopy: (+FAB) 467 (M+H), 489 (M + Na).
Example 64
Synthesis of
N-(4-Thiomethoxyimidatylbenzenesulfonyι)-L- prolyl-L-phenylalanine Methyl Ester The title compound was prepared by refluxing the product from
Example 65 (314) (0.20 mmoles) with acetone (3 mL) and methyl iodide (0.2 mL) for 30 minutes, and concentrating the reaction under vacuum to yield a yellow oil (130 mg, < 100%). The crude product was purified on silica gel chromatography (80% EtOAc/Hexane, Rf = 0.49) to yield a yellow oil (110 mg, 99%).
ΝMR data was as follows:
Η ΝMR (CDC13, 300 MHz): δ = 9.37 (bs, 2H); 8.11 (d, 2H, J = 8.43 Hz); 7.96 (d, 2H, J = 8.49 Hz); 7.20 (m, 6H); 4.82 (m, IH); 4.11 (m, IH); 3.74 (s, 3H); 3.41 (m, IH); 3.23 (m, IH); 3.09 (m, 2H); 2.94 (s, 3H), 1.83 (m, IH); 1.62 (m, 3H).
13C ΝMR (CDCI3, 300 MHz): δ = 186.47, 172.23, 171.65, 141.68, 136.53, 136.04, 130.32, 129.84, 129.16, 129.12, 127.74, 62.98, 53.98, 53.33, 50.48, 38.21, 31.58, 31.15, 24.83, 18.30.
Mass Spectroscopy: (+FAB) 490 (M+H).
Example 65
Synthesis of
N-[4-(N-Methyl)thioamidobenzenesulfonyl]-L- prolyl-L-phenylalanine Methyl Ester
The title compound was prepared by bubbling hydrogen sulfide through a solution of the methyl ester of Example 29 (71) (0.3 mmoles) in pyridine (3 mL) and triethylamine (0.3 mL) at room temperamre for 5 minutes. The flask was sealed and the reaction stirred at room temperamre for 18 hours. The reaction mixmre was concentrated under a stream of nitrogen. The residue was diluted with EtOAc (100 mL) and successively washed with 2N KHSO4 (2 x 50 mL) and samrated NaCl (50 mL), dried over MgSO4, filtered and roto-evaporated to yield a yellow oil (146 mg, 100%). Silica gel TLC in 80% EtOAc/Hexane showed a single spot, Rf = 0.06.
NMR data was as follows:
Η NMR (CDC13, 300 MHz): δ = 8.13 (d, 2H, J = 11.54 Hz); 7.94 (d, 2H, J = 8.37 Hz); 7.69 (d, 2H, J = 8.43 Hz); 7.20 (m, 6H); 4.83 (m, IH); 3.99 (d, IH, J = 6.17 Hz); 3.77 (s, 3H); 3.34 (t, IH, J = 6.59 Hz); 3.25 (m, IH); 3.03 (m, IH); 1.87 (m, IH); 1.45 (m, 5H).
13C NMR (CDC13, 300 MHz): δ = 201.09, 172.29, 171.28, 144.50, 138.26, 136.37, 129.76, 129.21 , 128.71, 128.21, 127.82, 62.92, 53.74, 53.31, 50.20, 38.37, 30.64, 30.54, 24.68, 21.68.
Mass Spectroscopy: (+FAB) 476 (M+H).
Example 66
Synthesis of
N-(Toluene-4-sulfonyl)-L-prolyl-D,L-β-(l,2,4-triazol-3-yl)alanine
An equimolar solution of β-(l ,2,4-triazol-3-yl)-D,L-alanine methyl ester, N-(toluene-4-sulfonyl)]-L-proline hemibenzenate and benzotriazol-1- yloxytris(dimethylamino)phosphonium hexafluorophosphate with three equivalents of triethyl amine in acetonitrile (0.45M) was stirred at ambient temperamre, under nitrogen, for 16 hr. The solvent was stripped off giving a dark reddish colored oil. The oil was dissolved in ethyl acetate and washed with copious amounts of water, brine, and saturated sodium bicarbonate solution and once again with water. The organic phase was dried (Νa2SO4) and the solvent stripped off yielding a brown oil. The oil was hydrolyzed following the procedure described in Method 7 yielding the title compound as a beige solid, mp = 153-163°C. NMR data was as follows: Η NMR (DMSO-ύ?6, 400 Mhz): δ = 8.29 (s, IH); 7.77 (s, IH); 7.57- 7.52 (m, 2H); 7.37 (d, IH, J = 8.1Hz); 7.32-7.29 (m, 2H); 7.22-7.19 (m, IH); 4.40 (dd, IH, J = 9.9Hz, 4.2Hz); 4.29-4.25 (m, IH); 3.95-3.87 (m, IH); 3.82-3.77 (m, IH); 3.15-3.06 (m, IH); 2.96-2.85 (m, IH); 2.61-2.56 (m, IH); 2.27 (s, IH); 2.22 (s, IH); 1.81 (t, IH, J = 7.7Hz); 1.75 (s, 3H);
1.75-1.50 (m, IH); 1.17-1.15 (m, III); 1.05-0.94 (m, IH); 0.92-0.89 (m, IH).
IR (KBr, cm-1): 3400; 2960; 2850; 2500; 1775; 1600; 1450; 1400; 1200; 1175; 1050; 1025; 875; 830; 775; 700; 600; 575; 550. Mass Spectroscopy: (+FAB) 428.3 (M+Na); 406.3 (M - H); 319.4;
269.4; 227.4; 205.4; 173.3; 113.12.
Example 67 Synthesis of N-(Toluene-4-sulfonyl)-L-prolyI-D,L-β-(2-thiazoIyI)alanine
The methyl ester of the title compound was prepared using the procedure described in Method 3. The ester was hydrolyzed following the procedure described in Method 6 to afford the title compound as a foam. ΝMR data was as follows:
Η ΝMR (DMSO-rf6, 400 MHz): δ = 8.36 (d, 0.5H, J = 8Hz); 8.24 (d, 0.5H, J = 8Hz); 7.7 (m, 3H); 7.58 (d, IH, J = 3Hz); 7.4, (m, 2H); 4.65 (m, IH); 4.14 (m, 0.5H); 4.1 (m, 0.5H); 3.45 (m, 8H); 3.1 (m, IH); 2.39 (s, 3H); 1.75-1.4 (brd m, 4H). IR (KBr, cm 1): 3425, 2900, 1730, 1660, 1625, 1525, 1510, 1440,
1340, 1160, 1080, 660, 580,550.
Mass Spectroscopy: (+FAB) 424 ( [M+H]+); 323; 279; 237; 215; 197; 181; 149; 131; 109.
HPLC (Primesphere C-18; 40/60 methanol/.Ol M KH2PO4 buffer pH = 3.5; flow rate = 1 ml/min): 16.6 min retention time diasteomer A (49%); 19.1 min retention time diasteomer B (51 %). Example 68
Synthesis of
N-[4-(3-Dimethylaminopropyloxy)- benzenesulfonyl]-L-prolyI-L-phenylalanine
4-(Methoxy)benzenesulfonyl chloride was dissolved in CH2C12 and chilled in an ice bath to 0°C. To this solution was added the hydrochloride of Pro-Phe-OMe (1 eq.) and TEA (2.2 eq). The reaction was allowed to warm to room temperamre and stirred overnight under a stream of Νj. The reaction mixmre was then concentrated and the residue taken up in EtOAc and H2O and the organic phase was washed with sat. ΝaHCO, and brine, dried (MgSO4), filtered, concentrated to a tacky solid and used without further purification. The solid product was treated with with BBr3 (1M in CH2C12, 3.0 eq., -78 °C for one hour then warmed to rt). The reaction was then chilled in an ice bath and quenched with water. Following concentration, the residue was taken-up in EtOAc and water. The organic phase was washed with brine, dried (MgSO4), filtered and concentrated to a foam. The product was esterified with MeOH and HCl gas (0 °C to rt, 16 hours) and purified by column chromatography. This product was then added to a chilled (0 °C) THF solution of triphenylphosphine (1.10 eq), 3- dimethylmino-1-propanol (1.0 eq) and diethyl