EP0975943A1 - Sensor arrangement for detecting changes in angle - Google Patents

Sensor arrangement for detecting changes in angle

Info

Publication number
EP0975943A1
EP0975943A1 EP98966186A EP98966186A EP0975943A1 EP 0975943 A1 EP0975943 A1 EP 0975943A1 EP 98966186 A EP98966186 A EP 98966186A EP 98966186 A EP98966186 A EP 98966186A EP 0975943 A1 EP0975943 A1 EP 0975943A1
Authority
EP
European Patent Office
Prior art keywords
sensor
magnet
angle
sensor arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98966186A
Other languages
German (de)
French (fr)
Inventor
Thomas Ullmann
Anton Dukart
Klaus Marx
Franz Jost
Hans-Juergen Herderich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0975943A1 publication Critical patent/EP0975943A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties

Definitions

  • the invention relates to a sensor arrangement for detecting changes in angle, in particular for torsion measurement on axes, according to the preamble of the main claim.
  • a sensor arrangement is already known from US Pat. No. 5,501,110 in which the torque transmitted to an axis is to be recorded.
  • the torque is determined from the torsion or the angle of rotation of the axle ends and a constant that depends on the material and the geometry of the axle.
  • the sensor arrangement for detecting small angle changes on moving mechanical components with the generic features of the main claim is further developed with the features according to the invention in an advantageous manner, since a sensor with high sensitivity is used here.
  • the magnetoresistive sensor is arranged opposite the one pole of the magnet in such a way that the magnetic field-sensitive layer is tangent to the rotation causing the change in angle. This advantageously takes advantage of the fact that a strong change in the direction of the field lines occurs in a small space (for example> 1 mm) above the pole of the magnet.
  • the magnetoresistive sensors according to the invention are linearly controlled due to their pronounced sensitivity to a (here tangential) directional component of the field lines and thus allow a measurement of very small angle changes when the magnet or the sensor rotates.
  • a preferred application of the invention results in a sensor arrangement for detecting the torque on an axis, which is known per se from the aforementioned US Pat. No. 5,501,110.
  • the magnet and the sensor are each mechanically coupled to different positions of the axis in the axial direction and lie opposite one another in such a way that torsion of the axis can be detected as a change in angle.
  • the measuring arrangement can advantageously be implemented by arranging two sensors in the magnetic field of the magnet and interconnecting them in such a way that their differential output can be set to zero without changing the angle.
  • the zero point is when the rotating axis is not loaded.
  • a relative rotation of the parts with the magnet and the sensors causes a difference in the electrical analog outputs of the two sensors, which can be output directly as torque by electronic signal processing.
  • AMR anisotropic magnetoresistive
  • GMR giant magnetoresistive
  • CMR colossal magnetoresistive
  • Figure 1 is a schematic view of a support member for a magnet, the support member being attachable to an axle end
  • FIG. 2 shows a view of a magnetoresistive sensor which is arranged in the region of the field lines of the magnet according to FIG. 1.
  • a carrier part 1 is shown, which is fastened with a shaft 2 on a rotating axis, not shown here.
  • the carrier part 1 rotates with the axis about the coordinate z.
  • the magnet 3 with the field lines 4 is shown in detail in FIG.
  • a magnetoresistive sensor 5 is arranged opposite the one pole of the magnet 3. For better clarity, a coherent representation of the arrangement of the carrier part 1 with a corresponding carrier part for the sensor 5 has been omitted.
  • the sensor 5 must be arranged so that it comes to lie in the area of the field lines 4.
  • the carrier part for the sensor 5 is fastened to another axis end as the carrier part 1, so that a relative rotation of the magnet 3 and the sensor 5 relative to one another, caused by a torsion of the axis, can be measured. Since the magnetoresistive sensor 5 has a particular sensitivity with regard to the x component of the field lines 4, a rotation of one of the two components 3 or 5 about the z axis has an effect with a strong change in the output signal of the sensor 5 even with small changes in angle.
  • the field line 4.1 has an x component of zero and thus the immediately adjacent field line 4.2 already experiences an easily measurable increase in the x component. In this way, in particular small changes in angle, which occur with the relatively low torsion, can be measured and a precise determination of the torque acting on the axis is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

