EP0994757B1 - Process and system for controlling or pre-setting a roll stand - Google Patents

Process and system for controlling or pre-setting a roll stand Download PDF

Info

Publication number
EP0994757B1
EP0994757B1 EP98940053A EP98940053A EP0994757B1 EP 0994757 B1 EP0994757 B1 EP 0994757B1 EP 98940053 A EP98940053 A EP 98940053A EP 98940053 A EP98940053 A EP 98940053A EP 0994757 B1 EP0994757 B1 EP 0994757B1
Authority
EP
European Patent Office
Prior art keywords
rolling
neural network
model
fsi
fri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98940053A
Other languages
German (de)
French (fr)
Other versions
EP0994757A1 (en
Inventor
Roland BRÜSTLE
Uwe Rietbrock
Clemens SCHÄFFNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0994757A1 publication Critical patent/EP0994757A1/en
Application granted granted Critical
Publication of EP0994757B1 publication Critical patent/EP0994757B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/20Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • B21B2275/12Roll torque

Definitions

  • the invention relates to a method for controlling and / or Presetting of a roll stand for rolling a rolled strip According to the preamble of claim 1. It further relates to a corresponding device for carrying out the method.
  • a method according to the preamble of claim 1 and a Corresponding device are for example from the suaufsatz “Experiences with the use of neural networks in the Walzwerksautomatmaschine” by D. Lindhoff et al., Published in Stahl und Eisen, Volume 114 (1994), No. 4, pages 49 to 53, known.
  • From DE 195 27 521 C1 is a method of control and / or presetting a rolling stand for rolling a Metal band known in which the control and / or presetting of the roll stand in dependence on a rolling force, a rolling moment or an overfeed takes place, wherein the Rolling force, the rolling moment and / or the lead by means of a Roll model at least depending on the hardness of the Metal band and / or the friction between the metal band and the rolls of the rolling stand are calculated.
  • the object is achieved by a method with the Features of claim 1 and a device with the features of claim 6 solved.
  • reference symbols FS i denote the lead on the ith frame
  • MR i the rolling moment on the ith frame
  • FR i the rolling force on the ith frame
  • FT i the strip tension on the ith frame
  • eps i the relative decrease in thickness on the i -th framework
  • MS the material hardness, ie the hardness of the rolled strip
  • V i the belt speed after the ith frame
  • H i the strip thickness after the ith frame.
  • Reference numerals 1, 2, 3, 4 and 5 denote rolling stands, reference numerals 6 a uncoiler, reference numeral 7 a rolled strip and 8, a coiler.
  • FIG. 2 illustrates the physical relationships in a roll gap, which are advantageously included in the modeling with a rolling model.
  • the conditions in the nip are advantageously modeled by a strip model, where it is sufficient for reasons of symmetry to model only the upper or only the lower part of the roll stand, so that a boundary of the rolling model is the axis of symmetry 23 of the rolled strip 27.
  • the strip 27 is split in the region of the contact surface strip - roller in strips 28 (due to the clarity, only one strip is provided with a reference numeral) perpendicular to the direction of movement of the strip 27.
  • the material tension forces F Q are calculated in the horizontal and vertical directions and adjusted to each other via equilibrium conditions at the strip edges.
  • some material tension forces F Q are entered by way of example.
  • the vertical material tension forces F Q lead to a flattening 26 of the roller 21.
  • the calculation of the flattened roller radius R B is carried out iteratively with the aid of the strip model and a model which describes the deformation of the roller.
  • the flow sheath 20 is the location where the material is straight with the peripheral speed of the roller 21 moves. In front the flow sheath 20, the material moves slower, behind the flow sheath 20 faster than the peripheral speed the roller 21. Except at the location of the flow sheath 20 occurs accordingly everywhere between work roll 21 and material one Relative movement 24, 25 on. This relative movement 24, 25 leads to considerable friction forces.
  • FIG. 3 shows an improvement of the output variables of a rolling model 32 by changing input variables 32 of the rolling model 31 by means of a neural network based Information Processing 33.
  • the rolling model 31 determines depending on the Input variables 30 and 32 Output variables 34. These output variables are rolling force, rolling moment and / or overfeed.
  • the Inputs 32 are made by one on neural networks based information processing or a neural Network 33 as a function of input values 35 of the neural Network 33 is formed.
  • the input variables 30 and 32 are z. As the tensile force in the rolled strip, the bandwidth, the inlet thickness of the rolled strip, the hardness of the rolled strip and / or the friction between roller and rolled strip.
  • the input variables 35 of the neural network z.
  • B. material-specific Data such as B. the alloying shares, the inlet thickness, the outlet thickness and characteristics of a previous processing such as B. Thickness reduction or temperature in the preceding Processing.
  • FIG. 4 shows another possibility for improving the output variables a rolling model 41 by correcting the output variables 47 of the rolling model 41. Also the procedure as shown in FIG 4 is not the subject of the present invention Invention.
  • the rolling model 41 is determined as a function of Input variables 43, such as material hardness, friction between Rolls and rolled strip, tension, belt width or inlet thickness rolled strip, outputs 47. These outputs are rolling force, rolling moment and / or overfeed.
  • the output variables 47 of the rolling model 41 are replaced by a correction block 45 corrected in response to correction parameters 44.
  • Output variables of the correction block 45 are corresponding corrected values for rolling force FR, rolling moment MR and / or lead FS.
  • the Correction parameters 44 are by means of a neural network 42 determined as a function of input variables 46.
  • reference numeral 51 denotes a rolling model.
  • Input variables 64 and MS of the rolling model 51 are the material hardness MS as indicated by reference numeral 64 rolling stock or scaffold-specific data such. B. friction between Rolls and rolled strip, tension, belt width and inlet thickness of the rolled strip.
  • the material hardness MS is using a neural network, material network 50, depending on certain Input variables 60 are calculated. These input variables 60 can be: alloy parts, inlet thickness, outlet thickness, Temperature as well as information for the characterization of preprocessing such as B. previous degree of reduction or previous processing temperature.
  • Outputs 65 of the Rolling model 51 are values for rolling force, rolling moment and / or Overfeed.
  • correction block 53 in dependence corrected by correction parameters FRCP, MRCP, FSCP, by means of a neural network, scaffolding network 52, depending on of inputs 61.
  • input variables 61 are u. a. the tape thickness, the bandwidth as well roll-specific data.
  • Output variables 66 of the correction element 53 are corrected values for rolling force, rolling moment and / or Overfeed. These are fed to a further correction element 55, this by means of the correction parameters FRCD, MRCD and FSCD further corrected.
  • the correction parameters FRCD, MRCD, FSCD are using a neural network, daytime network 54, calculated as a function of input variables 62.
  • Input variables are u. a. Strip thickness, belt width and roll-specific Dates.
  • Output variables 67 of the correction element 55 are corrected values for rolling force, rolling moment and overfeed, by means of another correction element in dependence of correction parameters FRCS, MRCS and FSCS on Getting corrected.
  • the correction parameters FRCS, MRCS, FSCS be using a neural network, speed network 56, calculated as a function of input variables 63.
  • the input variables 63 are the speed of the rolled strip as well u. a. Tape thickness, bandwidth and roll specific data.
  • output 68 of the correction element 57 are corrected values for rolling force, rolling moment and overfeed, by means of a another correction element 59 as a function of a correction factor ⁇ for fine correction and adaptation to the current Rolled strip to be corrected.
  • Output variables of the correction element 59 are corrected values for rolling force FR, rolling moment MR and lead FS.
  • the correction members 53, 55, 57, 59 can z. B. multipliers. Basically, others come too Corrective strategies in question. Such correction strategies or joins of neural networks that are for the given Application can be used are known.
  • the material network 50 provides the material hardness MS z. In Form of the regression parameters MSI, MSO described in FIG and MSE.
  • the skeleton network 52 provides framework-specific correction factors FRCP, MRCP and FSCP for rolling force, rolling moment and Overfeed.
  • the material network 50 and the skeleton network 52 become advantageously trained with data, material and Represent the rolling stand over the life of the roll stand.
  • the daily network 54 supplies the correction factors FRCD, MRCD and FSCD for rolling force, rolling moment and overfeed, which is the relative small changes according to the daily form of the mill stand describe. Accordingly, the training of the day network is done 54 with young records, z. For example, records that are not older than three days.
  • the speed network 56 provides the speed-dependent Correction factors FRCS, MRCS and FSCS for rolling force, Rolling moment and advance. With the speed network 56 In particular, friction-specific deviations are compensated.
  • the friction between roller and rolled strip is very strong from the belt speed. The friction is i. a. like this smaller, the higher the belt speed is, as between Rolled strip and rolls with increasing speed Lubricating film forms.
  • FIG. 6 shows a training method for an inventive Structure according to FIG. 5.
  • MSE, MSI represent this and MSO the material hardness according to MS in FIG 5.
  • the meaning MSE, MSI and MSO is explained in FIG. FR, MR, FS, ⁇ , FRCL, MRCL, FSCL, FRCD, MRCD, FSCD, FRCS, MRCS and FSCS have the same meaning as in FIG 5.
  • the input variables 86, 87, 88, 89 correspond to the input variables 60, 61, 62, 63 in FIG 5.
  • Reference numerals 76, 77, 78 denote material networks with the associated training or learning algorithms.
  • Reference numeral 81 denotes a scaffolding net with an associated one Learning or training algorithm
  • Reference numeral 83 a speed network with associated Learning algorithm.
  • Reference numeral 70 denotes a data memory or a database, in the data AC, FRA, MRA and FSA stored, the characteristics of a representative Cross-section of all rolled in the corresponding mill / rolling mill Form bands.
  • FRA, MCA and FSA are the actual ones Values for rolling force, rolling moment and advance over one long period, e.g. over the life of the mill stand, considered. They are formed from the roll-specific data AC.
  • Function block 80 denotes an inverted one Walzmodell and a regression model, whereby by means of the inverted Roll model from the data AC the actual material hardness determined on the individual stands of the rolling mill is and where by means of the regression model of the Values for material hardness of the individual scaffolds the actual Values for the parameters MSE, MSI and MSO are formed.
  • MSO the material networks 76, 77, 78 are trained.
  • a rolling model calculates 79 values for rolling force, Rolling moment and advance.
  • the input quantities correspond 90 the input variables 64 of FIG. 5
  • the skeleton network 81 becomes dependent on the input variables 87 the data AC, FRA, MRA and FSA as well as the output quantities of the Roll model 79 trains.
  • a correction block 53 (see FIG 5) are the output variables of the roll model 79 with the correction parameters FRCL, MRCL and FSCL, which are the skeleton network 81 issues, corrected.
  • Output variables of the daily network 82 are the correction parameters FRCD, MRCD and FSCD, the input variables in a correction block 55, by means of which the output variables of the correction block 53 are corrected.
  • the parameters DC, FRD, MRD and FSD from the database 71 the data AC, FRA, MRA and FSA, in contrast to to the data AC, FRA, MRA and FSA only rolling belts of the last one Represent the day or the last days.
  • the outputs of the correction block 55, the input variables 89 and the ACC data are input variables in the speed network 83 and its learning algorithm. Furthermore, go in the speed network 83 or its learning algorithm correction parameters FRCS, MSCS and FSCS using a Speed correction element 85 are determined. there transforms the velocity correcting member 85 to a Standard speed normalized correction parameters FRC, FSC and MSC with respect to the actual speed of the rolled strip.
  • the data ACC correspond to the data AC, but only represent the current rolled strip. Contains accordingly the database or the data memory 72 only the data for the current rolled strip.
  • Output variables of the velocity network 83 are correction parameters FRCS, MRCS, FSCS, which are in enter a further correction block 57. The output of this Correction block enters a further correction block 59.
  • a parameter ⁇ which is stored in a memory 84.
  • Output of the correction block 59 are corrected values for rolling force FR, rolling moment MR and lead FS.
  • the adaptive values for rolling force FRA, rolling moment MRA, leading FSA used for training the neural networks and the correction values FRC, FSC and MSC for training of the neural networks for rolling force, overfeed and rolling moment become dependent on estimated values determined, which are calculated by means of a rolling model depending on the known data sets.
  • the training of neural networks thus takes place in a long-term learning part 73, a day or short-term learning part 74 as well a speed learning part 75.
  • FIG. 7 shows an alternative training of the material network, wherein the material hardnesses are used for n rolling stands.
  • reference numeral 70 denotes a database corresponding to FIG. 6, AC roll-specific data (see FIG. 6), reference numeral 100 a material network with a learning algorithm, 101 a regression model, and reference numeral 102 a rolling model.
  • the material hardnesses MS 1... N at the individual stands and optionally the rolled strip temperature T strip and the total thickness reduction eps 1... N assigned to the individual rolling stands are output from the material network 100.
  • the regression parameters MSU, MSI, MSE the material network 100, which consists of one or more neural networks, outputs the material hardnesses MS 1...
  • the regression parameter MST is a parameter representing the temperature dependency, which can optionally be calculated if the temperature T strip of the rolled strip also enters the material network 100. This parameter is particularly advantageous if the method according to the invention is not used for cold rolling but for hot rolling.
  • B denotes the band width, H i-1 the band thickness before the ith frame, H i the band thickness behind the ith frame, FT i-1 the band tension before the ith frame, FT i the band tension behind the i-th frame scaffold and v Wi the peripheral speed of the work rolls in the i-th scaffold.
  • FRC FR is FR ⁇ ⁇ FRCS FRCD ⁇ FRCV
  • MRC MR is MR ⁇ ⁇ MRCS MRCD ⁇ MRCV
  • FSC FS is FS ⁇ ⁇ FSCS FSCD ⁇ FSCV where FR is , MR is and FS is the current values for rolling force, rolling moment and overfeed.
  • either the material hardness or the friction can be determined. It is further conceivable to determine both quantities by means of a neural network. However, it has been shown that it is usually is sufficient, only one of the two unknowns, material hardness or friction, by means of a neural network. If the material hardness z. B. according to the invention by means of a neural network and for friction (rough) Estimates are used, the material network is able to the errors with respect to the rolling force, the rolling moment or the lead caused by inaccurate knowledge of the friction between Rolled strip and roller arise, correct.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