azodicarboxylate (1.10 eq). The reaction temperamre was held at 0°C for 30 minutes and then allowed to warm to room tempetature and stirred overnight. The reaction mixmre was concentrated and taken-up in EtOAc and washed with sat. ΝaHCO,. The product was than extracted with 0.2 Ν citric acid, and the aqueous phase washed with EtOAc. The aqueous phase was then made basic with solid ΝaHCO3 and the product extracted with EtOAc. The organic phase was washed with brine, dried (MgSO4), filtered and concentrated. The product was purified by preparative TLC. The hydrolysis was performed using Method 7 to yield the title compound as a mixmre of diastereomers and was isolated as a white, hygroscopic solid. NMR data was as follows: Η NMR (DMSO-d6, 300 MHz): δ = 7.76 (d, 2H, J = 9.0 Hz); 7.74 *~ (m, IH); 7.15 - 7.10 (br m, 6 H); 4.07 (t, 2H, J = 5.0 Hz); 3.90 (m, 2H); 3.21 - 2.85 (m, 4H); 2.37 (m, 2H); 2.37 (t, 2H, J = 7.0 Hz); 2.13 (s. 6H); 1.85 (m, 2H); 1.69 (m, IH); 1.50 - 1.25 (m, 3H). 13C NMR (DMSO- d6, 75 MHz): δ = 172.3, 169.7, 162.6, 139.3, 130.3, 130.1, 130.1, 128.1,
127.9, 127.8, 125.9, 125.8, 115.3, 115.2, 66.7, 62.4, 55.8, 55.2, 49.3, 45.5, 36.96, 30.6, 27.0, 23.9.
Mass Spectroscopy: (PI-FAB) 548, (M-H+Na)+.
Example 69
Synthesis of
N-(4-ThiocarbamoylbenzenesuIfonyl)-
L-(5,5-dimethyl)thiaproIyl-L-phenylalanine Benzyl Ester
The title compound was prepared following the procedure of Example
65 (314).
ΝMR data was as follows:
Η ΝMR (CDC13): δ = 8.48 (bs, IH), 8.24 (bs, IH), 8.00-7.97 (d, 2H), 7.78-7.75 (d, 2H), 7.29-7.09 (m, 10H), 5.12 (m, 2H), 4.48 (m, IH), 4.49- 4.46 (d, IH), 4.33-4.30 (d, IH), 3.09 (m, 2H), 1.03-0.99 (d, 6H), 3.91 (s, IH).
Η ΝMR (CDC13): δ = 200.5, 171.6, 169.2, 144.3, 138.4, 136.2, 135.6, 130.0, 129.2, 128.8, 128.4, 127.8, 74.1, 68.1, 55.1, 54.1, 51.1, 38.5, 29.8, 24.2, 21.7.
Example 70
Synthesis of
N-(4-Cyanobenzenesulfonyl)-L-(5,5-dimethyl)thiaprolyl-
L-phenylalanine Benzyl Ester
The title compound was prepared following the procedure outlined for the preparation of Example 29 (71). ΝMR data was as follows: Η NMR (CDCI3): δ = 7.95-7.92 (d, 2H), 7.77-7.74 (d, 2H), 7.34-7.33 (m, 10H), 7.19-7.18 (m, 10H), 7.10-7.09 (m, 10H), 6.97-6.95 (d, IH), 5.15 (m, 2H), 4.91 (m, IH), 4.47 (s, 2H), 3.10 (m, 2H), 1.19-1.11 (2s, 6H).
13C NMR (CDC13): δ = 171.3, 168.4, 141.0, 136.3, 135.6, 133.7, 130.0, 129.2, 127.7, 117.8, 74.1, 68.0, 55.3, 53.86, 51.1, 38.7, 29.9,
24.4.
Example 71 Synthesis of N-(Toluene-4-sulfonyl)-L-(thiamorpholyl-3-carbonyl)-L-phenylalanine
L-thiamorpholine-5-carboxylic acid was prepared by the method of Larsson and Carlson (Acta Chemica Scan. 48: 517-525 (1994)). N-(toluene- 4-sulfonyl)-L-thiamorpholine-5-carboxylic acid was prepared using the procedure described in Method 1. The title compound was prepared according to the procedure described in Example 1 (9). ΝMR data was as follows:
Η ΝMR (CD3OD): δ = 7.49-7.04 (m, 9H), 4.62 (m, IH), 4.47 (m, IH), 3.88 (m, IH), 3.12-2.36 (m, 5H), 2.18 (s, 3H), 2.18-1.92 (m, 5H). 13C ΝMR (CD3OD): δ = 175.1, 174.8, 170.8, 170.7, 146.2, 146.1,
138.9, 138.5, 131.8, 131.1, 130.3, 129.1, 128.7, 57.0, 56.9, 55.7, 45.5, 45.2, 38.9, 38.5, 28.6, 28.1, 26.8, 26.9, 22.3.
Example 72 Synthesis of
N-(Toluene-4-sulfonyl)- L-[(l , l-dioxo)thiamorpholyl-3-carbonyl]-L-phenylalanine
The title compound was prepared from the product of Example 71 (500) using the procedure described by Larsson and Carlson (Acta Chemica Scan. 48, 522 (1994)).
ΝMR data was as follows: Η NMR (CD3OD): δ = 7.54 (m, 2H), 7.17-6.90 (m, 10H), 5.07 (m, IH), 4.45 (m, IH), 4.08 (m, IH), 3.8-3.3 (m, 2H), 3.09-2.6 (m, 5H), 2.22 (s, 3H), 2.11 (s, 3H).
13C NMR (CD3OD): δ = 175.1, 174.5, 168.5, 146.9, 139.5, 138.4, 137.8, 132.0, 131.1, 131.6, 130.2, 129.2, 128.8, 126.9, 62.6, 57.8, 57.6,
55.7, 55.5, 51.6, 51.4, 43.8, 43.6, 43.6, 38.7, 38.5, 22.2, 22.1.
Example 73 Synthesis of N-(Toluene-4-sulfonyι)-L-[(l,l-dioxo)thiamorpholyl-
3-carbonyl]-L-phenyIalanine Ethyl Ester
The title compound was prepared following the procedure outlined for the preparation of Example 72 (501). ΝMR data was as follows:
Η ΝMR (CDCI3): δ = 7.72 (d, IH), 7.63 (d, IH), 7.35 (m, 7H), 7.13 (m, 2H), 6.80 (d, 0.5H), 6.69 (d, 0.5H), 5.13 (m, 0.5H), 5.00 (m, 0.5H), 4.89 (m, 0.5H), 4.77 (m, 0.5H), 4.21 (m, 2H), 3.99 (m, IH), 3.19 (m, 2H), 3.02 (m, 2H), 2.88 (m, 2H), 2.44 (s, 3H), 1.25 (m, 3H). 13C ΝMR (CDCI3): δ = 171.5, 171.4, 165.4, 165.1, 146.1, 136.1,
135.5, 131.2, 130.0, 130.0, 129.3, 129.2, 128.0, 127.8, 62.5, 62.4, 56.8, 56.6, 54.2, 53.9, 50.2, 49.9, 49.4, 49.3, 42.6, 42.3, 38.1, 37.8, 22.3, 14.7.
Example 74 Synthesis of
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-(l-methyl-l,4-dihydropyridinyl-3-amido)ethyl ester
A solution of (S,S)-l-methyl-3-[2-(3-phenyl-2-{[(l-toluene-4-sulfonyl)- pyrrolidine-2-carbonyl] -amino }-propionyloxy)-ethylcarbamoyl] -pyridinium iodide (3.8 g) was prepared in nitrogen degassed water (1000 mL) and acetonitrile (55 mL). At ambient temperamre, a mixmre of Νa^O^ (2.82 g) and ΝaHCO3 (2.268 g) was added at once and the reaction mixture stirred another 3 hours at room temperamre while being exposed to a slow nitrogen throughput. Thereafter, the aqueous phase was extracted with chloroform (3 x 200 mL), and the organic extracts were combined, dried over MgSO4 filtered and evaporated. The residue was flash chromatographed on 200 g silica gel. Elution with 2% methanol/chloroform gave 800 mg of the titled compound as a solid, mp = 68-72 °C.
Other compounds prepared by the methods described above include those set forth in Table II below:
TABLE II
R3 O
RI-SO2-N(R2)-C-Q-CH-C-R6
H R5
c
rn rπ
"cL. . rt x z ON ^
rt δ o rt u
as rt o
rt as u
rt
Pi as u Example 95
In vitro Assay For Determining Binding of
Candidate Compounds to VLA-4
An in vitro assay was used to assess binding of candidate compounds to 4βj integrin. Compounds which bind in this assay can be used to assess VCAM-1 levels in biological samples by conventional assays (e.g., competitive assays). This assay is sensitive to I Q values as low as about InM.