The invention relates to a sensor arrangement for detecting small changes in the angle of moving mechanical parts. A magnet (3) and at least one sensor (5) are provided, said sensor being located opposite the part and emitting an electrical output signal which is dependent on the direction of the field lines (4) of the magnet (3). The sensor (5) is a magnetoresistive sensor (5) which is positioned opposite the one pole of the magnet (3) in such a way that the magnetic field-sensitive layer is tangential to the rotation causing the change in angle.

Description

Sensoranordnung zur Erfassung von inkeländerunqen Sensor arrangement for the detection of ink changes
Stand der TechnikState of the art
Die Erfindung betrifft eine Sensoranordnung zur Erfassung von Winkeländerungen, insbesondere zur Torsionsmessung an Achsen, nach dem Oberbegriff des Hauptanspruchs.The invention relates to a sensor arrangement for detecting changes in angle, in particular for torsion measurement on axes, according to the preamble of the main claim.
Es ist bereits aus der US-PS 5,501,110 eine Sensoranordnung bekannt, bei der das auf eine Achse übertragene Drehmoment erfasst werden soll. Das Drehmoment wird aus der Torsion bzw. dem Verdrehwinkel der Achsenden und einer Konstante, die vom Material und der Geometrie der Achse abhängt, bestimmt. Es sind hierbei zwei Magnete und jeweils ein den Magneten gegenüberliegender Hall-Sensor auf zwei sich jeweils mit der Achse drehenden Scheiben angebracht, die an die Achsenden mechanisch fest angekoppelt sind. Beispielsweise zur Erfassung des auf eine Lenkradachse eines Kraftfahrzeuges wirkenden Drehmomentes während der Drehung des Lenkrades müssen sehr kleine Winkeländerungen in beiden Drehrichtungen des Lenkrades gemessen werden. Bei der Auswertung der Feldänderungen des von den Magneten ausgehenden Feldes ist daher eine äußerst empfindliche und auch temperaturstabile Messanordnung erforderlich.A sensor arrangement is already known from US Pat. No. 5,501,110 in which the torque transmitted to an axis is to be recorded. The torque is determined from the torsion or the angle of rotation of the axle ends and a constant that depends on the material and the geometry of the axle. There are two magnets and one Hall sensor opposite the magnet on two disks, each rotating with the axle, which are mechanically firmly coupled to the axle ends. For example, to detect the torque acting on a steering wheel axis of a motor vehicle during the rotation of the steering wheel, very small changes in angle in both directions of rotation of the steering wheel must be measured. When evaluating the field changes of the field emanating from the magnets, an extremely sensitive and also temperature-stable measuring arrangement is therefore necessary.
Vorteile der ErfindungAdvantages of the invention
Die Sensoranordnung zur Erfassung kleiner Winkeländerungen an bewegten mechanischen Bauteilen mit den gattungsgemäßen Merkmalen des Hauptanspruchs ist mit den erfindungsgemäßen Merkmalen in vorteilhafter Weise weitergebildet, da hier ein Sensor mit hoher Empfindlichkeit verwendet wird.The sensor arrangement for detecting small angle changes on moving mechanical components with the generic features of the main claim is further developed with the features according to the invention in an advantageous manner, since a sensor with high sensitivity is used here.
Dadurch, dass das Magnetfeld des Magneten in Richtung auf den jeweils gegenüberliegenden Sensor verläuft und der Sensor ein magnetoresistiver Sensor ist, wird eine große Empfindlichkeit bei der Feldlinienerfassung möglich. Der magnetoresistive Sensor ist derart dem einen Pol des Magneten gegenüberliegend angeordnet, dass die magnetfeldempfindliche Schicht tangential zu der die Winkeländerung verursachenden Drehung liegt. Hierdurch wird in vorteilhafter Weise ausgenutzt, dass auf engem Raum (beispielsweise > 1mm) über dem Pol des Magneten ein starker Wechsel der Richtung der Feldlinien auftritt.Because the magnetic field of the magnet runs in the direction of the opposite sensor and the sensor is a magnetoresistive sensor, great sensitivity is possible in the field line detection. The magnetoresistive sensor is arranged opposite the one pole of the magnet in such a way that the magnetic field-sensitive layer is tangent to the rotation causing the change in angle. This advantageously takes advantage of the fact that a strong change in the direction of the field lines occurs in a small space (for example> 1 mm) above the pole of the magnet.