A process is disclosed for controlling and/or pre-setting a roll stand for rolling a strip. The roll stand is controlled and/or preset depending on at least one of the following values: rolling force, rolling torque and peripheral precession, which are calculated by means of a roll model. The calculation of the rolling force, rolling torque and peripheral precession by means of the roll model is carried out as a function of at least the hardness of the strip or the friction between the strip and the rolls of the roll stand, which are used as input values for the roll model. At least one of the input values of the roll model or at least one of the output values of the roll model is determined or corrected by at least one neural network.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung und/oder Voreinstellung eines Walzgerüstes zum Walzen eines Walzbandes nach dem Oberbegriff des Anspruchs 1. Sie betrifft ferner eine korrespondierende Einrichtung zur Durchführung des Verfahrens.The invention relates to a method for controlling and / or Presetting of a roll stand for rolling a rolled strip According to the preamble of claim 1. It further relates to a corresponding device for carrying out the method.

Ein Verfahren nach dem Oberbegriff des Anspruchs 1 und eine korrespondierende Einrichtung sind beispielsweise aus dem Fachaufsatz "Erfahrungen beim Einsatz neuronaler Netze in der Walzwerksautomatisierung" von D. Lindhoff et al., erschienen in Stahl und Eisen, Band 114 (1994), Heft 4, Seiten 49 bis 53, bekannt.A method according to the preamble of claim 1 and a Corresponding device are for example from the Fachaufsatz "Experiences with the use of neural networks in the Walzwerksautomatisierung "by D. Lindhoff et al., Published in Stahl und Eisen, Volume 114 (1994), No. 4, pages 49 to 53, known.

Aus der DE 44 16 317 A1 ist ein ähnliches Verfahren bekannt. Bei dieser Schrift erfolgt aber keine Korrektur der Walzkraft, des Walzmoments und/oder der Voreilung mittels eines weiteren neuronalen Netzes.From DE 44 16 317 A1 a similar method is known. In this document, but no correction of the rolling force, the rolling moment and / or the lead by means of a further neural network.

Aus der DE 195 27 521 C1 ist ein Verfahren zur Steuerung und/oder Voreinstellung eines Walzgerüsts zum Walzen eines Metallbandes bekannt, bei dem die Steuerung und/oder Voreinstellung des Walzgerüsts in Abhängigkeit von einer Walzkraft, einem Walzmoment oder einer Voreilung erfolgt, wobei die Walzkraft, das Walzmoment und/oder die Voreilung mittels eines Walzmodells zumindest in Abhängigkeit von der Härte des Metallbandes und/oder der Reibung zwischen dem Metallband und den Walzen des Walzgerüst berechnet werden.From DE 195 27 521 C1 is a method of control and / or presetting a rolling stand for rolling a Metal band known in which the control and / or presetting of the roll stand in dependence on a rolling force, a rolling moment or an overfeed takes place, wherein the Rolling force, the rolling moment and / or the lead by means of a Roll model at least depending on the hardness of the Metal band and / or the friction between the metal band and the rolls of the rolling stand are calculated.