The activity of α4β[ integrin was measured by the interaction of soluble VCAM-1 with Jurkat cells (e.g., American Type Culture Collection Nos. TIB 152, TIB 153, and CRL 8163), a human T-cell line which expresses high levels of α^ integrin. VCAM-1 interacts with the cell surface in an α4βj integrin-dependent fashion (Yednock, et al. J. Biol. Chem. 270: 28740
(1995)).
Recombinant soluble VCAM-1 was expressed as a chimeric fusion protein containing the seven extracellular domains of VCAM-1 on the N- terminus and the human IgGj heavy chain constant region on the C-terminus. The VCAM-1 fusion protein was made and purified by the manner described by Yednock, supra.
Jurkat cells were grown in RPMI 1640 supplemented with 10% fetal bovine serum, penicillin, streptomycin and glutamine as described by Yednock, supra.
Jurkat cells were incubated with 1.5 mM MnC^ and 5 μg/mL 15/7 antibody for 30 minutes on ice. Mn+2 activates the receptor to enhance ligand binding, and 15/7 is a monoclonal antibody that recognizes an activated/ligand occupied conformation of α4βι integrin and locks the molecule into this conformation, thereby stabilizing the VCAM-l/a,^ integrin interaction. Yednock, et al., supra. Antibodies similar to the 15/7 antibody have been prepared by other investigators (Luque, et al., J. Biol. Chem. 271 : 11067 (1996)) and may be used in this assay.
Cells were then incubated for 30 minutes at room temperamre with candidate compounds, in various concentrations ranging from 66 μM to 0.01 μM using a standard 5-point serial dilution. 15 μL soluble recombinant VCAM-1 fusion protein was then added to Jurkat cells and incubated for 30 minutes on ice. (Yednock et al., supra.).
Cells were then washed two times and resuspended in PE-conjugated goat F(ab')2 anti-mouse IgG Fc (Immunotech, Westbrook, ME) at 1:200 and incubated on ice, in the dark, for 30 minutes. Cells were washed twice and analyzed with a standard fluorescence activated cell sorter ("FACS") analysis as described in Yednock, et al., supra.
Compounds having an IC50 of less than about 15μM possess binding affinity to
When tested in this assay, each of the compounds in Examples 1-91 has an IC50 of 15 μM or less.
Example 96 In vitro Saturation Assay For Determining Binding of Candidate Compounds to α4βι
The following describes an in vitro assay to determine the plasma levels needed for a compound to be active in the Experimental Autoimmune Encephalomyelitis ("EAE") model, described in the next example, or in other in vivo models. Log-growth Jurkat cells are washed and resuspended in normal animal plasma containing 20 μg/ml of the 15/7 antibody (described in the above example).
The Jurkat cells are diluted two-fold into either normal plasma samples containing known candidate compound amounts in various concentrations ranging from 66 μM to 0.01 μM, using a standard 12 point serial dilution for a standard curve, or into plasma samples obtained from the peripheral blood of candidate compound-treated animals.
Cells are then incubated for 30 minutes at room temperamre and washed twice with phosphate-buffered saline ("PBS") containing 2% fetal bovine serum and lmM each of calcium chloride and magnesium chloride (assay medium) to remove unbound 15/7 antibody.
The cells are then exposed to phycoerythrin-conjugated goat F(ab' 2 anti- mouse IgG Fc (Immunotech, Westbrook, ME), which has been adsorbed for any non-specific cross-reactivity by co-incubation with 5 % serum from the animal species being studied, at 1:200 and incubated in the dark at 4°C for 30 minutes.
Cells are washed twice with assay medium and resuspended in the same. They are then analyzed with a standard fluorescence activated cell sorter ("FACS") analysis as described in Yednock et al., J. Biol. Chem. 270: 28740 (1995).
The data is then graphed as fluorescence versus dose, e.g., in a normal dose-response fashion. The dose levels that result in the upper plateau of the curve represent the levels needed to obtain efficacy in an in vivo model. This assay may also be used to determine the plasma levels needed to samrate the binding sites of other integrins, such as the c l integrin, which is the integrin most closely related to α^ (Palmer et al., J. Cell Bio. 123: 1289 (1993)). Such binding is predictive of in vivo utility for inflammatory conditions mediated by integrin, including, by way of example, airway hyper-responsiveness and occlusion that occurs with chronic asthma, smooth muscle cell proliferation in atherosclerosis, vascular occlusion following angioplasty, fibrosis and glomerular scarring as a result of renal disease, aortic stenosis, hypertrophy of synovial membranes in rheumatoid arthritis, and inflammation and scarring that occur with the progression of ulcerative colitis and Crohn's disease.
Accordingly, the above-described assay may be performed with a human colon carcinoma cell line, SW 480 (ATTC #CCL228), transfected with cDNA encoding 9 integrin (Yokosaki et al., J. Biol. Chem. 269: 26691
(1994)), in place of the Jurkat cells, to measure the binding of the ct x integrin. As a control, SW 480 cells which express other α and p^ subunits may be used.
Accordingly, another aspect of this invention is directed to a method for treating a disease in a mammalian patient, which disease is mediated by c^β1} and which method comprises administering to said patient a therapeutically effective amount of a compound of this invention. Such compounds are preferably administered in a pharmaceutical composition described herein above. Effective daily dosing will depend upon the age, weight and condition of the patient, which factors can be readily ascertained by the attending clinician. However, in a preferred embodiment, the compounds are administered from about 20 to 500 μg/kg per day. Example 97
