EP0975870B1 - Fuel injection valve or fuel injection nozzle - Google Patents

Fuel injection valve or fuel injection nozzle Download PDF

Info

Publication number
EP0975870B1
EP0975870B1 EP98932005A EP98932005A EP0975870B1 EP 0975870 B1 EP0975870 B1 EP 0975870B1 EP 98932005 A EP98932005 A EP 98932005A EP 98932005 A EP98932005 A EP 98932005A EP 0975870 B1 EP0975870 B1 EP 0975870B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
valve
fuel
sleeve body
nozzle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98932005A
Other languages
German (de)
French (fr)
Other versions
EP0975870A1 (en
Inventor
Stefan Kampmann
Bernd Dittus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0975870A1 publication Critical patent/EP0975870A1/en
Application granted granted Critical
Publication of EP0975870B1 publication Critical patent/EP0975870B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent

Definitions

  • the invention relates to a development that can be implemented both on a fuel injection valve and on a fuel injection nozzle, in particular for the direct injection of fuel into the combustion chamber of an internal combustion engine.
  • the invention is based on, a fuel injector according to the preamble of the main claim.
  • a fuel injector is known for example from DE-PS 43 03 813.
  • the known fuel injection nozzle comprises a nozzle body with a blind bore, in which a valve needle is axially movable, which has a valve closing body at its downstream end.
  • the valve closing body is conical and has a valve closing surface which cooperates with a valve seat surface provided on the inside of the nozzle body to form a valve seat.
  • the valve needle is biased in the closing direction by a return spring.
  • the nozzle body has a plurality of circumferentially distributed radial bores which penetrate the nozzle body and are connected to the blind bore of the nozzle body in the open position of the fuel injection nozzle.
  • the flow of fuel from the blind bore to the radial bores is interrupted.
  • a fuel injector of a similar design, but with several pairs of radial bores, which open out at a common outlet opening at different spray angles, is known from DE-OS 41 42 430.
  • a disadvantage of these known fuel injection nozzles is that the axial and radial fuel distribution cannot be adapted to the geometrical conditions of the internal combustion engine on which the fuel injection nozzles are mounted.
  • the position of the spark plug, the intake and exhaust valves and other components in and on the combustion chambers of the internal combustion engine can vary considerably from internal combustion engine to internal combustion engine or from vehicle type to vehicle type, the flexible use of the known fuel injection nozzles is limited.
  • a fuel injector which has a nozzle body extending along a longitudinal axis, this nozzle body being extended by an additional attachment body with two spray openings.
  • a valve seat surface is formed on this attachment body as an annular flat seat, which cooperates with a valve closure surface formed on a valve closure body to form a valve seat.
  • fuel jets are sprayed out of the spray openings, which have a small radial, but largely an axial directional component with respect to the longitudinal axis of the nozzle body.
  • the attachment body itself or an end section welded to the attachment body projects beyond the sprayed fuel jets as a sleeve body in the direction of the longitudinal axis of the nozzle body axially downstream of the spray openings.
  • the fuel jets strike an inner impact surface of the attachment body or the welded-on end section, the impact surface being inclined by a certain angle with respect to a vertical plane that runs vertically to the longitudinal axis.
  • the impact surfaces of the attachment body run largely vertically at an angle of approx. 15 ° to the longitudinal axis of the valve or, in other words, at an angle of approx. 75 ° to the imaginary vertical plane, with the fuel atomized at the impact surface behind the tear-off edge of the attachment body at an even smaller spray angle has, since the sprayed fuel is to form a compact, finely atomized and low spray angle cone jet.
  • the fuel injector according to the invention or the fuel injection nozzle according to the invention with the characterizing features of the main claim has the advantage that the sprayed fuel is distributed in a targeted manner and the distribution of the fuel can be varied in a simple manner by varying the geometric design of the sleeve body.
  • the angle of inclination of the impact surface on which the fuel strikes the sleeve body and the surface structuring of the impact surface, for example by radial grooves have a significant influence on the fuel distribution.
  • the impact surface can be inclined in the radial as well as in the tangential direction with respect to the vertical plane of the longitudinal axis of the fuel injection valve or the fuel injection nozzle. Together with the surface structuring, this results in several degrees of freedom for fuel jet shaping.
  • a variation of the fuel distribution can be implemented inexpensively in such a way that a differently shaped sleeve body is used for each application. While the usual components of the fuel injector or the fuel injector without individual changes can be made uniformly for all applications, only a differently shaped sleeve body is used. This can significantly reduce manufacturing costs.
  • the impact surface of the sleeve body has an at least partially circumferential tear-off edge at its radially outward end, which is undercut by an at least partially circumferential groove in the sleeve body such that the contour of the sleeve body forms an acute angle at the tear-off edge.
  • a recirculation zone is created in the area of the groove. In this area, the arrangement of ignition electrodes is advantageously possible, since in this area the concentration of the fuel-air mixture is within the ignition limits.
  • the ignition electrodes are arranged so that they extend axially only up to the circumferential groove of the sleeve body, it is ensured that the ignition electrodes are not directly wetted by the fuel jet, which would be disadvantageous.
  • the ignition electrodes are to a certain extent in the shadow of the tear-off edge.
  • the sleeve body can be divided in a particularly advantageous manner into a plurality of sectors spaced apart by cutouts. At least one impact surface for a fuel jet is provided in each sector.
  • the nozzle body preferably has a plurality of circumferentially distributed radial bores, through which a separate fuel jet emerges and strikes an assigned sector of the sleeve body.
  • the impact surfaces can also be inclined in the tangential direction with respect to the vertical plane of the longitudinal axis.
  • the contact surface of the sleeve body or the contact surface of each sector of the sleeve body can advantageously have a surface structure, preferably in the form of grooves running in the radial direction.
  • the fuel injector or the fuel injector can either have an inside opening or an outside opening valve closing body.
  • an externally opening valve closing body it is advantageous if the sleeve body projects beyond the spray-side end of the nozzle body forming the valve seat surface by an axial length dimension that is smaller than the maximum opening stroke of the valve closing body. It is thereby achieved that the fuel jet strikes the impact surface of the sleeve body with a small opening stroke of the valve closing body and is deflected in the axial direction. With a relatively large opening stroke of the valve closing body, on the other hand, part of the fuel jet does not strike the impact surface of the sleeve body, but is sprayed off in the radial direction. This variation of the effective spray direction as a function of the opening stroke is very advantageous in some applications of fuel injectors or fuel injectors directly injecting into the combustion chamber of the internal combustion engine.
  • the fuel injection nozzle 1 shows a fuel injector 1 according to the invention in a partially sectioned illustration.
  • the fuel injection nozzle 1 is suitable for injecting fuel, for example diesel fuel, directly into the combustion chamber of an internal combustion engine, for example a self-igniting internal combustion engine.
  • fuel injectors preferably also directly in the combustion chamber of the internal combustion engine, for example for direct gasoline injection in spark-ignited internal combustion engines.
  • the fuel injection nozzle 1 has a nozzle body 2 that can be inserted into a mounting bore of a cylinder head of an internal combustion engine and extends along a longitudinal axis 3 of the fuel injection nozzle 1.
  • the nozzle body 2 is surrounded by a sleeve body, which is shown in section in FIG. 1.
  • the sleeve body 4 has at its spray-side end 18 an inwardly projecting projection 5 which is triangular in cross-sectional profile and surrounds a spray-side end section 6 of the fuel injector 1 in a ring shape.
  • the spray-side end region of the fuel injector 1 according to the invention is shown enlarged in a sectional illustration in FIG. 2.
  • the nozzle body 2 has a blind bore 10 which extends along the longitudinal axis 3 and which receives a valve needle 11.
  • the nozzle body On its spray-side end section 6, the nozzle body has a rounded bulge 12 which is essentially V-shaped in cross-sectional profile.
  • the bulge 12 has on its inside a valve seat surface 13 which cooperates with a valve closure surface 15 provided on a valve closure body 14 to form a valve seat.
  • valve closing body 14 which is formed in one piece with the valve needle 11, is conical in two stages in the exemplary embodiment shown with an upstream conical section 14a and a downstream conical section 14b, the valve closing surface 15 being the lateral surface of the downstream conical section 14b.
  • the radial bores 16 are closed by the valve closing body 14, while in the open state of the fuel injector 1 the valve closing body 14 lifts off the valve seat surface 13 and thus releases the inflow of fuel from the blind bore 10 into the radial bores 16.
  • a plurality of fuel jets 17 are generated, which are sprayed off in different radial directions.
  • FIG. 2 only a fuel jet 17 and a radial bore 16 are shown.
  • the nozzle body 2 is surrounded by the sleeve body 4, which is preferably made of stainless steel or a ceramic material.
  • the downstream end 18 of the sleeve body 4 extends into the area of the fuel jets 17 sprayed from the radial bores 16.
  • the fuel jets 17 are surmounted in the axial direction by the sleeve body 4.
  • the sleeve body 4 has an impact surface 19 on which all Impact fuel jets 17.
  • the impingement surface 19 is inclined in the radial direction with respect to a plane running perpendicular to the longitudinal axis 3 and horizontally in FIG.
  • the impingement surface 19 could also be inclined in the tangential direction with respect to the vertical plane 20, which will be described with reference to the exemplary embodiment shown in FIG. 5.
  • the angle of inclination ⁇ which the impingement surface 19 occupies with respect to the vertical plane 20 of the longitudinal axis 3, is a flat angle between 0 ° and 45 °.
  • the range for the angle of inclination ⁇ is preferably between 5 ° and 30 ° and is particularly preferably approximately 15 °.
  • the impact of the fuel jets 17 on the impact surface 19 of the sleeve body 4 causes a particularly good swirling of the fuel jets 17 and thus the generation of fuel particles of small diameter. Air-fuel mixing is also promoted. An improvement of these effects can be achieved in that the impact surface 19 has a predetermined surface roughness.
  • An air gap 21 is provided between the inward protrusion 5 of the sleeve body 4 and the nozzle body 2, which causes the thermal insulation between the spray-side end 18 of the sleeve body 4 and the nozzle body 2.
  • FIG. 3 shows a second exemplary embodiment of an injection nozzle according to the invention in a sectional, excerpted illustration. Elements which have already been described are provided with the same reference numerals, so that a repetitive description is unnecessary.
  • the exemplary embodiment shown in FIG. 3 relates to an application in a spark ignition internal combustion engine. In the embodiment shown in Fig. 3, a spark plug is combined with the injector 1 or a fuel injector.
  • the sleeve body 4 has a circumferential groove 30 which is V-shaped in cross section.
  • the Impact surface 19 is delimited radially outwards by a tear-off edge 31.
  • the contour of the sleeve body 4 forms an acute edge angle ⁇ at the tear-off edge 31, the edge angle ⁇ being further reduced by the V-shaped groove 30.
  • Fig. 4 shows the detail IV in Fig. 3 in an enlarged view. To clarify the effect of the tear-off edge 31, the fuel jet 17 is also shown. As shown in FIG. 4 by the arrows 32, a recirculation zone is formed in the area of the groove 30, in which the fuel-air mixture flows in the direction of an ignition electrode 33.
  • a plurality of ignition electrodes are provided, which are distributed around the circumference of the sleeve body 4 and are electrically insulated from one another by a cutout or an insulation body. Adjacent ignition electrodes 33 each have a different pole of a high-voltage source, the sparkover being generated at the downstream end of the ignition electrodes 33.
  • the ignition electrodes 33 extend into the area of the circumferential groove 30 or end slightly upstream of the groove 30. In the recirculation zone, caused by the tear-off edge 31, air-fuel mixture which is well swirled and lies within the ignition limits and between one of the two Ignition electrodes 33 skipping ignition sparks is therefore easily ignitable. However, the fuel jet 17 does not strike the ignition electrodes 33 directly, so that disadvantageous wetting of the ignition electrodes 33 with fuel is avoided.
  • the sleeve body 4 from an electrically insulating material, in particular from a suitable ceramic material, in order to ensure that the ignition electrodes 33 are insulated from the nozzle body 2.
  • a single ignition electrode 33 can optionally also be used, the ignition spark jumping over to a suitable counterpart on the nozzle body 2 which carries the counter potential.
  • the recirculation zone identified by the arrows 32 can also be used to ignite the fuel-air mixture by means of a separate spark plug that is not combined with the fuel injection nozzle 1 or the fuel injection valve.
  • the formation of a sharp-edged tear-off edge 31 also has considerable advantages in self-igniting internal combustion engines due to the favorable swirling of the fuel-air mixture.
  • FIG. 5 shows a third exemplary embodiment of a fuel injection nozzle 1 according to the invention. Also in FIG. 5, elements that have already been described are provided with the same reference numerals, so that a repetitive description is unnecessary.
  • the nozzle body 2 is not shown in section.
  • the injection-side bulge 12 with a radial bore 16 penetrating the bulge 12 can be seen.
  • a total of four radial bores 16 are provided, which are offset from one another by 90 °.
  • a sector 41 to 43 formed on the main body 40 of the sleeve body 4 is assigned to each radial bore 16.
  • the individual sectors 41 to 43 are separated from one another by cutouts 44, 45.
  • a contact surface 46 to 48 is provided on each sector 41 to 43, which is inclined tangentially to the vertical plane 20 of the longitudinal axis 3 by an angle of inclination ⁇ . Additionally or alternatively, a radial inclination of the impact surfaces 46 to 48 can also be provided.
  • the fuel jets are reflected or scattered at the impact surfaces 46 to 48 of the assigned sectors 41 to 43, which causes a suitable fanning out of the fuel jets and a better swirling of the fuel-air mixture.
  • the geometric design of the individual sectors 41 to 43 can be adapted to the geometric design of the combustion chamber of the internal combustion engine, on which the fuel injector 1 is used.
  • the angle of inclination ⁇ of each impact surface 46 to 48 can be selected differently, depending on whether the spark plug or intake and exhaust valves are arranged in the corresponding area of the internal combustion engine, the wetting of which should be avoided as far as possible with fuel. In this way, the exhaust gas values of the internal combustion engine can be significantly improved.
  • FIG. 6 shows the view of the injection-side end of the fuel injection nozzle 1.
  • the injection-side bulge 12 of the nozzle body 2 and the sleeve body 4 surrounding the nozzle body 2 can be seen.
  • the contact surface 19 of the sleeve body 4 has a groove-like surface structure.
  • a radial groove 50 to 53 is provided for each fuel jet.
  • the grooves 50 to 53 initially taper in their radial course from the inside to the outside, while then widening like a diffuser until they open out.
  • the grooves 50 to 53 serve to improve the beam guidance of the fuel jets 17 and can of course also be designed in another suitable manner.
  • FIG. 7 shows a section along the line VII-VII in FIG. 6 for better illustration, the verticalization of the groove 52 becoming clear.
  • FIG. 8 shows a fifth exemplary embodiment of a fuel injector 1 according to the invention. Elements which have already been described are again provided with the same reference numerals, so that a repetitive description is unnecessary.
  • the fuel injector 1 shown in FIG. 8 has an externally opening valve closing body 14.
  • the nozzle body 2 has a through bore 60 designed as a stepped bore, in which a valve needle 11 is arranged.
  • the valve needle 11 has a guide section 61 which is in a diameter-widened step 62 of the through hole 60 is guided.
  • the annular valve closing body 14 is formed on the outside, the valve closing surface 15 of which cooperates with the valve seat surface 13 of the nozzle body 2 to form a valve seat.
  • the fuel jet sprayed from the fuel injector 1 hits the contact surface 19 of the sleeve body 4 completely with a small opening stroke of the valve closing body 14 and is reflected by the contact surface 19 in the axial direction, ie in the direction of the longitudinal axis 3.
  • the fuel jet is widened in the direction of the longitudinal axis 3 and, from a predetermined opening stroke of the valve closing body 14, no longer strikes the impact surface 19 completely.
  • a partial jet is therefore sprayed flat in the radial direction, while another partial jet is reflected as described on the impingement surface 19 of the sleeve body 4 in the direction of the longitudinal axis 3.
  • the above-described spray behavior of the injection nozzle 1 according to the invention as a function of the opening stroke of the valve closing body 14 is quite advantageous in the case of fuel injection nozzles 1 or fuel injection valves which directly inject into the combustion chamber of the internal combustion engine.
  • the piston of the internal combustion engine assigned to it With a small opening stroke of the fuel injector 1, the piston of the internal combustion engine assigned to it is located at a relatively large distance from its top dead center and thus at a relatively large distance from the fuel injector 1. It is therefore advantageous if the fuel jet in this operating state has a relatively large axial component is sprayed towards the combustion bowl.
  • the fuel injector 1 opens, the associated piston of the internal combustion engine and thus the combustion bowl moves in the direction of top dead center. In this operating state, it is therefore advantageous if the fuel jet is sprayed relatively flat in the direction of the now locally displaced Brerin trough.
  • the invention is not limited to the exemplary embodiments described.
  • the exemplary embodiments can be combined with one another without any problems and, for example, surface structuring of the impact surface 19 can also be used on an exemplary embodiment with a radially or tangentially inclined impact surface 19.
  • the illustrated and described further development according to the invention can also be used Fuel injectors for the direct injection of fuel into the combustion chamber of an internal combustion engine are used in particular in gasoline direct injection valves.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Weiterbildung, die sowohl an einem Brennstoffeinspritzventil als auch an einer Brennstoffeinspritzdüse insbesondere zum direkten Einspritzen von Brennstoff in den Brennraum einer Brennhaftmaschine realisierbar ist.The invention relates to a development that can be implemented both on a fuel injection valve and on a fuel injection nozzle, in particular for the direct injection of fuel into the combustion chamber of an internal combustion engine.