Zur Voreinstellung einer Walzstraße bzw. eines Walzgerüstes vor Einfädeln des zu walzenden Walzbandes bzw. zur Steuerung der Walzstraße bzw. des Walzgerüstes nach Einfädeln des Walzbandes müssen Größen wie Walzkraft, Walzmoment oder Voreilung oder mehrere dieser Größen bekannt sein. Es ist möglich, diese Größen mittels eines Walzmodells zu ermitteln, in das als Eingangsgrößen die Bandhöhe, der Einlauf des Walzbandes, die Bandbreite, der Bandzug, die Materialhärte und/oder die Reibung zwischen Walzen und Walzband eingehen. Es hat sich jedoch gezeigt, dass bei einem derartigen Verfahren die Qualitätsanforderungen, insbesondere für höherwertige Stähle, häufig nicht eingehalten werden können. Entsprechend ist es Aufgabe der Erfindung, die Qualität eines gewalzten Stahls, insbesondere durch Einhalten von Dicken oder Härtetoleranzen, zu erhöhen.For presetting a rolling train or a roll stand before threading the rolled strip to be rolled or for control the rolling train or the roll stand after threading the rolled strip must be variables such as rolling force, rolling moment or overfeed or more of these sizes. It is possible, to determine these variables by means of a rolling model, in the as input variables the band height, the inlet of the rolled strip, the band width, the strip tension, the material hardness and / or the Friction between rollers and rolled strip. It has However, it has been shown that in such a process the quality requirements, especially for higher quality steels, often can not be met. It is accordingly Object of the invention, the quality of a rolled steel, in particular by compliance with thicknesses or hardness tolerances, to increase.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Einrichtung mit den Merkmalen des Anspruchs 6 gelöst.The object is achieved by a method with the Features of claim 1 and a device with the features of claim 6 solved.

Weitere vorteilhafte und erfinderische Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen, anhand der Zeichnungen und in Verbindung mit den Unteransprüchen. Im einzelnen zeigen:

FIG 1
die physikalischen Verhältnisse einer Walzstraße sowie den Zusammenhang zwischen Dickenreduktion und Materialhärte,
FIG 2
die physikalischen Verhältnisse in einem Walzspalt,
FIG 3
ein Vorgehen am Eingang des Walzmodells,
FIG 4
ein Vorgehen am Ausgang des Walzmodells,
FIG 5
ein erfindungsgemäßes Vorgehen am Ein- und Ausgang des Walzmodells,
FIG 6
ein Trainingsverfahren für neuronale Netze in einer besonders vorteilhaften Ausgestaltung,
FIG 7
ein alternatives Trainingsverfahren für ein neuronales Netz zur Bestimmung der Materialhärte und
Further advantageous and inventive details will become apparent from the following description of exemplary embodiments, with reference to the drawings and in conjunction with the dependent claims. In detail show:
FIG. 1
the physical conditions of a rolling mill and the relationship between thickness reduction and material hardness,
FIG. 2
the physical conditions in a nip,
FIG. 3
a procedure at the entrance of the rolling model,
FIG. 4
a procedure at the exit of the rolling model,
FIG. 5
an inventive procedure at the input and output of the rolling model,
FIG. 6
a training method for neural networks in a particularly advantageous embodiment,
FIG. 7
an alternative training method for a neural network for determining the material hardness and

FIG 1 zeigt die physikalischen Verhältnisse einer Walzstraße sowie den Zusammenhang zwischen Dickenreduktion und Materialhärte. Dabei bezeichnen Bezugszeichen FSi die Voreilung am i-ten Gerüst, MRi das Walzmoment am i-ten Gerüst, FRi die Walzkraft am i-ten Gerüst, FTi den Bandzug am i-ten Gerüst, epsi die relative Dickenabnahme am i-ten Gerüst, MS die Materialhärte, d. h. die Härte des Walzbandes, Vi die Bandgeschwindigkeit nach dem i-ten Gerüst und Hi die Banddicke nach dem i-ten Gerüst. Die relative Dickenabnahme epsi ergibt sich dabei aus: epsi = H0 - Hi H0 mit H0: Banddicke beim Abhaspeln und
   Hi: Banddicke nach dem i-ten Gerüst, i = 1,2,3,4,5 bei 5 Gerüsten.
1 shows the physical conditions of a rolling train and the relationship between thickness reduction and material hardness. In this case, reference symbols FS i denote the lead on the ith frame, MR i the rolling moment on the ith frame, FR i the rolling force on the ith frame, FT i the strip tension on the ith frame, eps i the relative decrease in thickness on the i -th framework, MS the material hardness, ie the hardness of the rolled strip, V i the belt speed after the ith frame and H i the strip thickness after the ith frame. The relative decrease in thickness eps i results from: eps i = H 0 - H i H 0 with H 0 : strip thickness during unwinding and
H i : band thickness after the i-th scaffold, i = 1,2,3,4,5 for 5 scaffolds.

Die Voreilung FSi am i-ten Gerüst ist definiert als FSi = Vi Vwi mit Vwi = Umfangsgeschwindigkeit der i-ten Walze.The lead FS i at the i-th frame is defined as FS i = V i V wi with V wi = circumferential speed of the ith roller.

Wird die Walze kreisförmig angenommen, so ergibt sich die Umfangsgeschwindigkeit der i-ten Walze gemäß: Vwi = 2π • RAW • ni mit
RAW = Walzenradius der i-ten Walze und
ni = Drehzahl der i-ten Walze.
If the roll is assumed to be circular, the peripheral speed of the i-th roll results according to: V wi = 2π • R AW • n i With
R AW = roller radius of the i-th roller and
n i = speed of the i-th roller.

Bezugszeichen 1, 2, 3, 4 und 5 bezeichnen Walzgerüste, Bezugszeichen 6 einen Abhaspel, Bezugszeichen 7 ein Walzband und Bezugszeichen 8 einen Aufhaspel.Reference numerals 1, 2, 3, 4 and 5 denote rolling stands, reference numerals 6 a uncoiler, reference numeral 7 a rolled strip and 8, a coiler.

FIG 1 zeigt ferner den Zusammenhang zwischen Materialhärte MS und Dickenabnahme eps bzw. Dickenreduktion. Dieser Zusammenhang wird besonders geeignet durch die Funktion MS = MS(eps) = MSO + MSI • epsMSE beschrieben.FIG. 1 also shows the relationship between material hardness MS and thickness decrease eps or thickness reduction. This relationship is particularly suitable by the function MS = MS (eps) = MSO + MSI • eps MSE described.

FIG 2 verdeutlicht die physikalischen Zusammenhänge in einem Walzspalt, die vorteilhafterweise Eingang in die Modellierung mit einem Walzmodell finden. Die Verhältnisse im Walzspalt werden vorteilhafterweise durch ein Streifenmodell modelliert, wobei es aus Symmetriegründen ausreicht, nur den oberen oder nur den unteren Teil des Walzgerüstes zu modellieren, so dass eine Grenze des Walzmodells die Symmetrieachse 23 des Walzbandes 27 ist. Das Band 27 wird im Bereich der Kontaktfläche Band - Walze in Streifen 28 (aufgrund der Übersichtlichkeit ist nur ein Streifen mit einem Bezugszeichen versehen) senkrecht zur Bewegungsrichtung des Bandes 27 zerlegt. Innerhalb jedes Streifens 28 werden die Materialspannungskräfte FQ in horizontaler und vertikaler Richtung berechnet und über Gleichgewichtsbedingungen an den Streifenrändern aneinander angepasst. In FIG 2 sind einige Materialspannungskräfte FQ exemplarisch eingetragen. Die vertikalen Materialspannungskräfte FQ führen zu einer Abplattung 26 der Walze 21. Die Berechnung des abgeplatteten Walzenradius RB erfolgt iterativ mit Hilfe des Streifenmodells und eines Modells, das die Verformung der Walze beschreibt.FIG. 2 illustrates the physical relationships in a roll gap, which are advantageously included in the modeling with a rolling model. The conditions in the nip are advantageously modeled by a strip model, where it is sufficient for reasons of symmetry to model only the upper or only the lower part of the roll stand, so that a boundary of the rolling model is the axis of symmetry 23 of the rolled strip 27. The strip 27 is split in the region of the contact surface strip - roller in strips 28 (due to the clarity, only one strip is provided with a reference numeral) perpendicular to the direction of movement of the strip 27. Within each strip 28, the material tension forces F Q are calculated in the horizontal and vertical directions and adjusted to each other via equilibrium conditions at the strip edges. In FIG. 2, some material tension forces F Q are entered by way of example. The vertical material tension forces F Q lead to a flattening 26 of the roller 21. The calculation of the flattened roller radius R B is carried out iteratively with the aid of the strip model and a model which describes the deformation of the roller.