Die erfindungsgemäßen magnetoresistiven Sensoren werden aufgrund ihrer ausgeprägten Empfindlichkeit für eine (hier tangentiale) Richtungskomponente der Feldlinien linear ausgesteuert und erlauben hiermit eine Messung von sehr kleinen Winkeländerungen bei einer Drehung des Magneten oder des Sensors.The magnetoresistive sensors according to the invention are linearly controlled due to their pronounced sensitivity to a (here tangential) directional component of the field lines and thus allow a measurement of very small angle changes when the magnet or the sensor rotates.
Ein bevorzugte Anwendung der Erfindung ergibt sich bei einer Sensoranordnung zur Erfassung des Drehmoments an einer Achse, die für sich gesehen aus der eingangs genannten US-PS 5,501,110, bekannt ist. Hier wird der Magnet und der Sensor mechanisch jeweils an, in axialer Richtung, unterschiedlichen Stellen der Achse angekoppelt und liegen sich derart gegenüber, dass eine Torsion der Achse als Winkeländerung erfassbar ist .A preferred application of the invention results in a sensor arrangement for detecting the torque on an axis, which is known per se from the aforementioned US Pat. No. 5,501,110. Here, the magnet and the sensor are each mechanically coupled to different positions of the axis in the axial direction and lie opposite one another in such a way that torsion of the axis can be detected as a change in angle.
In vorteilhafter Weise kann die Messanordnung dadurch realisiert werden, dass zwei Sensoren im Magnetfeld des Magneten angeordnet und derart zusammengeschaltet sind, dass deren Differenzausgang ohne eine Winkeländerung zu Null setzbar ist. Der Nullpunkt liegt vor, wenn die drehende Achse unbelastet ist. Eine relative Verdrehung der Teile mit dem Magneten und den Sensoren bewirkt eine Differenz der elektrischen Analogausgänge der zwei Sensoren, welche durch elektronische Signalverarbeitung direkt als Drehmoment ausgegeben werden kann.The measuring arrangement can advantageously be implemented by arranging two sensors in the magnetic field of the magnet and interconnecting them in such a way that their differential output can be set to zero without changing the angle. The zero point is when the rotating axis is not loaded. A relative rotation of the parts with the magnet and the sensors causes a difference in the electrical analog outputs of the two sensors, which can be output directly as torque by electronic signal processing.
Der Magnet kann auf einfache Weise zylinderförmig mit axialer Magnetisierung aufgebaut sein, wobei der magneto- resistive Sensor bevorzugt ein AMR-Sensor (AMR = anisotrop magnetoresistiv) , ein GMR-Sensor (GMR = giant a- gnetoresistiv) oder ein CMR-Sensor (CMR = colossal magnetoresistiv) ist.The magnet can be constructed in a simple manner in a cylindrical manner with axial magnetization, the magnetoresistive sensor preferably being an AMR sensor (AMR = anisotropic magnetoresistive), a GMR sensor (GMR = giant magnetoresistive) or a CMR sensor (CMR = colossal magnetoresistive).
Zeichnungdrawing
Ein Ausführungsbeispiel der erfindungsgemäßen Sensoranordnung wird anhand der Zeichnung erläutert. Es zeigen: Figur 1 eine schematische Ansicht eines Trägerteils für einen Magneten, wobei das Trägerteil an einem Achsende befestigbar ist undAn embodiment of the sensor arrangement according to the invention is explained with reference to the drawing. Show it: Figure 1 is a schematic view of a support member for a magnet, the support member being attachable to an axle end