In vivo Evaluation -
Experimental Autoimmune Encephalomyelitis The standard multiple sclerosis model, Experimental Autoimmune (or
Allergic) Encephalomyelitis ("EAE"), was used to determine the effect of candidate compounds to reduce motor impairment in rats or guinea pigs. Reduction in motor impairment is based on blocking adhesion between leukocytes and the endothelium and correlates with anti-inflammatory activity in the candidate compound. This model has been previously described by Keszthelyi et al., Neurology 47: 1053-1059 (1996), and measures the delay of onset of disease.
Brains and spinal cords of adult Hartley guinea pigs were homogenized in an equal volume of phosphate-buffered saline. An equal volume of
Freund's complete adjuvant (100 mg mycobacterium tuberculosis plus 10 ml Freund's incomplete adjuvant) was added to the homogenate. The mixmre was emulsified by circulating it repeatedly through a 20 ml syringe with a peristaltic pump for about 20 minutes.
Female Lewis rats (2-3 months old, 170-220 g) or Hartley guinea pigs (20 day old, 180-200 g) were anesthetized with isoflurane and three injections of the emulsion, 0.1 ml each, were made in each flank. Motor impairment onset is seen in approximately 9 days.
Candidate compound treatment began on Day 8, just before onset of symptoms. Compounds were administered subcutaneously ("SC"), orally ("PO") or intraperitoneally ("IP"). Doses were given in a range of lOmg/kg to 200 mg/kg, bid, for five days, with typical dosing of 10 to 100 mg/kg SC, 10 to 50 mg/kg PO, and 10 to 100 mg/kg IP. Antibody GG5/3 against integrin (Keszthelyi et al., Neurology 47: 1053-1059 (1996)), which delays the onset of symptoms, was used as a positive control and was injected subcutaneously at 3 mg/kg on Day 8 and 11.
Body weight and motor impairment were measured daily. Motor impairment was rated with the following clinical score:
0 no change
1 tail weakness or paralysis
2 hindlimb weakness
3 hindlimb paralysis
4 moribund or dead
A candidate compound was considered active if it delayed the onset of symptoms, e.g. , produced clinical scores no greater than 2 or slowed body weight loss as compared to the control.
When tested in this in vivo assay, at least the compound of Example 3 was active.
Example 98 In vivo Evaluation - Asthma
Inflammatory conditions mediated by α4β] integrin include, for example, airway hyper-responsiveness and occlusion that occurs with chronic asthma. The following describes an asthma model which can be used to study the in vivo effects of the compounds of this invention for use in treating asthma.
Following the procedures described by Abraham et al, J. Clin. Invest. 93:776-787 (1994) and Abraham et al, Am J. Respir Crit Care Med. 156:696-703 (1997), both of which are incorporated by reference in their entirety, compounds of this invention are formulated into an aerosol and administered to sheep which are hypersensitive to Ascaris suum antigen. Compounds which decrease the early antigen-induced bronchial response and/or block the late-phase airway response, e.g., have a protective effect against antigen-induced late responses and airway hyper-responsiveness ("AHR"), are considered to be active in this model.
Allergic sheep which are shown to develop both early and late bronchial responses to inhaled Ascaris suum antigen are used to study the airway effects of the candidate compounds. Following topical anesthesia of the nasal passages with 2% lidocaine, a balloon catheter is advanced through one nostril into the lower esophagus. The animals are then intubated witii a cuffed endotracheal tube through the other nostril with a flexible fiberoptic bronchoscope as a guide.
Pleural pressure is estimated according to Abraham (1994). Aerosols
(see formulation below) are generated using a disposable medical nebulizer that provides an aerosol with a mass median aerodynamic diameter of 3.2 μm as determined with an Andersen cascade impactor. The nebulizer is connected to a dosimeter system consisting of a solenoid valve and a source of compressed air (20 psi). The output of the nebulizer is directed into a plastic T-piece, one end of which is connected to the inspiratory port of a piston respirator. The solenoid valve is activated for 1 second at the beginning of the inspiratory cycle of the respirator. Aerosols are delivered at Vτ of 500 ml and a rate of 20 breaths/minute. A 0.5% sodium bicarbonate solution only is used as a control.
To assess bronchial responsiveness, cumulative concentration-response curves to carbachol can be generated according to Abraham (1994). Bronchial biopsies can be taken prior to and following the initiation of treatment and 24 hours after antigen challenge. Bronchial biopsies can be preformed according to Abraham (1994).
An in vitro adhesion study of alveolar macrophages can also be performed according to Abraham (1994), and a percentage of adherent cells is calculated.
Aerosol Formulation
A solution of the candidate compound in 0.5% sodium bicarbonate/saline (w/v) at a concentration of 30.0 mg/mL is prepared using the following procedure:
A. Preparation of 100.0 mL of 0.5% Sodium Bicarbonate / Saline Stock Solution
Procedure:
1. Add 0.5g sodium bicarbonate into a 100 mL volumetric flask.
2. Add approximately 90.0 mL saline and sonicate until dissolved.
3. Q.S. to 100.0 mL with saline and mix thoroughly.
B. Preparation of 30.0 mg/mL Candidate Compound: 10.0 mL
Procedure:
1. Add 0.300 g of the candidate compound into a 10.0 mL volumetric flask.
2. Add approximately 9.7 mL of 0.5% sodium bicarbonate / saline stock solution.
3. Sonicate until the candidate compound is completely dissolved.
4. Q.S. to 10.0 mL with 0.5% sodium bicarbonate / saline stock solution and mix thoroughly.
Using a conventional oral formulation, compounds of this invention would be active in this model.