Die Fließscheide 20 ist der Ort, an dem sich das Material gerade mit der Umfangsgeschwindigkeit der Walze 21 bewegt. Vor der Fließscheide 20 bewegt sich das Material langsamer, hinter der Fließscheide 20 schneller als die Umfangsgeschwindigkeit der Walze 21. Außer am Ort der Fließscheide 20 tritt demnach überall zwischen Arbeitswalze 21 und Material eine Relativbewegung 24, 25 auf. Diese Relativbewegung 24, 25 führt zu erheblichen Reibkräften.The flow sheath 20 is the location where the material is straight with the peripheral speed of the roller 21 moves. In front the flow sheath 20, the material moves slower, behind the flow sheath 20 faster than the peripheral speed the roller 21. Except at the location of the flow sheath 20 occurs accordingly everywhere between work roll 21 and material one Relative movement 24, 25 on. This relative movement 24, 25 leads to considerable friction forces.

FIG 3 zeigt eine Verbesserung der Ausgangsgrößen eines Walzmodells 32 durch Veränderung von Eingangsgrößen 32 des Walzmodells 31 mittels einer auf neuronalen Netzen basierenden Informationsverarbeitung 33. Die Vorgehensweise gemäß FIG 3 als solche ist dabei nicht Gegenstand der vorliegenden Erfindung. Dabei ermittelt das Walzmodell 31 in Abhängigkeit der Eingangsgrößen 30 und 32 Ausgangsgrößen 34. Diese Ausgangsgrößen sind Walzkraft, Walzmoment und/oder Voreilung. Die Eingangsgrößen 32 werden mittels einer auf neuronalen Netzen basierenden Informationsverarbeitung oder eines neuronalen Netzes 33 in Abhängigkeit von Eingangsgrößen 35 des neuronalen Netzes 33 gebildet. Die Eingangsgrößen 30 und 32 sind z. B. die Zugkraft im Walzband, die Bandbreite, die Einlaufdicke des Walzbandes, die Härte des Walzbandes und/oder die Reibung zwischen Walze und Walzband. Von diesen wird vorteilhafterweise eine, insbesondere die Härte des Walzbandes, durch das neuronale Netz 33 ermittelt. In diesem Fall sind die Eingangsgrößen 35 des neuronalen Netzes z. B. materialspezifische Daten wie z. B. die Legierungsanteile, die Einlaufdicke, die Auslaufdicke sowie Kenndaten über eine vorherige Verarbeitung wie z. B. Dickereduktion oder Temperatur bei der vorhergehenden Verarbeitung.3 shows an improvement of the output variables of a rolling model 32 by changing input variables 32 of the rolling model 31 by means of a neural network based Information Processing 33. The procedure according to FIG. 3 as such is not the subject of the present invention. In this case, the rolling model 31 determines depending on the Input variables 30 and 32 Output variables 34. These output variables are rolling force, rolling moment and / or overfeed. The Inputs 32 are made by one on neural networks based information processing or a neural Network 33 as a function of input values 35 of the neural Network 33 is formed. The input variables 30 and 32 are z. As the tensile force in the rolled strip, the bandwidth, the inlet thickness of the rolled strip, the hardness of the rolled strip and / or the friction between roller and rolled strip. Of these, advantageously one, in particular the hardness of the rolled strip, through the neural network 33 detected. In this case, the input variables 35 of the neural network z. B. material-specific Data such as B. the alloying shares, the inlet thickness, the outlet thickness and characteristics of a previous processing such as B. Thickness reduction or temperature in the preceding Processing.

FIG 4 zeigt eine andere Möglichkeit zur Verbesserung der Ausgangsgrößen eines Walzmodells 41 durch Korrektur der Ausgangsgrößen 47 des Walzmodells 41. Auch die Vorgehensweise gemäß FIG 4 ist als solche nicht Gegenstand der vorliegenden Erfindung. Das Walzmodell 41 ermittelt in Abhängigkeit von Eingangsgrößen 43, wie etwa Materialhärte, Reibung zwischen Walzen und Walzband, Zugspannung, Bandbreite oder Einlaufdicke des Walzbandes, Ausgangsgrößen 47. Diese Ausgangsgrößen sind Walzkraft, Walzmoment und/oder Voreilung. Die Ausgangsgrößen 47 des Walzmodells 41 werden durch einen Korrekturblock 45 in Abhängigkeit von Korrekturparametern 44 korrigiert. Ausgangsgrößen des Korrekturblocks 45 sind entsprechend korrigierte Werte für Walzkraft FR, Walzmoment MR und/oder Voreilung FS. Es ist besonders vorteilhaft, die Ausgangsgrößen 47 des Walzmodells 41 durch Multiplikation mit den Korrekturparametern 44 zu korrigierten Werten für Walzkraft FR, Walzmoment MR oder Voreilung FS zu verknüpfen. Die Korrekturparameter 44 werden mittels eines neuronalen Netzes 42 in Abhängigkeit von Eingangsgrößen 46 ermittelt.FIG. 4 shows another possibility for improving the output variables a rolling model 41 by correcting the output variables 47 of the rolling model 41. Also the procedure as shown in FIG 4 is not the subject of the present invention Invention. The rolling model 41 is determined as a function of Input variables 43, such as material hardness, friction between Rolls and rolled strip, tension, belt width or inlet thickness rolled strip, outputs 47. These outputs are rolling force, rolling moment and / or overfeed. The output variables 47 of the rolling model 41 are replaced by a correction block 45 corrected in response to correction parameters 44. Output variables of the correction block 45 are corresponding corrected values for rolling force FR, rolling moment MR and / or lead FS. It is particularly advantageous the output variables 47 of the rolling model 41 by multiplication with the correction parameters 44 to corrected values for rolling force FR, rolling moment MR or lead FS to link. The Correction parameters 44 are by means of a neural network 42 determined as a function of input variables 46.