Figur 2 eine Ansicht eines magnetoresistiven Sensors, der im Bereich der Feldlinien des Magneten nach Figur 1 angeordnet ist .FIG. 2 shows a view of a magnetoresistive sensor which is arranged in the region of the field lines of the magnet according to FIG. 1.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In Figur 1 ist ein Trägerteil 1 gezeigt, welches mit einem Schaft 2 auf einer hier nicht dargestellten drehenden Achse befestigt wird. Das Trägerteil 1 dreht mit der Achse um die Koordinate z. Auf dem Umfang des Trägerteils 1 befindet sich ein zylinderförmiger Magnet 3, dessen Feldlinien 4 hier gemäß der Darstellung verlaufen. Durch eine Drehung der Achse ist der Magnet 3 mit den Feldlinien 4 in einem Winkel in der x-y-Ebene auslenkbar.In Figure 1, a carrier part 1 is shown, which is fastened with a shaft 2 on a rotating axis, not shown here. The carrier part 1 rotates with the axis about the coordinate z. On the circumference of the carrier part 1 there is a cylindrical magnet 3, the field lines 4 of which run as shown here. By rotating the axis, the magnet 3 with the field lines 4 can be deflected at an angle in the x-y plane.
In Figur 2 ist der Magnet 3 mit den Feldlinien 4 im Detail gezeigt. Ein magnetoresistiver Sensor 5 ist dem einen Pol des Magneten 3 gegenüberliegend angeordnet. Zur besseren Übersichtlichkeit ist auf eine zusammenhängende Darstellung der Anordnung des Trägerteils 1 mit einem entsprechenden Trägerteil für den Sensor 5 verzichtet worden .The magnet 3 with the field lines 4 is shown in detail in FIG. A magnetoresistive sensor 5 is arranged opposite the one pole of the magnet 3. For better clarity, a coherent representation of the arrangement of the carrier part 1 with a corresponding carrier part for the sensor 5 has been omitted.
Aus der Figur 2 ist jedoch erkennbar, wie der Sensor 5 angeordnet werden muss, damit er im Bereich der Feldlinien 4 zu liegen kommt. Das Trägerteil für den Sensor 5 ist an einem anderen Achsende wie das Trägerteil 1 befestigt, so dass eine relative Verdrehung des Magneten 3 und des Sensors 5 zueinander, hervorgerufen durch eine Torsion der Achse, gemessen werden kann. Da der magnetoresistive Sensor 5 eine besondere Empfindlichkeit hinsichtlich der x-Komponente der Feldlinien 4 aufweist wirkt sich eine Verdrehung eines der beiden Bauteile 3 oder 5 um die z-Achse schon bei kleinen Winkeländerungen mit einer starken Veränderung des Ausgangs- signals des Sensors 5 aus.However, it can be seen from FIG. 2 how the sensor 5 must be arranged so that it comes to lie in the area of the field lines 4. The carrier part for the sensor 5 is fastened to another axis end as the carrier part 1, so that a relative rotation of the magnet 3 and the sensor 5 relative to one another, caused by a torsion of the axis, can be measured. Since the magnetoresistive sensor 5 has a particular sensitivity with regard to the x component of the field lines 4, a rotation of one of the two components 3 or 5 about the z axis has an effect with a strong change in the output signal of the sensor 5 even with small changes in angle.
Es ist aus der Figur 2 zu erkennen, dass beispielsweise die Feldlinie 4.1 eine x-Komponente von null aufweist und damit schon die unmittelbar benachbarte Feldlinie 4.2 eine gut messbare Steigerung der x-Komponente erfährt. Somit werden insbesondere kleine Winkeländerung, die bei der relativ geringen Torsion auftreten, messbar und es ist eine präzise Bestimmung des auf die Achse wirkenden Drehmomentes möglich. It can be seen from FIG. 2 that, for example, the field line 4.1 has an x component of zero and thus the immediately adjacent field line 4.2 already experiences an easily measurable increase in the x component. In this way, in particular small changes in angle, which occur with the relatively low torsion, can be measured and a precise determination of the torque acting on the axis is possible.