Die Erfindung geht aus von, einer Brennstoffeinspritzdüse nach der Gattung des Hauptanspruchs. Eine derartige Brennstoffeinspritzdüse ist z.B. aus der DE-PS 43 03 813 bekannt. Die bekannte Brennstoffeinspritzdüse umfaßt einen Düsenkörper mit einer Sackbohrung, in welcher eine Ventilnadel axial beweglich ist, die an ihrem stromabwärtigen Ende einen Ventilschließkörper aufweist. Der Ventilschließkörper ist konusförmig ausgebildet und weist eine Ventilschließfläche auf, die mit einer an dem Düsenkörper innenseitig vorgesehenen Ventilsitzfläche zu einem Ventilsitz zusammenwirkt. Dabei ist die Ventilnadel durch eine Rückstellfeder in Schließrichtung vorgespannt. An seinem abspritzseitigen Ende weist der Düsenkörper mehrere, umfänglich verteilt angeordnete Radialbohrungen auf, die den Düsenkörper durchdringen und in der Offenstellung der Brennstoffeinspritzdüse mit der Sackbohrung des Düsenkörpers verbunden sind. In der Schließstellung der Brennstoffeinspritzdüse hingegen ist der Zustrom des Brennstoffs von der Sackbohrung zu den Radialbohrungen hin unterbrochen.The invention is based on, a fuel injector according to the preamble of the main claim. Such a fuel injector is known for example from DE-PS 43 03 813. The known fuel injection nozzle comprises a nozzle body with a blind bore, in which a valve needle is axially movable, which has a valve closing body at its downstream end. The valve closing body is conical and has a valve closing surface which cooperates with a valve seat surface provided on the inside of the nozzle body to form a valve seat. The valve needle is biased in the closing direction by a return spring. At its spray end, the nozzle body has a plurality of circumferentially distributed radial bores which penetrate the nozzle body and are connected to the blind bore of the nozzle body in the open position of the fuel injection nozzle. In the closed position of the fuel injector, on the other hand, the flow of fuel from the blind bore to the radial bores is interrupted.