FIG 5 zeigt eine besonders vorteilhafte Ausgestaltung der Erfindung. Dabei bezeichnet Bezugszeichen 51 ein Walzmodell. Eingangsgrößen 64 und MS des Walzmodells 51 sind die Materialhärte MS sowie angedeutet durch Bezugszeichen 64 bestimmte walzband- bzw. gerüstspezifische Daten wie z. B. Reibung zwischen Walzen und Walzband, Zugspannung, Bandbreite und Einlaufdicke des Walzbandes. Die Materialhärte MS wird mittels eines neuronalen Netzes, Materialnetz 50, in Abhängigkeit bestimmter Eingangsgrößen 60 berechnet. Diese Eingangsgrößen 60 können sein: Legierungsanteile, Einlaufdicke, Auslaufdicke, Temperatur sowie Informationen zur Charakterisierung der Vorverarbeitung wie z. B. vorhergehender Reduktionsgrad oder vorhergehende Verarbeitungstemperatur. Ausgangsgrößen 65 des Walzmodells 51 sind Werte für Walzkraft, Walzmoment und/oder Voreilung. Diese werden in einem Korrekturblock 53 in Abhängigkeit von Korrekturparametern FRCP, MRCP, FSCP korrigiert, die mittels eines neuronalen Netzes, Gerüstnetz 52, in Abhängigkeit von Eingangsgrößen 61 berechnet werden. Diese Eingangsgrößen 61 sind u. a. die Banddicke, die Bandbreite sowie walzspezifische Daten. Ausgangsgrößen 66 des Korrekturgliedes 53 sind korrigierte Werte für Walzkraft, Walzmoment und/oder Voreilung. Diese werden einem weiteren Korrekturglied 55 zugeführt, das diese mittels der Korrekturparameter FRCD, MRCD und FSCD weiter korrigiert. Die Korrekturparameter FRCD, MRCD, FSCD werden mittels eines neuronalen Netzes, Tagesnetz 54, in Abhängigkeit von Eingangsgrößen 62 berechnet. Diese Eingangsgrößen sind u. a. Banddicke, Bandbreite sowie walzspezifische Daten. Ausgangsgrößen 67 des Korrekturgliedes 55 sind korrigierte Werte für Walzkraft, Walzmoment und Voreilung, die mittels eines weiteren Korrekturgliedes in Abhängigkeit von Korrekturparameter FRCS, MRCS und FSCS weiter korrigiert werden. Die Korrekturparameter FRCS, MRCS, FSCS werden mittels eines neuronalen Netzes, Geschwindigkeitsnetz 56, in Abhängigkeit von Eingangsgrößen 63 berechnet. Die Eingangsgrößen 63 sind die Geschwindigkeit des Walzbandes sowie u. a. Banddicke, Bandbreite und walzspezifische Daten. Ausgangsgröße 68 des Korrekturgliedes 57 sind korrigierte Werte für Walzkraft, Walzmoment und Voreilung, die mittels eines weiteren Korrekturgliedes 59 in Abhängigkeit eines Korrekturfaktors β zur Feinkorrektur und Anpassung an das aktuelle Walzband korrigiert werden. Ausgangsgrößen des Korrekturgliedes 59 sind korrigierte Werte für Walzkraft FR, Walzmoment MR und Voreilung FS. Die Korrekturglieder 53, 55, 57, 59 können z. B. Multiplikatoren sein. Grundsätzlich kommen auch anderen Korrekturstrategien in Frage. Derartige Korrekturstrategien bzw. Verknüpfungen von neuronalen Netzen, die für die vorgegebene Anwendung einsetzbar sind, sind bekannt.5 shows a particularly advantageous embodiment of the invention. Here, reference numeral 51 denotes a rolling model. Input variables 64 and MS of the rolling model 51 are the material hardness MS as indicated by reference numeral 64 rolling stock or scaffold-specific data such. B. friction between Rolls and rolled strip, tension, belt width and inlet thickness of the rolled strip. The material hardness MS is using a neural network, material network 50, depending on certain Input variables 60 are calculated. These input variables 60 can be: alloy parts, inlet thickness, outlet thickness, Temperature as well as information for the characterization of preprocessing such as B. previous degree of reduction or previous processing temperature. Outputs 65 of the Rolling model 51 are values for rolling force, rolling moment and / or Overfeed. These are in a correction block 53 in dependence corrected by correction parameters FRCP, MRCP, FSCP, by means of a neural network, scaffolding network 52, depending on of inputs 61. These input variables 61 are u. a. the tape thickness, the bandwidth as well roll-specific data. Output variables 66 of the correction element 53 are corrected values for rolling force, rolling moment and / or Overfeed. These are fed to a further correction element 55, this by means of the correction parameters FRCD, MRCD and FSCD further corrected. The correction parameters FRCD, MRCD, FSCD are using a neural network, daytime network 54, calculated as a function of input variables 62. These Input variables are u. a. Strip thickness, belt width and roll-specific Dates. Output variables 67 of the correction element 55 are corrected values for rolling force, rolling moment and overfeed, by means of another correction element in dependence of correction parameters FRCS, MRCS and FSCS on Getting corrected. The correction parameters FRCS, MRCS, FSCS be using a neural network, speed network 56, calculated as a function of input variables 63. The input variables 63 are the speed of the rolled strip as well u. a. Tape thickness, bandwidth and roll specific data. output 68 of the correction element 57 are corrected values for rolling force, rolling moment and overfeed, by means of a another correction element 59 as a function of a correction factor β for fine correction and adaptation to the current Rolled strip to be corrected. Output variables of the correction element 59 are corrected values for rolling force FR, rolling moment MR and lead FS. The correction members 53, 55, 57, 59 can z. B. multipliers. Basically, others come too Corrective strategies in question. Such correction strategies or joins of neural networks that are for the given Application can be used are known.

Das Materialnetz 50 liefert die Materialhärte MS z. B. in Form der in FIG 1 beschriebenen Regressionsparameter MSI, MSO und MSE. Das Gerüstnetz 52 liefert gerüstspezifische Korrekturfaktoren FRCP, MRCP und FSCP für Walzkraft, Walzmoment und Voreilung. Das Materialnetz 50 und das Gerüstnetz 52 werden vorteilhafterweise mit Daten trainiert, die Material und Walzgerüst über die Lebensdauer des Walzgerüstes repräsentieren.The material network 50 provides the material hardness MS z. In Form of the regression parameters MSI, MSO described in FIG and MSE. The skeleton network 52 provides framework-specific correction factors FRCP, MRCP and FSCP for rolling force, rolling moment and Overfeed. The material network 50 and the skeleton network 52 become advantageously trained with data, material and Represent the rolling stand over the life of the roll stand.

Das Tagesnetz 54 liefert die Korrekturfaktoren FRCD, MRCD und FSCD für Walzkraft, Walzmoment und Voreilung, die die relativ kleinen Änderungen entsprechend der Tagesform des Walzgerüstes beschreiben. Entsprechend erfolgt das Training des Tagesnetzes 54 mit jungen Datensätzen, z. B. Datensätzen, die nicht älter sind als drei Tage.The daily network 54 supplies the correction factors FRCD, MRCD and FSCD for rolling force, rolling moment and overfeed, which is the relative small changes according to the daily form of the mill stand describe. Accordingly, the training of the day network is done 54 with young records, z. For example, records that are not older than three days.

Das Geschwindigkeitsnetz 56 liefert die geschwindigkeitsabhängigen Korrekturfaktoren FRCS, MRCS und FSCS für Walzkraft, Walzmoment und Voreilung. Mit dem Geschwindigkeitsnetz 56 werden insbesondere reibungsspezifische Abweichungen kompensiert. Die Reibung zwischen Walze und Walzband hängt stark von der Bandgeschwindigkeit ab. Die Reibung ist i. a. um so kleiner, je höher die Bandgeschwindigkeit ist, da sich zwischen Walzband und Walzen mit zunehmender Geschwindigkeit ein Schmierfilm ausbildet.The speed network 56 provides the speed-dependent Correction factors FRCS, MRCS and FSCS for rolling force, Rolling moment and advance. With the speed network 56 In particular, friction-specific deviations are compensated. The friction between roller and rolled strip is very strong from the belt speed. The friction is i. a. like this smaller, the higher the belt speed is, as between Rolled strip and rolls with increasing speed Lubricating film forms.