Claims

Patentansprücheclaims
1) Sensoranordnung zur Erfassung kleiner Winkeländerungen an bewegten mechanischen Bauteilen, mit1) Sensor arrangement for detecting small changes in angle on moving mechanical components, with
- einem Magneten (3) und mit mindestens einem dem Bauelement gegenüberliegendem Sensor (5) , der ein von der Richtung der Feldlinien (4) des Magneten (3) abhängiges elektrisches Ausgangssignal abgibt, wobei- A magnet (3) and with at least one sensor (5) opposite the component, which emits an electrical output signal dependent on the direction of the field lines (4) of the magnet (3), wherein
- der mindestens eine Sensor (5) und der Magnet (3) jeweils an den relativ zueinander bewegten mechanischen Bauteilen (1) befestigt sind, dadurch gekennzeichnet, dass- The at least one sensor (5) and the magnet (3) are each fastened to the mechanical components (1) which are moved relative to one another, characterized in that
- das Magnetfeld des Magneten (3) in Richtung auf den gegenüberliegenden Sensor (5) verläuft und dass- The magnetic field of the magnet (3) in the direction of the opposite sensor (5) and that
- der Sensor (5) ein magnetoresistiver Sensor (5) ist, der derart dem einen Pol des Magneten (3) gegenüberliegend angeordnet ist, dass die magnetfeldempfindliche Schicht tangential zu der die Winkeländerung verursachenden Drehung liegt. 2) Sensoranordnung nach Anspruch 1 zur Erfassung des Drehmoments an einer Achse, wobei- The sensor (5) is a magnetoresistive sensor (5) which is arranged opposite the one pole of the magnet (3) in such a way that the magnetic field-sensitive layer is tangent to the rotation causing the change in angle. 2) Sensor arrangement according to claim 1 for detecting the torque on an axis, wherein
- der Magnet (3) und der Sensor (5) mechanisch jeweils an, in axialer Richtung unterschiedlichen Stellen der Achse angekoppelt sind und sich derart gegenüberliegen, dass eine Torsion der Achse als Winkelanderung erfassbar ist .- The magnet (3) and the sensor (5) are each mechanically coupled to different positions of the axis in the axial direction and lie opposite one another in such a way that a torsion of the axis can be detected as an angular change.
3) Sensoranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet dass3) Sensor arrangement according to claim 1 or 2, characterized in that
- zwei Sensoren (5) im Magnetfeld des Magneten (3) angeordnet und derart zusammengeschaltet sind, dass deren Differenzausgang ohne eine Winkeländerung zu Null setzbar ist .- Two sensors (5) are arranged in the magnetic field of the magnet (3) and are connected together in such a way that their differential output can be set to zero without changing the angle.
4) Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass4) Sensor arrangement according to one of the preceding claims, characterized in that
- der Magnet (3) zylinderförmig mit axialer Magnetisierung aufgebaut ist .- The magnet (3) is cylindrical with axial magnetization.
5) Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass5) Sensor arrangement according to one of the preceding claims, characterized in that
der magnetoresistive Sensor (5) ein AMR-Sensor ist.the magnetoresistive sensor (5) is an AMR sensor.
6) Sensoranordnung nach einem der Ansprüche, 1 bis 4 dadurch gekennzeichnet, dass der magnetoresistive Sensor (5) ein GMR-Sensor ist.6) Sensor arrangement according to one of claims 1 to 4, characterized in that the magnetoresistive sensor (5) is a GMR sensor.
7) Sensoranordnung nach einem der Ansprüche, 1 bis 4 dadurch gekennzeichnet, dass7) Sensor arrangement according to one of claims 1 to 4, characterized in that
der magnetoresistive Sensor (5) ein CMR-Sensor ist. the magnetoresistive sensor (5) is a CMR sensor.
EP98966186A 1997-12-20 1998-12-02 Sensor arrangement for detecting changes in angle Withdrawn EP0975943A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19757008 1997-12-20
DE19757008A DE19757008A1 (en) 1997-12-20 1997-12-20 Sensor for detecting angular variations, e.g. for automobile steering wheel shaft
PCT/DE1998/003539 WO1999032867A1 (en) 1997-12-20 1998-12-02 Sensor arrangement for detecting changes in angle