Claims

WHAT IS CLAIMED IS:
1. A compound of formula I:
R3 O i II
R1-SO2-N(R2)-C-Q-CH-C-OH I
H R5
where
R1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substimted aryl, cycloalkyl, substimted cycloalkyl, heterocyclic, substimted heterocylic, heteroaryl and substituted heteroaryl;
R2 and R3, together with the nitrogen atom bound to R2 and the carbon atom bound to R3, form a samrated heterocyclic group or a samrated substimted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated heterocyclic group is not carboxyl;
R5 is selected from the group consisting of -(CH2)n-aryl and -(CH2)n-heteroaryl, where n is an integer equal to 1 to 4;
Q is -C(X)NR7- wherein R7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof with the proviso that when R1 is 2,4,6-trimethylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidinyl ring and Q is -C(O)NH-, then R5 is not benzyl.
2. A compound of formula II:
R3 O
I II
R1-SO2-N(R2)-C-Q-CH-C-R6 II
I I
H R5 R1 is selected from the group consisting of alkyl, substimted alkyl, aryl, substimted aryl, cycloalkyl, heterocyclic, substimted heterocylic, heteroaryl and substituted heteroaryl;
R2 and R3, together with the nitrogen atom bound to R2 and the carbon atom bound to R3, form a saturated heterocyclic group or a samrated substimted heterocyclic group with the proviso that when monosubstituted, the substituent on said samrated heterocyclic group is not carboxyl;
R5 is selected from the group consisting of -(CH2)n-aryl and -(CH2)n-heteroaryl, where n is an integer equal to 1 to 4; R6 is selected from the group consisting of amino, alkoxy, substimted alkoxy, cycloalkoxy, substimted cycloalkoxy, -O-(N-succinimidyl), -NH- adamantyl, -O-cholest-5-en-3-β-yl, -NHOY where Y is hydrogen, alkyl, substimted alkyl, aryl, and substimted aryl, -NH(CH2)pCOOY where /? is an integer of from 1 to 8 and Y is as defined above, where R9 is selected from the group consisting of -C(O)-aryl and -C(O)-substituted aryl and R10 is selected from the group consisting of hydrogen and -CH2COORn where R11 is alkyl, and -NHSO2Z where Z is alkyl, substimted alkyl, cycloalkyl, substimted cycloalkyl, aryl, substimted aryl, heteroaryl, substimted heteroaryl, heterocyclic and substituted heterocyclic; Q is -C(X)NR7- wherein R7 is selected from the group consisting of hydrogen and alkyl, and X is selected from the group consisting of oxygen and sulfur; and pharmaceutically acceptable salts thereof, with the following provisos: A. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -NH(CH2)2CO2Et or -(lR,2S,5R)-(-)-menthyl ester; B. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a 3-β-phenyl-D-pyrrolidin-2-yl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OCH2CH3; C. when R1 is l-N-methyl-3-methyl-5-chloropyrazol-4-yl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OCH3;
D. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a pyrrolidin-2-yl ring, R5 is
D-benzyl and Q is -C(O)NH-, then R6 is not -OCH2CH3; and
E. when R1 is 4-methylphenyl, R2 and R3 together with the pendent nitrogen and carbon atoms form a 5,5-dimethyl-l ,l-dioxo-thiaprolyl ring, R5 is benzyl and Q is -C(O)NH-, then R6 is not -OC(CH3)3.
3. The compound according to Claims 1 or 2, wherein R1 is selected from the group consisting of aryl, substimted aryl, heterocyclic, substimted heterocylic, heteroaryl and substimted heteroaryl.
4. The compound according to Claims 1 or 2, wherein R1 is selected from the group consisting of 4-methylphenyl, methyl, benzyl, n-butyl, 4-chlorophenyl, 1 -naphthyl, 2-naphthyl, 4-methoxyphenyl, phenyl, 2 ,4 ,6-trimethylphenyl , 2-(methoxycarbonyl)phenyl , 2-carboxyphenyl , 3,5-dichlorophenyl, 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 3,4-dimethoxyphenyl, 4-(CH3C(O)NH-)phenyl, 4-trifluoromethoxy phenyl, 4- cyanophenyl, isopropyl, 3,5-di-(trifluoromethyl)phenyl, 4-t-butylphenyl, 4-t- butoxyphenyl, 4-nitrophenyl, 2-thienyl, l-N-methyl-3-methyl-5- chloropyrazol-4-yl, phenethyl, l-N-methylimidazol-4-yl, 4-bromophenyl, 4-amidinophenyl, 4-methylamidinophenyl, 4-[CH3SC(=NH)]phenyl, 5-chloro-2-thienyl, 2,5-dichloro-4-thienyl, l-N-methyl-4-pyrazolyl,
2-thiazolyl, 5-methyl-l,3,4-thiadiazol-2-yl, 4-[H2NC(S)]phenyl, 4-aminophenyl, 4-fluorophenyl, 2-fluorophenyl, 3 -fluorophenyl, 3,5- difluorophenyl, pyridin-3-yl, pyrimidin-2-yl, and 4-(3'-dimethylamino-n- propoxy)-phenyl.
5. The compound according to Claims 1 or 2, wherein R2 and R3 together with the nitrogen atom bound to the R2 substituent and the carbon bound to the R3 substituent form a heterocyclic or substimted heterocyclic group of 4 to 6 ring atoms having 1 to 2 heteroatoms in the ring selected from the group consisting of nitrogen, oxygen and sulfur, which ring is optionally substimted with 1 to 2 substiments selected from the group consisting of fluoro, methyl, hydroxy, amino, phenyl, thiophenyl and thiobenzyl, or can be fused to another samrated heterocyclic or cycloalkyl ring such as a cyclohexyl ring to provide for a fused ring heterocycle of from 10 to 14 ring atoms having 1 to 2 heteroatoms in the ring selected from the group consisting of nitrogen, oxygen and sulfur.
6. A compound according to Claims 1 or 2, wherein the R2 and R3 heterocyclic ring is selected from the group consisting of azetidin-2-yl, thiazolidin-4-yl, piperidin-2-yl, piperizin-2-yl, thiomorpholin-3-yl and pyrrolidin-2-yl.
7. The compound according to Claims 1 or 2, wherein the R2 and R3 substimted heterocyclic ring is selected from the group consisting of 4-hydroxypyrrolidin-2-yl, 4-fluoropyrrolidin-2-yl, 3-phenylpyrrolidin-2-yl, 3-thiophenylpyrrolidin-2-yl , 4-aminopyrrolidin-2-yl , 3-methoxypyrrolidin-2- yl, 4,4-dimethylpyrrolidin-2-yl, 4-N-Cbz-piperizin-2-yl, 5,5-dimethyl- thiazolidin-4-y 1 , 1,1 -dioxo-thiazolidin-4-y 1 , L- 1 , 1 -dioxo-5 , 5 - dimethylthiazolidin-4-yl and 1,1-dioxothiomorpholinyl.
8. The compound according to Claims 1 or 2, wherein R5 is selected from the group consisting of benzyl, phenethyl, -CH2-(3-indolyl), -CH2-(l-naphthyl), -CH2-(2-naphthyl), -CH2-(2-thienyl), -CH2-(3-pyridyl), -CH2-(5-imidazolyl), -CH2-3-(l,2,4-triazolyl) and -CH2-(2-thiazolyl).
9. The compound according to Claim 2, wherein R6 is selected from the group consisting of methoxy, ethoxy, z'sø-propoxy, n-butoxy, t-butoxy, cyclopentoxy, neø-pentoxy, 2-α-wø-propyl-4-β- methylcyclohexoxy , 2-β-isopropyl-4-β-methylcyclohexoxy , -NH2, benzyloxy, -NHCH2COOH, -NHCH2CH2COOH, -NH-adamantyl,
-NHCH2CH2COOCH2CH3, -NHSO2-/?-CH3-φ, -NHOR8 where R8 is hydrogen, methyl, iso-pτopyl or benzyl, O-(N-succinimidyl), -O-cholest-5-en-3-β-yl, -OCH2-OC(O)C(CH3)3, -O(CH2)zNHC(O)W where z is 1 or 2 and W is selected from the group consisting of pyrid-3-yl, N- methylpyridyl, and N-methyl-l ,4-dihydro-pyrid-3-yl and -NR"C(O)-R' where R' is aryl, heteroaryl or heterocyclic and R" is hydrogen or -CH2C(O)OCH2CH3.