FIG 6 zeigt ein Trainingsverfahren für eine erfindungsgemäße Struktur entsprechend FIG 5. Dabei repräsentieren MSE, MSI und MSO die Materialhärte entsprechend MS in FIG 5. Die Bedeutung von MSE, MSI und MSO ist in FIG 1 erklärt. FR, MR, FS, β, FRCL, MRCL, FSCL, FRCD, MRCD, FSCD, FRCS, MRCS und FSCS haben die gleiche Bedeutung wie in FIG 5. Die Eingangsgrößen 86, 87, 88, 89 entsprechen den Eingangsgrößen 60, 61, 62, 63 in FIG 5. Bezugszeichen 76, 77, 78 bezeichnen Materialnetze mit den zugehörigen Trainings- bzw. Lernalgorithmen. Bezugszeichen 81 bezeichnet ein Gerüstnetz mit einem zugehörigen Lern- bzw. Trainingsalgorithmus, Bezugszeichen 82 ein Tagesnetz mit zugehörigem Lern- bzw. Trainingsalgorithmus und Bezugszeichen 83 ein Geschwindigkeitsnetz mit zugehörigem Lernalgorithmus. Bezugszeichen 70 bezeichnet einen Datenspeicher bzw. eine Datenbasis, in den Daten AC, FRA, MRA und FSA abgespeichert sind, die Kenndaten für einen repräsentativen Querschnitt aller im entsprechenden Walzgerüst/Walzstraße gewalzten Bänder bilden. FRA, MCA und FSA sind die tatsächlichen Werte für Walzkraft, Walzmoment und Voreilung über einen langen Zeitraum, z.B. über die Lebensdauer des Walzgerüstes, betrachtet. Sie werden aus dem walzspezifischen Daten AC gebildet. Der Funktionsblock 80 bezeichnet ein invertiertes Walzmodell und ein Regressionsmodell, wobei mittels des invertierten Walzmodells aus den Daten AC die tatsächliche Materialhärte an den einzelnen Gerüsten der Walzstraße ermittelt wird und wobei mittels des Regressionsmodells aus den Werten für Materialhärte der einzelnen Gerüste die tatsächlichen Werte für die Parameter MSE, MSI und MSO gebildet werden. Mittels der vom Regressionsmodell 80 ermittelten Werte MSO, MSI und MSE werden die Materialnetze 76, 77, 78 trainiert. Mittels der Werte MSE, MSI und MSO, die vom Materialnetz 76, 77, 78 ausgegeben werden, sowie weiterer Eingangsgrößen 90 berechnet ein Walzmodell 79 Werte für Walzkraft, Walzmoment und Voreilung. Dabei entsprechen die Eingangsgrößen 90 den Eingangsgrößen 64 aus FIG 5.6 shows a training method for an inventive Structure according to FIG. 5. MSE, MSI represent this and MSO the material hardness according to MS in FIG 5. The meaning MSE, MSI and MSO is explained in FIG. FR, MR, FS, β, FRCL, MRCL, FSCL, FRCD, MRCD, FSCD, FRCS, MRCS and FSCS have the same meaning as in FIG 5. The input variables 86, 87, 88, 89 correspond to the input variables 60, 61, 62, 63 in FIG 5. Reference numerals 76, 77, 78 denote material networks with the associated training or learning algorithms. Reference numeral 81 denotes a scaffolding net with an associated one Learning or training algorithm, reference numeral 82 Day network with associated learning or training algorithm and Reference numeral 83 a speed network with associated Learning algorithm. Reference numeral 70 denotes a data memory or a database, in the data AC, FRA, MRA and FSA stored, the characteristics of a representative Cross-section of all rolled in the corresponding mill / rolling mill Form bands. FRA, MCA and FSA are the actual ones Values for rolling force, rolling moment and advance over one long period, e.g. over the life of the mill stand, considered. They are formed from the roll-specific data AC. Function block 80 denotes an inverted one Walzmodell and a regression model, whereby by means of the inverted Roll model from the data AC the actual material hardness determined on the individual stands of the rolling mill is and where by means of the regression model of the Values for material hardness of the individual scaffolds the actual Values for the parameters MSE, MSI and MSO are formed. By means of the values determined by the regression model 80 MSO, MSI and MSE the material networks 76, 77, 78 are trained. By means of the values MSE, MSI and MSO, from the material network 76, 77, 78 are output, as well as other input variables 90, a rolling model calculates 79 values for rolling force, Rolling moment and advance. The input quantities correspond 90 the input variables 64 of FIG. 5

Das Gerüstnetz 81 wird in Abhängigkeit der Eingangsgrößen 87 der Daten AC, FRA, MRA und FSA sowie der Ausgangsgrößen des Walzmodells 79 trainiert. Mittels eines Korrekturblocks 53 (vgl. FIG 5) werden die Ausgangsgrößen des Walzmodells 79 mit den Korrekturparametern FRCL, MRCL und FSCL, die das Gerüstnetz 81 ausgibt, korrigiert.The skeleton network 81 becomes dependent on the input variables 87 the data AC, FRA, MRA and FSA as well as the output quantities of the Roll model 79 trains. By means of a correction block 53 (see FIG 5) are the output variables of the roll model 79 with the correction parameters FRCL, MRCL and FSCL, which are the skeleton network 81 issues, corrected.

Mit den Ausgangsgrößen des Korrekturblocks 53, den Eingangsgrößen 88 sowie den Daten DC, FRD, MRD und FSD wird das Tagesnetz 82 trainiert. Ausgangsgrößen des Tagesnetzes 82 sind die Korrekturparameter FRCD, MRCD und FSCD, die Eingangsgrößen in einem Korrekturblock 55 sind, mittels dessen die Ausgangsgrößen des Korrekturblocks 53 korrigiert werden. Die Parameter DC, FRD, MRD und FSD aus der Datenbasis 71 entsprechen den Daten AC, FRA, MRA und FSA, wobei sie im Gegensatz zu den Daten AC, FRA, MRA und FSA nur Walzbänder des letzten Tages bzw. der letzten Tage repräsentieren.With the output variables of the correction block 53, the input variables 88 as well as the data DC, FRD, MRD and FSD becomes the daily network 82 trained. Output variables of the daily network 82 are the correction parameters FRCD, MRCD and FSCD, the input variables in a correction block 55, by means of which the output variables of the correction block 53 are corrected. The parameters DC, FRD, MRD and FSD from the database 71 the data AC, FRA, MRA and FSA, in contrast to to the data AC, FRA, MRA and FSA only rolling belts of the last one Represent the day or the last days.

Die Ausgangsgrößen des Korrekturblocks 55, die Eingangsgrößen 89 sowie die Daten ACC sind Eingangsgrößen in das Geschwindigkeitsnetz 83 bzw. dessen Lernalgorithmus. Ferner gehen in das Geschwindigkeitsnetz 83 bzw. dessen Lernalgorithmus Korrekturparameter FRCS, MSCS und FSCS ein, die mittels eines Geschwindigkeitskorrekturgliedes 85 ermittelt werden. Dabei transformiert das Geschwindigkeitskorrekturglied 85 auf eine Normgeschwindigkeit normierte Korrekturparameter FRC, FSC und MSC in bezug auf die aktuelle Geschwindigkeit des Walzbandes. Die Daten ACC entsprechen den Daten AC, wobei sie jedoch nur das aktuelle Walzband repräsentieren. Entsprechend enthält die Datenbasis bzw. der Datenspeicher 72 nur die Daten für das aktuelle Walzband. Ausgangsgrößen des Geschwindigkeitsnetzes 83 sind Korrekturparameter FRCS, MRCS, FSCS, die in einen weiteren Korrekturblock 57 eingehen. Der Ausgang dieses Korrekturblocks geht in einen weiteren Korrekturblock 59 ein. The outputs of the correction block 55, the input variables 89 and the ACC data are input variables in the speed network 83 and its learning algorithm. Furthermore, go in the speed network 83 or its learning algorithm correction parameters FRCS, MSCS and FSCS using a Speed correction element 85 are determined. there transforms the velocity correcting member 85 to a Standard speed normalized correction parameters FRC, FSC and MSC with respect to the actual speed of the rolled strip. The data ACC correspond to the data AC, but only represent the current rolled strip. Contains accordingly the database or the data memory 72 only the data for the current rolled strip. Output variables of the velocity network 83 are correction parameters FRCS, MRCS, FSCS, which are in enter a further correction block 57. The output of this Correction block enters a further correction block 59.

Ebenfalls Eingangsgröße des Korrekturblocks 59 bildet ein Parameter β, der in einem Speicher 84 abgespeichert ist. Ausgang des Korrekturblocks 59 sind korrigierte Werte für Walzkraft FR, Walzmoment MR und Voreilung FS. Die zum Training der neuronalen Netze verwendeten adaptiven Werte für Walzkraft FRA, Walzmoment MRA, Voreilung FSA bzw. die für das Training der neuronalen Netze verwendeten Korrekturwerte FRC, FSC und MSC für Walzkraft, Voreilung und Walzmoment werden in Abhängigkeit von Schätzwerten

Figure 00100001
Figure 00100002
Figure 00100003
ermittelt, die mittels eines Walzmodells in Abhängigkeit der bekannten Datensätze berechnet werden.Also input to the correction block 59 is a parameter β which is stored in a memory 84. Output of the correction block 59 are corrected values for rolling force FR, rolling moment MR and lead FS. The adaptive values for rolling force FRA, rolling moment MRA, leading FSA used for training the neural networks and the correction values FRC, FSC and MSC for training of the neural networks for rolling force, overfeed and rolling moment become dependent on estimated values
Figure 00100001
Figure 00100002
Figure 00100003
determined, which are calculated by means of a rolling model depending on the known data sets.

Das Training der neuronalen Netze erfolgt also in einem Langzeitlernteil 73, einem Tages- oder Kurzzeitlernteil 74 sowie einem Geschwindigkeitslernteil 75.The training of neural networks thus takes place in a long-term learning part 73, a day or short-term learning part 74 as well a speed learning part 75.