Eine Brennstoffeinspritzdüse ähnlicher Bauart, jedoch mit mehreren Paaren von Radialbohrungen, die an einer gemeinsamen Ausgangsöffnung unter unterschiedlichen Abspritzwinkeln ausmünden, ist aus der DE-OS 41 42 430 bekannt.A fuel injector of a similar design, but with several pairs of radial bores, which open out at a common outlet opening at different spray angles, is known from DE-OS 41 42 430.

Bei diesen bekannten Brennstoffeinspritzdüsen ist nachteilig, daß die axiale und radiale Brennstoffverteilung nicht an die geometrischen Gegebenheiten der Brennkraftmaschine, an welcher die Brennstoffeinspritzdüsen montiert werden, anpaßbar ist. Da die Lage der Zündkerze, der Einlaß- und Auslaßventile und anderer Bauteile in und an den Brennräumen der Brennkraftmaschine jedoch von Brennkraftmaschine zu Brennkraftmaschine bzw. von Fahrzeugtyp zu Fahrzeugtyp erheblich abweichen kann, ist die flexible Verwendung der bekannten Brennstoffeinspritzdüsen begrenzt. Das Vorsehen jeweils eines Paares von Radialbohrungen mit unterschiedlichen Abspritzwinkeln, wie dies aus der DE-OS 41 42 430 bekannt ist, erfordert zudem einen relativ hohen Fertigungsaufwand.A disadvantage of these known fuel injection nozzles is that the axial and radial fuel distribution cannot be adapted to the geometrical conditions of the internal combustion engine on which the fuel injection nozzles are mounted. However, since the position of the spark plug, the intake and exhaust valves and other components in and on the combustion chambers of the internal combustion engine can vary considerably from internal combustion engine to internal combustion engine or from vehicle type to vehicle type, the flexible use of the known fuel injection nozzles is limited. The provision of a pair of radial bores with different spray angles, as is known from DE-OS 41 42 430, also requires a relatively high production cost.

Aus der GB 2 240 137 A ist bereits ein Brennstoffeinspritzventil bekannt, das einen sich entlang einer Längsachse erstreckenden Düsenkörper aufweist, wobei dieser Düsenkörper um einen zusätzlichen Vorsatzkörper mit zwei Abspritzöffnungen verlängert ist. An diesem Vorsatzkörper ist eine Ventilsitzfläche als ringförmiger Flachsitz ausgebildet, die mit einer an einem Ventilschließkörper ausgebildeten Ventilschließfläche zu einem Ventilsitz zusammenwirkt. Im geöffneten Zustand des Brennstoffeinspritzventils werden aus den Abspritzöffnungen Brennstoffstrahlen abgespritzt, die gegenüber der Längsachse des Düsenkörpers eine geringe radiale, jedoch weitgehend eine axiale Richtungskomponente aufweisen. Der Vorsatzkörper selbst bzw. ein mit dem Vorsatzkörper verschweißter Endabschnitt überragt die abgespritzten Brennstoffstrahlen als Hülsenkörper in Richtung der Längsachse des Düsenkörpers axial stromabwärts der Abspritzöffnungen. Die Brennstoffstrahlen treffen auf eine innere Auftrefffläche des Vorsatzkörpers bzw. des angeschweißten Endabschnitts auf, wobei die Auftrefffläche bezüglich einer Vertikalebene, die vertikal zur Längsachse verläuft, um einen gewissen Winkel geneigt ist. Die Auftreffflächen des Vorsatzkörpers verlaufen dabei weitgehend senkrecht mit einem Winkel von ca. 15° zur Ventillängsachse oder anders ausgedrückt unter einem Winkel von ca. 75° zu der gedachten Vertikalebene, wobei der an der Auftrefffläche zerstäubte Brennstoff hinter der Abrisskante des Vorsatzkörpers einen noch geringeren Spraywinkel aufweist, da der abgespritzte Brennstoff einen kompakten, fein zerstäubten und einen geringen Spraywinkel aufweisenden Konusstrahl bilden soll.From GB 2 240 137 A a fuel injector is already known which has a nozzle body extending along a longitudinal axis, this nozzle body being extended by an additional attachment body with two spray openings. A valve seat surface is formed on this attachment body as an annular flat seat, which cooperates with a valve closure surface formed on a valve closure body to form a valve seat. In the open state of the fuel injector, fuel jets are sprayed out of the spray openings, which have a small radial, but largely an axial directional component with respect to the longitudinal axis of the nozzle body. The attachment body itself or an end section welded to the attachment body projects beyond the sprayed fuel jets as a sleeve body in the direction of the longitudinal axis of the nozzle body axially downstream of the spray openings. The fuel jets strike an inner impact surface of the attachment body or the welded-on end section, the impact surface being inclined by a certain angle with respect to a vertical plane that runs vertically to the longitudinal axis. The impact surfaces of the attachment body run largely vertically at an angle of approx. 15 ° to the longitudinal axis of the valve or, in other words, at an angle of approx. 75 ° to the imaginary vertical plane, with the fuel atomized at the impact surface behind the tear-off edge of the attachment body at an even smaller spray angle has, since the sprayed fuel is to form a compact, finely atomized and low spray angle cone jet.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Brennstoffeinspritzventil bzw. die erfindungsgemäße Brennstoffeinspritzdüse mit den kennzeichnenden Merkmalen des Hauptanspruches hat den Vorteil, daß der abgespritzte Brennstoff zielgerichtet verteilt wird und die Verteilung des Brennstoffs durch Variation der geometrischen Ausbildung des Hülsenkörpers in einfacher Weise variierbar ist. So haben der Neigungswinkel der Auftrefffläche, auf welche der Brennstoff auf den Hülsenkörper auftrifft, sowie die Oberflächenstrukturierung der Auftrefffläche z.B. durch radiale Rillen wesentlichen Einfluß auf die Brennstoffverteilung. Die Auftrefffläche kann gegenüber der Vertikalebene der Längsachse des Brennstoffeinspritzventils bzw. der Brennstoffeinspritzdüse sowohl in radialer als auch in tangentialer Richtung geneigt sein. Zusammen mit der Oberflächenstrukturierung ergeben sich daher mehrere Freiheitsgrade für die Brennstoff-Strahlformung. Eine Variation der Brennstoffverteilung ist dabei kostengünstig in der Weise realisierbar, daß für jede Applikation ein unterschiedlich geformter Hülsenkörper zum Einsatz kommt. Während die üblichen Bauteile des Brennstoffeinspritzventils bzw. der Brennstoffeinspritzdüse ohne individuelle Änderungen für alle Anwendungsfälle einheitlich gefertigt werden können, kommt jeweils lediglich ein unterschiedlich geformter Hülsenkörper zum Einsatz. Dadurch können die Fertigungskosten erheblich reduziert werden.The fuel injector according to the invention or the fuel injection nozzle according to the invention with the characterizing features of the main claim has the advantage that the sprayed fuel is distributed in a targeted manner and the distribution of the fuel can be varied in a simple manner by varying the geometric design of the sleeve body. For example, the angle of inclination of the impact surface on which the fuel strikes the sleeve body and the surface structuring of the impact surface, for example by radial grooves, have a significant influence on the fuel distribution. The impact surface can be inclined in the radial as well as in the tangential direction with respect to the vertical plane of the longitudinal axis of the fuel injection valve or the fuel injection nozzle. Together with the surface structuring, this results in several degrees of freedom for fuel jet shaping. A variation of the fuel distribution can be implemented inexpensively in such a way that a differently shaped sleeve body is used for each application. While the usual components of the fuel injector or the fuel injector without individual changes can be made uniformly for all applications, only a differently shaped sleeve body is used. This can significantly reduce manufacturing costs.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils bzw. der Brennstoffeinspritzdüse möglich.The measures listed in the subclaims permit advantageous developments and improvements of the fuel injector or the fuel injector specified in the main claim.

Es ist vorteilhaft, wenn die Auftrefffläche des Hülsenkörpers an ihrem radial auswärtigen Ende eine zumindest teilweise umlaufende Abrißkante aufweist, die durch eine zumindest teilweise umlaufende Nut in dem Hülsenkörper so hinterschnitten ist, daß an der Abrißkante die Kontur des Hülsenkörpers einen spitzen Winkel bildet. Dadurch wird eine besonders gute Verwirbelung des Brennstoff-Luftgemisches erzielt. Im Bereich der Nut entsteht eine Rezirkulationszone. In diesem Bereich ist die Anordnung von Zündelektroden in vorteilhafter Weise möglich, da in diesem Bereich die Konzentration des Brennstoff-Luftgemisches innerhalb der Zündgrenzen liegt. Wenn die Zündelektroden so angeordnet werden, daß sie sich axial nur bis zu der umlaufenden Nut des Hülsenkörpers erstrecken, ist sichergestellt, daß die Zündelektroden von dem Brennstoffstrahl nicht unmittelbar benetzt werden, was nachteilig wäre. Die Zündelektroden liegen gewissermaßen im Schatten der Abrißkante. Bei dieser Kombination des Brennstoffeinspritzventils bzw. der Brennstoffeinspritzdüse mit einer Zündkerze ist die Ausbildung des Hülsenkörpers aus einem vorzugsweise keramischen Isolationsmaterial vorteilhaft.It is advantageous if the impact surface of the sleeve body has an at least partially circumferential tear-off edge at its radially outward end, which is undercut by an at least partially circumferential groove in the sleeve body such that the contour of the sleeve body forms an acute angle at the tear-off edge. This results in a particularly good swirling of the fuel-air mixture. A recirculation zone is created in the area of the groove. In this area, the arrangement of ignition electrodes is advantageously possible, since in this area the concentration of the fuel-air mixture is within the ignition limits. If the ignition electrodes are arranged so that they extend axially only up to the circumferential groove of the sleeve body, it is ensured that the ignition electrodes are not directly wetted by the fuel jet, which would be disadvantageous. The ignition electrodes are to a certain extent in the shadow of the tear-off edge. With this combination of the fuel injection valve or the fuel injection nozzle with a spark plug, the formation of the sleeve body from a preferably ceramic insulation material is advantageous.