10. A compound selected from the group consisting of:
N-(methanesulfonyl)-L-prolyl-L-phenylalanine
N-(α-toluenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-(N-methyl)phenylalanine
N-(toluene-4-sulfonyl)-L-pipecolinyl-L-phenylalanine
N-(toluene-4-sulfonyl)-D-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-(4-hydroxy)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-proly 1-D , L-homophenylalanine
N-(4-chlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-( 1 -naphthalenesulfonyl)-L-prolyl-L-phenylalanine
N-(2-naphthalenelsulfonyl)-L-prolyl-L-phenylalanine
N-(4-methoxybenzenesulfonyl)-L-prolyl-L-phenylalanine N-(4-tert-butylbenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-(4-fluoro)prolyl-L-phenylalanine
N-(«-butanesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine
N-(2-methoxycarbonylbenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(2-carboxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-thiaprolyl-L-phenylalanine
N-(3 ,5-dichlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-trifluoromethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(3,4-dichlorobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-D,L-(3-phenyl)prolyl-L-phenylalanine
N-(3,4-dimethoxybenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-nitrobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-acetamidobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-cyanobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-tryptophan
N-(toluene-4-sulfonyl)-L-prolyl-β-(l-naphthyl)-L-alanine
N-(toluene-4-sulfonyl)-L-prolyl-β-(2-naphthyl)-L-alanine
N-(toluene-4-sulfonyl)-L-prolyl-β-(2-thienyl)-L-alanine
N-(isopropanesulfonyl)-L-prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-β-(3-pyridyl)-L-alanine
N-(toluene-4-sulfonyl)-L-(4-phenylthio)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-(4-benzylthio)-L-prolyl-L-phenylalanine N-(toluene-4-sulfonyl)-L-prolyl-L-histidine
N-(toluene-4-sulfonyl)-L-(4-amino)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalaninamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-methoxyamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-benzyloxyamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-(toluene-4- sulfonyl)amide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalaninyl-β-alanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-hydroxyamide
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine isopropyl ester
N-(toluene-4-sulfonyl)-L-(4-hydroxy)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalaninyl-(N-benzoyl)glycine ethyl ester
N-(toluene-4-sulfonyl)-L-(4-fluoro)prolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-thiaprolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine ethyl ester
N-(2-methoxycarbonylbenzenesulfonyl)-L-prolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-(3-phenyl)prolyl-L-phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-(4-methoxy)prolyl-L-phenylalanine N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine (lS,2R,5S)-( + )- menthyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine N-hydroxysuccinimide ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-(nicotinamido)ethyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-(l -methy lpyridinium-
3-amido)ethyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine cholesteryl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine 2-(l-methyl-l ,4- dihydropyridinyl-3-amido)ethyl ester
N-(thiophene-2-sulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(thiophene-2-sulfonyl)-L-prolyl-L-phenylalanine
N-(5-chloro-l,3-dimethylpyrazole-4-sulfonyl)-L-prolyl-L-phenylalanine
N-(2-phenylethanesulfonyl)-L-prolyl-L-phenylalanine
N-( 1 -methylimidazole-4-sulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-( 1 -methy limidazole-4-sulfony l)-L-prolyl-L-pheny lalanine
N-(4-amidinobenzenesulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(4-amidinobenzenesulfonyl)-L-prolyl-L-phenylalanine
N-(4-thiomethoxyimidatylbenzene-4-sulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-[4-(N-methylthioamido)benzenesulfonyl]-L-prolyl-L-phenylalanine methyl ester N-(toluene-4-sulfonyl)-L-prolyl-D,L-β-(l,2,4-triazol-3-yl)alanine
N-(toluene-4-sulfonyl)-L-prolyl-D,L-β-(thiazol-2-yl)alanine
N-[4-(3-dimethylaminopropyloxy)benzenesulfonyl]-L-prolyl-L- phenylalanine N-(toluene-4-sulfonyl)-L-pyrrolidin-2-yl-thiocarbonyl-L-phenylalanine
N-(4-thiocarbamoylbenzenesulfonyl)-L-(5,5-dimethyl)thiaprolyl-L- phenylalanine benzyl ester
N-(4-cyanobenzenesulfonyl)-L-(5,5-dimethyl)thiaprolyl-L-phenylalanine benzyl ester
N-(toluene-4-sulfonyl)-L-prolyl-D-phenylalanine
N-(toluene-4-sulfonyl)-L-(thiamorpholin-3-carbonyl)-L-phenylalanine
N-(toluene-4-sulfonyl)-[(l,l-dioxo)thiamorpholin-3-carbonyl]-L- phenylalanine
N-(toluene-4-sulfonyl)-L-(3,3-dimethyl)prolyl-L-phenylalanine
N-(toluene-4-sulfonyl)-L-(5,5-dimethyl-l , l-dioxo)thiaprolyl-L- phenylalanine
N-(toluene-4-sulfony 1)- [(1,1 -dioxo)thiamorpholin-3-carbonyl] -L- phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-prolyl-L-phenylalanine tert-butyl ester
N-(toluene-4-sulfonyl)-L-pyrrolidin-2-yl-thiocarbonyl-L-phenylalanine methyl ester
N-(benzenesulfonyl)-L-prolyl-L-phenylalanine methyl ester
N-(toluene-4-sulfonyl)-L-(5-oxo)prolyl-L-phenylalanine ethyl ester
N-(toluene-4-sulfonyl)-L-(5-oxo)prolyl-L-phenylalanine
and pharmaceutically acceptable salts thereof as well as any of the ester compounds recited above wherein one ester is replaced with another ester selected from the group consisting of methyl ester, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, isobutyl ester, sec-butyl ester and tert- butyl ester.
11. A method for binding VLA-4 in a biological sample which method comprises contacting the biological sample with a compound according to Claim 1 or 2 under conditions wherein said compound binds to VLA-4.
12. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of one or more of the compounds of Claims 1 or 2.
13. A method for the treatment of an inflammatory disease in a patient mediated by VLA-4 which method comprises administering to the patient the pharmaceutical composition of Claim 12.
14. The method according to Claim 13 wherein said inflammatory disease is selected from the group consisting of asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetis), inflammatory bowel disease (including ulcerative colitis and
Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
EP98937054A 1997-07-31 1998-07-31 Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4 Withdrawn EP1001975A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90358597A 1997-07-31 1997-07-31
US903585 1997-07-31
PCT/US1998/015327 WO1999006436A1 (en) 1997-07-31 1998-07-31 Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4