FIG 7 zeigt ein alternatives Training des Materialnetzes, wobei die Materialhärten für n Walzgerüste verwendet werden. Dabei bezeichnet Bezugszeichen 70 eine Datenbasis entsprechend FIG 6, AC walzspezifische Daten (vgl. FIG 6), Bezugszeichen 100 ein Materialnetz mit Lernalgorithmus, 101 ein Regressionsmodell und Bezugszeichen 102 ein Walzmodell. Dabei werden die Materialhärten MS1...n an den einzelnen Gerüsten sowie optional die Walzbandtemperatur Tstrip und die den einzelnen Walzgerüsten zugeordneten Gesamtdickenreduktion eps1...n vom Materialnetz 100 ausgegeben. Anstelle der Regressionsparameter MSU, MSI, MSE gibt das Materialnetz 100, das aus einem oder mehreren neuronalen Netzen besteht, die Materialhärten MS1...n aus, die anschließend mittels eines Regressionsmodells 101 zu Regressionsparametern MSO, MSI und MSE umgeformt werden. Der Regressionsparameter MST ist ein die Temperaturabhängigkeit repräsentierender Parameter, der optional berechnet werden kann, wenn auch die Temperatur Tstrip des Walzbandes in das Materialnetz 100 eingeht. Dieser Parameter ist insbesondere dann vorteilhaft, wenn das erfindungsgemäße Verfahren nicht für das Kaltwalzen, sondern für das Warmwalzen eingesetzt wird. FIG. 7 shows an alternative training of the material network, wherein the material hardnesses are used for n rolling stands. In this case, reference numeral 70 denotes a database corresponding to FIG. 6, AC roll-specific data (see FIG. 6), reference numeral 100 a material network with a learning algorithm, 101 a regression model, and reference numeral 102 a rolling model. The material hardnesses MS 1... N at the individual stands and optionally the rolled strip temperature T strip and the total thickness reduction eps 1... N assigned to the individual rolling stands are output from the material network 100. Instead of the regression parameters MSU, MSI, MSE, the material network 100, which consists of one or more neural networks, outputs the material hardnesses MS 1... N , which are subsequently transformed by means of a regression model 101 into regression parameters MSO, MSI and MSE. The regression parameter MST is a parameter representing the temperature dependency, which can optionally be calculated if the temperature T strip of the rolled strip also enters the material network 100. This parameter is particularly advantageous if the method according to the invention is not used for cold rolling but for hot rolling.

Die Bestimmung der Schätzwerte

Figure 00110001
,
Figure 00110002
und
Figure 00110003
, aus denen die Werte FRC, MRC und FSC, die zum Training der neuronalen Netze verwendet werden (vgl. FIG 6), berechnet werden, wird im folgenden verdeutlicht. Sind MSO, MSI und MSE Eingangsgrößen des Walzmodells, so gilt für das i-te Gerüst
Figure 00110004
The determination of the estimates
Figure 00110001
.
Figure 00110002
and
Figure 00110003
, from which the values FRC, MRC and FSC used to train the neural networks (see FIG. 6) are calculated, will be clarified below. If MSO, MSI and MSE are input variables of the rolling model, then the i-th framework is valid
Figure 00110004

Analog gilt für das Walzmoment

Figure 00110005
und für die Voreilung
Figure 00110006
Analog applies to the rolling moment
Figure 00110005
and for the lead
Figure 00110006

, und bezeichnen die Schätzwerte der jeweiligen Modelle. . and denote the estimates of the respective models.

B bezeichnet die Bandbreite, Hi-1 die Banddicke vor dem i-ten Gerüst, Hi die Banddicke hinter dem i-ten Gerüst, FTi-1 den Bandzug vor dem i-ten Gerüst, FTi den Bandzug hinter dem i-ten Gerüst und vWi die Umfangsgeschwindigkeit der Arbeitswalzen im i-ten Gerüst.B denotes the band width, H i-1 the band thickness before the ith frame, H i the band thickness behind the ith frame, FT i-1 the band tension before the ith frame, FT i the band tension behind the i-th frame scaffold and v Wi the peripheral speed of the work rolls in the i-th scaffold.

FRC, MRC und FSC berechnen sich aus FRC = FR ist FR·FRCS·FRCD·FRCV MRC = MR ist MR·MRCS·MRCD·MRCV FSC = FS ist FS·FSCS·FSCD·FSCV dabei sind FRist, MRist und FSist die aktuellen Werte für Walzkraft, Walzmoment und Voreilung.FRC, MRC and FSC are calculated FRC = FR is FR · · FRCS FRCD · FRCV MRC = MR is MR · · MRCS MRCD · MRCV FSC = FS is FS · · FSCS FSCD · FSCV where FR is , MR is and FS is the current values for rolling force, rolling moment and overfeed.

FRA, MRA und FSA berechnen sich aus: FRA = FR ist FR MRA = MR ist MR FSA = FS ist FS FRA, MRA and FSA are calculated from: FRA = FR is FR MRA = MR is MR FSA = FS is FS

Bis auf die Parameter MSO, MSI und MSE sowie die Reibung µ liegen für alle Eingangsgrößen Istwerte vor. Die Reibwerte µ werden jedoch z. B. tabellarisch hinterlegt. Es ist aber auch möglich, die Reibung µ mit einem neuronalen Netz in analoger Weise wie die Materialhärte zu bestimmen.Except for the parameters MSO, MSI and MSE and the friction μ Actual values are available for all input variables. The coefficient of friction μ However, z. B. tabular deposited. It is also possible, the friction μ with a neural network in analog How to determine the material hardness.

Mit dem erfindungsgemäßen Verfahren können entweder die Materialhärte oder die Reibung ermittelt werden. Es ist ferner denkbar, beide Größen mittels eines neuronalen Netzes zu ermitteln. Es hat sich jedoch gezeigt, dass es in der Regel ausreichend ist, nur eine der beiden Unbekannten, Materialhärte oder Reibung, mittels eines neuronalen Netzes zu ermitteln. Wird die Materialhärte z. B. erfindungsgemäß mittels eines neuronalen Netzes ermittelt und für die Reibung (grobe) Schätzwerte eingesetzt, so ist das Materialnetz in der Lage, die Fehler in bezug auf die Walzkraft, das Walzmoment oder die Voreilung, die durch ungenaue Kenntnis der Reibung zwischen Walzband und Walze entstehen, zu korrigieren. Versuche haben gezeigt, dass bei schlechten Schätzwerten für die Reibung und Verwendung des erfindungsgemäßen Verfahrens das neuronale Netz einen schlechten Schätzwert für die Materialhärte ermittelt, dass diese Abweichung von der tatsächlichen Materialhärte jedoch den Fehler beim Reibwert kompensiert. Auf diese Weise wird durch das erfindungsgemäße Verfahren zwar ein suboptimaler Wert für die Materialhärte erhalten, jedoch ein besonders präziser Wert für Walzkraft, Walzmoment und Voreilung. Für eine Steuerung bzw. eine Voreinstellung, bei der die zu erwartenden Werte für Walzkraft, Walzmoment und Voreilung, nicht aber der eigentliche Wert der Materialhärte, relevant ist, ist es in den meisten Fällen ausreichend, nur ein Materialnetz, nicht aber ein Reibungsnetz, einzusetzen.With the method according to the invention, either the material hardness or the friction can be determined. It is further conceivable to determine both quantities by means of a neural network. However, it has been shown that it is usually is sufficient, only one of the two unknowns, material hardness or friction, by means of a neural network. If the material hardness z. B. according to the invention by means of a neural network and for friction (rough) Estimates are used, the material network is able to the errors with respect to the rolling force, the rolling moment or the lead caused by inaccurate knowledge of the friction between Rolled strip and roller arise, correct. tries have shown that with bad estimates of friction and using the method according to the invention the neuronal Net a poor estimate of material hardness determines that this deviation from the actual material hardness However, the error compensated for the coefficient of friction. On This way is indeed by the inventive method a suboptimal value for the material hardness obtained, however a particularly precise value for rolling force, rolling moment and Overfeed. For a control or a presetting, at the expected values for rolling force, rolling moment and Overfeed, but not the actual value of the material hardness, is relevant, it is sufficient in most cases, only a material network, but not a friction network to use.