Publications (1)

Publication Number Publication Date
EP0975943A1 true EP0975943A1 (en) 2000-02-02

Family

ID=7852827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966186A Withdrawn EP0975943A1 (en) 1997-12-20 1998-12-02 Sensor arrangement for detecting changes in angle

Country Status (7)

Country Link
US (1) US6205866B1 (en)
EP (1) EP0975943A1 (en)
JP (1) JP2001513901A (en)
CZ (1) CZ291699A3 (en)
DE (1) DE19757008A1 (en)
TW (1) TW406187B (en)
WO (1) WO1999032867A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756162B2 (en) * 1999-04-21 2003-01-09 Robert Bosch Gmbh Measurement device for the non-contact detection of an angle of rotation
DE19941683C2 (en) * 1999-09-01 2001-06-21 Siemens Ag Measuring device for determining the torque-related torsion angle of a shaft
EP1243897B1 (en) * 2001-03-23 2013-12-18 Melexis Technologies NV Magnetic position sensor
DE10204199A1 (en) * 2002-02-01 2003-08-07 Pierburg Gmbh Control device for a motor for adjusting an actuator
MY144506A (en) 2005-05-04 2011-09-30 Novartis Ag Automated inspection of colored contact lenses
US7728720B2 (en) * 2006-07-28 2010-06-01 Deere & Company System and method for monitoring a status of a member of a vehicle
KR101095032B1 (en) * 2009-05-20 2011-12-20 에스엘 주식회사 Apparatus for electron control transmission
US20130084179A1 (en) * 2011-09-30 2013-04-04 Hamilton Sundstrand Corporation Variable vane angular position sensor
CN107941144B (en) * 2017-12-27 2023-04-07 雷沃重工集团有限公司 Excavator bucket rod rotation angle measuring device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB801966A (en) * 1955-05-20 1958-09-24 Nat Res Dev Electric transducer
DE1162597B (en) * 1961-11-29 1964-02-06 Siemens Ag Arrangement for measuring the torque on shafts
DE2658697C3 (en) * 1976-12-23 1980-07-10 Still Gmbh, 2000 Hamburg Device for measuring a torque in a shaft
GB2052855B (en) * 1979-03-30 1983-05-18 Sony Corp Magnetoresistive transducers
US4724710A (en) * 1986-12-22 1988-02-16 General Motors Corporation Electromagnetic torque sensor for a rotary shaft
JP2570654B2 (en) * 1987-12-08 1997-01-08 日本精工株式会社 Displacement detector
JPH07119619B2 (en) * 1990-04-20 1995-12-20 ヤマハ株式会社 Angle sensor
FR2661246B1 (en) * 1990-04-20 1994-08-05 Roulements Soc Nouvelle DEVICE FOR MEASURING A TORQUE ON A SHAFT.
JPH0466813A (en) * 1990-07-06 1992-03-03 Mitsubishi Electric Corp Angle detecting sensor
JPH04168303A (en) * 1990-11-01 1992-06-16 Asahi Chem Ind Co Ltd Angle detecting apparatus
FR2692986B1 (en) * 1992-06-26 1994-08-19 Roulements Soc Nouvelle Device for measuring a torque on a rotating shaft.
DE4418539A1 (en) * 1994-05-27 1995-11-30 Bosch Gmbh Robert Relative position of two parts with each other measuring appts. motor revolution measurement
JPH08114517A (en) * 1994-10-18 1996-05-07 Koyo Seiko Co Ltd Torque sensor
JPH08159887A (en) * 1994-11-30 1996-06-21 Nissan Motor Co Ltd Torque sensor
JPH08327473A (en) * 1995-05-30 1996-12-13 Nissan Motor Co Ltd Torque sensor
FR2738339B1 (en) * 1995-08-31 1997-10-17 Roulements Soc Nouvelle DEVICE FOR MEASURING TORSION TORQUE OF A ROTATING SHAFT
JP2829847B2 (en) * 1995-10-31 1998-12-02 システムトルク株式会社 Torque detector
JPH09203673A (en) * 1996-01-25 1997-08-05 Nissan Motor Co Ltd Torque sensor, torque detecting method and power steering device
DE19612422C2 (en) * 1996-03-28 2000-06-15 Siemens Ag Potentiometer device with a linearly displaceable control element and signal-generating means
JPH09329462A (en) * 1996-06-10 1997-12-22 Mitsubishi Electric Corp Detector
DE19630108A1 (en) * 1996-07-25 1998-01-29 Siemens Ag Contact free speed or position detector for ferromagnetic generator part