Der Hülsenkörper kann in besonders vorteilhafter Weise in mehrere durch Aussparungen beabstandete Sektoren gegliedert sein. Dabei ist in jedem Sektor zumindest eine Auftrefffläche für einen Brennstoffstrahl vorgesehen. Vorzugsweise weist der Düsenkörper dabei mehrere umfänglich verteilte Radialbohrungen auf, durch welche jeweils ein separater Brennstoffstrahl austritt und auf einem zugeordneten Sektor des Hülsenkörpers auftrifft. Die Auftreffflächen können dabei gegenüber der Vertikalebene der Längsachse auch in tangentialer Richtung geneigt sein.The sleeve body can be divided in a particularly advantageous manner into a plurality of sectors spaced apart by cutouts. At least one impact surface for a fuel jet is provided in each sector. The nozzle body preferably has a plurality of circumferentially distributed radial bores, through which a separate fuel jet emerges and strikes an assigned sector of the sleeve body. The impact surfaces can also be inclined in the tangential direction with respect to the vertical plane of the longitudinal axis.

In vorteilhafter Weise kann die Auftrefffläche des Hülsenkörpers bzw. die Auftrefffläche jedes Sektors des Hülsenkörpers eine Oberflächenstrukturierung vorzugsweise in Form von in radialer Richtung verlaufenden Rillen aufweisen.The contact surface of the sleeve body or the contact surface of each sector of the sleeve body can advantageously have a surface structure, preferably in the form of grooves running in the radial direction.

Das Brennstoffeinspritzventil bzw. die Brennstoffeinspritzdüse kann dabei entweder einen innen öffnenden oder aber einen außen öffnenden Ventilschließkörper aufweisen. Bei Verwendung eines außen öffnenden Ventilschließkörpers ist es vorteilhaft, wenn der Hülsenkörper das die Ventilsitzfläche bildende, abspritzseitige Ende des Düsenkörpers um ein axiales Längenmaß überragt, das kleiner als der maximale Öffnungshub des Ventilschließkörpers bemessen ist. Dadurch wird erreicht, daß der Brennstoffstrahl bei geringem Öffnungshub des Ventilschließkörpers auf der Auftrefffläche des Hülsenkörpers auftrifft und in axialer Richtung abgelenkt wird. Bei relativ großem Öffnungshub des Ventilschließkörpers hingegen trifft ein Teil des Brennstoffstrahls nicht auf der Auftrefffläche des Hülsenkörpers auf, sondern wird in radialer Richtung abgespritzt. Diese Variation der effektiven Abspritzrichtung als Funktion des Öffnungshubs ist bei einigen Anwendungen direkt in den Brennraum der Brennkraftmaschine einspritzender Brennstoffeinspritzventile oder Brennstoffeinspritzdüsen sehr vorteilhaft.The fuel injector or the fuel injector can either have an inside opening or an outside opening valve closing body. When using an externally opening valve closing body, it is advantageous if the sleeve body projects beyond the spray-side end of the nozzle body forming the valve seat surface by an axial length dimension that is smaller than the maximum opening stroke of the valve closing body. It is thereby achieved that the fuel jet strikes the impact surface of the sleeve body with a small opening stroke of the valve closing body and is deflected in the axial direction. With a relatively large opening stroke of the valve closing body, on the other hand, part of the fuel jet does not strike the impact surface of the sleeve body, but is sprayed off in the radial direction. This variation of the effective spray direction as a function of the opening stroke is very advantageous in some applications of fuel injectors or fuel injectors directly injecting into the combustion chamber of the internal combustion engine.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse in einer teilweise geschnittenen Darstellung,
Fig. 2
einen Schnitt durch das abspritzseitige Ende der in Fig. 1 dargestellten Brennstoffeinspritzdüse,
Fig. 3
ein zweites Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse in einer auszugsweisen, geschnittenen Darstellung,
Fig. 4
den Ausschnitt IV in Fig. 3 in einer vergrößerten Darstellung,
Fig. 5
ein drittes Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse in einer auszugsweisen Darstellung,
Fig. 6
eine abspritzseitige Ansicht eines vierten Ausführungsbeispiels einer erfindungsgemäßen Brennstoffeinspritzdüse,
Fig. 7
einen Schnitt entlang der Linie VII-VII in Fig. 6 und
Fig. 8
einen Schnitt durch das abspritzseitige Ende eines fünften Ausführungsbeispiels einer erfindungsgemäßen Brennstoffeinspritzdüse.
Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. Show it:
Fig. 1
a first embodiment of a fuel injector according to the invention in a partially sectioned illustration,
Fig. 2
2 shows a section through the spray-side end of the fuel injector shown in FIG. 1,
Fig. 3
a second embodiment of a fuel injector according to the invention in an excerpt, sectional view,
Fig. 4
the section IV in Fig. 3 in an enlarged view,
Fig. 5
a third embodiment of a fuel injector according to the invention in a partial representation,
Fig. 6
2 shows a spray-side view of a fourth exemplary embodiment of a fuel injector according to the invention,
Fig. 7
a section along the line VII-VII in Fig. 6 and
Fig. 8
a section through the spray end of a fifth embodiment of a fuel injector according to the invention.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Fig. 1 zeigt eine erfindungsgemäße Brennstoffeinspritzdüse 1 in einer teilweise geschnittenen Darstellung. Die Brennstoffeinspritzdüse 1 ist zum direkten Einspritzen von Brennstoff, z.B. Dieselbrennstoff, in den Brennraum einer Brennkraftmaschine, z.B. einer selbstzündenden Brennkraftmaschine, geeignet. Die erfindungsgemäße Weiterbildung ist jedoch in gleicher Weise auch für vorzugsweise ebenfalls direkt in den Brennraum der Brennkraftmaschine einspritzende Brennstoffeinspritzventile, z.B. für Benzin-Direkteinspritzung in fremdgezündete Brennkraftmaschinen, geeignet. Die Brennstoffeinspritzdüse 1 weist einen in eine Montagebohrung eines Zylinderkopfes einer Brennkraftmaschine einsetzbaren Düsenkörper 2 auf, der sich entlang einer Längsachse 3 der Brennstoffeinspritzdüse 1 erstreckt. Der Düsenkörper 2 ist von einem Hülsenkörper, der in Fig. 1 geschnitten dargestellt ist, umgeben. Der Hülsenkörper 4 weist an seinem abspritzseitigen Ende 18 einen nach innen ragenden, im Querschnittsprofil dreieckförmigen Überstand 5 auf, der einen abspritzseitigen Endabschnitt 6 der Brennstoffeinspritzdüse 1 ringförmig umschließt.1 shows a fuel injector 1 according to the invention in a partially sectioned illustration. The fuel injection nozzle 1 is suitable for injecting fuel, for example diesel fuel, directly into the combustion chamber of an internal combustion engine, for example a self-igniting internal combustion engine. However, the further development according to the invention is also suitable in the same way for fuel injectors, preferably also directly in the combustion chamber of the internal combustion engine, for example for direct gasoline injection in spark-ignited internal combustion engines. The fuel injection nozzle 1 has a nozzle body 2 that can be inserted into a mounting bore of a cylinder head of an internal combustion engine and extends along a longitudinal axis 3 of the fuel injection nozzle 1. The nozzle body 2 is surrounded by a sleeve body, which is shown in section in FIG. 1. The sleeve body 4 has at its spray-side end 18 an inwardly projecting projection 5 which is triangular in cross-sectional profile and surrounds a spray-side end section 6 of the fuel injector 1 in a ring shape.

Der abspritzseitige Endbereich der erfindungsgemäßen Brennstoffeinspritzdüse 1 ist in Fig. 2 in einer geschnittenen Darstellung vergrößert dargestellt. Der Düsenkörper 2 weist eine sich entlang der Längsachse 3 erstreckende Sackbohrung 10 auf, welche eine Ventilnadel 11 aufnimmt. An seinem abspritzseitigen Endabschnitt 6 hat der Düsenkörper eine im Querschnittsprofil im wesentlichen V-förmige, abgerundete Ausbuchtung 12. Die Ausbuchtung 12 weist an ihrer Innenseite eine Ventilsitzfläche 13 auf, die mit einer an einem Ventilschließkörper 14 vorgesehenen Ventilschließfläche 15 zu einem Ventilsitz zusammenwirkt. Der beispielsweise einteilig mit der Ventilnadel 11 ausgebildete Ventilschließkörper 14 ist im dargestellten Ausführungsbeispiel mit einem stromaufwärtigen konischen Abschnitt 14a und einem stromabwärtigen konischen Abschnitt 14b zweistufig konisch ausgebildet, wobei die Ventilschließfläche 15 die Mantelfläche des stromabwärtigen konischen Abschnitts 14b ist.The spray-side end region of the fuel injector 1 according to the invention is shown enlarged in a sectional illustration in FIG. 2. The nozzle body 2 has a blind bore 10 which extends along the longitudinal axis 3 and which receives a valve needle 11. On its spray-side end section 6, the nozzle body has a rounded bulge 12 which is essentially V-shaped in cross-sectional profile. The bulge 12 has on its inside a valve seat surface 13 which cooperates with a valve closure surface 15 provided on a valve closure body 14 to form a valve seat. For example, the valve closing body 14, which is formed in one piece with the valve needle 11, is conical in two stages in the exemplary embodiment shown with an upstream conical section 14a and a downstream conical section 14b, the valve closing surface 15 being the lateral surface of the downstream conical section 14b.