Claims (6)

  1. Process for controlling and/or presetting a roll stand (1 - 5) for rolling a metal strip (7),
    the control and/or presetting of the roll stand (1 - 5) taking place in dependence on a rolling force (FRi), a rolling torque (MRi) and/or a forward slip (FSi),
    the rolling force (Fri), the rolling torque (MRi) and/or the forward slip (FSi) being calculated by means of a rolling model (51) at least in dependence on the hardness (MS) of the metal strip (7) and/or the friction between the metal strip (7) and the rolls of the roll stand (1 - 5),
    at least one of the input variables (FRi, MRi, FSi, FT0 - FT5, H0 - H4, MS) of the rolling model (51) being determined or corrected by means of a neural network (50),
    the rolling force (FRi), the rolling torque (MRi) and/or the forward slip (FSi) being corrected by means of a further neural network (52, 54, 56),
    characterized
    in that the further neural network (52, 54, 56) comprises a stand network (52), which is trained with roll-specific data which form an average value over the lifetime of the roll stand (1 - 5), and
    in that the further neural network (52, 54, 56) comprises at least one supplementary neural network (54, 56), which takes into account influences with time constants in the range from a day to several days.
  2. Process according to Claim 1, characterized in that the input variable (FRi, MRi, FSi, FT0 - FT5, H0 - H4, MS) determined or corrected by means of the neural network (51) is the hardness (MS) of the metal strip (7) and/or the friction between the metal strip (7) and the rolls of the roll stand (1 - 5).
  3. Process according to Claim 1 or 2, characterized in that the neural network (50), and possibly also the further neural network (52, 54, 56), is or are retrained.
  4. Process according to one of Claims 1 to 3, characterized in that the supplementary neural network (54, 56) also comprises a speed network (56), which takes into account the influence of the speed (v0 - v5) of the metal strip (7) on the rolling force (FRi), the rolling torque (MRi) and/or the forward slip (FSi).
  5. Process according to Claim 4, characterized in that the speed network (56) is trained with data of the particular metal strip (7) at a given time.
  6. System for carrying out a process according to one of Claims 1 to 5, with a rolling model (51), a neural network (50) arranged upstream of the rolling model (51) and a further neural network (52, 54, 56) arranged downstream of the rolling model (51),
    a rolling force (FRi), a rolling torque (MRi) and/or a forward slip (FSi) being able to be calculated by means of the rolling model (51) at least in dependence on the hardness (MS) of a metal strip (7) and/or the friction between the metal strip (7) and the rolls of a roll stand (1 - 5),
    at least one of the input variables (FRi, MRi, FSi, FT0 - FT5, H0 - H4, MS) of the rolling model (51) being able to be determined or corrected by means of the upstream neural network (50),
    the rolling force (FRi), the rolling torque (MRi) and/or the forward slip (FSi) being able to be corrected by means of the further neural network (52, 54, 56),
    the further neural network (52, 54, 56) comprising a stand network (52), which is trained with roll-specific data which form an average value over the lifetime of the roll stand (1 - 5),
    the further neural network (52, 54, 56) comprising at least one supplementary neural network (54, 56), which takes into account influences with time constants in the range from a day to several days, and
    the roll stand (1 - 5) being able to be controlled or preset on the basis of the rolling force (FRi), the rolling torque (MRi) and/or the forward slip (FSi).
EP98940053A 1997-07-07 1998-06-24 Process and system for controlling or pre-setting a roll stand Expired - Lifetime EP0994757B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19728979 1997-07-07
DE19728979A DE19728979A1 (en) 1997-07-07 1997-07-07 Controlling or presetting roll stand
PCT/DE1998/001740 WO1999002282A1 (en) 1997-07-07 1998-06-24 Process and system for controlling or pre-setting a roll stand

Publications (2)

Publication Number Publication Date
EP0994757A1 EP0994757A1 (en) 2000-04-26
EP0994757B1 true EP0994757B1 (en) 2005-11-23

Family

ID=7834906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98940053A Expired - Lifetime EP0994757B1 (en) 1997-07-07 1998-06-24 Process and system for controlling or pre-setting a roll stand

Country Status (4)

Country Link
EP (1) EP0994757B1 (en)
AT (1) ATE310592T1 (en)
DE (2) DE19728979A1 (en)
WO (1) WO1999002282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351785A (en) * 2018-11-28 2019-02-19 北京首钢冷轧薄板有限公司 A kind of roll-force optimization method and device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1163062B1 (en) 1999-03-23 2002-11-13 Siemens Aktiengesellschaft Method and device for detecting the roll force in a rolling stand
DE102004003514A1 (en) * 2004-01-23 2005-08-11 Sms Demag Ag Process for increasing process stability, in particular absolute thickness accuracy and plant safety, during hot rolling of steel or non-ferrous materials
CN108984836B (en) * 2018-06-12 2022-12-02 中冶南方工程技术有限公司 Method for calculating rolling loss torque
CN114951303A (en) * 2021-02-19 2022-08-30 上海宝信软件股份有限公司 Method, system and medium for feed-forward control of rolling force of temper mill

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136183B2 (en) * 1992-01-20 2001-02-19 株式会社日立製作所 Control method
FR2688428B1 (en) * 1992-03-13 1996-06-21 Lorraine Laminage DEVICE FOR CONTROLLING A TOOL FOR LIGHT-SCRAPING SCRAPING OF A SHEET.
JPH05293516A (en) * 1992-04-17 1993-11-09 Mitsubishi Heavy Ind Ltd Method for estimating rolling load of rolling mill
DE4416317B4 (en) * 1993-05-17 2004-10-21 Siemens Ag Method and control device for controlling a material processing process
JPH07246411A (en) * 1994-03-09 1995-09-26 Toshiba Corp Device for correcting roll gap of rolling mill
DE19527521C1 (en) * 1995-07-27 1996-12-19 Siemens Ag Neural network training method
DE19641431A1 (en) * 1996-10-08 1998-04-16 Siemens Ag Method and device for identifying or predicting process parameters of an industrial time-variant process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351785A (en) * 2018-11-28 2019-02-19 北京首钢冷轧薄板有限公司 A kind of roll-force optimization method and device

Also Published As

Publication number Publication date
ATE310592T1 (en) 2005-12-15
DE19728979A1 (en) 1998-09-10
EP0994757A1 (en) 2000-04-26
WO1999002282A1 (en) 1999-01-21
DE59813227D1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
EP1485216B1 (en) Computer-aided method for determining desired values for controlling elements of profile and surface evenness
EP0591291B1 (en) Regulation in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill
DE19522494C2 (en) Process for rolling a metal strip
EP3271092B1 (en) Method for producing metal strips
DE4416317B4 (en) Method and control device for controlling a material processing process
EP2548665A1 (en) Method for determining the wear on a roller dependent on relative movement
DE4338607B4 (en) Method and device for managing a process in a controlled system
DE19644132A1 (en) Process for optimizing the distribution of strip width at the ends of a strip passing through a rolling mill
DE19881041B4 (en) Method for controlling and presetting a steelworks or parts of a steelworks
EP0994757B1 (en) Process and system for controlling or pre-setting a roll stand
DE2713301A1 (en) METHOD AND ARRANGEMENT FOR PLATE THICKNESS CONTROL IN ROLLING MILLS
DE10211623A1 (en) Computer-aided determination process comprises feeding input variables to a material flow model which describes a metal strip before and after the passing through a roll stand
WO2011038965A1 (en) Method for the model-based determination of actuator nominal values for the asymmetric actuators of the roll stands of a hot wide strip mill
DE19729773C5 (en) Method and device for rolling a metal strip
EP0969937B1 (en) Method and device for pre-setting the planeness of a rolled strip
DE2736233C2 (en) Device for controlling the crowning of rolling stock
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
EP1481742B1 (en) Control computer and computer-aided determination method for a profile and flatness control for a rolling mill
DE1602168A1 (en) Method and device for regulating rolling stock to a constant cross-section
DE1527610A1 (en) Rolling process and device for carrying out the same
EP2483004A1 (en) Method for the model-based determination of actuator nominal values for the symmetric and asymmetric actuators of the roll stands of a hot wide strip mill
DE60113132T2 (en) BLECH WIDTH CONTROL FOR HOT ROLLING
WO1997049506A1 (en) Process and device for reducing the edge drop of a laminated strip
DE19644131C2 (en) Method for optimizing the distribution of strip width at the ends of a strip passing through a rolling train in one or more passes
DE19704337A1 (en) Method and device for regulating the course of a rolled strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FI NL

17Q First examination report despatched

Effective date: 20010620

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

APBF Information on invitation to file observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA2E

APBH Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4E

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAEFFNER, CLEMENS

Inventor name: RIETBROCK, UWE

Inventor name: BRUESTLE, ROLAND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FI NL

REF Corresponds to:

Ref document number: 59813227

Country of ref document: DE

Date of ref document: 20051229

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120618

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120820

Year of fee payment: 15

Ref country code: BE

Payment date: 20120710

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120508

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130613

Year of fee payment: 16

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20130630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813227

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 310592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624