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9932867A1 *

Also Published As

Publication number Publication date
JP2001513901A (en) 2001-09-04
US6205866B1 (en) 2001-03-27
CZ291699A3 (en) 1999-11-17
DE19757008A1 (en) 1999-06-24
WO1999032867A1 (en) 1999-07-01
TW406187B (en) 2000-09-21

Similar Documents

Publication Publication Date Title
EP1252491B1 (en) Sensor system for detecting an angle of rotation and/or a torque
DE69906917T2 (en) Non-contact position measuring device with tapered bipolar magnets
DE3882962T2 (en) Multi-turn position encoder.
DE68917191T2 (en) Torque detection device with error signal.
EP3364163A1 (en) Magnetoelastic torque sensor
DE102016103325A1 (en) Magnetic angular position sensor
EP1975569B1 (en) Measuring device for contactless recording of the rotation angle with a magnet sensitive element fitted into a recess of the magnet
DE4400616C2 (en) Magnetic position sensor, especially for motor vehicles
WO2001063213A1 (en) Measuring device for contactlessly detecting a ferromagnetic object
DE102010032061A1 (en) Device for measuring a rotation angle and / or a torque
EP1556665B1 (en) Scanner head comprising a magnet and a hall element for use in a co-ordinate measuring device
EP0975943A1 (en) Sensor arrangement for detecting changes in angle
DE102006037526A1 (en) Control unit with lever, bearing ball and magnet to control operating functions has sensor located vertically below bearing ball and directly adjacent to it
EP2101157A2 (en) Magnetic rotating angle sensor
EP1260787A1 (en) Angle sensor with magnetoresistive sensing elements
DE102010046251A1 (en) Rotational position measuring device for rotor, has magnetic sensor arranged around specified range opposite to optical code-disk sensor, and evaluation unit determining measurement for displacement of rotor from output signals of sensors
DE10221340A1 (en) Rotation angle measurement arrangement has a magnetic field generating element that generates a field with axial and tangential components relative to a shaft axis, so that field detection sensitivity is improved
DE10039216C2 (en) Measuring device for contactless detection of an angle of rotation or a path
DE10230510B4 (en) sensor arrangement
DE102004009839A1 (en) Rotation angle sensor
DE102020117752A1 (en) Omnidirectional speed and direction sensor
EP1338868A2 (en) Method for establishing the state of an adjustment mechanism
EP1516159B1 (en) Temperature compensation of a sensor arrangement (gmr) with double-sided potential changes
DE10140710A1 (en) Angle sensor with magneto-resistive sensor elements
DE102005031806A1 (en) Rotation angle sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20000105

17Q First examination report despatched

Effective date: 20030708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040120