In der Ausbuchtung 12 ist zumindest eine Radialbohrung 16, vorzugsweise jedoch mehrere umfänglich verteilt angeordnete Radialbohrungen 16 vorgesehen, die sich radial zu der Längsachse 3, zumindest jedoch mit einer radialen Komponente gegenüber der Längsachse 3 nach außen erstrecken und in die Sackbohrung 10 im Bereich der Ventilsitzfläche 13 oder aber stromabwärts der Ventilsitzfläche 13 einmünden. Im geschlossenen Zustand der Brennstoffeinspritzdüse 1 sind die Radialbohrungen 16 durch den Ventilschließkörper 14 verschlossen, während im geöffneten Zustand der Brennstoffeinspritzdüse 1 der Ventilschließkörper 14 von der Ventilsitzfläche 13 abhebt und somit den Zustrom von Brennstoff von der Sackbohrung 10 in die Radialbohrungen 16 freigibt. Dadurch werden mehrere Brennstoffstrahlen 17 erzeugt, die in unterschiedliche radiale Richtungen abgespritzt werden. In der Schnittdarstellung der Fig. 2 ist lediglich ein Brennstoffstrahl 17 und eine Radialbohrung 16 dargestellt.Provided in the bulge 12 is at least one radial bore 16, but preferably a plurality of circumferentially distributed radial bores 16 which extend radially to the longitudinal axis 3, but at least with a radial component with respect to the longitudinal axis 3 and into the blind bore 10 in the region of the valve seat surface 13 or open out downstream of the valve seat surface 13. In the closed state of the fuel injector 1, the radial bores 16 are closed by the valve closing body 14, while in the open state of the fuel injector 1 the valve closing body 14 lifts off the valve seat surface 13 and thus releases the inflow of fuel from the blind bore 10 into the radial bores 16. As a result, a plurality of fuel jets 17 are generated, which are sprayed off in different radial directions. In the sectional view of FIG. 2, only a fuel jet 17 and a radial bore 16 are shown.

Erfindungsgemäß ist der Düsenkörper 2 von dem Hülsenkörper 4 umgeben, der vorzugsweise aus Edelstahl oder einem keramischen Material besteht. Das stromabwärtige Ende 18 des Hülsenkörpers 4 erstreckt sich dabei bis in den Bereich der von den Radialbohrungen 16 abgespritzten Brennstoffstrahlen 17. Mit anderen Worten werden die Brennstoffstrahlen 17 von dem Hülsenkörper 4 in axialer Richtung überragt. Der Hülsenkörper 4 weist dabei eine Auftrefffläche 19 auf, auf welcher sämtliche Brennstoffstrahlen 17 auftreffen. Die Auftrefffläche 19 ist im in Fig. 2 dargestellten Beispiel in radialer Richtung gegenüber einer senkrecht zur Längsachse 3 und in Fig. 2 horizontal verlaufenden Ebene, die hier als Vertikalebene 20 bezeichnet wird, geneigt und bildet eine kegelstumpfförmige Stirnfläche des Hülsenkörpers 4. Anstatt in radialer Richtung könnte die Auftrefffläche 19 jedoch auch in tangentialer Richtung gegenüber der Vertikalebene 20 geneigt sein, was anhand des in Fig. 5 dargestellten Ausführungsbeispiels noch beschrieben werden wird. Der Neigungswinkel α, den die Auftrefffläche 19 gegenüber der Vertikalebene 20 der Längsachse 3 einnimmt, ist ein flacher Winkel zwischen 0° und 45°. Bevorzugt liegt der Bereich für den Neigungswinkel α zwischen 5° und 30° und beträgt besonders bevorzugte ca. 15°.According to the invention, the nozzle body 2 is surrounded by the sleeve body 4, which is preferably made of stainless steel or a ceramic material. The downstream end 18 of the sleeve body 4 extends into the area of the fuel jets 17 sprayed from the radial bores 16. In other words, the fuel jets 17 are surmounted in the axial direction by the sleeve body 4. The sleeve body 4 has an impact surface 19 on which all Impact fuel jets 17. In the example shown in FIG. 2, the impingement surface 19 is inclined in the radial direction with respect to a plane running perpendicular to the longitudinal axis 3 and horizontally in FIG. 2, which is referred to here as the vertical plane 20, and forms a frustoconical end face of the sleeve body 4. Instead of in the radial direction In the direction, however, the impingement surface 19 could also be inclined in the tangential direction with respect to the vertical plane 20, which will be described with reference to the exemplary embodiment shown in FIG. 5. The angle of inclination α, which the impingement surface 19 occupies with respect to the vertical plane 20 of the longitudinal axis 3, is a flat angle between 0 ° and 45 °. The range for the angle of inclination α is preferably between 5 ° and 30 ° and is particularly preferably approximately 15 °.

Das Auftreffen der Brennstoffstrahlen 17 auf der Auftrefffläche 19 des Hülsenkörpers 4 bewirkt eine besonders gute Verwirbelung der Brennstoffstrahlen 17 und somit die Erzeugung von Brennstoffpartikeln geringen Durchmessers. Ferner wird die Luft-Brennstoffdurchmischung gefördert. Eine Verbesserung dieser Effekte kann noch dadurch erreicht werden, daß die Auftrefffläche 19 eine vorgegebene Oberflächenrauhigkeit aufweist.The impact of the fuel jets 17 on the impact surface 19 of the sleeve body 4 causes a particularly good swirling of the fuel jets 17 and thus the generation of fuel particles of small diameter. Air-fuel mixing is also promoted. An improvement of these effects can be achieved in that the impact surface 19 has a predetermined surface roughness.

Zwischen dem nach innen ragenden Überstand 5 des Hülsenkörpers 4 und dem Düsenkörper 2 ist ein Luftspalt 21 vorgesehen, der die thermische Isolation zwischen dem abspritzseitigen Ende 18 des Hülsenkörpers 4 und dem Düsenkörper 2 bewirkt.An air gap 21 is provided between the inward protrusion 5 of the sleeve body 4 and the nozzle body 2, which causes the thermal insulation between the spray-side end 18 of the sleeve body 4 and the nozzle body 2.

In Fig. 3 ist ein zweites Ausführungsbeispiel einer erfindungsgemäßen Einspritzdüse in einer geschnittenen, auszugsweisen Darstellung veranschaulicht. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen, so daß sich insoweit eine wiederholende Beschreibung erübrigt. Das in Fig. 3 dargestellte Ausführungsbeispiel bezieht sich auf eine Anwendung bei einer fremdgezündeten Brennkraftmaschine. In dem in Fig. 3 dargestellten Ausführungsbeispiel ist eine Zündkerze mit der Einspritzdüse 1 oder einem Brennstoffeinspritzventil kombiniert.3 shows a second exemplary embodiment of an injection nozzle according to the invention in a sectional, excerpted illustration. Elements which have already been described are provided with the same reference numerals, so that a repetitive description is unnecessary. The exemplary embodiment shown in FIG. 3 relates to an application in a spark ignition internal combustion engine. In the embodiment shown in Fig. 3, a spark plug is combined with the injector 1 or a fuel injector.

Im Unterschied zu dem bereits anhand der Fig. 1 und 2 beschriebenen Ausführungsbeispiel weist der Hülsenkörper 4 eine umlaufende, im Querschnitt V-förmige Nut 30 auf. Die Auftrefffläche 19 ist radial auswärts durch eine Abrißkante 31 begrenzt. Die Kontur des Hülsenkörpers 4 bildet an der Abrißkante 31 einen spitzen Kantenwinkel β, wobei der Kantenwinkel β durch die V-förmige Nut 30 weiter verringert ist.In contrast to the exemplary embodiment already described with reference to FIGS. 1 and 2, the sleeve body 4 has a circumferential groove 30 which is V-shaped in cross section. The Impact surface 19 is delimited radially outwards by a tear-off edge 31. The contour of the sleeve body 4 forms an acute edge angle β at the tear-off edge 31, the edge angle β being further reduced by the V-shaped groove 30.