Publications (1)

Publication Number Publication Date
EP1001975A1 true EP1001975A1 (en) 2000-05-24

Family

ID=25417733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98937054A Withdrawn EP1001975A1 (en) 1997-07-31 1998-07-31 Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4

Country Status (12)

Country Link
EP (1) EP1001975A1 (en)
JP (1) JP2001512138A (en)
KR (1) KR20010022413A (en)
CN (1) CN1265675A (en)
AU (1) AU8585198A (en)
BR (1) BR9811573A (en)
CA (1) CA2291473A1 (en)
HU (1) HUP0002680A3 (en)
IL (1) IL133635A0 (en)
NO (1) NO20000414L (en)
PL (1) PL338510A1 (en)
WO (1) WO1999006436A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903075B1 (en) 1997-05-29 2005-06-07 Merck & Co., Inc. Heterocyclic amide compounds as cell adhesion inhibitors
WO1998054207A1 (en) * 1997-05-30 1998-12-03 Celltech Therapeutics Limited Anti-inflammatory tyrosine derivatives
GB2365338B (en) * 1997-06-14 2002-04-03 Enzacta R & D Ltd Therapeutic systems
DK0991619T3 (en) 1997-06-23 2003-12-29 Tanabe Seiyaku Co Inhibitors of alpha 4-beta 1-mediated cell adhesion
US6362341B1 (en) 1997-07-31 2002-03-26 Athena Neurosciences, Inc. Benzyl compounds which inhibit leukocyte adhesion mediated by VLA-4
US6489300B1 (en) 1997-07-31 2002-12-03 Eugene D. Thorsett Carbamyloxy compounds which inhibit leukocyte adhesion mediated by VLA-4
US6559127B1 (en) 1997-07-31 2003-05-06 Athena Neurosciences, Inc. Compounds which inhibit leukocyte adhesion mediated by VLA-4
US6939855B2 (en) 1997-07-31 2005-09-06 Elan Pharmaceuticals, Inc. Anti-inflammatory compositions and method
US6583139B1 (en) 1997-07-31 2003-06-24 Eugene D. Thorsett Compounds which inhibit leukocyte adhesion mediated by VLA-4
US6423688B1 (en) 1997-07-31 2002-07-23 Athena Neurosciences, Inc. Dipeptide and related compounds which inhibit leukocyte adhesion mediated by VLA-4
US7030114B1 (en) 1997-07-31 2006-04-18 Elan Pharmaceuticals, Inc. Compounds which inhibit leukocyte adhesion mediated by VLA-4
US6492421B1 (en) 1997-07-31 2002-12-10 Athena Neurosciences, Inc. Substituted phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
US6197794B1 (en) * 1998-01-08 2001-03-06 Celltech Therapeutics Limited Phenylalanine derivatives
MY153569A (en) 1998-01-20 2015-02-27 Mitsubishi Tanabe Pharma Corp Inhibitors of ?4 mediated cell adhesion
US6329372B1 (en) 1998-01-27 2001-12-11 Celltech Therapeutics Limited Phenylalanine derivatives
EP1056714B1 (en) 1998-02-26 2004-08-11 Celltech Therapeutics Limited Phenylalanine derivatives as inhibitors of alpha4 integrins
US6521626B1 (en) 1998-03-24 2003-02-18 Celltech R&D Limited Thiocarboxamide derivatives
GB9811159D0 (en) * 1998-05-22 1998-07-22 Celltech Therapeutics Ltd Chemical compounds
GB9811969D0 (en) * 1998-06-03 1998-07-29 Celltech Therapeutics Ltd Chemical compounds
US6685617B1 (en) 1998-06-23 2004-02-03 Pharmacia & Upjohn Company Inhibitors of α4β1 mediated cell adhesion
GB9814414D0 (en) 1998-07-03 1998-09-02 Celltech Therapeutics Ltd Chemical compounds
US6339101B1 (en) * 1998-08-14 2002-01-15 Gpi Nil Holdings, Inc. N-linked sulfonamides of N-heterocyclic carboxylic acids or isosteres for vision and memory disorders
US6333340B1 (en) * 1998-08-14 2001-12-25 Gpi Nil Holdings, Inc. Small molecule sulfonamides for vision and memory disorders
GB9919776D0 (en) * 1998-08-31 1999-10-27 Zeneca Ltd Compoujnds
GB9821061D0 (en) 1998-09-28 1998-11-18 Celltech Therapeutics Ltd Chemical compounds
GB9821222D0 (en) 1998-09-30 1998-11-25 Celltech Therapeutics Ltd Chemical compounds
GB9825652D0 (en) 1998-11-23 1999-01-13 Celltech Therapeutics Ltd Chemical compounds
GB9826174D0 (en) 1998-11-30 1999-01-20 Celltech Therapeutics Ltd Chemical compounds
US6407066B1 (en) 1999-01-26 2002-06-18 Elan Pharmaceuticals, Inc. Pyroglutamic acid derivatives and related compounds which inhibit leukocyte adhesion mediated by VLA-4
US6518283B1 (en) 1999-05-28 2003-02-11 Celltech R&D Limited Squaric acid derivatives
US6534513B1 (en) 1999-09-29 2003-03-18 Celltech R&D Limited Phenylalkanoic acid derivatives
EP1242118B1 (en) * 1999-12-16 2009-11-11 Biogen Idec MA Inc. Methods of treating central nervous system ischemic or hemorrhagic injury using anti alpha4 integrin antagonists
US6455539B2 (en) 1999-12-23 2002-09-24 Celltech R&D Limited Squaric acid derivates
BR0016818A (en) 1999-12-28 2002-10-01 Pfizer Prod Inc Non-peptidyl inhibitors of vla-4-dependent cell adhesion useful in the treatment of inflammatory, autoimmune and respiratory diseases
ATE375330T1 (en) 2000-04-17 2007-10-15 Ucb Pharma Sa ENAMINE DERIVATIVES AS CELL ADHESION MOLECULES
US6403608B1 (en) 2000-05-30 2002-06-11 Celltech R&D, Ltd. 3-Substituted isoquinolin-1-yl derivatives
US6545013B2 (en) 2000-05-30 2003-04-08 Celltech R&D Limited 2,7-naphthyridine derivatives
US6960597B2 (en) * 2000-06-30 2005-11-01 Orth-Mcneil Pharmaceutical, Inc. Aza-bridged-bicyclic amino acid derivatives as α4 integrin antagonists
WO2002004426A1 (en) 2000-07-07 2002-01-17 Celltech R & D Limited Squaric acid derivatives containing a bicyclic heteroaromatic ring as integrin antagonists
EP1305291A1 (en) 2000-08-02 2003-05-02 Celltech R&amp;D Limited 3-substituted isoquinolin-1-yl derivatives
MY129000A (en) 2000-08-31 2007-03-30 Tanabe Seiyaku Co INHIBITORS OF a4 MEDIATED CELL ADHESION
JP2005022976A (en) * 2001-07-18 2005-01-27 Ajinomoto Co Inc Carboxylic acid derivative
MY140707A (en) 2002-02-28 2010-01-15 Mitsubishi Tanabe Pharma Corp Process for preparing a phenylalanine derivative and intermediates thereof
CA2477265A1 (en) * 2002-03-28 2003-10-09 Applied Research Systems Ars Holding N.V. Thiazolidine carboxamide derivatives as modulators of the prostaglandin f receptor
CA2514117A1 (en) * 2003-01-24 2004-08-12 Elan Pharmaceuticals, Inc. Composition for and treatment of demyelinating diseases and paralysis by administration of remyelinating agents
JP2007533749A (en) * 2004-04-20 2007-11-22 アムゲン インコーポレイティッド Arylsulfonamides and related methods of use
ATE546430T1 (en) * 2004-06-29 2012-03-15 Aventis Pharma Inc FKBP BINDING COMPOSITION AND PHARMACEUTICAL USE THEREOF
AU2008219007A1 (en) 2007-02-20 2008-08-28 Merrimack Pharmaceuticals, Inc. Methods of treating multiple sclerosis by administration of alpha-fetoprotein in combination with an integrin antagonist
CA2721093A1 (en) 2008-04-11 2009-10-15 Merrimack Pharmaceuticals, Inc. Human serum albumin linkers and conjugates thereof
HUE035098T2 (en) 2010-04-16 2018-05-02 Biogen Ma Inc Anti-vla-4 antibodies
CN102675244B (en) * 2011-03-16 2016-03-30 中国人民解放军军事医学科学院毒物药物研究所 Thiazine amide derivatives and in the purposes preparing neurodegenerative disease medicine
JP2017510627A (en) 2014-03-13 2017-04-13 プロセナ バイオサイエンシーズ リミテッド Combined treatment of multiple sclerosis
US11224600B2 (en) 2018-10-30 2022-01-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
CA3114240C (en) 2018-10-30 2023-09-05 Gilead Sciences, Inc. Imidazopyridine derivatives as alpha4beta7 integrin inhibitors
EP3873884A1 (en) 2018-10-30 2021-09-08 Gilead Sciences, Inc. Quinoline derivatives as alpha4beta7 integrin inhibitors
WO2020092401A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. COMPOUNDS FOR INHIBITION OF ALPHA 4β7 INTEGRIN
JP7491996B2 (en) 2019-08-14 2024-05-28 ギリアード サイエンシーズ, インコーポレイテッド Compounds for the inhibition of alpha4beta7 integrin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154732A (en) * 1990-10-18 1992-05-27 Nippon Kayaku Co Ltd Optical resolution method
AU693143B2 (en) * 1993-12-06 1998-06-25 Cytel Corporation CS-1 peptidomimetics, compositions and methods of using the same
US6306840B1 (en) * 1995-01-23 2001-10-23 Biogen, Inc. Cell adhesion inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9906436A1 *