Fig. 4 zeigt den Ausschnitt IV in Fig. 3 in einer vergrößerten Darstellung. Zur Verdeutlichung der Wirkung der Abrißkante 31 ist ferner der Brennstoffstrahl 17 eingezeichnet. Wie in Fig. 4 durch die Pfeile 32 verdeutlicht, entsteht im Bereich der Nut 30 eine Rezirkulationszone, in welchem das Brennstoff-Luftgemisch in Richtung auf eine Zündelektrode 33 strömt. In einem bevorzugten Ausführungsbeispiel sind mehrere Zündelektroden vorgesehen, die umfänglich am Hülsenkörper 4 verteilt angeordnet sind und durch eine Aussparung bzw. einen Isolationskörper elektrisch voneinander isoliert sind. Jeweils benachbarte Zündelektroden 33 führen einen unterschiedlichen Pol einer Hochspannungsquelle, wobei der Funkenüberschlag am stromabwärtigen Ende der Zündelektroden 33 erzeugt wird. Die Zündelektroden 33 erstrecken sich dabei bis in den Bereich der umlaufenden Nut 30 bzw. enden geringfügig stromaufwärts der Nut 30. In der Rezirkulationszone entsteht, verursacht durch die Abrißkante 31, gut verwirbeltes Luft-Brennstoffgemisch, das innerhalb der Zündgrenzen liegt und von einem zwischen den Zündelektroden 33 überspringenden Zündfunken daher leicht zündbar ist. Der Brennstoffstrahl 17 trifft jedoch nicht unmittelbar auf die Zündelektroden 33 auf, so daß eine nachteilige Benetzung der Zündelektroden 33 mit Brennstoff vermieden wird.Fig. 4 shows the detail IV in Fig. 3 in an enlarged view. To clarify the effect of the tear-off edge 31, the fuel jet 17 is also shown. As shown in FIG. 4 by the arrows 32, a recirculation zone is formed in the area of the groove 30, in which the fuel-air mixture flows in the direction of an ignition electrode 33. In a preferred exemplary embodiment, a plurality of ignition electrodes are provided, which are distributed around the circumference of the sleeve body 4 and are electrically insulated from one another by a cutout or an insulation body. Adjacent ignition electrodes 33 each have a different pole of a high-voltage source, the sparkover being generated at the downstream end of the ignition electrodes 33. The ignition electrodes 33 extend into the area of the circumferential groove 30 or end slightly upstream of the groove 30. In the recirculation zone, caused by the tear-off edge 31, air-fuel mixture which is well swirled and lies within the ignition limits and between one of the two Ignition electrodes 33 skipping ignition sparks is therefore easily ignitable. However, the fuel jet 17 does not strike the ignition electrodes 33 directly, so that disadvantageous wetting of the ignition electrodes 33 with fuel is avoided.

Bei diesem Ausführungsbeispiel ist es vorteilhaft, den Hülsenkörper 4 aus einem elektrisch isolierenden Material, insbesondere aus einem geeigneten Keramikwerkstoff auszubilden, um eine Isolation der Zündelektroden 33 gegenüber dem Düsenkörper 2 sicherzustellen. Anstatt mehrerer Zündelektroden 33 kann ggfs. auch eine einzige Zündelektrode 33 zum Einsatz kommen, wobei der Zündfunke zu einem geeigneten, das Gegenpotential führenden Gegenstück an dem Düsenkörper 2 überspringt. Alternativ kann die mit den Pfeilen 32 gekennzeichnete Rezirkulationszone auch zum Zünden des Brennstoff-Luftgemisches durch eine separate, mit der Brennstoffeinspritzdüse 1 bzw. dem Brennstoffeinspritzventil nicht kombinierte Zündkerze ausgenutzt werden. Die Ausbildung einer scharfkantigen Abrißkante 31 hat auch bei selbstzündenden Brennkraftmaschinen aufgrund der günstigen Verwirbelung des Brennstoff-Luftgemisches erhebliche Vorteile.In this exemplary embodiment, it is advantageous to form the sleeve body 4 from an electrically insulating material, in particular from a suitable ceramic material, in order to ensure that the ignition electrodes 33 are insulated from the nozzle body 2. Instead of a plurality of ignition electrodes 33, a single ignition electrode 33 can optionally also be used, the ignition spark jumping over to a suitable counterpart on the nozzle body 2 which carries the counter potential. Alternatively, the recirculation zone identified by the arrows 32 can also be used to ignite the fuel-air mixture by means of a separate spark plug that is not combined with the fuel injection nozzle 1 or the fuel injection valve. The formation of a sharp-edged tear-off edge 31 also has considerable advantages in self-igniting internal combustion engines due to the favorable swirling of the fuel-air mixture.

Fig. 5 zeigt ein drittes Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse 1. Auch in Fig. 5 sind bereits beschriebene Elemente mit übereinstimmenden Bezugszeichen versehen, so daß sich insoweit eine wiederholende Beschreibung erübrigt.FIG. 5 shows a third exemplary embodiment of a fuel injection nozzle 1 according to the invention. Also in FIG. 5, elements that have already been described are provided with the same reference numerals, so that a repetitive description is unnecessary.

In Fig. 5 ist der Düsenkörper 2 nicht geschnitten dargestellt. Es ist die abspritzseitige Ausbuchtung 12 mit einer die Ausbuchtung 12 durchdringenden Radialbohrung 16 erkennbar. Im in Fig. 5 dargestellten Ausführungsbeispiel sind insgesamt vier Radialbohrungen 16 vorgesehen, die zueinander um jeweils 90° versetzt sind. Jeder Radialbohrung 16 ist ein an dem Hauptkörper 40 des Hülsenkörpers 4 angeformter Sektor 41 bis 43 zugeordnet. Die einzelnen Sektoren 41 bis 43 sind durch Aussparungen 44, 45 voneinander getrennt. An jedem Sektor 41 bis 43 ist jeweils eine Auftrefffläche 46 bis 48 vorgesehen, die gegenüber der Vertikalebene 20 der Längsachse 3 um einen Neigungswinkel α tangential geneigt ist. Zusätzlich oder alternativ kann auch eine radiale Neigung der Auftreffflächen 46 bis 48 vorgesehen sein.5, the nozzle body 2 is not shown in section. The injection-side bulge 12 with a radial bore 16 penetrating the bulge 12 can be seen. In the exemplary embodiment shown in FIG. 5, a total of four radial bores 16 are provided, which are offset from one another by 90 °. A sector 41 to 43 formed on the main body 40 of the sleeve body 4 is assigned to each radial bore 16. The individual sectors 41 to 43 are separated from one another by cutouts 44, 45. A contact surface 46 to 48 is provided on each sector 41 to 43, which is inclined tangentially to the vertical plane 20 of the longitudinal axis 3 by an angle of inclination α. Additionally or alternatively, a radial inclination of the impact surfaces 46 to 48 can also be provided.

Die in Fig. 5 nicht eingezeichneten Brennstoffstrahlen werden an den Auftreffflächen 46 bis 48 der zugeordneten Sektoren 41 bis 43 reflektiert bzw. gestreut, was eine geeignete Auffächerung der Brennstoffstrahlen sowie eine bessere Verwirbelung des Brennstoff-Luftgemisches bewirkt. Die geometrische Ausbildung der einzelnen Sektoren 41 bis 43 kann an die geometrische Ausbildung des Brennraumes der Brennkraftmaschine angepaßt werden, an welcher die Brennstoffeinspritzdüse 1 zum Einsatz kommt. Insbesondere kann der Neigungswinkel α einer jeden Auftrefffläche 46 bis 48 unterschiedlich gewählt werden, je nachdem, ob in dem entsprechenden Bereich der Brennkraftmaschine die Zündkerze oder Einlaß- und Auslaßventile angeordnet sind, deren Benetzung mit Brennstoff möglichst zu vermeiden ist. Auf diese Weise können die Abgaswerte der Brennkraftmaschine wesentlich verbessert werden. Ferner kann eine flexible Verwendung der erfindungsgemäßen Brennstoffeinspritzdüsen 1 bzw. der erfindungsgemäßen Einspritzventile dadurch erreicht werden, daß je nach Applikation, d.h. je nach Typ der Brennkraftmaschine bzw. je nach Fahrzeugtyp, unterschiedliche Hülsenkörper 4 Verwendung finden. Vorteilhaft ist dabei, daß die übrigen Bauteile der Brennstoffeinspritzdüse 1 bzw. des Brennstoffeinspritzventils unverändert bleiben können.The fuel jets, not shown in FIG. 5, are reflected or scattered at the impact surfaces 46 to 48 of the assigned sectors 41 to 43, which causes a suitable fanning out of the fuel jets and a better swirling of the fuel-air mixture. The geometric design of the individual sectors 41 to 43 can be adapted to the geometric design of the combustion chamber of the internal combustion engine, on which the fuel injector 1 is used. In particular, the angle of inclination α of each impact surface 46 to 48 can be selected differently, depending on whether the spark plug or intake and exhaust valves are arranged in the corresponding area of the internal combustion engine, the wetting of which should be avoided as far as possible with fuel. In this way, the exhaust gas values of the internal combustion engine can be significantly improved. Furthermore, flexible use of the fuel injection nozzles 1 or the injection valves according to the invention can be achieved in that different sleeve bodies 4 depending on the application, ie depending on the type of internal combustion engine or depending on the vehicle type Find use. It is advantageous that the other components of the fuel injector 1 or the fuel injector can remain unchanged.

Fig. 6 und 7 zeigen ein viertes Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse 1. Fig. 6 zeigt dabei die Sicht auf das abspritzseitige Ende der Brennstoffeinspritzdüse 1. Erkennbar sind die abspritzseitige Ausbuchtung 12 des Düsenkörpers 2 und der den Düsenkörper 2 umgebende Hülsenkörper 4. Entsprechend der Besonderheit des in den Fig. 6 und 7 dargestellten Ausführungsbeispiels weist die Auftrefffläche 19 des Hülsenkörpers 4 eine rillenartige Oberflächenstruktur auf. Für jeden Brennstoffstrahl ist eine radial verlaufende Rille 50 bis 53 vorgesehen. Im dargestellten Ausführungsbeispiel verjüngen sich die Rillen 50 bis 53 in ihrem radialen Verlauf von innen nach außen zunächst, während sie sich daran anschließend bis zu ihrer Ausmündung in Art eines Diffusors erweitern. Die Rillen 50 bis 53 dienen zur Verbesserung der Strahlführung der Brennstoffstrahlen 17 und können selbstverständlich auch in anderer geeigneter Weise ausgebildet sein. Zusätzlich ist es auch möglich, die Auftrefffläche 19 in radialer und/oder tangentialer Richtung entsprechend den vorstehend bereits beschriebenen Ausführungsbeispielen gegenüber der Vertikalebene 20 der Längsachse 3 zu neigen.6 and 7 show a fourth exemplary embodiment of a fuel injection nozzle 1 according to the invention. FIG. 6 shows the view of the injection-side end of the fuel injection nozzle 1. The injection-side bulge 12 of the nozzle body 2 and the sleeve body 4 surrounding the nozzle body 2 can be seen. According to the special feature 6 and 7, the contact surface 19 of the sleeve body 4 has a groove-like surface structure. A radial groove 50 to 53 is provided for each fuel jet. In the exemplary embodiment shown, the grooves 50 to 53 initially taper in their radial course from the inside to the outside, while then widening like a diffuser until they open out. The grooves 50 to 53 serve to improve the beam guidance of the fuel jets 17 and can of course also be designed in another suitable manner. In addition, it is also possible to incline the impact surface 19 in the radial and / or tangential direction in accordance with the exemplary embodiments already described above with respect to the vertical plane 20 of the longitudinal axis 3.

Fig. 7 zeigt zur besseren Veranschaulichung einen Schnitt entlang der Linie VII-VII in Fig. 6, wobei die Vertierung der Rille 52 deutlich wird.FIG. 7 shows a section along the line VII-VII in FIG. 6 for better illustration, the verticalization of the groove 52 becoming clear.

Fig. 8 zeigt ein fünftes Ausführungsbeispiel einer erfindungsgemäßen Brennstoffeinspritzdüse 1. Bereits beschriebene Elemente sind wiederum mit übereinstimmenden Bezugszeichen versehen, so daß sich insoweit eine wiederholende Beschreibung erübrigt.8 shows a fifth exemplary embodiment of a fuel injector 1 according to the invention. Elements which have already been described are again provided with the same reference numerals, so that a repetitive description is unnecessary.

Während es sich bei den vorstehend beschriebenen Ausführungsbeispielen um eine innen öffnende Brennstoffeinspritzdüse 1 handelt, weist die in Fig. 8 dargestellte Brennstoffeinspritzdüse 1 einen außen öffnenden Ventilschließkörper 14 auf. Der Düsenkörper 2 weist dabei eine als Stufenbohrung ausgebildete Durchgangsbohrung 60 auf, in welcher eine Ventilnadel 11 angeordnet ist. An ihrem abspritzseitigen Ende hat die Ventilnadel 11 einen Führungsabschnitt 61, der in einer im Durchmesser erweiterten Stufe 62 der Durchgangsbohrung 60 geführt ist. In dem Führungsabschnitt 61 ist außenseitig der ringförmige Ventilschließkörper 14 angeformt, dessen Ventilschließfläche 15 mit der Ventilsitzfläche 13 des Düsenkörpers 2 zu einem Ventilsitz zusammenwirkt. Der von der Brennstoffeinspritzdüse 1 abgespritze Brennstoffstrahl trifft bei einem geringen Öffnungshub des Ventilschließkörpers 14 vollständig auf der Auftrefffläche 19 des Hülsenkörpers 4 auf und wird von der Auftrefffläche 19 in axialer Richtung, d.h. in Richtung der Längsachse 3, reflektiert. Mit zunehmendem Öffnungshub des Ventilschließkörpers 14 wird der Brennstoffstrahl in Richtung der Längsachse 3 verbreitert und trifft ab einem vorgegebenen Öffnungshub des Ventilschließkörpers 14 nicht mehr vollständig auf der Auftrefffläche 19 auf. Ein Teilstrahl wird daher in radialer Richtung flach abgespritzt, während ein anderer Teilstrahl wie beschrieben an der Auftrefffläche 19 des Hülsenkörpers 4 in Richtung der Längsachse 3 reflektiert wird.While the exemplary embodiments described above are an internally opening fuel injector 1, the fuel injector 1 shown in FIG. 8 has an externally opening valve closing body 14. The nozzle body 2 has a through bore 60 designed as a stepped bore, in which a valve needle 11 is arranged. At its spray-side end, the valve needle 11 has a guide section 61 which is in a diameter-widened step 62 of the through hole 60 is guided. In the guide section 61, the annular valve closing body 14 is formed on the outside, the valve closing surface 15 of which cooperates with the valve seat surface 13 of the nozzle body 2 to form a valve seat. The fuel jet sprayed from the fuel injector 1 hits the contact surface 19 of the sleeve body 4 completely with a small opening stroke of the valve closing body 14 and is reflected by the contact surface 19 in the axial direction, ie in the direction of the longitudinal axis 3. As the opening stroke of the valve closing body 14 increases, the fuel jet is widened in the direction of the longitudinal axis 3 and, from a predetermined opening stroke of the valve closing body 14, no longer strikes the impact surface 19 completely. A partial jet is therefore sprayed flat in the radial direction, while another partial jet is reflected as described on the impingement surface 19 of the sleeve body 4 in the direction of the longitudinal axis 3.

Das vorstehend beschriebene Abspritzverhalten der erfindungsgemäßen Einspritzdüse 1 als Funktion des Öffnungshubs des Ventilschließkörpers 14 ist bei direkt in den Brennraum der Brennkraftmaschine einspritzenden Brennstoffeinspritzdüsen 1 oder Brennstoffeinspritzventilen durchaus von Vorteil. Bei geringem Öffnungshub der Brennstoffeinspritzdüse 1 befindet sich der ihr zugeordnete Kolben der Brennkraftmaschine in relativ großer Entfernung von seinem oberen Totpunkt und somit in relativ großer Entfernung von der Brennstoffeinspritzdüse 1. Somit ist es vorteilhaft, wenn der Brennstoffstrahl in diesem Betriebszustand mit einer relativ großen axialen Komponente in Richtung auf die Brennmulde abgespritzt wird. In zunehmender Öffnung der Brennstoffeinspritzdüse 1 bewegt sich der zugeordnete Kolben der Brennkraftmaschine und somit die Brennmulde in Richtung auf den oberen Totpunkt. In diesem Betriebszustand ist es daher vorteilhaft, wenn der Brennstoffstrahl in Richtung auf die nunmehr örtlich verlagerte Brerinmulde relativ flach abgespritzt wird.The above-described spray behavior of the injection nozzle 1 according to the invention as a function of the opening stroke of the valve closing body 14 is quite advantageous in the case of fuel injection nozzles 1 or fuel injection valves which directly inject into the combustion chamber of the internal combustion engine. With a small opening stroke of the fuel injector 1, the piston of the internal combustion engine assigned to it is located at a relatively large distance from its top dead center and thus at a relatively large distance from the fuel injector 1. It is therefore advantageous if the fuel jet in this operating state has a relatively large axial component is sprayed towards the combustion bowl. As the fuel injector 1 opens, the associated piston of the internal combustion engine and thus the combustion bowl moves in the direction of top dead center. In this operating state, it is therefore advantageous if the fuel jet is sprayed relatively flat in the direction of the now locally displaced Brerin trough.

Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele begrenzt. So können die Ausführungsbeispiele ohne weiteres untereinander kombiniert werden und z.B. eine Oberflächenstrukturierung der Auftrefffläche 19 auch an einem Ausführungsbeispiel mit radial oder tangential geneigter Auftrefffläche 19 zur Anwendung kommen. Ferner kann die dargestellte und beschriebene erfindungsgemäße Weiterbildung auch bei Brennstoffeinspritzventilen zum direkten Einspritzen von Brennstoff in den Brennraum einer Brennkraftmaschine insbesondere bei Benzin-Direkteinspritzventilen Verwendung finden.The invention is not limited to the exemplary embodiments described. Thus, the exemplary embodiments can be combined with one another without any problems and, for example, surface structuring of the impact surface 19 can also be used on an exemplary embodiment with a radially or tangentially inclined impact surface 19. Furthermore, the illustrated and described further development according to the invention can also be used Fuel injectors for the direct injection of fuel into the combustion chamber of an internal combustion engine are used in particular in gasoline direct injection valves.

Claims (15)