Also Published As

Publication number Publication date
WO1999006436A1 (en) 1999-02-11
HUP0002680A3 (en) 2001-12-28
NO20000414D0 (en) 2000-01-27
JP2001512138A (en) 2001-08-21
NO20000414L (en) 2000-03-28
AU8585198A (en) 1999-02-22
BR9811573A (en) 2000-09-19
CN1265675A (en) 2000-09-06
CA2291473A1 (en) 1999-02-11
IL133635A0 (en) 2001-04-30
PL338510A1 (en) 2000-11-06
HUP0002680A2 (en) 2001-07-30
KR20010022413A (en) 2001-03-15

Similar Documents

Publication Publication Date Title
EP1001974B1 (en) 4-amino-phenylalanine type compounds which inhibit leukocyte adhesion mediated by vla-4
EP1001975A1 (en) Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4
EP1000051B1 (en) Carbamyloxy compounds which inhibit leukocyte adhesion mediated by vla-4
AU756696B2 (en) Substituted phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
US7229970B2 (en) Carbamyloxy compounds which inhibit leukocyte adhesion mediated by VLA-4
EP1001971A1 (en) Dipeptide and related compounds which inhibit leukocyte adhesion mediated by vla-4
WO1999006433A1 (en) Compounds which inhibit leukocyte adhesion mediated by vla-4
EP0994895A1 (en) Dipeptide compounds which inhibit leukocyte adhesion mediated by vla-4
CA2290748A1 (en) Sulfonylated dipeptide compounds which inhibit leukocyte adhesion mediated by vla-4
US6949570B2 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
US6423688B1 (en) Dipeptide and related compounds which inhibit leukocyte adhesion mediated by VLA-4
US6362341B1 (en) Benzyl compounds which inhibit leukocyte adhesion mediated by VLA-4
US6291453B1 (en) 4-amino-phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
US7166580B2 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
WO2000043415A1 (en) Compounds which inhibit leukocyte adhesion mediated by vla-4
MXPA00000708A (en) Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20000225;LT PAYMENT 20000225;LV PAYMENT 20000225;MK PAYMENT 20000225;RO PAYMENT 20000225;SI PAYMENT 20000225

17Q First examination report despatched

Effective date: 20010710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011121

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1026219

Country of ref document: HK