  1. Fuel injection valve or fuel injection nozzle (1), with a nozzle body (2) which extends along a longitudinal axis (3) and on which is formed a valve-seat surface (13) which co-operates with a valve-closing surface (15) formed on a valve-closing body (14), to produce a valve seat, at least one fuel jet (17), which has a radial direction component with respect to the longitudinal axis (3) of the nozzle body (2), being injected when the fuel injection valve or fuel injection nozzle (1) is in an open state, there being provided a sleeve body (4) which projects axially beyond the injected fuel jet (17) in the direction of the longitudinal axis (3) and which has at least one impingement surface (19; 46-48) on which the fuel jet (17) impinges, characterized in that the impingement surface (19; 46-48) is inclined at a flat angle (α) of between 0° and 45°, preferably between 5° and 30°, with respect to a vertical plane (20) running vertically to the longitudinal axis (3), and/or the impingement surface (19; 46-48) is structured in a groove-like manner.
  2. Fuel injection valve or fuel injection nozzle according to Claim 1, characterized in that the sleeve body (4) annularly surrounds at least one injection-side end portion (6) of the nozzle body (2).
  3. Fuel injection valve or fuel injection nozzle according to one of Claims 1 and 2, characterized in that the impingement surface (19; 46-48) of the sleeve body (4) has, at its radially outward end, an at least partially continuous breakaway edge (31) which is undercut by means of an at least partially continuous slot (30) in the sleeve body (4) in such a way that the contour of the sleeve body (4) forms an acute edge angle (β) at the breakaway edge (31).
  4. Fuel injection valve or fuel injection nozzle according to Claim 3, characterized in that at least one ignition electrode (33), which extends axially into the region of the continuous slot (30) of the sleeve body (4), is arranged on an outer casing of the sleeve body (4).
  5. Fuel injection valve or fuel injection nozzle according to Claim 4, characterized in that the sleeve body (4) is formed from a preferably ceramic insulating material and the ignition electrode (33) is electrically insulated from the nozzle body (2).
  6. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 3, characterized in that the sleeve body (4) is formed from a high-grade steel.
  7. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 6, characterized in that the impingement surface (19) is inclined at least in the radial direction with respect to the vertical plane (20) of the longitudinal axis (3).
  8. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 7, characterized in that the sleeve body (4) is divided at its injection-side end (18) into a plurality of sectors (41-43) spaced apart by clearances (44, 45), each sector (41-43) having in each case an impingement surface (46-48), on which impinges at least one of a plurality of fuel jets injected in different injection directions.
  9. Fuel injection valve or fuel injection nozzle according to Claim 8, characterized in that the impingement surfaces (46-48) of the sectors (41-43) are in each case inclined at least in the tangential direction with respect to the vertical plane (20) of the longitudinal axis (3).
  10. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 9, characterized in that the impingement surface (19) has a structuring in the form of grooves (50-53) running in the radial direction.
  11. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 10, characterized in that the nozzle body (2) has an axial blind bore (10), in which the valve-closing body (14) is axially moveable, and in that the nozzle body (2) has a plurality of radial bores (16) which are arranged so as to be distributed circumferentially and which pass through the nozzle body (2) and issue into the blind bore (10) at the valve-seat surface (13) or downstream of the valve-seat surface (13).
  12. Fuel injection valve or fuel injection nozzle according to Claims 8 and 11, characterized in that each radial bore (16) of the nozzle body (2) is assigned a sector (42) of the sleeve body (4).
  13. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 10, characterized in that the nozzle body (2) has an axial passage bore (60), in which the valve-closing body (14) or a valve needle (11) connected to the valve-closing body (14) is guided axially, and the passage bore (60) is closeable from outside by means of the valve-closing body (14).
  14. Fuel injection valve or fuel injection nozzle according to Claim 13, characterized in that the sleeve body (4) projects beyond the injection-side end of the nozzle body (2), the said end forming the valve-seat surface (13), by an axial length amount which is dimensioned smaller than the maximum opening stroke of the valve-closing body (14).
  15. Fuel injection valve or fuel injection nozzle according to one of Claims 1 to 14, characterized in that a gap (21) is provided for thermal insulation between the nozzle body (2) and at least one injection-side end region of the sleeve body (4).
EP98932005A 1997-06-24 1998-04-25 Fuel injection valve or fuel injection nozzle Expired - Lifetime EP0975870B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19726727A DE19726727A1 (en) 1997-06-24 1997-06-24 Fuel injector or fuel injector
DE19726727 1997-06-24
PCT/DE1998/001159 WO1998059168A1 (en) 1997-06-24 1998-04-25 Fuel injection valve or fuel injection nozzle

Publications (2)

Publication Number Publication Date
EP0975870A1 EP0975870A1 (en) 2000-02-02
EP0975870B1 true EP0975870B1 (en) 2003-09-10

Family

ID=7833455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98932005A Expired - Lifetime EP0975870B1 (en) 1997-06-24 1998-04-25 Fuel injection valve or fuel injection nozzle

Country Status (6)

Country Link
US (1) US6186419B1 (en)
EP (1) EP0975870B1 (en)
JP (1) JP2000517030A (en)
KR (1) KR20000068296A (en)
DE (2) DE19726727A1 (en)
WO (1) WO1998059168A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19820513A1 (en) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Fuel injection nozzle for internal combustion engine
DE10118163B4 (en) * 2001-04-11 2007-04-19 Robert Bosch Gmbh Fuel injector
PL202458B1 (en) * 2001-05-04 2009-06-30 Edward Jakubowski Atomiser for use holes
US7070126B2 (en) * 2001-05-09 2006-07-04 Caterpillar Inc. Fuel injector with non-metallic tip insulator
DE10148597A1 (en) * 2001-10-02 2003-08-21 Bosch Gmbh Robert Fuel injector
US20030102389A1 (en) * 2001-11-30 2003-06-05 Clarke John M. Method and apparatus to control a movable tip sleeve
US7210640B2 (en) 2001-11-30 2007-05-01 Caterpillar Inc Fuel injector spray alteration through a moveable tip sleeve
FR2870569B1 (en) * 2004-05-19 2006-07-21 Renault Sas FUEL INJECTOR DEVICE FOR INTERNAL COMBUSTION ENGINE WITH COMMAND IGNITION
FR2874974A1 (en) * 2004-09-07 2006-03-10 Renault Sas Valve covered orifice type fuel injector for direct injection diesel engine, has nozzle with fuel spray orifices along axis forming specific angle with fuel flow direction, and fuel deviating part impacted by fuel spray from orifices
CN100385109C (en) * 2005-01-18 2008-04-30 侯德洋 Micro displacement variable cross-section uniform fine atomization combined type oil spout device
DE102005025135A1 (en) * 2005-06-01 2006-12-07 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102006042444A1 (en) * 2006-09-09 2008-03-27 Bayerische Motoren Werke Ag Fuel injection valve
DE102007010349B4 (en) * 2007-03-03 2009-07-09 Lfk-Lenkflugkörpersysteme Gmbh Valve control unit for ramjet drive and missile with such a valve control unit
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
JP5593797B2 (en) * 2010-04-08 2014-09-24 トヨタ自動車株式会社 Fuel injection device and fuel injection nozzle
JP5902024B2 (en) * 2011-04-15 2016-04-13 株式会社日本自動車部品総合研究所 Fuel injection control system
US9903329B2 (en) 2012-04-16 2018-02-27 Cummins Intellectual Property, Inc. Fuel injector
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US8800527B2 (en) * 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US20140197245A1 (en) * 2013-01-11 2014-07-17 Andrew E. Meyer Arrangement and method for preventing carbon formation in spray guiding structures
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
DE102014016264A1 (en) * 2014-11-03 2016-05-04 L'orange Gmbh fuel injector
CN106837639A (en) * 2017-04-13 2017-06-13 沈阳航空航天大学 A kind of close collision formula dual fuel engine nozzle assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610927C2 (en) * 1976-03-16 1983-01-27 Institut für Motorenbau Prof. Huber e.V., 8000 München Injection nozzle for injecting fuel into the combustion chamber of an internal combustion engine
US4993643A (en) * 1988-10-05 1991-02-19 Ford Motor Company Fuel injector with variable fuel spray shape or pattern
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
IT223984Z2 (en) * 1990-01-17 1995-10-05 Weber Srl VALVE OF A POWER SUPPLY OF AN INTERNAL COMBUSTION ENGINE
JP2537983Y2 (en) 1990-12-21 1997-06-04 株式会社ゼクセル Fuel injection nozzle
IT1250845B (en) * 1991-10-11 1995-04-21 Weber Srl ELECTROMAGNETICALLY OPERATED FUEL DOSING AND PULVERIZING VALVE FOR AN ENDOTHERMAL MOTOR FEEDING DEVICE
DE4303813C1 (en) 1993-02-10 1994-06-30 Bosch Gmbh Robert Fuel injection nozzle for internal combustion engines
DE19523165B4 (en) * 1994-06-29 2005-11-17 Bosch Automotive Systems Corp. fuel Injector

Also Published As

Publication number Publication date
DE19726727A1 (en) 1999-01-07
JP2000517030A (en) 2000-12-19
US6186419B1 (en) 2001-02-13
EP0975870A1 (en) 2000-02-02
KR20000068296A (en) 2000-11-25
WO1998059168A1 (en) 1998-12-30
DE59809574D1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
EP0975870B1 (en) Fuel injection valve or fuel injection nozzle
DE3808396C2 (en) Fuel injector
EP0846225B1 (en) Injection valve, in particular for directly injecting fuel into the combustion chamber of an internal combustion engine
EP1301702B1 (en) Fuel injection system
DE19518950B4 (en) fuel Injector
DE19925380A1 (en) Fuel injection valve for internal combustion engines
EP1290339A2 (en) Fuel injection system
EP1387951B1 (en) Fuel injection system
DE10124750A1 (en) Fuel injection system has injection valve in combustion chamber near inlet valve and facing cylinder wall and produces several fuel jets, at least one oriented tangentially near ignition plug
DE112015004524T5 (en) Fuel injector with nozzle of variable hole size and spray angle and MHBIB
WO2003078824A1 (en) Fuel injection valve for internal combustion engines
DE602004001580T2 (en) FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINE
EP1290322B1 (en) Fuel injection system
EP1521912B1 (en) Fuel nozzle of an internal combustion engine comprising a direct injection nozzle
DE102017219018A1 (en) PISTON CONSTRUCTION FOR FLOW CONTROL
EP1408231A1 (en) Injection device for fuel injection
EP2898214B1 (en) Fuel injection system of an internal combustion engine
EP1481159B1 (en) Fuel injection valve
DE10050751A1 (en) Fuel injection valve for IC engines has swirl-generating device formed by swirl channels in upstream side of valve seat body
EP0927303B1 (en) Fuel injection valve
AT525166B1 (en) COMBUSTION SYSTEM FOR AN AIR COMPRESSING ENGINE
WO2023156390A1 (en) Prechamber spark plug
EP1646772A1 (en) Fuel injection system
DE102018209097A1 (en) Injector and internal combustion engine with adaptive injection behavior

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20020620

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809574

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040425

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050617

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101